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●  The Internet is a distributed system:

The Internet

Courtesy of Fabrizio Montesi
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OS

●  The OS and apps in your computer (or phone):

Your Computer

Distributed Systems
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Courtesy of Fabrizio Montesi

●  Even applications can be distributed systems. Google Chrome:

Tab Manager

Google Chrome
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Monolith

Software Unit Runtime EnvironmentFunction

??
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From remotely invoking methods on objects  
to passing messages between services
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Service

Interacted through 
well-defined message 

exchanges

Designed for both 
availability and 

stability

Implements simple, 
granular functions

Limited knowledge of how 
messages are passed to or 

retrieved from it

It is service configurations and aggregations  
that change (loosely-coupled infrastructure).
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Orchestration

2.3. Orchestration

In the next section we present a brief introduction to the concept of orchestrated
services and discuss the relationship between the former and choreography.

2.3 Orchestration

Nowadays, orchestration is the most adopted solution for service composition and
the main reasons behind its wide adoption are i) that exposing and composing
legacy programs (already developed and owned by businesses) requires little to
no adjustments and ii) orchestrators become themselves new services that other
orchestrators can use in their compositions.

Whilst the industrial standard for orchestration is WS-BPEL [36] (BPEL for
short) all orchestration languages share a common base of functionalities to com-
pose services at message level:

• asynchronous or synchronous delivery and reception of messages;

• sequential composition — an interaction can occur only after the one that
precedes it;

• parallel composition — two or more interactions can occur in parallel;

• guarded composition — only one of a set of interactions can occur while
the others are discarded.

As an example, we report in Figure 2.2 the orchestrated implementation of the
protocol presented in Figure 2.1.

bank SOA

Card Issuer SOA

Card 
Validator

ATM

Orchestrator 

withdrawal1

2

card ID

4

approval

5 validation

approval6

pin request
3

pin

7

Figure 2.2: Example of orchestration.

In the example, since the bank is the owner of the SOA to which also the ATM
belongs, we do not have a “bank” service but rather we introduce the Orchestrator
service that implements the withdrawal protocol.
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<?xml version="1.0" encoding="utf-8"?> 

<!-- Asynchronous BPEL process -->

<process name="BusinessTravelProcess" 
         targetNamespace="http://packtpub.com/bpel/travel/" 
         xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
         xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
         xmlns:trv="http://packtpub.com/bpel/travel/"
         xmlns:emp="http://packtpub.com/service/employee/"
         xmlns:aln="http://packtpub.com/service/airline/" >
   
   <partnerLinks>
      <partnerLink name="client" 
                   partnerLinkType="trv:travelLT"
                   myRole="travelService"
                   partnerRole="travelServiceCustomer"/>

      <partnerLink name="employeeTravelStatus" 
                   partnerLinkType="emp:employeeLT"
                   partnerRole="employeeTravelStatusService"/>

Orchestration • WS-BPEL
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Orchestration • WS-BPEL
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Choreographies
2.1. Distributed Programming, in brief

ATM Bank Card Issuer

validation
approval

approval

pin

Client
withdrawal

card_id

Figure 2.1: Sequence chart of the ATM withdrawal example.

Since the early days of distributed computing, developers introduced and used
several tools to precisely describe the order of interactions between the compo-
nents of a system, like message sequence charts [22] and sequence diagrams [23].
Baseline of all these tools is to avoid or at least minimise the ambiguity of the de-
scription of the sequence of messages in the system. However, developers struggle
to make sure that the final interplay between the components of a distributed sys-
tem correctly implement the global description of that system. The problem here
is that they have to infer the logic of each component from a global protocol where
interactions are considered as a whole and not broken down to sequences of send
and receive actions.

Failing to correctly implement the global protocol of interaction of a system is
the main source of system freezes and misbehaviours. Such errors are classified
in literature as deadlocks [3] and race conditions [4].

Deadlocks. Deadlocks are one of the main causes of blocks of distributed sys-
tems. A system is in a deadlock state when one or more components hang, waiting
for another component to release a resource (e.g., a message). The components
cannot proceed with their computation and the whole system blocks.

Deadlocks usually occur when one of the components of a distributed applica-
tion does not implement the global protocol of the system.

As an example, assume that the developer of the ATM mistakenly reversed the
first two interactions with the bank. As a result, the system ends up in a deadlock
state because i) the ATM hangs waiting for the bank to receive the message car-
rying the PIN whilst ii) the bank waits indefinitely for the message carrying the
card ID.

11
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Choreographies • WS-CDL
<choreography name="CreditAuthorization" root="false" coordination="true"> 
   <relationship type="tns:CreditReqCreditResp"/> 
   <variableDefinitions> 
      <variable name="CreditExtended" informationType="xsd:int" silent="true"        
                roleTypes="tns:CreditResponder"/> 
      <variable name="creditRequest"/> 
      <variable name="creditAuthorized"/> 
      <variable name="creditDenied" informationType = "tns:creditDeniedType"/> 
   </variableDefinitions> 
    
   <!-- the normal work - receive the request and decide whether to approve --> 
   <interaction name="creditAuthorization" channelVariable="tns:CreditRequestor"  
                operation="authorize"> 
      <participate relationshipType="SuperiorInferior" 
                   fromRoleTypeRef="tns:Superior"  
                   toRoleTypeRef="tns:Inferior"/> 
      <exchange name="creditRequest" informationType="creditRequest"  
                action="request"> 
         <send variable="getVariable('tns:creditRequest','','')"/> 
         <receive variable="getVariable('tns:creditRequest','','')"/> 
      </exchange> 
      <exchange name="creditAuthorized" informationType="creditAuthorizedType"  
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Saxe’s Elephant
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Zeitgeist 



saverio.giallorenzo@gmail.com

Linguaggi di Programmazione • Seminario From Service-Oriented Computing to Microservices and Beyond BSc Computer Science, UniBo

Distributed Systems | Service-Orientation

16



saverio.giallorenzo@gmail.com

Linguaggi di Programmazione • Seminario From Service-Oriented Computing to Microservices and Beyond BSc Computer Science, UniBo

From Monoliths to Microservices

17

Monolith Microservices

Software Unit Runtime EnvironmentFunction

?
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Microservice

Interacted through 
well-defined message 

exchanges
Designed for both 

availability and 
stability

Implements simple, 
granular functions

Limited knowledge of how 
messages are passed to or 

retrieved from it

It is service configurations and aggregations  
that change (loosely-coupled infrastructure).

RESTful “interfaces”

Lends themselves to 
containerisation
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Microservices • Jolie
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Microservices • Jolie
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outputPort CardValidator {
  Location: "socket://localhost:8000"
  Protocol: http
  Interfaces: CardValInterface
}

requestID@ATM()( request.cardID );
requestPIN@ATM()( request.pin );
validateID@CardValidator( request )( approval );
if ( approval ){
  requestOperation@ATM()( operation );
  ...
} else {
  ejectCard@ATM()
}

Deployment

Behaviour

Microservices • Jolie

type ValidateRequest: {
cardID: int
pin: int
}

interface CardValInterface {
RequestResponse: 
validateID( ValidateRequest )( bool )
}

Behaviour

API



saverio.giallorenzo@gmail.com

Linguaggi di Programmazione • Seminario From Service-Oriented Computing to Microservices and Beyond BSc Computer Science, UniBo

Distributed Systems | Microservices

23

Deployment vs Programming
System Deployment System Programming

Independent applications 
enclosed within containers.

Independent microservices,  
possibly enclosed within containers.

… it’s microservices, 
all the way down!
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System Deployment
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System Programming 
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Monolith Microservices Serverless

Software Unit Runtime EnvironmentFunction
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Serverless

Run without provisioning or 
managing servers

Executes only when needed and 
scales automatically

run on a compute fleet that 
automatically handles memory, 

CPU, network, and other resources

cannot log in to compute 
instances, or customise the 

operating system or language 
runtime
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Execution Scheduling

Heterogeneous 
storage/
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patterns

Deployment
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inputPort TwiceService {
  Location: "socket://localhost:8000"
  Protocol: sodep
  Interface: TwiceInterface
}

main
{
  twice( number )( result ) {
    result = number * 2
  }
}

Microservice

Function

… it’s microservices, 
all the way down!
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Choreographies • Chor/AIOCJ

Chapter 2. Introduction to Choreographies

communications as sequences of send and receive actions, possibly leading
to deadlocks and races.

To exemplify the difference between the interaction-oriented and the process-
oriented approach, we report in Figure 2.3 how the two approaches would model
the scenario presented in Figure 2.1.

In the example we use the “Alice and Bob” notation [39] for interaction-oriented
choreographies, where A ! B : action represents a communication between two
endpoints (components) of the system, specifically A sending a message through
an action to B, and ; is the sequential composition of interactions. For process-
oriented choreographies we use the notations from A : action and to A : action

to respectively represent the receiving from and the sending to the endpoint A
through action, ; still means sequential composition.

Client ! ATM : withdrawal;
ATM ! Bank : card_id;
ATM ! Bank : pin;
Bank ! Card Issuer : validation;
Card Issuer ! Bank : approval;
Bank ! ATM : approval

ATM process
from Client : withdrawal;
to Bank : card_id |

to Bank : pin;
from Bank : approval

Bank process
from ATM : card_id;
from ATM : pin;
to Card Issuer : validation;
from Card Issuer : approval;
to ATM : approval

Card Issuer process
from Card Issuer : validation;
to Bank : approval

Figure 2.3: Upper part: example of interaction-oriented choreography. Lower
part: from left to right, the process-oriented choreographies of the ATM, the Bank,
and the Card Issuer.

2.5 Choreographic Programming

Recent theoretical investigations explored how the interaction- and process-oriented
aspects of choreographies could be merged into one language, namely one that en-
joys the minimality and safety (deadlock- and race-freedom) of top-down chore-
ographies but able to express process-level interactions, needed to implement dis-
tributed systems.

Seminal works in such endeavour are [10], where the Qiu et al. give a first
theoretical account of the fundamental issues between choreographies and imple-
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mentations, and [11], in which Carbone et al. lay the theoretical foundations for
the development of interaction-oriented choreographies as implementation lan-
guages. In [11] the authors relate interaction-oriented choreographies and imple-
mentations by means of an Endpoint Projection (EPP) function. The EPP is a
mapping from a choreography specification to a set of processes which, run in
parallel, enact the behaviour described by the choreography. The treatment is the-
oretical and targets as endpoint language an applied ⇡-calculus [5], rather than an
actual executable language. However in [11] the authors prove that interaction-
oriented choreographies can be made expressive enough to define the implementa-
tion of safe distributed systems. Essentially, the projected processes enact all and
only the behaviours described in the choreography (protocol) and since choreogra-
phies cannot express deadlocks and races also the projected system is deadlock-
and race-free.

The most notable results of [11] are that i) it paved the way for the concept of
Choreographic Programming [40], ii) it clarified the relation between (Multiparty)
Session Typings [41] and choreographies, and iii) it provided a methodology for
the development of distributed software, based on a correctness-by-construction
approach, which we can depict as:

Choreography

(Correct by design)

EPP
��������!

Enpoint Projection

(Correct by construction)

Subsequent theoretical works [12, 13, 14] followed a similar approach, extend-
ing the choreography model to support multiparty sessions, channel mobility, and
modularity.

On the other side of the spectrum, some early works [42, 43, 44] explored how
choreographies could be used to support the implementation of distributed pro-
grams, however none of these proposals uses choreographies as a programming
abstraction and rather employs them to check endpoint programs.

Chor [45] is the first work that brought the theoretical results on choreographies
into the world of implementation languages. Based on the theoretical framework
presented in [13], Chor supports the definition of global descriptions (protocols),
the programming of compliant choreographies, and the safe projection of said
choreographies into a collection of distributable and executable orchestrators.

Chor gives a tangible proof that choreographic programming is a suitable para-
digm for the implementation of real-world distributed systems because: i) it lets
developers focus on the description of the interactions between the components
in the system and ii) it generates deadlock- and race-free distributed applications
that are guaranteed to follow the designed protocol.

Nonetheless, Chor is just the first attempt at bringing into the real world the
promising theoretical results on choreographies. The language lacks some stan-
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mentations, and [?], in which Carbone et al. lay the theoretical foundations for
the development of interaction-oriented choreographies as implementation lan-
guages. In [?] the authors relate interaction-oriented choreographies and imple-
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only the behaviours described in the choreography (protocol) and since choreogra-
phies cannot express deadlocks and races also the projected system is deadlock-
and race-free.

The most notable results of [?] are that i) it paved the way for the concept of
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approach, which we can depict as:

Choreography

(Correct by design)

EPP
��������!

Endpoint Projection

(Correct by construction)

Subsequent theoretical works [?, ?, ?] followed a similar approach, extend-
ing the choreography model to support multiparty sessions, channel mobility, and
modularity.

On the other side of the spectrum, some early works [?, ?, ?] explored how
choreographies could be used to support the implementation of distributed pro-
grams, however none of these proposals uses choreographies as a programming
abstraction and rather employs them to check endpoint programs.

Chor [?] is the first work that brought the theoretical results on choreographies
into the world of implementation languages. Based on the theoretical framework
presented in [?], Chor supports the definition of global descriptions (protocols),
the programming of compliant choreographies, and the safe projection of said
choreographies into a collection of distributable and executable orchestrators.

Chor gives a tangible proof that choreographic programming is a suitable para-
digm for the implementation of real-world distributed systems because: i) it lets
developers focus on the description of the interactions between the components
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Choreographies • Choral
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Choreographies • Choral


