
saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Abstract Data Types and  
Object Orientation

1



saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Abstract Data Types

2

As seen, physical machines “understand” only strings of bits. On the contrary, 
the more complex programs become, the more complicated it is for 
developers to reason at that low level (where an array, a table, or a graph have 
more or less the same “surface”).  

Thus, programming languages adopted types also as a kind of “capsule” to 
organise values from undistinguishable strings of bits into distinct entities 
with their own set of operations.  

In type-safe languages, the capsule represented by a type is completely 
opaque and the user cannot interact with its values unless mediated by the 
capsule. In these cases, we call the type an abstract data type (ADT), i.e., one 
that defines the possible values that inhabit the type and the possible 
operations they support and their behaviour. 
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ADTs do not simply enforce the abstractions built into 
the language (e.g., that 2+true is a typing error), but also 
programmer-defined ones—i.e., besides “protecting” the 
machine from the program, they can encapsulate and 
protect parts of the program from each other. 

Conventionally an ADT consists of: 
• the abstract type name A; 
• the concrete representation type T; 
• implementations of operations for creating, querying, 

and manipulating values of type T; 
• an abstraction boundary that encloses T and makes it 

accessible only through the operations of A. 

Hence, users can create new values of type A, pass them 
around their program, store them in data 
structures, etc., but they cannot directly inspect 
and change the concrete representation of type T.

type Counter 
 representation int 
 signature 
  new: Counter 
  get: Counter -> int 
  inc: Counter -> Counter 
 operations 
  new = 1 
  get = fn( int i ){ i } 
  inc = fn( int i ){ i+1 }

Using the CLU / Ada notation for Abstract Data Types
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Abstracting implementations via interfaces is a fundamental principle in 
programming languages: it allows the producer and consumer of software 
components to establish a contract by 
agreeing on a “surface”—the interface—the 
consumer expects to use and the producer 
promises to support.  

Following the metaphor, the “language” of 
(abstract data) types is the one the two 
parties use to formalise that contact. 

Of course, a synonym of “abstraction”, here, 
is information hiding, i.e., we hide behind 
interfaces the implementation details of a 
given data type (both its structure and how 
its operations work). 

Program

Abstract Data Type
Private Operations

Public Operations

Interface

Concrete 
Type ⟺

⟺ ⟺
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Interestingly, information hiding improves code compositionality in a way 
similar to what we saw for subtype/parametric polymorphism: by omitting 
(some of) the details of the implementation (in polymorphism, the actual type 
of a type parameter) we (consumers) cannot make assumptions on the actual 
implementation of the type and write code that only uses the given interfaces. 

This leads us to the property of type-safe ADTs, called representation 
independence, whereby two correct (well-typed) implementations of the same 
ADT are observability non-distinguishable by consumers of that type.  

Since ADTs are representation-independent, it is safe to use any type-
compatible implementation of a given ADT and interchange alternative 
implementations thereof. Of course, the guarantees of types cover as far as 
types are involved—e.g., they do not track performance differences.
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trait Counter { 
 fn new() -> Self; 
 fn get( &self ) -> u32; 
 fn inc( &self ) -> Self; 
} 
struct SC { counter: u32 } 
impl Counter for SC { 
    fn new() -> Self { SC { counter: 0 } } 
    fn get( &self ) -> u32 { self.counter } 
    fn inc( &self ) -> Self  
     { SC { counter: self.counter + 1 } } 
} 
fn use_counter<C>( c: &mut C ) where C: Counter { 
  let c = c.inc(); let c = c.inc(); print!( "{}", c.get() ); 
} 
fn main(){ use_counter( &mut SC::new() ) }

Rust has a direct way 
to implement ADTs via 
traits. 
In general, traits are a 
linguistic mechanism 
to wrap functionalities 
common to different 
types. 
The trait represents 
the abstract type 
whose interface gives 
access to users to the 
concrete type, by 
means of the 
implementation of its 
operations.

signature}

implementation
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From the point of view of code organisation, ADTs are also a way to “wrap” the 
code that belongs to the same (abstract data) type within a single interface. 
However, e.g., when we write libraries but also large programs, we might need 
a way to provide multiple ADTs within the same “package”.  

The linguistic mechanism that achieves this is usually called module (or, case 
in point, package).  

Different programming languages attribute to modules different properties, 
but a common one is to let developers partition they programs, so that each 
module contains data (types, variables, etc.) and operations (functions, code, 
etc.) available within the module. The module also defines the visibility of the 
data it encloses, i.e., what a user of the module can “see” and use.
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From the point of view of type theory, abstract data types and modules introduce the 
concept of existential types — as a shorthand for existentially quantified types — 
where a definition like 

trait Counter { fn new…; fn get…; fn inc…; } 

would correspond to the existential type  

 

Notice that the type does not “witness” the concrete type, which is tied to the internal 
representation of a value of type Counter. This indicates that we can have inhabitants 
of  whose internal details we are able forgo, still obtaining type safety. 
With the existential, as long as we have an inhabitant of that type, we can safely 
“access” the operations of the type.

CounterADT = {∃X, {new : () → X, get : X → int, inc : X → X}

CounterADT
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A valid implementation of  is 

 

 

 // 2 

After we “opened” the existential, the type name is bound, i.e., we can only have one 
implementation of  in the continuation of the program. ADTs guarantee that we can 
replace the assignment of a given implementation with any compliant one without risking to 
break our program.

CounterADT = {∃X, {new : () → X, get : X → int, inc : X → X}

Counter

{Counter, c} = {*int, {new = 1, get = fn(i : int){i}, inc = fn(i : int){i + 1}}} as CounterADT

Counter c1 = c . new()

c . get( c . inc( c1 ) )

Counter

Abstract Data Types and Existential Types
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Since the same implementation can 
inhabit different existential types, 
we introduce the keyword as to 
ascribe the intended existential 
type of the implementation.

The concrete type 
(reference) used by the 
implementations of the 
operations, bound to  
in 

X
Counter

N.B. the definition above of  does not manage some internal state (or work with references) like the more complex example in Rust — which implements a hybrid form of ADTsSC

SC
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From a principled point of view, ADTs and modules are quite close—e.g., we can see ADTs as a 
degenerate case of a module carrying one ADT. However,  depending on the language, ADTs and 
modules can provide different degrees of flexibility to the user, e.g., modules could express the 
visibility of data and operations in a much finer grade (the “permeability” of the capsule) than ADTs. 

mod counter { pub trait Counter { … } } 
mod sc { 
 use crate::counter::Counter; 
 pub struct SC { … } 
 impl Counter for SC { … } 
} 
use crate::counter::Counter; 
use crate::sc:SC; 
fn use_counter<C>( c:&mut C ) where C: Counter{ … } 
fn main(){ … }
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The kind of (existential) types we used for ADTs are not the only interpretation 
of existential types—for capturing information hiding and representation 
independence. 

Indeed, while in ADTs the existential type hides (omits) the concrete type, when 
we use an implementation, our program binds the implementation to that type 
name in the program continuation, making it impossible to have multiple, 
interoperating implementations of the same abstract data type. 

 

{Counter, c} = {*int, {new = 1, get = fn(i : int){i}, inc = fn(i : int){i + 1}}} as CounterADT
{ACounter, ac} = { * {c : int}, {new = {c : 1}, get = fn(i : {c : int}){i . c}, inc = fn(i : {c : int}){{c : i . c + 1}}}} as CounterADT
c1 = c . new()
c2 = ac . new()
ac . inc(c1) Type mismatch error
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(Existential) Objects provide an alternative view on ADTs that allows multiple implementations of the same 
existential type to interact. 

To do this, we need existential-type definitions to live in programs like any other type, so that 
 is a type in our typing system. Then, we can define implementations, called objects, as 

concrete types that keep their state (implementation) internal and carry with them their association with their 
existential type, for example 

 

Where the two implementations of  can coexist, since their state is always “wrapped" within their 
implementation and the only way to read it is by means of the operations and state “changes” mean the creation of 
new objects (as seen in function  )

Counter = {∃X, …}

Counter = {∃X, {state : X, methods : {get : X → int, inc : X → X}}}
c1 = {*int, {state : 1, methods : {get(int i){i}, inc(int i){i + 1}}}} as Counter
c2 = { * {c : int}, {state : {c : 1}, methods : {get({c : int} i){i . c}, inc({c : int} i){i . c + 1}}}} as Counter
f( Counter {*A, a}, Counter {*B, b} ){
{*A, {state : a . methods . inc(b . methods . get(b)), methods : a . methods}} as Counter

}
f(c1,c2)

Counter

f
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Summarising, intuitively, ADTs adopt an “open” view on existential types and the 
implementations that they induce. When we “import” an implementation (or, 
complementarily, when we “build” one) we immediately open it for usage. With ADTs, 
the values manipulated by client code (the programs that import the implementation) 
are the elements of the underlying representation type (e.g., in the counter example, 
integers). Thus, at run time, all the Counter values generated from the  
are just bare elements of the same internal representation type, and there is a single 
implementation of the counter operations that works on this internal representation.  

The opposite happens with objects, where we keep “closed” an “imported” object as 
long as possible, up until we use one of its methods to access its internal state. In our 
example of the counter, each counter is a whole package—including the 
implementation of its state and of its operations. Hence, each counter object carries 
its own representation type together with its own set of operations that work for this 
representation type.

CounterADT
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Hence, a relevant difference between ADTs and Objects is that, since each 
object chooses its own representation and carries its own operations, a single 
program can freely intermix many different implementations of the same 
(existential) object type.  

We will see how this becomes particularly convenient in the presence of 
subtyping (and inheritance): we can define a single, general class of objects 
and then produce many different refinements, each with its own slightly (or 
completely) different representation. Since instances of these refined classes 
all share the same general type, they can be manipulated by the same generic 
code, stored together in lists, etc. 
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Let us now focus on the object-oriented paradigm and the peculiarities that 
determine it. 

Of course, the main construct of any object-oriented language is that of an object: a 
capsule containing both data and operations to manipulate them, and which 
provides an interface to the outside world through which the object can be accessed.  

In object-speak, operations are called methods and can access the data contained in 
the object, reachable via (instance) variables (or fields).  

In the original definition of objects, one would execute an operation by sending a 
message to the object, which contains the name of the method to be executed and 
its possible parameters. However, (mainly for performance reasons) the most 
common form of operation invocation works via procedure invocation (hence, the 
large adoption of the term “invoke” for method execution) and reference passing.
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The syntax of method invocation is not new (it is similar to that of ADTs and of 
records, in general) where o.m( p1, p2, … ) reads “we invoke the method 
m, with parameters p1, p2, …, on the object o”. Since objects (as ADTs) are 
essentially records, we can use a similar syntax to access their internal 
variables, e.g., o.v reads “we access variable v of object o”.  

In both cases, implementations of object-oriented languages equip objects 
with the capability to express in fine details the opacity of their capsule: we 
can express that operations and variables can be visible everywhere, some 
may be visible only for some objects, and some may be completely private, i.e. 
only available within the object itself.
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Although it is conceptually permissible to have each object specify its 
implementation, it can become overwhelming and wasteful to specify many 
times the same implementation just to have different instances of 
fundamentally the same object (e.g., imagine we need three counters to keep 
track of some distinct events in our code, which then we want to sum). 

This compelled the introduction of a new concept, called class, which allows 
us to specify a canvas or template implementation that contains, once and for 
all, the variables and methods common to the same class (hence, the name) of 
objects. Once we defined a class, to create new objects, we invoke a special 
function, usually called new, able to take the class and create—instantiate, in 
object-speak—a new object from it.
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Hence, a class is a model for a set of 
objects: it establishes what their data 
are (how many, of what type, with 
what visibility) and fixes the name, 
signature, visibility, and 
implementation of its methods.  

In a language with classes, each 
object 'belongs' to (at least) one class, 
in the sense that the structure of the 
object corresponds to the structure 
fixed by the class.

class Counter { 
 private int x=1; 
 public int get(){  
  return x;  
 } 
 public void inc( int i ){  
  x = x+i;  
 }  
}  

Counter c1 = new Counter(); 
Counter c2 = new Counter(); 
Counter c3 = new Counter();
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On the left, we see some Java code where 
(similarly to C++), a class corresponds to a 
type (more on this, later) and all instance 
objects of a class are values of that type. 

However, different languages adopted 
different notions of classes. E.g., in 
Simula, a class is a procedure that returns 
a (pointer to a) stack frame (activation 
record) containing local variables and 
function definitions, while in Smalltalk a 
class is linguistically an object, which 
serves as a schema for the definition of 
the implementation of a set of objects.

class Counter { 
 private int x=1; 
 public int get(){  
  return x;  
 } 
 public void inc( int i ){  
  x = x+i;  
 }  
}  

Counter c1 = new Counter(); 
Counter c2 = new Counter(); 
Counter c3 = new Counter();
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Il paradigma orientato agli oggetti 365

reset

get

inc

this.x=0;

return this.x;

this.x=this.x+1;

Counter

x

reset

get

inc

x

reset

get

inc

Figura 12.2 L’implementazione dei metodi risiede nella classe.

la sua inizializzazione (invocazione del costruttore della classe, rappresentato dal
nome della classe con le parentesi, sul quale ritorneremo tra poco)3.

Possiamo senz’altro supporre che il codice dei metodi sia memorizzato una
sola volta nella classe, e che quando ad un oggetto viene richiesto di eseguire un
determinato metodo, questo venga ricercato nella classe di cui è istanza. Affinché
ciò possa accadere, il codice del metodo deve accedere correttamente alle variabili
di istanza, che sono distinte per ogni oggetto e che dunque non sono memorizzate
insieme alla classe, ma all’interno dell’istanza, come è indicato schematicamente
nella Figura 12.2. Nella figura i metodi della classe Counter si riferiscono alle
variabili di istanza attraverso il nome this. Abbiamo già osservato che quando
un oggetto riceve un messaggio che richiede l’esecuzione di un metodo, l’oggetto
stesso è un parametro implicito del metodo: quando nel corpo del metodo si fa ri-
ferimento alle variabili di istanza c’è un implicito riferimento all’oggetto corrente
che sta eseguendo il metodo. Da un punto di vista linguistico, l’oggetto corren-
te viene di solito denotato da un nome particolare, usualmente self o this.
Ad esempio, la definizione del metodo inc poteva essere scritta, esplicitando il
riferimento implicito all’oggetto corrente:

3In C++, a differenza di Java, è possibile creare un oggetto anche senza invocare un costruttore;
C++ permette infatti di definire oggetti anche sulla pila (si veda la pagina 366).

In general, classes store the (only) code 
implementation of all its objects and 
when we invoke a method of an object, 
we actually reach out to that class-
bound implementation, referenced by 
the object.  

Of course, the method would not execute 
on the (inexistent) state of the class but 
rather on the state of the object. 
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What actually happens is that (as we saw 
in Rust, with the self parameter) object 
methods implicitly receive as parameter 
the object that invoked them, so that 
when the method body refers to instance 
variables, there is an implicit reference 
to the current object that is executing 
the method.  

From a linguistic standpoint, the current 
object is usually denoted by a particular 
name, usually self or this.

class Counter { 
 private int x=1; 
 public int get(){  
  return this.x;  
 } 
 public void inc( int i ){  
  this.x = this.x+i;  
 }  
}  

Counter c1 = new Counter(); 
Counter c2 = new Counter(); 
Counter c3 = new Counter();
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All object-oriented languages create objects dynamically, which usually 
reminds us of heap-allocated structures.  

While this is the case for, e.g., Java, which allocates objects on the heap, access 
them via references (the language has no pointer type and variables of non-
primitive objects are references to heap-stored objects), and uses garbage 
collection to manage their deallocation, languages like C++ allows one to 
specify the allocation and deallocation of objects on the stack. 

In C++, when the language processes the declaration of a variable of type 
class, it creates and initialises an object of that type, bound to that variable 
and, thus, to that context.
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An alternative to classes are prototypes. This style 
also takes the name of delegation, as it hinges on 
the possibility for objects to delegate parts of their 
implementation to other objects. 

Javascript (JS) is one of the most famous languages 
based on prototypes. 

In prototypes, objects can delegate the definition of 
values and methods to another object, via their 
prototype property. These languages provide two 
ways to create new objects. One, called ex-nihilo, 
happens through some form of object  literal (e.g., 
{…} in JS) and it assigns no prototype to the created 
object. The other, called cloning, creates (e.g., 
through the new keyword, in JS) an object by making 
a copy of an existing one, which is its prototype.

function Counter() {  
 this.x = 1; 
} 
Counter.prototype.get=function(){  
  return this.x;  
} 
Counter.prototype.inc=function(i){  
  this.x = this.x+i;  
}  
c = new Counter(); 
c.inc( 1 ); 
c.get();

Prototype
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Prototypes are similar to classes in the sense that they serve as models for 
the structure and functioning of other objects. However, contrary to classes, 
prototypes are (linguistically) ordinary objects, possibly used as models.  

Similarly to classes, prototypes can define common methods to their 
“children”, i.e., when we try to access some field or invoke a method of an 
object, if the object does not have that field or does not define that method, 
it delegates the action to its parent. If the parent owns that field or 
implements that method, then it performs the associated action and report 
back to its child the result. Contrarily, the chain of calls goes “up”, possibly 
until we reach the empty prototype and report an error.
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A practical difference between prototypes and 
classes stands on the flexibility of the former 
vs the safety guarantees given by the latter. 

Indeed, a prototype-based object can change 
its parent at runtime (possibly completely 
changing its whole interface). One such 
behaviour is usually prevented in class-based 
languages. There, a class defines the interface 
of any object of that type and only relatively 
constrained associations of that object to other 
classes are allowed; e.g., we can cast the 
objects as the inhabitants of a class with fewer 
fields/methods, marked in the language as the 
“parent” of their class.

function Counter() { this.x = 1; } 
Counter.prototype.get=function() 
 { return this.x; } 
Counter.prototype.inc=function(i)   
 { this.x = this.x+i; } 
function OtherCounter(){Counter.call(this);} 
function Multiplier(){} 
Multiplier.prototype.mult=function( i ) 
 { this.x = this.x*i; } 
OtherCounter.prototype = Counter.prototype; 
c = new OtherCounter(); 
c.inc( 1 ); 
Object.setPrototypeOf(c,Multiplier.prototype); 
c.mult( 2 ); 
Object.setPrototypeOf(c, Counter.prototype); 
c.get(); // 4
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Encapsulation and information hiding are one of the cornerstones of ADTs, 
which also holds for object orientation: the language allows us to define an 
object by hiding parts of it (its data and/or methods).  

Hence, we distinguish at least two views: the private and the public one. The 
private view is the most complete one, where all methods and fields are 
visible. The public one sees only those parts of the object that have been 
explicitly exposed in the definition of the object. 

The public view of an object is usually called its interface, with the meaning 
mentioned for ADTs: the methods (and fields) that client code can use to 
interact with the value of a certain type.

Encapsulation
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In OO, classes identify the set of objects that are its instances, i.e., we 
can consider classes as the types of those objects. Typed languages 
makes this relationship explicit: a class definition also introduces a 
type definition, whose values are the instances of the class. 

As discussed, type systems usually come with a compatibility 
relation. In particular, we can see subtyping in OO as the 
compatibility relation  where the type associated with the 
class  is a subtype of the type associated with the class  whenever 
all client code expecting to work with objects of type  can work with 
objects of type . 

This concept, generally known as the Liskov substitution principle, is more formally 
specified as “Let   be a provable property for any object  of type  and let  be a 
subtype of  then, for any object  of type ,  is provable.”

S <: T
S T

T
S

p(o) o T S
T o′ S p(o′ )
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Concretely, the properties mentioned in the Liskov principle refer to the 
possibility to access in  fields available in  as well as being able to invoke in 

 methods available in . 

While in a structural type system this relation would boil down to a 
correspondence check between the elements of  with respect to those of  
(as seen for records), the usual path taken by class-based languages is to 
adopt a nominal style, which helps avoiding possible accidental type 
equivalences.  

Of course, this additional layer of safety comes with its limitations: the user 
now needs to declare the expected relations of subtyping among types, so 
that the language can check that the property above holds for subtypes.

S T
S T

T S
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In principle, the direct relation we established  
earlier between types and classes is a bit 
misleading: types talk about structure and 
operations, while classes also define visibility 
constraints, hold state, and carry executable 
code.  

This is where interfaces come into play, acting 
as (linguistic) bridge between classes and types. 

Then, we take the definition of a class as the 
implicit definition of a companion interface 
from the public view of that class. In turn, the 
class implements that interface, establishing 
with it a relation of subtyping.

interface CounterInterface { 
 int get(); 
 void inc( int i ); 
} 

class MyCounter 
 implements CounterInterface { 
  private int x=1;  
  public int get(){ … } 
  public void inc( int i ){ … } 
  private void doubleInc( int i ){ … } 
}

inherently 
public
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In addition, interfaces allow us to provide 
cl ients with a description of the 
“contract” our objects promise to fulfil, 
without forcing us to provide their actual 
implementation.  

This notion forms another pillar of object-
oriented languages, which falls under the 
name of abstraction principle.

interface CounterInterface { 
 int get(); 
 void inc( int i ); 
} 

class CounterUser { 
 void incCounter( CounterInterface c ){ 
  c.inc( 1 ); 
 } 
}

Abstraction Frequently coalesced with Encapsulation
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The interface-to-class relation is not the only way 
we can specify subtyping in OO. Indeed, in 
principle, interface-to-class subtyping, e.g., 
Counter implements CounterInterface, 
entails two actions: 

• we define a class, say Counter , which 
implements its associated companion interface, 
let us call it Counter_Interface; 

• we declare that Counter_Interface is/must 
be a subtype of CounterInterface. 

Hence, interface-to-class subtyping assumes a 
relation of interface-to-interface subtyping, which 
is usually referred as extension.

interface CounterInterface { 
 int get(); 
 void inc( int i ); 
} 

interface MultCounterInterface  
 extends CounterInterface  
{ 
 void mult( int i ); 
}
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When we apply subtyping at the level of 
classes, i.e., class-to-class subtyping, we apply 
the idea of interface-to-interface extension to 
cover the state, the encapsulation constraints, 
and the method implementation of classes. 

This relation takes the name of inheritance, 
since the subtype of the class “inherits” from 
the latter its definition of state (more on this 
later, with constructors), its encapsulation 
constraints, and its method implementations. 

class Counter { 
 int x=1; 
 public int get(){ return this.x; } 
 public void inc( int i ) 
 { this.x = this.x+i; }  
} 
class MyCounter extends Counter { 
 private void doubleInc( int i ){…} 
} 
class MultCounter extends MyCounter { 
 public void mult( int i ){ … } 
} 

MultCounter mc = new MultCounter(); 
mc.inc( 1 ); 
mc.mult( 2 ); 
mc.doubleInc( 3 );

Inheritance

🤔

subclass superclass

subclass superclass
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Variable shadowing indicates that a subclass 
can “mask” fields of its superclass by defining 
fields with the same name (but not necessarily 
the same types). 

Variable shadowing comes from the standard 
block-level scoping rules, with the peculiarity 
that we consider the superclass as an outer 
block to the subclass, which can shadow any of 
the variables “inherited” from the outer one. 

To avoid mistakes, Java is explicit on this matter: 
if a subclass wants to access a variable of its 
superclass, it must use the prefix super (akin to 
how this is a reference to the object itself).

class Counter { 
 int x=1; 
 int get(){ return x; } 
 void inc( int i ){ x = x + i; } 
} 

class MultCounter extends Counter { 
 int x=2; 
 void multMult( int i ){  
  super.x = super.x * this.x * i; 
 } 
} 
MultCounter mc = new MultCounter(); 
mc.inc( 1 ); 
mc.multMult( 2 ); 
mc.get(); // 8 🤔
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As seen for interfaces, a class that extends 
another class can add, on top of those 
inherited from its supertype, new parts of 
state and new methods (along with their 
encapsulation constraints). 

Another peculiarity of inheritance is the 
possibility to override inherited method 
implementations. Indeed, the principle of 
abstraction tells us that we can change 
method implementations as long as they 
respect interfaces.

class Counter { 
 int x=1;  
 int get(){ return x; } 
 void inc( int i ){ x = x + i; } 
} 
class MultCounter extends Counter { 
 void mult( int i ){  
super.x = super.x * i; 

} 
 @Override 
 void inc( int i ){ mult( i ); } 
} 
Counter c = new MultCounter(); 
c.inc( 2 ); 
c.inc( 3 ); 
c.get(); // 6

Override annotation

🤔
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Hence, one difference between method 
overriding and variable shadowing is that 
the former is dynamically resolved, while 
the latter is statically resolved. 

In method overriding, it is the actual class 
of the object (from what class it was 
instantiated) that determines to what 
method we shall dispatch the invocation. 

Contrarily, we solve variable shadowing 
statically, i.e., by either explicitly indicating 
what variable we want to access (this, 
super) or via type cast/coercion.

class Counter { 
 int x=1;  
 int get(){ return x; } 
 void inc( int i ){ x = x + i; } 
} 
class MultCounter extends Counter { 
  int x=1; 
  void mult( int i ){ 
  super.x = super.x * i;  
} 
 @Override 
 void inc( int i ){ mult( i ); } 
} 
MultCounter mc = new MultCounter(); 
Counter c = mc; 
c.inc( 2 ); 
c.inc( 3 ); 
c.get();  // 6 
mc.get(); // 6 
c.x;      // 6 
mc.x;     // 1

Override annotation

🤔

This is one of the reasons behind the practice of setter and getter methods
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We have seen two notions of encapsulation visibility (also 
called visibility modifiers): private and public. Although 
this binary division covers the base case of transparent-
vs-opaque encapsulation, there are cases where we might 
want to define encapsulation as semi-opaque (or 
-transparent), e.g., to allow subclasses to “see” methods 
and fields of their superclasses. This is the case covered 
by two additional visibility modifiers: package and 
protected. 

The package case (the default one, in Java) extends the 
visibility of fields/methods of a class to all classes that 
belong in the same module of that class (remember the 
relation between ADTs, modules, and existential types).  

The protected case extends the package one to also allow 
any subclass (in any module) to (internally) interact with 
the protected fields/methods of their superclass.

class Counter { 
 int x=1; 
 public int get(){ return this.x; } 
 public void inc( int i ) 
 { this.x = this.x+i; }  
} 
class MyCounter extends Counter { 
 package void doubleInc( int i ){…} 
} 
class MultCounter extends MyCounter { 
 public int mult( int i ){ … } 
} 

MultCounter mc = new MultCounter(); 
mc.inc( 1 ); 
mc.mult( 2 ); 
mc.doubleInc( 3 );

😀

subclass superclass

subclass superclass
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It is important to keep in mind the difference 
between the inheritance and subtype relations: 

• subtypes have to do with the possibility of using 
an object in another context: it is a relation 
between the interfaces of two classes; 

• inheritance has to do with the possibility of 
reusing code that manipulates an object: it is a 
relation between the implementations of two 
classes. 

Then, while these two relations are independent, 
they frequently intermingle, due to the conventions 
that languages impose, e.g., that class-to-class 
extension (inheritance) implies their related 
interface-to-interface extension (subtyping).

class Counter { 
 int x=1; 
 int get(){ … } 
 void inc( int i ){ x = x + i; } 
} 

class MultCounter extends Counter { 
 int x; 
 int multMult( int i ){  
  super.x = super.x * this.x * i; 
 } 
} 

MultCounter mc = new MultCounter(); 
mc.inc( 1 ); 
mc.multMult( 2 );
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In some cases, inheritance is too tight a 
relation, e.g., we might have a set of classes 
that implement 1) the same interface and 2) 
could share part of their implementation *but* 
they are not in an inheritance relation with 
each other, i.e., they are “siblings”.  

Abstract classes strike a middle ground 
between interfaces and classes, so that they 
can define fields and method implementations 
as well as leaving some methods as abstract, 
like interfaces, which its subclasses would 
need to implement/override.

abstract class AbstractCounter { 
 int x=1; 
 int get(){ return x; }; 
 abstract void inc( int i ); 
} 

class Counter extends AbstractCounter { 
 @Override 
 void inc( int i ){  
  super.x = super.x + i; 
 } 
}

Abstract Classes
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When we presented the subtype relation  , we mentioned it being a(n antisymmetric, 
) partial (reflexive  and transitive 

) preorder. 

If we define cycles such as , antisymmetricity would reject them 
( , but since , it negates  ). 
Thus, the subtyping relation takes the form of a directed acyclic graph 
(DAG) among types. 

Partial orders (and their related graphs) do not guarantee the presence of a 
single maximal element—here, the type that has no supertype and “fathers” 
(through transitivity) all other types, usually called Top. However, having 
Top in the type system is generally useful (e.g., to specify operations that 
accept values of any type) and many languages enforce the existence of 
Top, e.g., in Java, Top is Object, from which all other classes inherit (basic 
object-level methods, such as cloning and equality checking).

<:
S <: T ∧ T <: S ⟹ T = S T <: T
S <: T ∧ R <: S ⟹ R <: T

T <: R, S <: T, R <: S
S <: T ∧ R <: S ⟹ R <: T T ≠ R T <: R ∧ R <: T ⟹ T = R

Top

… …

S

…… …

T
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interface Reader {Readable read()} 
interface Writer {void write(Writable w)} 
interface RW extends Reader, Writer {}

Top

… …

R

RW

…… …

W

Since the subtyping relation describes a DAG, in principle, we are allowed 
to express something like , i.e., that  is both a subtype of 
type  and type , with  and  unrelated. Visually, we are making the 
part of the DAG that involves , , and  converge on .  

In general, this kind of types take the name intersection types, written 
, which comes from the observation that, when the values of  

and  overlap,  indicates the intersection of values that inhabit both  
and .  

On the other hand, if  and  do not overlap,  represents a kind of union 
(not to be mistaken for Union/Sum types) of the capabilities of the two 
types. E.g., a type RW which is both a subtype of 
the Reader (R) and the Writer (W) types. In Java, 
this is expressed, at the level of interfaces, with 
the list of types an interface extends.

S <: T ∧ S <: R S
T R T R

T R S S

S <: T ∧ R T
R S T
R

T R S
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As mentioned, classes offer a way to define 
templates for the creation of objects and 
OO languages provide a special keyword, 
e.g., new in Java, to instantiate an object. 
However, there might be different methods 
for creating an object, e.g., we might also 
want to create Counter by setting x, 
instead of using the default starting value 1. 

Constructors cater this need and we can 
see them as special methods of a class that 
can take in some parameters and return an 
instantiated object of that class.

class Counter { 
 int x; 
 public Counter(){  
  this.x = 1;  
 } 
 public Counter( int i ){ 
  this.x = i; 
 } 
 public get(){ 
  return this.x; 
 } 
 public inc( int i ){ 
  this.x = this.x + i; 
 } 
}
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Both at the level of types and implementation-
wise, objects are complex structures and their 
creation makes no exception: a) we need to 
allocate the necessary memory (on the heap or 
on the stack) and b) we need to correctly initiate 
the data.  

Action b) is what the class and the constructor are 
there for: they define the code whose execution 
guarantees the creation of a correct instance of 
the class. This code becomes more complex the 
more features we use, e.g., with inheritance b) not 
only needs to initialise the internals of the object 
(fields, the pointers to methods, …) but it must 
also link the data declared in superclasses.

class Counter { 
 int x; 
 public Counter(){  
  this.x = 1;  
 } 
 public Counter( int i ){ 
  this.x = i; 
 } 
 public get(){ 
  return this.x; 
 } 
 public inc( int i ){ 
  this.x = this.x + i; 
 } 
}



saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Constructors • Choosing a constructor (method)

43

On top of this, classes can provide different 
constructors among which the compiler/
runtime has to choose. 

In some languages (e.g., C++, Java), the name 
of the constructor coincides with the name 
of the class, and distinguishing among them 
follows the same rules for overloaded 
methods (solved statically, based on the 
number and types of the arguments). Other 
languages allow the programmer to freely 
choose the name of constructors, although 
they remain syntactically distinct from 
ordinary methods.

class Counter { 
 int x; 
 public Counter(){  
  this.x = 1;  
 } 
 public Counter( int i ){ 
  this.x = i; 
 } 
 public get(){ 
  return this.x; 
 } 
 public inc( int i ){ 
  this.x = this.x + i; 
 } 
}
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Another aspect is how and when to initialise the 
parts of an object that come from superclasses. 

Some languages simply execute the constructor 
of the class whose instance is being created; if 
the programmer wishes to call the constructors 
of superclasses, he must do so explicitly.  

Other languages (e.g., C++ and Java) enforce that 
the initialisation of an object first calls the 
constructor of the superclass (constructor 
chaining). Also in this case, the compiler/runtime 
must decide which of the possibly many 
constructors available of the superclass(es) to 
use.

class Counter { 
 int x; 
 public Counter( int i ){ 
  this.x = i; 
 } 
 public int get(){…} 
 public void inc( int i ){…} 
} 
class MyCounter extends Counter { 
 public MyCounter( int i ){ 
  super( i ); 
 } 
}
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In some languages a class may inherit from only one immediate superclass: 
the inheritance hierarchy is then a tree and the language is said to have single 
inheritance.  This is the case of Java (n.b., single inheritance, not subtyping). 

Other languages, however, allow a class to inherit methods from multiple 
superclasses; those languages are said to have multiple inheritance and the 
inheritance hierarchy is a DAG (like in the general case of subtyping). 

The most part of languages support the simpler case of single inheritance, but 
some, e.g., C++ and Eiffel, support multiple inheritance. The reason is that 
multiple inheritance poses conceptual and implementation problems that did 
not yet find an elegant solution.
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Conceptually, we have a problem with name clashes: a name clash occurs 
when a class inherits from two or more classes that provide the 
implementation of methods with the same signature. 

As mentioned, up to now we just found partial solutions: a) syntactically 
forbid conflicts; b) ask the developer to explicitly fix any clash, e.g., by 
appropriately qualifying each reference to the conflicting name (e.g., in C++, if 
C inherits from A and B where the method m() clashes, in the body of C the 
programmer needs to call B::m() or A::m()); c) establish a convention to 
resolve clashes (as in Scala mix-ins), e.g., by considering as “winning” the 
method of the left-most class that appears in the extension clause.
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Practically, we have a Deadly-Diamond-of-Death kind of 
problem, from the diamond-like shape assumed by the 
schematic representation of the inheritance relation that 
emerges when a) two classes B and C inherit from A, and 
class D inherits from both B and C and b) there is a method 
in A that B and C have overridden, and D does not override 
it.  

Which of the method implementations does D inherit? 

We can follow one of the (excluding the first one) 
conceptual solutions mentioned before. While this solves 
the problem architecturally, we still have the practical 
problem of  efficiently resolving clashes and run the correct 
implementation.

m()?

m()

m()

m()
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Dynamic method dispatch, also called 
method overriding, is at the heart of the 
object-oriented paradigm: it is where 
abstraction and inheritance meet and give 
rise to one of the paradigmatic traits of 
object-orientation.  
Conceptually, the mechanism is very simple: 
a subclass can redefine (override) a method 
implementation, so that, at runtime, the 
code run depends on the type of the object 
receiving the message. The stress on types is 
important: the dispatch is dynamic because, 
in general (e.g., in a method) we know the 
actual type of the object only at runtime.

Dynamic Dispatch

class Counter { 
 int x=1;  
 int get(){ … } 
 void inc( int i ){ x = x + i; } 
} 

class MultCounter extends Counter { 
 void mult( int i ){ … } 
 @Override 
 void inc( int i ){ mult( i ); } 
} 

Counter c = new MultCounter(); 
c.inc( 2 ); 
c.inc( 3 );
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Method overriding is similar to 
overloading; indeed, they both resolve an 
ambiguous situation in which the same 
name can have several meanings. 

The difference is summed up by the terms 
early and late binding. In early binding we 
use static information (of the type of the 
variables) to resolve the ambiguity and 
bind the name. Contrarily, in late binding 
information is available only at runtime 
(the types of the actual objects), which is 
when we can perform the binding of the 
name.

Dynamic Dispatch

class Counter { 
 int x=1;  
 int get(){ … } 
 void inc( int i ){ x = x + i; } 
} 

class MultCounter extends Counter { 
 void mult( int i ){ … } 
 @Override 
 void inc( int i ){ mult( i ); } 
} 

Counter c = new MultCounter(); 
c.inc( 2 ); 
c.inc( 3 );
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Static methods are more language-specific than dynamic 
dispatch—they do not define the OO paradigm—but some 
languages provide them as a way to indicate (and 
optimise for) methods that the compiler can statically 
resolve, because they are independent from instance 
(object) states/variables (they neglect this), and do not 
depend on the actual class of a given object. 

An example of these are static methods in Java, which 
one accesses from the class that defines them, rather 
than from an instance (object) of that class. Since they 
are statically resolved, static methods cannot be 
overridden. 

However, we can shadow static methods (similarly to 
variables) and pair them with subtyping. In this case, the 
resolution follows the subtyping relation—if we have two 
methods o, one taking a type and one its subtype, we 
disambiguate by applying the method specific to the type 
of the variable (not the object), as shown on the right.

class Counter { 
 int x=1;  
 int get(){ … } 
 void inc( int i ){ x = x + i; } 
 static void inc( Counter c ){ 
  c.inc( 1 ); 
 } 
} 
class MultCounter extends Counter { 
 static void inc( MultCounter c ){ 
  c.inc( 2 ); 
 } 
} 

Counter c = new MultCounter(); 
MultCounter.inc( c ); // Statically solved 
c.inc( 1 ); 
c.get(); // 3 🤔
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Conceptually, classes are similar to records that define fields 
and (the code of ) operations. This carries also to 
implementations, where we can represent an object as if it 
were a record holding the fields of the class of which it is an 
instance, plus all those that appear in its superclasses.  

In case of shadowing (early binding), the object has fields 
corresponding to a different declaration (often the name used 
in the superclass is not accessible in the subclass, unless via 
some qualifier, e.g., super).

class A {  
 int a;  
 void f(){...}  
 void g(){...}  
}  
class B extends A {  
 int b; int c; 
 void f(){...} 
 void h(){...}  
}  
A o; 
o = new B();

f()

h()

f()

g()

Class A Class B Object o

(super) a
b
c
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In statically-typed languages this representation allows a 
simple implementation of subtype compatibility (in case 
of single inheritance): since we statically know the offset  
(position) of each variable, we can resolve static 
references by calculating the offset of the starting block 
belonging to a given superclass and calculating the offset 
to the referenced field from there—e.g., to find o.c, we 
know we need to start after the offset from the fields of 
class A and then follow the type/order of fields in B.

(super) a
b

class A {  
 int a;  
 void f(){...}  
 void g(){...}  
}  
class B extends A {  
 int b; int c;  
 void f(){...} 
 void h(){...}  
}  
A o; 
o = new B();

f()

h()

f()

g()

Class A Class B Object o

c
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The simplest and most intuitive implementation of classes and inheritance is 
by means of a concatenated list, where each element: a) represents a class 
and contains (pointers to) the implementation of all methods explicitly 
defined or redefined in that class and b) point its immediate superclass.  

To implement dynamic method dispatch, we use the pointer from an object 
to its class to check whether it contains an implementation for that method: 
if it does, we execute the code pointed there, otherwise we follow the 
pointer up to the superclass of that class and so forth. 

While this implementation is simple, it is also quite inefficient, since late 
binding implies the linear visit of the hierarchy of classes.

(super) a
b

class A {  
 int a;  
 void f(){...}  
 void g(){...}  
}  
class B extends A {  
 int b; int c;  
 void f(){...} 
 void h(){...}  
}  
A o; 
o = new B();

f()

h()

f()

g()

Class A Class B Object o

c

Implementation Aspects • Classes and Inheritance
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Executing a method is similar to running a function, where we load on the stack the 
local variables, the parameters, and the other information for its execution. However, 
unlike functions, methods must also access the instance variables of the object on 
which they are invoked, whose address we know only at runtime. 

An inefficient solution would be referencing the object (this) in the stack frame of the 
method and then perform a double lookup to find the object in memory and then 
access the instance fields thereafter.  

On the contrary, we can avoid to load in the stack frame the reference to this and the 
double lookup by using the static knowledge on the structure of the object, given by 
its class: we (the compiler) define the access to instance fields not as an offset from 
the stack frame (as it happens with local variables/parameters) but as the offset given 
by the address of the current object (this) plus the (specific) offset of each field, as 
declared by the class of the object.
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Given a static type system, we can improve the linear-time, chained-list 
implementation of single-inheritance method selection into a constant-time 
one.  

Indeed, if types are static, objects have a finite, static (compile-time) set of 
methods, which correspond to those found in their class descriptor — which 
contains both the methods explicitly defined/redefined in the class and all 
those inherited from the superclasses. 

This data structure usually takes the name of vtable (from C++, standing for 
virtual function table).
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With vtables, each class 
definition corresponds to 
a vtable, and all instances 
of that class share the 
same vtable. When we 
define a subclass B of 
class A, we build the 
vtable of B by making a 
copy of the vtable of A, 
replacing in this copy all 
the methods redefined in 
B, and then adding at the 
bottom of the vtable the 
new methods defined in B.

class A {  
 int a;  
 void f(){...}  
 void g(){...}  
}  
class B extends A {  
 int b; int c;  
 void f(){...} 
 void h(){...}  
}  
A o1 = new A(); 
A o2 = new B();

a f()

g()

vtable AObject o1

a f()

g()

vtable BObject o2

h()

redefined

inheritedb
c
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In this way the invocation of a 
method: 

A) occurs at the (constant) price of 
two indirect accesses, since it is 
statically known the offset of each 
method within the vtable and 

B) takes into account that an object 
can be accessed as one if its 
superclasses; e.g., when invoking 
method f, the compiler calculates 
an offset for that method that 
remains the same whether f is  
invoked on an object of class A or 
B, although, in the vtable, the same 
address corresponds to different 
implementations.

class A {  
 int a;  
 void f(){...}  
 void g(){...}  
}  
class B extends A {  
 int b; int c;  
 void f(){...} 
 void h(){...}  
}  
A o1 = new A(); 
A o2 = new B();

a f()

g()

vtable AObject o1

a f()

g()

vtable BObject o2

h()

b
c

redefined

inherited
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Vtables for simple inheritance are very efficient, since most information is 
statically determined. However, the late binding of this (self) is a source of 
problems in a context known as the fragile base class (or superclass) problem. 

Indeed, the top-down propagation of changes imposed by class hierarchy 
(from super- to subclasses) breaks compositionality: the only way to detect if 
some changes in a superclass caused incompatibles in subclasses entails to 
consider the entire inheritance hierarchy. Conceptually, modularisation makes 
this check impossible, since the writer of the superclass does not have access 
to all possible subclasses. 

From the architectural point of view, this means that some subclass exploited 
parts of the superclass that have been changed. This is a software engineering 
problem which can be solved by limiting inheritance in favour of subtyping.
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From the implementation 
point of view the failure of 
the subclass depends only on 
h o w t h e c o m p i l e r 
represented the hierarchy in 
memory. This second case 
takes the name of fragile 
binary interface problem. 

E.g., in the example, we add 
the method i to A. This forces 
us to recompile also B to add 
to its vtable the new method, 
or we risk malfunctions, e.g., 
executing h in place of i.

class A {  
 int a;  
 void f(){...}  
 void g(){...}  
 void i(){...} 
}  
class B extends A {  
 int b; int c;  
 void f(){...} 
 void h(){...}  
}  
A o1 = new A(); 
A o2 = new B();

a f()

g()

vtable AObject o1

a f()

g()

vtable BObject o2

h()

b
c

i()

X

redefined

inherited
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The way in which the JVM implements Dynamic Method Dispatch overcomes 
this problem, by dynamically (and efficiently) computing the offset of the 
methods in the vtable (but also of the instance variables in the object 
representation). 

Simplifying, Java compiles classes separately from each other: each class gives 
rise to a file that the virtual machine dynamically loads when the executing 
program makes a reference to that class.  

This file contains a table of symbols (the constant pool) used in the class 
itself: instance variables, public and private methods, methods and fields of 
other classes used in the method body, names of other classes used in the 
class body, etc. 
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In the compiled code, each instance variable and method name has information 
associated with it, including the type of the names and the class where they are 
defined.  

To save space, whenever the source code uses a name, the JVM intermediate 
representation uses the index of that name in the constant pool (and not the name 
itself). However, these indexes are not only useful for representation compactness. 

When, at runtime, a name is referred for the first time (through its index), this is 
solved: the virtual machine loads the necessary classes (for example those where 
the name is introduced) using the information of the constant pool and it checks the 
constraints on types and visibility (e.g., that the invoked method really exists in the 
referred class, that it is not private, etc.) and then it rewrites the running code to 
replace the lookup instructions with instructions for the direct execution of the 
code loaded in memory.
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We can think of the representation of methods in a class descriptor as similar to 
a vtable: the table for a subclass starts with a copy of that of the superclass and 
we replace the overridden methods with the ones redefined by the class. 
However, we do not compute offsets right away, but rather follow these four 
invocation modalities (related to their distinct instructions in the bytecode): 
• invokestatic: the method is static and it cannot refer to this; 
• invokevirtual: the method must be selected dynamically (so-called 

"virtual" methods); 
• invokespecial: the method must be selected dynamically and is “special”, 

i.e., they are constructors or invoked on this (e.g., private methods) or super; 
• invokeinterface: we call an interface method, which some objects 

implement.
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invokestatic  has the simplest resolution: since  static methods cannot be overridden and do not reference 
instance variables, we just statically bind the definition of the related class. 
invokespecial follows the same path of invokestatic, with the possible check that super/this exists (and its 
binding). 
invokevirtual deals with method overriding and resolves it via vtable lookups, optimising visits with index 
lookups, i.e., calculated on the base that overridden methods have the same signature of superclasses. 
Starting from the subclass, we lookup the index in the vtable of the class and check we found the method we 
were looking for. If so, we stop and resolve the index, otherwise, we continue following the pointer to the 
superclass. 
invokeinterface  since we ignore which class implements the interface method, we inspect the class of the 
object to determine a) if that class actually implements the interface, and b) where that interface's methods 
are recorded within that particular class. Since we do not assume a fixed scheme (which would introduce the 
fragile base-class problem) we need to search through the list of implemented interfaces by the class. Once we 
find the interface, we can proceed in a more direct way: from the interface, we calculate an  itable that 
represents the fixed schema common to all portions of classes that implement the target interface, and we use 
the offset from the itable to find the method and proceed as seen for dynamic/virtual invocations. 
invokedynamic, (for completeness) used since Java 8, the instruction adds more flexibility to the dynamic 
dispatch mechanisms of the JVM and is mainly used in the implementation of Java lambda expressions.



saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Parametric Polymorphism and Generics

64

As seen, Java supports parametric polymorphism with the syntax, e.g., Set< T >.  

Specifically, Java adopts the nomenclature generics [1] to indicate the inclusion of 
this feature to support  generic programming—Java is not alone here,  e.g., 
C#,  F#,  Python,  Go,  Rust,  Swift,  and TypeScript  all adopt the same term. The 
distinction with what ML and Haskell call parametric polymorphism is thin, but one 
lexical difference is that the latter intend polymorphism as implicit, e.g., OCaml 

let max x y = if x > y then x else y;; where  max: ‘a -> ‘a -> ‘a 

while generics assume explicit indication of type parameters, e.g., Java 

<T> max ( T x, T y ) { return x > y ? x : y; } 

C++ also support a similar concept as that of generics with templates.

[1] Bracha, G., Odersky, M., Stoutamire, D., & Wadler, P. (1998). Making the future safe for the past: Adding genericity to the Java programming language.
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When writing Set<T> we see we can use generics to parameterise entire classes, but how 
do we generate a parametric version of Set, able to “work” with any type parameter?  

As with, e.g., dynamic dispatch, generics can be implemented in several ways. E.g., C++ 
implements them statically, where the complier creates a separate copy of the code for 
every used instance.  

Thanks to type erasure, Java makes all instances of a given generic class share the same 
code. What happens at compilation is that, if the Java type checker validates the use of 
generics, the compiler proceeds by erasing all type parameter from the code (so that 
Set<T> becomes the “raw” type Set) and all objects of the generic class become 
instances of the Top type Object [1]—since the type checker validated the program, the 
compiler does not need to add casts. This “trick” allowed Java 5 to introduce generics 
without breaking compatibility with previous versions of the language, VM 
implementations, and libraries.

[1] Which excludes the use of basic Java types that are not subtypes of Object
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While erasing generics in Java has many 
benefits, it also introduced shortcomings.  

The most notable is we cannot invoke new 
T(), (T type parameter), since the compiler 
does not know what object to create. Similarly, 
Java’s reflection mechanism (instanceof) 
cannot distinguish between Set<Integer> 
and Set<String>, since at runtime they both 
coalesce to the row type Set — although there 
are techniques, generally referred as reification 
(as the complementary of type abstraction 
obtained through erasure), where, e.g., we have 
the class carry the reified type/class (also 
called witness) of the type parameter.

class Box< T > { 
 T c; 
 Box( T c ){ this.c = c; } 
} 
class WBox< T > extends Box< T >{ 
 Class< T > klass; 
 WBox( T c, Class< T > klass ) { 
  super( c ); 
  this.klass = klass; 
 } 
} 

Box< String > b1 = new Box<>( "a" ); 
Box< Integer > b2 = new Box<>( 1 ); 
WBox< String > wb1 =  
  new WBox<>( "a", String.class ); 
WBox< Integer > wb2 =  
  new WBox<>( 1, Integer.class );
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To be able to express  variance annotations on generics,  Java introduced 
the wildcard ? as a special kind of type argument that expresses that T<?> is 
a supertype of any (type) application of the generic type T.  

? can be refined to indicate co(ntra)variance of subtyping, i.e, the covariant 
case  T<? extends S>  allows the use of S  and its subtypes while the 
contravariant case T<? super S> allows the use of S and all its supertypes 
(see the examples on covariance and contravariance on bounded parametric 
polymorphism).


