
Cyber Security
Summer School 2019

Saverio Giallorenzo

Venue

Microservice Security Concepts
 2

Saverio Giallorenzo

Venue

Name: Saverio

From: University of Southern
Denmark (Odense),
Department of Mathematics and
Computer Science

Research group: Concurrency
and Logic

Expertise: Programming
Languages, Microservices,
Internet of Things, Security

Presentation: Me

 3

Saverio Giallorenzo

Venue

Presentation: the CL group

 4

https://concurrency.sdu.dk

https://concurrency.sdu.dk

Saverio Giallorenzo

Venue

Microservice Security Concepts
 5

Saverio Giallorenzo

Venue

Target Audience: CTOs,
CSOs, Project Managers,
Developers

Overview:
• Microservices, from 10 to 1

km high

• Microservices and Containers

• Microservice Security

Microservice Security Concepts

 6

Saverio Giallorenzo

Venue

Microservices, from 10km high

 7

Monolith Microservices

Saverio Giallorenzo

Venue

Microservices, from 1km high

 8

Independent, Scalable Software Components

Saverio Giallorenzo

Venue

Microservices, from 1km high

 9

Message-based
Inter-process

Communications

Sender Medium Addressee

Saverio Giallorenzo

Venue

Microservices, from 1km high

 10

Message-based Inter-process Communications

Saverio Giallorenzo

Venue

Microservices, from 1km high

 11

Message-based
Inter-process

Communications
Sender Medium Addressee

Pattern: Request-Response, Publish/Subscribe
Application: HTTP, SOAP, RabbitMQ, MQTT, COAP
Transport: TCP, UDP, Hybrids (QUIC), Serial, RAW
Link: IEEE 802 (.3 Ethernet, .11 WiFi), Unix Sockets

Saverio Giallorenzo

Venue

Microservices, from 1km high

 12

Composition via Application
Programming Interfaces

Saverio Giallorenzo

Venue

Microservices, from 1km high

 13

Composition via Application
Programming Interfaces

Machine Processable

Interface I {
List< Integer > getRequest()

}

type RequestType: { item*: int }
interface I {
One-Way: getRequest(Request)

}

They are in mainstream languages

Why not to program microservices?

Saverio Giallorenzo

Venue

Microservices, from 1km high

 14

😩 Disadvantages

• Increased Complexity

• of unit- and integration-testing

• of monitoring

• of ensuring availability (non-
binary system status)

Saverio Giallorenzo

Venue

Microservices, from 1km high

 15

💪 Advantages
• Independence

• of development
• of scalability
• of reuse

• Agility
• small codebase to maintain
• contained outages

• Flexibility to match the
business capabilities/structure

Saverio Giallorenzo

Venue

 16

Microservices ≠ Containers

Saverio Giallorenzo

Venue

 17

Microservices ≠ Containers

Saverio Giallorenzo

Venue

 18

Microservices ≠ Containers

Here, we do not focus on containers.
However, they play well with
microservices.

Some pointers on security (by NIST):

• Application Container Security
Guide

• Security Assurance Requirements
for Linux Application Container
Technologies

Saverio Giallorenzo

Venue

 19

Microservices Security

Promote U.S. innovation and industrial
competitiveness by advancing measurement
science, standards, and technology in ways
that enhance economic security and improve
our quality of life.

- NIST’s official mission

“

”

Saverio Giallorenzo

Venue

 20

Microservices Security

Security Strategies for
Microservice-based
Application Systems

Reference source for this seminar

Saverio Giallorenzo

Venue

 21

Approaches to control
Standalone

Auth.

CORE Discovery

Access

Monitoring

Analysis Availability

Saverio Giallorenzo

Venue

 22

Approaches to control
Gateway

COREAuth.

Discovery

Access Monitoring

Analysis

Availability

Saverio Giallorenzo

Venue

 23

Approaches to control
Service Mesh

CORE

Auth.Discovery Access

Monitoring

Analysis

Availability
Sidecar
Proxy

Data
Plane

Control
Plane

Saverio Giallorenzo

Venue

 24

Generic Threats
Hardware

Saverio Giallorenzo

Venue

 25

Generic Threats
Virtualisation, Containers,

and the Cloud Infrastructure

Saverio Giallorenzo

Venue

 26

Generic Threats
Communication and Application Layers

Saverio Giallorenzo

Venue

 27

Generic Threats
Communication and Application Layers

Saverio Giallorenzo

Venue

 28

Service Discovery
Specific Threats

Discovery

I am

?!

Mitigations

• DMZ for discovery servers

• cluster of distributed
discovery servers

• authenticated and secured
communications for service
registration/discovery

• sanity/health service check
before registry modification

Saverio Giallorenzo

Venue

 29

Authentication and Access Control
Specific Threats

Auth. Access

Token
Server

Policy
Service

OpenID

OAuth 2.0

OAuth 2.0
?!

Saverio Giallorenzo

Venue

 30

Secure Communication Protocols
Specific Threats

Each microservice is an SSL/TLS endpoint.

Use keep-alive connections to mitigate
handshake overhead

Saverio Giallorenzo

Venue

 31

Security Monitoring/Analysis
Specific Threats

Monitoring

Health
report

Load
status

Load
status

Saverio Giallorenzo

Venue

 32

Integrity Assurance

Specific Threats
Availability & Resilience

Availability

90%

10%

Canary Release

• Gradually transition clients
and sessions (next slide)

• Ensure expected behaviour
of new release

Saverio Giallorenzo

Venue

 33

Session Persistence

Specific Threats
Availability & Resilience

Availability

Sticky
Cookie

Saverio Giallorenzo

Venue

 34

Load Balancers

Specific Threats
Availability & Resilience

10%

60%

20%

Saverio Giallorenzo

Venue

 35

Throttlers

Specific Threats
Availability & Resilience

Saverio Giallorenzo

Venue

 36

Circuit Breakers

Specific Threats
Availability & Resilience

X
X
X
X

X
X
X

Saverio Giallorenzo

Venue

 37

Microservice Security Concepts

Saverio Giallorenzo

Venue

 38

The first language for Microservices

https://www.jolie-lang.org

Saverio Giallorenzo

Why Jolie?
Jolie is perfect for fast prototyping. In
little time a small team of developers can
build up a full-fledged distributed system.

!39

But I already know Java!
Why shall I use Jolie?

Saverio Giallorenzo

SocketChannel socketChannel = SocketChannel.open();
 socketChannel.connect(
new InetSocketAddress("http://someurl.com", 80));
 Buffer buffer = . . .; // byte buffer
 while(buffer.hasRemaining()) {
 channel.write(buffer);
}

Happy?

Ok, but you did not even close
the channel or handled

exceptions

Why Jolie?

!40

Saverio Giallorenzo

SocketChannel socketChannel = SocketChannel.open();
try {
 socketChannel.connect(new InetSocketAddress("http://someurl.com",
80));
 Buffer buffer = . . .; // byte buffer
 while(buffer.hasRemaining()) {
 channel.write(buffer);
} }
catch(UnresolvedAddressException e) { . . . }
catch(SecurityException e) { . . . }
/* . . . many catches later . . . */
catch(IOException e) { . . . }
finally { channel.close(); }

Happier now?

Yes, but what about the
server?

Why Jolie?

!41

Saverio Giallorenzo

Selector selector = Selector.open();
channel.configureBlocking(false);
SelectionKey key = channel.register(selector, SelectionKey.OP_READ);
while(true) {
 int readyChannels = selector.select();
 if(readyChannels == 0) continue;
 Set<SelectionKey> selectedKeys = selector.selectedKeys();
 Iterator<SelectionKey> keyIterator = selectedKeys.iterator();
 while(keyIterator.hasNext()) {
 SelectionKey key = keyIterator.next();
 if(key.isAcceptable()) {
 // a connection was accepted by a ServerSocketChannel.
 } else if (key.isConnectable()) {
 // a connection was established with a remote server.
 } else if (key.isReadable()) {
 // a channel is ready for reading
 } else if (key.isWritable()) {
 // a channel is ready for writing
 }
 keyIterator.remove();
 }
}

Here you are

Why Jolie?

!42

Saverio Giallorenzo

Well, ok, but again, you are not handling exceptions.
And what about if different operations use the same
channel?
And if we wanted to use RMIs instead of Sockets?
In what format are you
transmitting data? And if
we need to change the
format after we wrote the
application? Do you check the
type of data you receive/send?

Why Jolie?

!43

Saverio Giallorenzo

Programming distributed systems is usually
harder than programming non distributed ones.

Concerns of concurrent programming.

Plus (not exhaustive):
• handling communications;
• handling heterogeneity;
• handling faults;
• handling the evolution of systems.

Why Jolie?

!44

Saverio Giallorenzo

Applications in a distributed system can perform a distributed
transaction.
Example:
- a client asks a store to buy some music;
- the store opens a request for handling a payment on a bank;
- the client sends his credentials to the bank for closing the

payment;
- the store sends the goods to the client.

Looks good, but a lot of things may go wrong, for instance:
- the store (or the bank) could be offline;
- the client may not have enough money in his bank account;
- the store may encounter a problem in sending the goods.

Why Jolie?

!45

Saverio Giallorenzo

Things can be made easier by hiding the low-level
details.

Two main approaches:
- make a library/tool/framework for an existing

programming language;
- make a new programming language.

Can you tell the difference between the two
approaches?

Why Jolie?

!46

Saverio Giallorenzo !47

Strong foundations from Academia

Taught
also in:

Why Jolie?

Saverio Giallorenzo !48

It is a live open source project with
continuous updates and a well documented

codebase

“This is the programming language

you are looking for”

https://github.com/jolie/jolie

Why Jolie?

Saverio Giallorenzo !49

“Hello World!” is enough to let you see some of the main
features of Jolie and Service-Oriented Programming.

include "console.iol"

main
{
println@Console("Hello, world!")()

}

Include a
service

program entry point

operation service

Why Jolie?

Saverio Giallorenzo

Resources | Online

• Official Website:
• http://www.jolie-lang.org

• Official Docs:
• http://docs.jolie-lang.org

• Official Codebase:
• https://github.com/jolie/jolie

!50

Saverio Giallorenzo

Venue

 51

https://github.com/thesave/	
cybersecurity_summer_school_cph_2019

https://github.com/thesave/

