
saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Abstract Data Types and
Object Orientation

1

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Abstract Data Types

2

As seen, physical machines “understand” only strings of bits. On the contrary,
the more complex programs become, the more complicated it is for
developers to reason at that low level (where an array, a table, or a graph have
more or less the same “surface”).

Thus, programming languages adopted types also as a kind of “capsule” to
organise values from undistinguishable strings of bits into distinct entities
with their own set of operations.

In type-safe languages, the capsule represented by a type is completely
opaque and the user cannot interact with its values unless mediated by the
capsule. In these cases, we call the type an abstract data type (ADT), i.e., one
that defines the possible values that inhabit the type and the possible
operations they support and their behaviour.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Abstract Data Types

3

ADTs do not simply enforce the abstractions built into
the language (e.g., that 2+true is a typing error), but also
programmer-defined ones—i.e., besides “protecting” the
machine from the program, they can encapsulate and
protect parts of the program from each other.

Conventionally an ADT consists of:
• the abstract type name A;
• the concrete representation type T;
• implementations of operations for creating, querying,

and manipulating values of type T;
• an abstraction boundary that encloses T and makes it

accessible only through the operations of A.

Hence, users can create new values of type A, pass them
around their program, store them in data
structures, etc., but they cannot directly inspect
and change the concrete representation of type T.

type Counter
 representation int
 signature
 new: Counter
 get: Counter -> int
 inc: Counter -> Counter
 operations
 new = 1
 get = fn(int i){ i }
 inc = fn(int i){ i+1 }

Using the CLU / Ada notation for Abstract Data Types

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Information hiding

4

Abstracting implementations via interfaces is a fundamental principle in
programming languages: it allows the producer and consumer of software
components to establish a contract by
agreeing on a “surface”—the interface—the
consumer expects to use and the producer
promises to support.

Following the metaphor, the “language” of
(abstract data) types is the one the two
parties use to formalise that contact.

Of course, a synonym of “abstraction”, here,
is information hiding, i.e., we hide behind
interfaces the implementation details of a
given data type (both its structure and how
its operations work).

Program

Abstract Data Type
Private Operations

Public Operations

Interface

Concrete
Type ⟺

⟺ ⟺

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Representation independence

5

Interestingly, information hiding improves code compositionality in a way
similar to what we saw for subtype/parametric polymorphism: by omitting
(some of) the details of the implementation (in polymorphism, the actual type
of a type parameter) we (consumers) cannot make assumptions on the actual
implementation of the type and write code that only uses the given interfaces.

This leads us to the property of type-safe ADTs, called representation
independence, whereby two correct (well-typed) implementations of the same
ADT are observability non-distinguishable by consumers of that type.

Since ADTs are representation-independent, it is safe to use any type-
compatible implementation of a given ADT and interchange alternative
implementations thereof. Of course, the guarantees of types cover as far as
types are involved—e.g., they do not track performance differences.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Abstract Data Types — Rust

6

trait Counter {
 fn new() -> Self;
 fn get(&self) -> u32;
 fn inc(&self) -> Self;
}
struct SC { counter: u32 }
impl Counter for SC {
 fn new() -> Self { SC { counter: 0 } }
 fn get(&self) -> u32 { self.counter }
 fn inc(&self) -> Self
 { SC { counter: self.counter + 1 } }
}
fn use_counter<C>(c: &mut C) where C: Counter {
 let c = c.inc(); let c = c.inc(); print!("{}", c.get());
}
fn main(){ use_counter(&mut SC::new()) }

Rust has a direct way
to implement ADTs via
traits.
In general, traits are a
linguistic mechanism
to wrap functionalities
common to different
types.
The trait represents
the abstract type
whose interface gives
access to users to the
concrete type, by
means of the
implementation of its
operations.

signature}

implementation

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Modules

7

From the point of view of code organisation, ADTs are also a way to “wrap” the
code that belongs to the same (abstract data) type within a single interface.
However, e.g., when we write libraries but also large programs, we might need
a way to provide multiple ADTs within the same “package”.

The linguistic mechanism that achieves this is usually called module (or, case
in point, package).

Different programming languages attribute to modules different properties,
but a common one is to let developers partition they programs, so that each
module contains data (types, variables, etc.) and operations (functions, code,
etc.) available within the module. The module also defines the visibility of the
data it encloses, i.e., what a user of the module can “see” and use.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Abstract Data Types and Existential Types

8

From the point of view of type theory, abstract data types and modules introduce the
concept of existential types — as a shorthand for existentially quantified types —
where a definition like

trait Counter { fn new…; fn get…; fn inc…; }

would correspond to the existential type

Notice that the type does not “witness” the concrete type, which is tied to the internal
representation of a value of type Counter. This indicates that we can have inhabitants
of whose internal details we are able forgo, still obtaining type safety.
With the existential, as long as we have an inhabitant of that type, we can safely
“access” the operations of the type.

CounterADT = {∃X, {new : () → X, get : X → int, inc : X → X}

CounterADT

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Given the existential type

A valid implementation of is

 // 2

After we “opened” the existential, the type name is bound, i.e., we can only have one
implementation of in the continuation of the program. ADTs guarantee that we can
replace the assignment of a given implementation with any compliant one without risking to
break our program.

CounterADT = {∃X, {new : () → X, get : X → int, inc : X → X}

Counter

{Counter, c} = {*int, {new = 1, get = fn(i : int){i}, inc = fn(i : int){i + 1}}} as CounterADT

Counter c1 = c . new()

c . get(c . inc(c1))

Counter

Abstract Data Types and Existential Types

9

Since the same implementation can
inhabit different existential types,
we introduce the keyword as to
ascribe the intended existential
type of the implementation.

The concrete type
(reference) used by the
implementations of the
operations, bound to
in

X
Counter

N.B. the definition above of does not manage some internal state (or work with references) like the more complex example in Rust — which implements a hybrid form of ADTsSC

SC

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Modules

10

From a principled point of view, ADTs and modules are quite close—e.g., we can see ADTs as a
degenerate case of a module carrying one ADT. However, depending on the language, ADTs and
modules can provide different degrees of flexibility to the user, e.g., modules could express the
visibility of data and operations in a much finer grade (the “permeability” of the capsule) than ADTs.

mod counter { pub trait Counter { … } }
mod sc {
 use crate::counter::Counter;
 pub struct SC { … }
 impl Counter for SC { … }
}
use crate::counter::Counter;
use crate::sc:SC;
fn use_counter<C>(c:&mut C) where C: Counter{ … }
fn main(){ … }

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Existential Objects

11

The kind of (existential) types we used for ADTs are not the only interpretation
of existential types—for capturing information hiding and representation
independence.

Indeed, while in ADTs the existential type hides (omits) the concrete type, when
we use an implementation, our program binds the implementation to that type
name in the program continuation, making it impossible to have multiple,
interoperating implementations of the same abstract data type.

{Counter, c} = {*int, {new = 1, get = fn(i : int){i}, inc = fn(i : int){i + 1}}} as CounterADT
{ACounter, ac} = { * {c : int}, {new = {c : 1}, get = fn(i : {c : int}){i . c}, inc = fn(i : {c : int}){{c : i . c + 1}}}} as CounterADT
c1 = c . new()
c2 = ac . new()
ac . inc(c1) Type mismatch error

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Existential Objects

12

(Existential) Objects provide an alternative view on ADTs that allows multiple implementations of the same
existential type to interact.

To do this, we need existential-type definitions to live in programs like any other type, so that
 is a type in our typing system. Then, we can define implementations, called objects, as

concrete types that keep their state (implementation) internal and carry with them their association with their
existential type, for example

Where the two implementations of can coexist, since their state is always “wrapped" within their
implementation and the only way to read it is by means of the operations and state “changes” mean the creation of
new objects (as seen in function)

Counter = {∃X, …}

Counter = {∃X, {state : X, methods : {get : X → int, inc : X → X}}}
c1 = {*int, {state : 1, methods : {get(int i){i}, inc(int i){i + 1}}}} as Counter
c2 = { * {c : int}, {state : {c : 1}, methods : {get({c : int} i){i . c}, inc({c : int} i){i . c + 1}}}} as Counter
f(Counter {*A, a}, Counter {*B, b}){
{*A, {state : a . methods . inc(b . methods . get(b)), methods : a . methods}} as Counter

}
f(c1,c2)

Counter

f

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Objects vs ADTs

13

Summarising, intuitively, ADTs adopt an “open” view on existential types and the
implementations that they induce. When we “import” an implementation (or,
complementarily, when we “build” one) we immediately open it for usage. With ADTs,
the values manipulated by client code (the programs that import the implementation)
are the elements of the underlying representation type (e.g., in the counter example,
integers). Thus, at run time, all the Counter values generated from the
are just bare elements of the same internal representation type, and there is a single
implementation of the counter operations that works on this internal representation.

The opposite happens with objects, where we keep “closed” an “imported” object as
long as possible, up until we use one of its methods to access its internal state. In our
example of the counter, each counter is a whole package—including the
implementation of its state and of its operations. Hence, each counter object carries
its own representation type together with its own set of operations that work for this
representation type.

CounterADT

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Objects vs ADTs

14

Hence, a relevant difference between ADTs and Objects is that, since each
object chooses its own representation and carries its own operations, a single
program can freely intermix many different implementations of the same
(existential) object type.

We will see how this becomes particularly convenient in the presence of
subtyping (and inheritance): we can define a single, general class of objects
and then produce many different refinements, each with its own slightly (or
completely) different representation. Since instances of these refined classes
all share the same general type, they can be manipulated by the same generic
code, stored together in lists, etc.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Objects

15

Let us now focus on the object-oriented paradigm and the peculiarities that
determine it.

Of course, the main construct of any object-oriented language is that of an object: a
capsule containing both data and operations to manipulate them, and which
provides an interface to the outside world through which the object can be accessed.

In object-speak, operations are called methods and can access the data contained in
the object, reachable via (instance) variables (or fields).

In the original definition of objects, one would execute an operation by sending a
message to the object, which contains the name of the method to be executed and
its possible parameters. However, (mainly for performance reasons) the most
common form of operation invocation works via procedure invocation (hence, the
large adoption of the term “invoke” for method execution) and reference passing.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Objects

16

The syntax of method invocation is not new (it is similar to that of ADTs and of
records, in general) where o.m(p1, p2, …) reads “we invoke the method
m, with parameters p1, p2, …, on the object o”. Since objects (as ADTs) are
essentially records, we can use a similar syntax to access their internal
variables, e.g., o.v reads “we access variable v of object o”.

In both cases, implementations of object-oriented languages equip objects
with the capability to express in fine details the opacity of their capsule: we
can express that operations and variables can be visible everywhere, some
may be visible only for some objects, and some may be completely private, i.e.
only available within the object itself.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Objects and Classes

17

Although it is conceptually permissible to have each object specify its
implementation, it can become overwhelming and wasteful to specify many
times the same implementation just to have different instances of
fundamentally the same object (e.g., imagine we need three counters to keep
track of some distinct events in our code, which then we want to sum).

This compelled the introduction of a new concept, called class, which allows
us to specify a canvas or template implementation that contains, once and for
all, the variables and methods common to the same class (hence, the name) of
objects. Once we defined a class, to create new objects, we invoke a special
function, usually called new, able to take the class and create—instantiate, in
object-speak—a new object from it.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Classes

18

Hence, a class is a model for a set of
objects: it establishes what their data
are (how many, of what type, with
what visibility) and fixes the name,
signature, visibility, and
implementation of its methods.

In a language with classes, each
object 'belongs' to (at least) one class,
in the sense that the structure of the
object corresponds to the structure
fixed by the class.

class Counter {
 private int x=1;
 public int get(){
 return x;
 }
 public void inc(int i){
 x = x+i;
 }
}

Counter c1 = new Counter();
Counter c2 = new Counter();
Counter c3 = new Counter();

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Classes

19

On the left, we see some Java code where
(similarly to C++), a class corresponds to a
type (more on this, later) and all instance
objects of a class are values of that type.

However, different languages adopted
different notions of classes. E.g., in
Simula, a class is a procedure that returns
a (pointer to a) stack frame (activation
record) containing local variables and
function definitions, while in Smalltalk a
class is linguistically an object, which
serves as a schema for the definition of
the implementation of a set of objects.

class Counter {
 private int x=1;
 public int get(){
 return x;
 }
 public void inc(int i){
 x = x+i;
 }
}

Counter c1 = new Counter();
Counter c2 = new Counter();
Counter c3 = new Counter();

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Classes

20

Il paradigma orientato agli oggetti 365

reset

get

inc

this.x=0;

return this.x;

this.x=this.x+1;

Counter

x

reset

get

inc

x

reset

get

inc

Figura 12.2 L’implementazione dei metodi risiede nella classe.

la sua inizializzazione (invocazione del costruttore della classe, rappresentato dal
nome della classe con le parentesi, sul quale ritorneremo tra poco)3.

Possiamo senz’altro supporre che il codice dei metodi sia memorizzato una
sola volta nella classe, e che quando ad un oggetto viene richiesto di eseguire un
determinato metodo, questo venga ricercato nella classe di cui è istanza. Affinché
ciò possa accadere, il codice del metodo deve accedere correttamente alle variabili
di istanza, che sono distinte per ogni oggetto e che dunque non sono memorizzate
insieme alla classe, ma all’interno dell’istanza, come è indicato schematicamente
nella Figura 12.2. Nella figura i metodi della classe Counter si riferiscono alle
variabili di istanza attraverso il nome this. Abbiamo già osservato che quando
un oggetto riceve un messaggio che richiede l’esecuzione di un metodo, l’oggetto
stesso è un parametro implicito del metodo: quando nel corpo del metodo si fa ri-
ferimento alle variabili di istanza c’è un implicito riferimento all’oggetto corrente
che sta eseguendo il metodo. Da un punto di vista linguistico, l’oggetto corren-
te viene di solito denotato da un nome particolare, usualmente self o this.
Ad esempio, la definizione del metodo inc poteva essere scritta, esplicitando il
riferimento implicito all’oggetto corrente:

3In C++, a differenza di Java, è possibile creare un oggetto anche senza invocare un costruttore;
C++ permette infatti di definire oggetti anche sulla pila (si veda la pagina 366).

In general, classes store the (only) code
implementation of all its objects and
when we invoke a method of an object,
we actually reach out to that class-
bound implementation, referenced by
the object.

Of course, the method would not execute
on the (inexistent) state of the class but
rather on the state of the object.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Classes

21

What actually happens is that (as we saw
in Rust, with the self parameter) object
methods implicitly receive as parameter
the object that invoked them, so that
when the method body refers to instance
variables, there is an implicit reference
to the current object that is executing
the method.

From a linguistic standpoint, the current
object is usually denoted by a particular
name, usually self or this.

class Counter {
 private int x=1;
 public int get(){
 return this.x;
 }
 public void inc(int i){
 this.x = this.x+i;
 }
}

Counter c1 = new Counter();
Counter c2 = new Counter();
Counter c3 = new Counter();

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Storing Objects in Memory

22

All object-oriented languages create objects dynamically, which usually
reminds us of heap-allocated structures.

While this is the case for, e.g., Java, which allocates objects on the heap, access
them via references (the language has no pointer type and variables of non-
primitive objects are references to heap-stored objects), and uses garbage
collection to manage their deallocation, languages like C++ allows one to
specify the allocation and deallocation of objects on the stack.

In C++, when the language processes the declaration of a variable of type
class, it creates and initialises an object of that type, bound to that variable
and, thus, to that context.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Classes vs Prototypes

23

An alternative to classes are prototypes. This style
also takes the name of delegation, as it hinges on
the possibility for objects to delegate parts of their
implementation to other objects.

Javascript (JS) is one of the most famous languages
based on prototypes.

In prototypes, objects can delegate the definition of
values and methods to another object, via their
prototype property. These languages provide two
ways to create new objects. One, called ex-nihilo,
happens through some form of object literal (e.g.,
{…} in JS) and it assigns no prototype to the created
object. The other, called cloning, creates (e.g.,
through the new keyword, in JS) an object by making
a copy of an existing one, which is its prototype.

function Counter() {
 this.x = 1;
}
Counter.prototype.get=function(){
 return this.x;
}
Counter.prototype.inc=function(i){
 this.x = this.x+i;
}
c = new Counter();
c.inc(1);
c.get();

Prototype

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Classes vs Prototypes

24

Prototypes are similar to classes in the sense that they serve as models for
the structure and functioning of other objects. However, contrary to classes,
prototypes are (linguistically) ordinary objects, possibly used as models.

Similarly to classes, prototypes can define common methods to their
“children”, i.e., when we try to access some field or invoke a method of an
object, if the object does not have that field or does not define that method,
it delegates the action to its parent. If the parent owns that field or
implements that method, then it performs the associated action and report
back to its child the result. Contrarily, the chain of calls goes “up”, possibly
until we reach the empty prototype and report an error.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Classes vs Prototypes

25

A practical difference between prototypes and
classes stands on the flexibility of the former
vs the safety guarantees given by the latter.

Indeed, a prototype-based object can change
its parent at runtime (possibly completely
changing its whole interface). One such
behaviour is usually prevented in class-based
languages. There, a class defines the interface
of any object of that type and only relatively
constrained associations of that object to other
classes are allowed; e.g., we can cast the
objects as the inhabitants of a class with fewer
fields/methods, marked in the language as the
“parent” of their class.

function Counter() { this.x = 1; }
Counter.prototype.get=function()
 { return this.x; }
Counter.prototype.inc=function(i)
 { this.x = this.x+i; }
function OtherCounter(){Counter.call(this);}
function Multiplier(){}
Multiplier.prototype.mult=function(i)
 { this.x = this.x*i; }
OtherCounter.prototype = Counter.prototype;
c = new OtherCounter();
c.inc(1);
Object.setPrototypeOf(c,Multiplier.prototype);
c.mult(2);
Object.setPrototypeOf(c, Counter.prototype);
c.get(); // 4

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Encapsulation and interfaces

26

Encapsulation and information hiding are one of the cornerstones of ADTs,
which also holds for object orientation: the language allows us to define an
object by hiding parts of it (its data and/or methods).

Hence, we distinguish at least two views: the private and the public one. The
private view is the most complete one, where all methods and fields are
visible. The public one sees only those parts of the object that have been
explicitly exposed in the definition of the object.

The public view of an object is usually called its interface, with the meaning
mentioned for ADTs: the methods (and fields) that client code can use to
interact with the value of a certain type.

Encapsulation

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtypes

27

In OO, classes identify the set of objects that are its instances, i.e., we
can consider classes as the types of those objects. Typed languages
makes this relationship explicit: a class definition also introduces a
type definition, whose values are the instances of the class.

As discussed, type systems usually come with a compatibility
relation. In particular, we can see subtyping in OO as the
compatibility relation where the type associated with the
class is a subtype of the type associated with the class whenever
all client code expecting to work with objects of type can work with
objects of type .

This concept, generally known as the Liskov substitution principle, is more formally
specified as “Let be a provable property for any object of type and let be a
subtype of then, for any object of type , is provable.”

S <: T
S T

T
S

p(o) o T S
T o′ S p(o′)

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtypes

28

Concretely, the properties mentioned in the Liskov principle refer to the
possibility to access in fields available in as well as being able to invoke in

 methods available in .

While in a structural type system this relation would boil down to a
correspondence check between the elements of with respect to those of
(as seen for records), the usual path taken by class-based languages is to
adopt a nominal style, which helps avoiding possible accidental type
equivalences.

Of course, this additional layer of safety comes with its limitations: the user
now needs to declare the expected relations of subtyping among types, so
that the language can check that the property above holds for subtypes.

S T
S T

T S

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Classes, interfaces, types, and subtypes

29

In principle, the direct relation we established
earlier between types and classes is a bit
misleading: types talk about structure and
operations, while classes also define visibility
constraints, hold state, and carry executable
code.

This is where interfaces come into play, acting
as (linguistic) bridge between classes and types.

Then, we take the definition of a class as the
implicit definition of a companion interface
from the public view of that class. In turn, the
class implements that interface, establishing
with it a relation of subtyping.

interface CounterInterface {
 int get();
 void inc(int i);
}

class MyCounter
 implements CounterInterface {
 private int x=1;
 public int get(){ … }
 public void inc(int i){ … }
 private void doubleInc(int i){ … }
}

inherently
public

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Classes, interfaces, types, and subtypes

30

In addition, interfaces allow us to provide
cl ients with a description of the
“contract” our objects promise to fulfil,
without forcing us to provide their actual
implementation.

This notion forms another pillar of object-
oriented languages, which falls under the
name of abstraction principle.

interface CounterInterface {
 int get();
 void inc(int i);
}

class CounterUser {
 void incCounter(CounterInterface c){
 c.inc(1);
 }
}

Abstraction Frequently coalesced with Encapsulation

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtyping and Inheritance

31

The interface-to-class relation is not the only way
we can specify subtyping in OO. Indeed, in
principle, interface-to-class subtyping, e.g.,
Counter implements CounterInterface,
entails two actions:

• we define a class, say Counter , which
implements its associated companion interface,
let us call it Counter_Interface;

• we declare that Counter_Interface is/must
be a subtype of CounterInterface.

Hence, interface-to-class subtyping assumes a
relation of interface-to-interface subtyping, which
is usually referred as extension.

interface CounterInterface {
 int get();
 void inc(int i);
}

interface MultCounterInterface
 extends CounterInterface
{
 void mult(int i);
}

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtyping and Inheritance

32

When we apply subtyping at the level of
classes, i.e., class-to-class subtyping, we apply
the idea of interface-to-interface extension to
cover the state, the encapsulation constraints,
and the method implementation of classes.

This relation takes the name of inheritance,
since the subtype of the class “inherits” from
the latter its definition of state (more on this
later, with constructors), its encapsulation
constraints, and its method implementations.

class Counter {
 int x=1;
 public int get(){ return this.x; }
 public void inc(int i)
 { this.x = this.x+i; }
}
class MyCounter extends Counter {
 private void doubleInc(int i){…}
}
class MultCounter extends MyCounter {
 public void mult(int i){ … }
}

MultCounter mc = new MultCounter();
mc.inc(1);
mc.mult(2);
mc.doubleInc(3);

Inheritance

🤔

subclass superclass

subclass superclass

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtyping and Inheritance • Variable Shadowing

33

Variable shadowing indicates that a subclass
can “mask” fields of its superclass by defining
fields with the same name (but not necessarily
the same types).

Variable shadowing comes from the standard
block-level scoping rules, with the peculiarity
that we consider the superclass as an outer
block to the subclass, which can shadow any of
the variables “inherited” from the outer one.

To avoid mistakes, Java is explicit on this matter:
if a subclass wants to access a variable of its
superclass, it must use the prefix super (akin to
how this is a reference to the object itself).

class Counter {
 int x=1;
 int get(){ return x; }
 void inc(int i){ x = x + i; }
}

class MultCounter extends Counter {
 int x=2;
 void multMult(int i){
 super.x = super.x * this.x * i;
 }
}
MultCounter mc = new MultCounter();
mc.inc(1);
mc.multMult(2);
mc.get(); // 8 🤔

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtyping and Inheritance • Method Overriding

34

As seen for interfaces, a class that extends
another class can add, on top of those
inherited from its supertype, new parts of
state and new methods (along with their
encapsulation constraints).

Another peculiarity of inheritance is the
possibility to override inherited method
implementations. Indeed, the principle of
abstraction tells us that we can change
method implementations as long as they
respect interfaces.

class Counter {
 int x=1;
 int get(){ return x; }
 void inc(int i){ x = x + i; }
}
class MultCounter extends Counter {
 void mult(int i){
super.x = super.x * i;

}
 @Override
 void inc(int i){ mult(i); }
}
Counter c = new MultCounter();
c.inc(2);
c.inc(3);
c.get(); // 6

Override annotation

🤔

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtyping and Inheritance • Method Overriding and Variable Shadowing

35

Hence, one difference between method
overriding and variable shadowing is that
the former is dynamically resolved, while
the latter is statically resolved.

In method overriding, it is the actual class
of the object (from what class it was
instantiated) that determines to what
method we shall dispatch the invocation.

Contrarily, we solve variable shadowing
statically, i.e., by either explicitly indicating
what variable we want to access (this,
super) or via type cast/coercion.

class Counter {
 int x=1;
 int get(){ return x; }
 void inc(int i){ x = x + i; }
}
class MultCounter extends Counter {
 int x=1;
 void mult(int i){
 super.x = super.x * i;
}
 @Override
 void inc(int i){ mult(i); }
}
MultCounter mc = new MultCounter();
Counter c = mc;
c.inc(2);
c.inc(3);
c.get(); // 6
mc.get(); // 6
c.x; // 6
mc.x; // 1

Override annotation

🤔

This is one of the reasons behind the practice of setter and getter methods

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtyping and Inheritance • Refined Visibility

36

We have seen two notions of encapsulation visibility (also
called visibility modifiers): private and public. Although
this binary division covers the base case of transparent-
vs-opaque encapsulation, there are cases where we might
want to define encapsulation as semi-opaque (or
-transparent), e.g., to allow subclasses to “see” methods
and fields of their superclasses. This is the case covered
by two additional visibility modifiers: package and
protected.

The package case (the default one, in Java) extends the
visibility of fields/methods of a class to all classes that
belong in the same module of that class (remember the
relation between ADTs, modules, and existential types).

The protected case extends the package one to also allow
any subclass (in any module) to (internally) interact with
the protected fields/methods of their superclass.

class Counter {
 int x=1;
 public int get(){ return this.x; }
 public void inc(int i)
 { this.x = this.x+i; }
}
class MyCounter extends Counter {
 package void doubleInc(int i){…}
}
class MultCounter extends MyCounter {
 public int mult(int i){ … }
}

MultCounter mc = new MultCounter();
mc.inc(1);
mc.mult(2);
mc.doubleInc(3);

😀

subclass superclass

subclass superclass

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtyping and Inheritance • Recap

37

It is important to keep in mind the difference
between the inheritance and subtype relations:

• subtypes have to do with the possibility of using
an object in another context: it is a relation
between the interfaces of two classes;

• inheritance has to do with the possibility of
reusing code that manipulates an object: it is a
relation between the implementations of two
classes.

Then, while these two relations are independent,
they frequently intermingle, due to the conventions
that languages impose, e.g., that class-to-class
extension (inheritance) implies their related
interface-to-interface extension (subtyping).

class Counter {
 int x=1;
 int get(){ … }
 void inc(int i){ x = x + i; }
}

class MultCounter extends Counter {
 int x;
 int multMult(int i){
 super.x = super.x * this.x * i;
 }
}

MultCounter mc = new MultCounter();
mc.inc(1);
mc.multMult(2);

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

38

In some cases, inheritance is too tight a
relation, e.g., we might have a set of classes
that implement 1) the same interface and 2)
could share part of their implementation *but*
they are not in an inheritance relation with
each other, i.e., they are “siblings”.

Abstract classes strike a middle ground
between interfaces and classes, so that they
can define fields and method implementations
as well as leaving some methods as abstract,
like interfaces, which its subclasses would
need to implement/override.

abstract class AbstractCounter {
 int x=1;
 int get(){ return x; };
 abstract void inc(int i);
}

class Counter extends AbstractCounter {
 @Override
 void inc(int i){
 super.x = super.x + i;
 }
}

Abstract Classes

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtype Relation, Top

39

When we presented the subtype relation , we mentioned it being a(n antisymmetric,
) partial (reflexive and transitive

) preorder.

If we define cycles such as , antisymmetricity would reject them
(, but since , it negates).
Thus, the subtyping relation takes the form of a directed acyclic graph
(DAG) among types.

Partial orders (and their related graphs) do not guarantee the presence of a
single maximal element—here, the type that has no supertype and “fathers”
(through transitivity) all other types, usually called Top. However, having
Top in the type system is generally useful (e.g., to specify operations that
accept values of any type) and many languages enforce the existence of
Top, e.g., in Java, Top is Object, from which all other classes inherit (basic
object-level methods, such as cloning and equality checking).

<:
S <: T ∧ T <: S ⟹ T = S T <: T
S <: T ∧ R <: S ⟹ R <: T

T <: R, S <: T, R <: S
S <: T ∧ R <: S ⟹ R <: T T ≠ R T <: R ∧ R <: T ⟹ T = R

Top

… …

S

…… …

T

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtype Relation, Intersection types

40

interface Reader {Readable read()}
interface Writer {void write(Writable w)}
interface RW extends Reader, Writer {}

Top

… …

R

RW

…… …

W

Since the subtyping relation describes a DAG, in principle, we are allowed
to express something like , i.e., that is both a subtype of
type and type , with and unrelated. Visually, we are making the
part of the DAG that involves , , and converge on .

In general, this kind of types take the name intersection types, written
, which comes from the observation that, when the values of

and overlap, indicates the intersection of values that inhabit both
and .

On the other hand, if and do not overlap, represents a kind of union
(not to be mistaken for Union/Sum types) of the capabilities of the two
types. E.g., a type RW which is both a subtype of
the Reader (R) and the Writer (W) types. In Java,
this is expressed, at the level of interfaces, with
the list of types an interface extends.

S <: T ∧ S <: R S
T R T R

T R S S

S <: T ∧ R T
R S T
R

T R S

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Constructors

41

As mentioned, classes offer a way to define
templates for the creation of objects and
OO languages provide a special keyword,
e.g., new in Java, to instantiate an object.
However, there might be different methods
for creating an object, e.g., we might also
want to create Counter by setting x,
instead of using the default starting value 1.

Constructors cater this need and we can
see them as special methods of a class that
can take in some parameters and return an
instantiated object of that class.

class Counter {
 int x;
 public Counter(){
 this.x = 1;
 }
 public Counter(int i){
 this.x = i;
 }
 public get(){
 return this.x;
 }
 public inc(int i){
 this.x = this.x + i;
 }
}

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Constructors

42

Both at the level of types and implementation-
wise, objects are complex structures and their
creation makes no exception: a) we need to
allocate the necessary memory (on the heap or
on the stack) and b) we need to correctly initiate
the data.

Action b) is what the class and the constructor are
there for: they define the code whose execution
guarantees the creation of a correct instance of
the class. This code becomes more complex the
more features we use, e.g., with inheritance b) not
only needs to initialise the internals of the object
(fields, the pointers to methods, …) but it must
also link the data declared in superclasses.

class Counter {
 int x;
 public Counter(){
 this.x = 1;
 }
 public Counter(int i){
 this.x = i;
 }
 public get(){
 return this.x;
 }
 public inc(int i){
 this.x = this.x + i;
 }
}

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Constructors • Choosing a constructor (method)

43

On top of this, classes can provide different
constructors among which the compiler/
runtime has to choose.

In some languages (e.g., C++, Java), the name
of the constructor coincides with the name
of the class, and distinguishing among them
follows the same rules for overloaded
methods (solved statically, based on the
number and types of the arguments). Other
languages allow the programmer to freely
choose the name of constructors, although
they remain syntactically distinct from
ordinary methods.

class Counter {
 int x;
 public Counter(){
 this.x = 1;
 }
 public Counter(int i){
 this.x = i;
 }
 public get(){
 return this.x;
 }
 public inc(int i){
 this.x = this.x + i;
 }
}

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Constructors • Inheritance and Chaining Constructors

44

Another aspect is how and when to initialise the
parts of an object that come from superclasses.

Some languages simply execute the constructor
of the class whose instance is being created; if
the programmer wishes to call the constructors
of superclasses, he must do so explicitly.

Other languages (e.g., C++ and Java) enforce that
the initialisation of an object first calls the
constructor of the superclass (constructor
chaining). Also in this case, the compiler/runtime
must decide which of the possibly many
constructors available of the superclass(es) to
use.

class Counter {
 int x;
 public Counter(int i){
 this.x = i;
 }
 public int get(){…}
 public void inc(int i){…}
}
class MyCounter extends Counter {
 public MyCounter(int i){
 super(i);
 }
}

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Single vs Multiple Inheritance

45

In some languages a class may inherit from only one immediate superclass:
the inheritance hierarchy is then a tree and the language is said to have single
inheritance. This is the case of Java (n.b., single inheritance, not subtyping).

Other languages, however, allow a class to inherit methods from multiple
superclasses; those languages are said to have multiple inheritance and the
inheritance hierarchy is a DAG (like in the general case of subtyping).

The most part of languages support the simpler case of single inheritance, but
some, e.g., C++ and Eiffel, support multiple inheritance. The reason is that
multiple inheritance poses conceptual and implementation problems that did
not yet find an elegant solution.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Problems (and solutions) to Multiple Inheritance

46

Conceptually, we have a problem with name clashes: a name clash occurs
when a class inherits from two or more classes that provide the
implementation of methods with the same signature.

As mentioned, up to now we just found partial solutions: a) syntactically
forbid conflicts; b) ask the developer to explicitly fix any clash, e.g., by
appropriately qualifying each reference to the conflicting name (e.g., in C++, if
C inherits from A and B where the method m() clashes, in the body of C the
programmer needs to call B::m() or A::m()); c) establish a convention to
resolve clashes (as in Scala mix-ins), e.g., by considering as “winning” the
method of the left-most class that appears in the extension clause.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Problems (and solutions) to Multiple Inheritance

47

Practically, we have a Deadly-Diamond-of-Death kind of
problem, from the diamond-like shape assumed by the
schematic representation of the inheritance relation that
emerges when a) two classes B and C inherit from A, and
class D inherits from both B and C and b) there is a method
in A that B and C have overridden, and D does not override
it.

Which of the method implementations does D inherit?

We can follow one of the (excluding the first one)
conceptual solutions mentioned before. While this solves
the problem architecturally, we still have the practical
problem of efficiently resolving clashes and run the correct
implementation.

m()?

m()

m()

m()

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Dynamic Method Dispatch

48

Dynamic method dispatch, also called
method overriding, is at the heart of the
object-oriented paradigm: it is where
abstraction and inheritance meet and give
rise to one of the paradigmatic traits of
object-orientation.
Conceptually, the mechanism is very simple:
a subclass can redefine (override) a method
implementation, so that, at runtime, the
code run depends on the type of the object
receiving the message. The stress on types is
important: the dispatch is dynamic because,
in general (e.g., in a method) we know the
actual type of the object only at runtime.

Dynamic Dispatch

class Counter {
 int x=1;
 int get(){ … }
 void inc(int i){ x = x + i; }
}

class MultCounter extends Counter {
 void mult(int i){ … }
 @Override
 void inc(int i){ mult(i); }
}

Counter c = new MultCounter();
c.inc(2);
c.inc(3);

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Overriding, Overloading, and Early/Late Binding

49

Method overriding is similar to
overloading; indeed, they both resolve an
ambiguous situation in which the same
name can have several meanings.

The difference is summed up by the terms
early and late binding. In early binding we
use static information (of the type of the
variables) to resolve the ambiguity and
bind the name. Contrarily, in late binding
information is available only at runtime
(the types of the actual objects), which is
when we can perform the binding of the
name.

Dynamic Dispatch

class Counter {
 int x=1;
 int get(){ … }
 void inc(int i){ x = x + i; }
}

class MultCounter extends Counter {
 void mult(int i){ … }
 @Override
 void inc(int i){ mult(i); }
}

Counter c = new MultCounter();
c.inc(2);
c.inc(3);

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Static methods

50

Static methods are more language-specific than dynamic
dispatch—they do not define the OO paradigm—but some
languages provide them as a way to indicate (and
optimise for) methods that the compiler can statically
resolve, because they are independent from instance
(object) states/variables (they neglect this), and do not
depend on the actual class of a given object.

An example of these are static methods in Java, which
one accesses from the class that defines them, rather
than from an instance (object) of that class. Since they
are statically resolved, static methods cannot be
overridden.

However, we can shadow static methods (similarly to
variables) and pair them with subtyping. In this case, the
resolution follows the subtyping relation—if we have two
methods o, one taking a type and one its subtype, we
disambiguate by applying the method specific to the type
of the variable (not the object), as shown on the right.

class Counter {
 int x=1;
 int get(){ … }
 void inc(int i){ x = x + i; }
 static void inc(Counter c){
 c.inc(1);
 }
}
class MultCounter extends Counter {
 static void inc(MultCounter c){
 c.inc(2);
 }
}

Counter c = new MultCounter();
MultCounter.inc(c); // Statically solved
c.inc(1);
c.get(); // 3 🤔

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Implementation Aspects • Objects

51

Conceptually, classes are similar to records that define fields
and (the code of) operations. This carries also to
implementations, where we can represent an object as if it
were a record holding the fields of the class of which it is an
instance, plus all those that appear in its superclasses.

In case of shadowing (early binding), the object has fields
corresponding to a different declaration (often the name used
in the superclass is not accessible in the subclass, unless via
some qualifier, e.g., super).

class A {
 int a;
 void f(){...}
 void g(){...}
}
class B extends A {
 int b; int c;
 void f(){...}
 void h(){...}
}
A o;
o = new B();

f()

h()

f()

g()

Class A Class B Object o

(super) a
b
c

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Implementation Aspects • Objects

52

In statically-typed languages this representation allows a
simple implementation of subtype compatibility (in case
of single inheritance): since we statically know the offset
(position) of each variable, we can resolve static
references by calculating the offset of the starting block
belonging to a given superclass and calculating the offset
to the referenced field from there—e.g., to find o.c, we
know we need to start after the offset from the fields of
class A and then follow the type/order of fields in B.

(super) a
b

class A {
 int a;
 void f(){...}
 void g(){...}
}
class B extends A {
 int b; int c;
 void f(){...}
 void h(){...}
}
A o;
o = new B();

f()

h()

f()

g()

Class A Class B Object o

c

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

53

The simplest and most intuitive implementation of classes and inheritance is
by means of a concatenated list, where each element: a) represents a class
and contains (pointers to) the implementation of all methods explicitly
defined or redefined in that class and b) point its immediate superclass.

To implement dynamic method dispatch, we use the pointer from an object
to its class to check whether it contains an implementation for that method:
if it does, we execute the code pointed there, otherwise we follow the
pointer up to the superclass of that class and so forth.

While this implementation is simple, it is also quite inefficient, since late
binding implies the linear visit of the hierarchy of classes.

(super) a
b

class A {
 int a;
 void f(){...}
 void g(){...}
}
class B extends A {
 int b; int c;
 void f(){...}
 void h(){...}
}
A o;
o = new B();

f()

h()

f()

g()

Class A Class B Object o

c

Implementation Aspects • Classes and Inheritance

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Implementation Aspects • Late self binding

54

Executing a method is similar to running a function, where we load on the stack the
local variables, the parameters, and the other information for its execution. However,
unlike functions, methods must also access the instance variables of the object on
which they are invoked, whose address we know only at runtime.

An inefficient solution would be referencing the object (this) in the stack frame of the
method and then perform a double lookup to find the object in memory and then
access the instance fields thereafter.

On the contrary, we can avoid to load in the stack frame the reference to this and the
double lookup by using the static knowledge on the structure of the object, given by
its class: we (the compiler) define the access to instance fields not as an offset from
the stack frame (as it happens with local variables/parameters) but as the offset given
by the address of the current object (this) plus the (specific) offset of each field, as
declared by the class of the object.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Implementation Aspects • Single inheritance

55

Given a static type system, we can improve the linear-time, chained-list
implementation of single-inheritance method selection into a constant-time
one.

Indeed, if types are static, objects have a finite, static (compile-time) set of
methods, which correspond to those found in their class descriptor — which
contains both the methods explicitly defined/redefined in the class and all
those inherited from the superclasses.

This data structure usually takes the name of vtable (from C++, standing for
virtual function table).

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Implementation Aspects • Single inheritance

56

With vtables, each class
definition corresponds to
a vtable, and all instances
of that class share the
same vtable. When we
define a subclass B of
class A, we build the
vtable of B by making a
copy of the vtable of A,
replacing in this copy all
the methods redefined in
B, and then adding at the
bottom of the vtable the
new methods defined in B.

class A {
 int a;
 void f(){...}
 void g(){...}
}
class B extends A {
 int b; int c;
 void f(){...}
 void h(){...}
}
A o1 = new A();
A o2 = new B();

a f()

g()

vtable AObject o1

a f()

g()

vtable BObject o2

h()

redefined

inheritedb
c

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Implementation Aspects • Single inheritance

57

In this way the invocation of a
method:

A) occurs at the (constant) price of
two indirect accesses, since it is
statically known the offset of each
method within the vtable and

B) takes into account that an object
can be accessed as one if its
superclasses; e.g., when invoking
method f, the compiler calculates
an offset for that method that
remains the same whether f is
invoked on an object of class A or
B, although, in the vtable, the same
address corresponds to different
implementations.

class A {
 int a;
 void f(){...}
 void g(){...}
}
class B extends A {
 int b; int c;
 void f(){...}
 void h(){...}
}
A o1 = new A();
A o2 = new B();

a f()

g()

vtable AObject o1

a f()

g()

vtable BObject o2

h()

b
c

redefined

inherited

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Implementation Aspects • Fragile base class

58

Vtables for simple inheritance are very efficient, since most information is
statically determined. However, the late binding of this (self) is a source of
problems in a context known as the fragile base class (or superclass) problem.

Indeed, the top-down propagation of changes imposed by class hierarchy
(from super- to subclasses) breaks compositionality: the only way to detect if
some changes in a superclass caused incompatibles in subclasses entails to
consider the entire inheritance hierarchy. Conceptually, modularisation makes
this check impossible, since the writer of the superclass does not have access
to all possible subclasses.

From the architectural point of view, this means that some subclass exploited
parts of the superclass that have been changed. This is a software engineering
problem which can be solved by limiting inheritance in favour of subtyping.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Implementation Aspects • Fragile base class

59

From the implementation
point of view the failure of
the subclass depends only on
h o w t h e c o m p i l e r
represented the hierarchy in
memory. This second case
takes the name of fragile
binary interface problem.

E.g., in the example, we add
the method i to A. This forces
us to recompile also B to add
to its vtable the new method,
or we risk malfunctions, e.g.,
executing h in place of i.

class A {
 int a;
 void f(){...}
 void g(){...}
 void i(){...}
}
class B extends A {
 int b; int c;
 void f(){...}
 void h(){...}
}
A o1 = new A();
A o2 = new B();

a f()

g()

vtable AObject o1

a f()

g()

vtable BObject o2

h()

b
c

i()

X

redefined

inherited

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Implementation Aspects • Dynamic Method Dispatch (JVM)

60

The way in which the JVM implements Dynamic Method Dispatch overcomes
this problem, by dynamically (and efficiently) computing the offset of the
methods in the vtable (but also of the instance variables in the object
representation).

Simplifying, Java compiles classes separately from each other: each class gives
rise to a file that the virtual machine dynamically loads when the executing
program makes a reference to that class.

This file contains a table of symbols (the constant pool) used in the class
itself: instance variables, public and private methods, methods and fields of
other classes used in the method body, names of other classes used in the
class body, etc.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Implementation Aspects • Dynamic Method Dispatch (JVM)

61

In the compiled code, each instance variable and method name has information
associated with it, including the type of the names and the class where they are
defined.

To save space, whenever the source code uses a name, the JVM intermediate
representation uses the index of that name in the constant pool (and not the name
itself). However, these indexes are not only useful for representation compactness.

When, at runtime, a name is referred for the first time (through its index), this is
solved: the virtual machine loads the necessary classes (for example those where
the name is introduced) using the information of the constant pool and it checks the
constraints on types and visibility (e.g., that the invoked method really exists in the
referred class, that it is not private, etc.) and then it rewrites the running code to
replace the lookup instructions with instructions for the direct execution of the
code loaded in memory.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Implementation Aspects • Dynamic Method Dispatch (JVM)

62

We can think of the representation of methods in a class descriptor as similar to
a vtable: the table for a subclass starts with a copy of that of the superclass and
we replace the overridden methods with the ones redefined by the class.
However, we do not compute offsets right away, but rather follow these four
invocation modalities (related to their distinct instructions in the bytecode):
• invokestatic: the method is static and it cannot refer to this;
• invokevirtual: the method must be selected dynamically (so-called

"virtual" methods);
• invokespecial: the method must be selected dynamically and is “special”,

i.e., they are constructors or invoked on this (e.g., private methods) or super;
• invokeinterface: we call an interface method, which some objects

implement.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Implementation Aspects • Dynamic Method Dispatch (JVM)

63

invokestatic has the simplest resolution: since static methods cannot be overridden and do not reference
instance variables, we just statically bind the definition of the related class.
invokespecial follows the same path of invokestatic, with the possible check that super/this exists (and its
binding).
invokevirtual deals with method overriding and resolves it via vtable lookups, optimising visits with index
lookups, i.e., calculated on the base that overridden methods have the same signature of superclasses.
Starting from the subclass, we lookup the index in the vtable of the class and check we found the method we
were looking for. If so, we stop and resolve the index, otherwise, we continue following the pointer to the
superclass.
invokeinterface since we ignore which class implements the interface method, we inspect the class of the
object to determine a) if that class actually implements the interface, and b) where that interface's methods
are recorded within that particular class. Since we do not assume a fixed scheme (which would introduce the
fragile base-class problem) we need to search through the list of implemented interfaces by the class. Once we
find the interface, we can proceed in a more direct way: from the interface, we calculate an itable that
represents the fixed schema common to all portions of classes that implement the target interface, and we use
the offset from the itable to find the method and proceed as seen for dynamic/virtual invocations.
invokedynamic, (for completeness) used since Java 8, the instruction adds more flexibility to the dynamic
dispatch mechanisms of the JVM and is mainly used in the implementation of Java lambda expressions.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Parametric Polymorphism and Generics

64

As seen, Java supports parametric polymorphism with the syntax, e.g., Set< T >.

Specifically, Java adopts the nomenclature generics [1] to indicate the inclusion of
this feature to support generic programming—Java is not alone here, e.g.,
C#, F#, Python, Go, Rust, Swift, and TypeScript all adopt the same term. The
distinction with what ML and Haskell call parametric polymorphism is thin, but one
lexical difference is that the latter intend polymorphism as implicit, e.g., OCaml

let max x y = if x > y then x else y;; where max: ‘a -> ‘a -> ‘a

while generics assume explicit indication of type parameters, e.g., Java

<T> max (T x, T y) { return x > y ? x : y; }

C++ also support a similar concept as that of generics with templates.

[1] Bracha, G., Odersky, M., Stoutamire, D., & Wadler, P. (1998). Making the future safe for the past: Adding genericity to the Java programming language.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Generics and Type Erasure

65

When writing Set<T> we see we can use generics to parameterise entire classes, but how
do we generate a parametric version of Set, able to “work” with any type parameter?

As with, e.g., dynamic dispatch, generics can be implemented in several ways. E.g., C++
implements them statically, where the complier creates a separate copy of the code for
every used instance.

Thanks to type erasure, Java makes all instances of a given generic class share the same
code. What happens at compilation is that, if the Java type checker validates the use of
generics, the compiler proceeds by erasing all type parameter from the code (so that
Set<T> becomes the “raw” type Set) and all objects of the generic class become
instances of the Top type Object [1]—since the type checker validated the program, the
compiler does not need to add casts. This “trick” allowed Java 5 to introduce generics
without breaking compatibility with previous versions of the language, VM
implementations, and libraries.

[1] Which excludes the use of basic Java types that are not subtypes of Object

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Type parameter erasure

66

While erasing generics in Java has many
benefits, it also introduced shortcomings.

The most notable is we cannot invoke new
T(), (T type parameter), since the compiler
does not know what object to create. Similarly,
Java’s reflection mechanism (instanceof)
cannot distinguish between Set<Integer>
and Set<String>, since at runtime they both
coalesce to the row type Set — although there
are techniques, generally referred as reification
(as the complementary of type abstraction
obtained through erasure), where, e.g., we have
the class carry the reified type/class (also
called witness) of the type parameter.

class Box< T > {
 T c;
 Box(T c){ this.c = c; }
}
class WBox< T > extends Box< T >{
 Class< T > klass;
 WBox(T c, Class< T > klass) {
 super(c);
 this.klass = klass;
 }
}

Box< String > b1 = new Box<>("a");
Box< Integer > b2 = new Box<>(1);
WBox< String > wb1 =
 new WBox<>("a", String.class);
WBox< Integer > wb2 =
 new WBox<>(1, Integer.class);

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Java Generics • Wildcards

67

To be able to express variance annotations on generics, Java introduced
the wildcard ? as a special kind of type argument that expresses that T<?> is
a supertype of any (type) application of the generic type T.

? can be refined to indicate co(ntra)variance of subtyping, i.e, the covariant
case T<? extends S> allows the use of S and its subtypes while the
contravariant case T<? super S> allows the use of S and all its supertypes
(see the examples on covariance and contravariance on bounded parametric
polymorphism).

