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https://concurrency.sdu.dk

https://concurrency.sdu.dk
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Target Audience: CTOs, 
CSOs, Project Managers, 
Developers 

Overview: 
• Microservices, from 10 to 1 

km high 

• Microservices and Containers 

• Microservice Security

Microservice Security Concepts
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Monolith Microservices
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Independent, Scalable Software Components
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Message-based 
Inter-process 

Communications

Sender Medium Addressee
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Message-based Inter-process Communications



Saverio Giallorenzo

Venue

Microservices, from 1km high

 11

Message-based 
Inter-process 

Communications
Sender Medium Addressee

Pattern: Request-Response, Publish/Subscribe 
Application: HTTP, SOAP, RabbitMQ, MQTT, COAP 
Transport: TCP, UDP, Hybrids (QUIC), Serial, RAW 
Link: IEEE 802 (.3 Ethernet, .11 WiFi), Unix Sockets
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Composition via Application  
Programming Interfaces
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Composition via Application  
Programming Interfaces

Machine Processable

Interface I {
List< Integer > getRequest()

}

type RequestType: { item*: int } 
interface I {
One-Way: getRequest( Request )

}

They are in mainstream languages

Why not to program microservices?
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😩 Disadvantages

• Increased Complexity 

• of unit- and integration-testing 

• of monitoring 

• of ensuring availability (non-
binary system status)
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💪 Advantages
• Independence 

• of development 
• of scalability 
• of reuse 

• Agility 
• small codebase to maintain 
• contained outages 

• Flexibility to match the 
business capabilities/structure
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Microservices ≠ Containers
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Microservices ≠ Containers

Here, we do not focus on containers. 
However, they play well with 
microservices.  

Some pointers on security (by NIST): 

• Application Container Security 
Guide 

• Security Assurance Requirements 
for Linux Application Container 
Technologies 
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Microservices Security

Promote U.S. innovation and industrial 
competitiveness by advancing  measurement 
science,  standards, and  technology  in ways 
that enhance economic security and improve 
our quality of life.

- NIST’s official mission

“

”
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Microservices Security

Security Strategies for  
Microservice-based  
Application Systems

Reference source for this seminar
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Approaches to control
Standalone

Auth.

CORE Discovery

Access

Monitoring

Analysis Availability
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Approaches to control
Gateway

COREAuth.

Discovery

Access Monitoring

Analysis

Availability
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Approaches to control
Service Mesh

CORE

Auth.Discovery Access

Monitoring

Analysis

Availability
Sidecar 
Proxy

Data 
Plane

Control 
Plane



Saverio Giallorenzo

Venue

 24

Generic Threats
Hardware
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Generic Threats
Virtualisation, Containers,  

and the Cloud Infrastructure
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Generic Threats
Communication and Application Layers
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Generic Threats
Communication and Application Layers
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Service Discovery
Specific Threats

Discovery

I am

?!

Mitigations 

• DMZ for discovery servers 

• cluster of distributed 
discovery servers 

• authenticated and secured 
communications for service 
registration/discovery 

• sanity/health service check 
before registry modification
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Authentication and Access Control
Specific Threats

Auth. Access

Token 
Server

Policy 
Service

OpenID

OAuth 2.0

OAuth 2.0
?!
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Secure Communication Protocols
Specific Threats

Each microservice is an SSL/TLS endpoint. 

Use keep-alive connections to mitigate 
handshake overhead 
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Security Monitoring/Analysis
Specific Threats

Monitoring

Health 
report

Load 
status

Load 
status
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Integrity Assurance

Specific Threats
Availability & Resilience

Availability

90%

10%

Canary Release 

• Gradually transition clients 
and sessions (next slide) 

• Ensure expected behaviour 
of new release
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Session Persistence

Specific Threats
Availability & Resilience

Availability

Sticky 
Cookie
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Load Balancers

Specific Threats
Availability & Resilience

10%

60%

20%
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Throttlers

Specific Threats
Availability & Resilience
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Circuit Breakers

Specific Threats
Availability & Resilience

X
X
X
X

X
X
X
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Microservice Security Concepts
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The first language for Microservices

https://www.jolie-lang.org
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Why Jolie?
Jolie is perfect for fast prototyping. In 
little time a small team of developers can 
build up a full-fledged distributed system.

!39

But I already know Java! 
Why shall I use Jolie?
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SocketChannel socketChannel = SocketChannel.open();
  socketChannel.connect( 
new InetSocketAddress("http://someurl.com", 80));
  Buffer buffer = . . .; // byte buffer
  while( buffer.hasRemaining() ) {
     channel.write( buffer );
}

Happy?

Ok, but you did not even close 
the channel or handled 

exceptions

Why Jolie?

!40
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SocketChannel socketChannel = SocketChannel.open();
try {
  socketChannel.connect(new InetSocketAddress("http://someurl.com", 
80));
  Buffer buffer = . . .; // byte buffer
  while( buffer.hasRemaining() ) {
    channel.write( buffer );
} }
catch( UnresolvedAddressException e ) { . . . }
catch( SecurityException e ) { . . . }
/* . . . many catches later . . . */
catch( IOException e ) { . . . }
finally { channel.close(); }

Happier now?

Yes, but what about the 
server?

Why Jolie?

!41
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Selector selector = Selector.open();
channel.configureBlocking(false);
SelectionKey key = channel.register(selector, SelectionKey.OP_READ);
while(true) {
  int readyChannels = selector.select();
  if(readyChannels == 0) continue;
  Set<SelectionKey> selectedKeys = selector.selectedKeys();
  Iterator<SelectionKey> keyIterator = selectedKeys.iterator();
  while(keyIterator.hasNext()) {
    SelectionKey key = keyIterator.next();
    if(key.isAcceptable()) {
        // a connection was accepted by a ServerSocketChannel.
    } else if (key.isConnectable()) {
        // a connection was established with a remote server.
    } else if (key.isReadable()) {
        // a channel is ready for reading
    } else if (key.isWritable()) {
        // a channel is ready for writing
    }
    keyIterator.remove();
  }
}

Here you are

Why Jolie?

!42



Saverio Giallorenzo

Well, ok, but again, you are not handling exceptions. 
And what about if different operations use the same 
channel? 
And if we wanted to use RMIs instead of Sockets?  
In what format are you  
transmitting data? And if  
we need to change the  
format after we wrote the  
application? Do you check the 
type of data you receive/send?

Why Jolie?

!43
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Programming distributed systems is usually 
harder than programming non distributed ones. 

Concerns of concurrent programming. 

Plus (not exhaustive): 
• handling communications; 
• handling heterogeneity; 
• handling faults; 
• handling the evolution of systems.

Why Jolie?

!44
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Applications in a distributed system can perform a distributed 
transaction. 
Example: 
- a client asks a store to buy some music; 
- the store opens a request for handling a payment on a bank; 
- the client sends his credentials to the bank for closing the 

payment; 
- the store sends the goods to the client. 

Looks good, but a lot of things may go wrong, for instance: 
- the store (or the bank) could be offline; 
- the client may not have enough money in his bank account; 
- the store may encounter a problem in sending the goods.

Why Jolie?

!45
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Things can be made easier by hiding the low-level 
details. 

Two main approaches: 
- make a library/tool/framework for an existing 

programming language; 
- make a new programming language.

Can you tell the difference between the two 
approaches?

Why Jolie?

!46
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Strong foundations from Academia 

 

Taught  
also in:

Why Jolie?
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It is a live open source project with 
continuous updates and a well documented 

codebase

“This is the programming language 

you are looking for”

https://github.com/jolie/jolie

Why Jolie?
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“Hello World!” is enough to let you see some of the main 
features of Jolie and Service-Oriented Programming.

include "console.iol"

main 
{
println@Console( "Hello, world!" )()

}

Include a 
service

program entry point

operation service

Why Jolie?
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Resources | Online

• Official Website:  
• http://www.jolie-lang.org 

• Official Docs:  
• http://docs.jolie-lang.org 

• Official Codebase:  
• https://github.com/jolie/jolie

!50
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https://github.com/thesave/	
cybersecurity_summer_school_cph_2019

https://github.com/thesave/

