Memory Safety: Garbage Collection and
Borrow-checking

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Dangling Pointers/References

References can become dangling (also called wild) when they reference \
an invalid destination. These include pointers to deallocated memory Y @
as well as reallocated one (e.g., after we freed it). In all these cases, \£#
dereferencing a dangling pointer can lead to

unpredictable behaviour, since the referenced | {

memory location contains unexpected data. char *dp = NULL;
Usually, wild pointers—intended as uninitialised char ¢ = “a”;
pointers—are easier to catch, by looking at dp = &c;
accesses to uninitialised variables. }

}

On the contrary, detecting dangling references is
harder and entails tracking and reasoning on all
the possible combinations of code where pointer values go through
(sometimes this is even impossible, e.g., in compiled libraries).

saverio.giallorenzo@gmail.com 2

Programming Languages

1

Tombstones %har *dp = NULL;
A way to handle dangling references are tombstones. (ngaz gc= “a”;
Essentially, tombstones work by associating every }

allocation accessed by a pointer with a companion }
additional word allocated on memory, called the dp

tombstone.

e——» RIP

dp A > RIP

At Initialisation, the tombstone contains the address -
of the allocated element, while the pointer itself € TrRE— @
recelves the address of the tombstone.

| dp RIP
All pointer dereferences become two-hop lookups, c >& ——> “a”
where we first access the tombstone and then the

pointer of the object. dp \LARIP

verio.giallorenzo@gmail.com

B.Sc. Computer Science, UniBo

Programming Languages B.Sc. Computer Science, UniBo

1

Tombstones %har *dp = NULL;
The two-hop lookup keeps all possible duplications (thaz gc= “a’;
of the pointer in check, as they all point to the same ! P ’
tombstone. 1
As long the the memory location of the pointed

dp o———> (RIP

object Is allocated, its tombstone points to It.

When we deallocate the object, we mark it as “dead” dp | &=

with a dedicated word in its tombstone (hence, the ——lo—p
name) and raise an error at any successive
dereferencing. dp RIP

C >¢ ——> “a’

dp [_®

verio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

1

Tombstones %har *dp = NULL;
Although simple, the tombstone mechanism has a char ¢ = "a";
hefty bill to pay. }dp = &C;

Efficiency-wise, we are duplicating all pointer |}

dereferences (the two-hop lookup) and will spend
some time also In creating the tombstone.

dp o———> (RIP

Space-wise, for each pointer in our program we have dp | e[
a memory location occupied by its tombstone (both C ——>fo— o

for the heap and the stack), which we cannot reclaim -
(unless we employ some clever reference-counting dp ::
techniques), resulting in the possibility of running ¢ o

out of space In the graveyard.
dp \K RIP

averio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

1

Locks and Keys %har *dp = NULL;

Locks and keys are an alternative to tombstones, but only char ¢ = “a’;

for pointers to the heap: every time we allocate an object on dp = &c;

the heap, we associate it to a “lock” made of a memory }
word that stores a random value. Now, a pointer consists In }
a pair: the actual address and a “key”, 1.e.,, a memory word
Initialised to the value of the lock of the pointed object. dp

NULL

Then, each time we dereference a pointer, we check that the dp

key can open the lock, i.e., that the two words coincide. This NULL

also means that, when we assign the pointer, the € — -
assignment copies both the pointer and the key, used to
check the correspondence. dp

At deallocation, we both delete the object in memory and C
set its lock to a canonical value (outside the domain of keys)
and invalidate any possible successive dereferencing, which, dp
like In tombstones, would raise an error.

saverio.giallorenzo@gmail.com 6

Programming Languages B.Sc. Computer Science, UniBo

1

Locks and Keys %har *dp = NULL;
't can happen that successive allocations could use char ¢ = “a”;
the memory area previously used as a lock (for dp = &c¢;

another lock or for other purposes), however it is }

statistically unlikely that an error will not be detected }

because a former lock happens to have the same

value it had before its cancellation. dp

Locks and keys also have a significant cost. In terms of dp o

space, they cost even more than tombstones, since an —1 | @
additional word is needed for each pointer—although 2 =

both locks and keys are deallocated together with the dp
object or pointer they are part of. From the point of

view of the efficiency, locks and keys determine costs
both at creation, assignment, and dereferencing, since dp

now we always perform an equivalence check.

C

saverio.giallorenzo@gmail.com 7

Programming Languages B.Sc. Computer Science, Uni

Bo

Garbage Collection

In languages without explicit memory deallocation on the heap, we need a
mechanism to automatically handle the deallocation of objects in the heap
no longer In use. The general term for one such mechanism Is “garbage
collection”—introduced for the first time in LISP (around 1960) but present in
many modern languages such as Javascript, Python, and Java—and we call
“garbage collector” an implementation of said mechanism.

From a logical point of view, the operations of a garbage collector include:
1. Garbage detection: to detect whether objects in memory are in-use or not;

2. Garbage collection: release the memory occupied by not in-use objects.

Following the nomenclature, we call “garbage” those objects not in-use that
the garbage collector can detect and collect.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Garbage Collection

Since garbage collection is one of the main determinants in the performance of garbage-
collected languages (e.g., the Java runtime provides 7 different garbage-collection
algorithms, tweaked for different execution scenarios), real-world, modern techniques are
quite performant and sophisticated. Here, we will see the most common ones.

In general, how garbage collection works depends on how detection works—and garbage
detection and garbage collection are frequently performed in close temporal succession.

Moreover, it becomes easier to work on the objects in memory if the collector knows their

shape/boundaries and, similarly, what locations of an object correspond to pointers—
since the garbage collector needs to follow those pointers to detect whether deallocating

an object would make other objects, pointed by the latter, garbage.

We can provide this information both statically and dynamically (with the usual
expressiveness vs performance trade-offs) by letting the compiler/runtime associate each
object to a descriptor of their type, reporting, e.g., the size and the offsets of the location
of pointers. Then, at runtime, the garbage collector would use this association to simplify
the traversal of the objects in memory.

saverio.giallorenzo@gmail.com 9

B.Sc. Computer Science, UniBo

Programming Languages

Garbage Collection ¢ Reference Count

The simplest way we can identify garbage is by finding those objects that have

no pointers to them. The technique of reference counters follows this
definition and is probably the most basic way to realise a garbage collector.

When we allocate an object on the heap, the runtime also Initialises a
reference counter (an integer, inaccessible to the programmer) of that object
and 1t makes sure to keep the counter of each object synchronised with the

number of active pointers to that object.

Hence, at the time of object creation, I1ts counter has value 1. Then, the runtime

Increases the counter each time we assign its pointer to a pointer variable and

decreases the counter each time i1t loses a pointer variable, e.g., because the
pointer variable went out of scope or we re-assigned it to another pointer.

10

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Garbage Collection ¢ Reference Count

When a reference counter reaches 0, 1ts object becomes garbage and we can
deallocate it from memory.

As mentioned, this action might not just affect the object in question and rather
concern other objects (pointed by the object), whose counters we need to

decrease.

Hence, when marking an object as garbage (i.e., setting their counters to 0), we
first need to perform a visit of the object and decrement all the pointers it refers

to (and possibly marked the related objects as garbage). —
Since this 1s a recursive visit of the memory structure from =

the object, one of the main limitations of this technique is

its impossibility to deal with recursive structures—this is N

not a problem of the algorithm but rather a limitation of
the definition of garbage of reference counting.

saverio.giallorenzo@gmail.com 11

Programming Languages B.Sc. Computer Science, UniBo

Garbage Collection * Mark and Sweep

Mark and sweep takes its name from how it performs detection and collection.

Marlk indicates that detection uses markings to identify garbage, following two
steps: first, It traverses the heap and marks all objects as garbage, second, it
traverses the stack, it follows the active pointers to the objects in the heap, and

it removes the previous markings from the ones we visit (recursively);

Sweep results In a flat visit of the heap to collect all marked objects.
Root

Root Root
Set ——Ki@%ject E:) Set ObjectAE:) Set Obhject E:)
5 QD]&Ct :> Object 2 Object 2
T‘l ——MCE%ject:E:) ‘ ijectg:) ObjeCt:§:>
@)ject D @ject 9 Object: .| @)Ject D Object = (/—bject E
- b(Object 6) Mark D(Object: D Sweep D(Object B
@ject M}ject 3 @aject ;7?\ Object E @aject D—b@)ject @

12

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Garbage Collection * Mark and Sweep

Unlike reference-count garbage collectors, mark-and-sweep collectors are not incremental—
they do not free memory as soon as they detect garbage.

On the contrary, i1t i1s the runtime that invokes them when it deems 1t useful, e.g., when the
heap Is exhausting its available memory.

Mark-and-sweep garbage collectors are also an example of stop-the-world garbage collection,
where the garbage collector needs to completely halt the execution of the program to make
sure to see all objects, 1.e., that no new objects are allocated and no existing objects become
unreachable while the collector is running.

Mark-and-sweep (and stop-the-world) techniques are more performant and easier to

implement than incremental ones—which slow programs and demand more memory for their
bookkeeping functions. However, they have two major drawbacks. First, the pausing has a
detrimental effect on the performance and responsiveness of the program, making stop-the-
world garbage collection unsuitable for highly interactive programs. Second, without memory-
allocation policies that contrast memory fragmentation, the performance of the mark phase
depends on the size of both the heap (first mark phase) and the stack (second mark phase).

saverio.giallorenzo@gmail.com 13

Pointer reversal: marking objects with minimal memory usage

The mark phase Is naturally recursive and the obvious implementation needs
a stack whose maximum depth i1s proportional to the longest chain through
the heap. However, If the runtime decides to invoke the collector because the
program exhausted its allocated memory, we might not have the space to hold
the stack needed by the collector to work—remember that, usually, stack and
heap grow from the opposite ends of a linear vector, so, exhausting the heap
means we exhausted also the stack.

To minimise the memory required by this step we can encode the stack in the

already-existing fields in the heap, using a technique called “pointer reversal”.
Specifically, since the collector explores the path from a given object, it can
reverse the pointers it follows, so that each points back to the previous block
Instead of going forward to the next.

verio.giallorenzo@gmail.com

14

Programming Languages B.Sc. Computer Science, UniBo

Programming Languages B.Sc. Computer Science, UniBo

Pointer reversal: marking objects with minimal memory usage

The technique requires just two y Jﬁ: pre;\:

pointers to work: the curr pointer, @ < \ . cu

which indicates the object currently A)f

under examination, and the prev @
pointer, which indicates the object that _» |prev

-
-

preceded the current in the visit.

As the garbage collector moves from
one object to the next, it changes the
pointer it follows to refer back to the
previous object. When 1t returns to a
visited object, It restores the pointer

(to the curr value).

To avoid loops In visits, the collector
marks the visited/reversed pointers
(shaded, on the right), to distinguish
them from unvisited pointers.

saverio.giallorenzo@gmail.com 15

Programming Languages B.Sc. Computer Science, UniBo

Stop and Copy

An evolution of the mark and sweep technique is “stop and AN
copy”, which achieves compaction while simultaneously =
eliminating the first phase of the marking and the sweep. //—

The technique works by dividing the heap into two regions of

equal size. All allocations happen in the “current” half while [~
the “other” Is empty. Then, when the “current" half is almost free
full, the collector explores the “current” half, from the root

set, and copies each reachable object contiguously into the current other

“other” half. When the collector finishes its exploration, it Root set [] |
swaps its pointers to the “current” and “other” halves. = y

While this method halves the amount of available heap 1
memory, the time required by a stop-and-copy collector is free
proportional to the amount of non-garbage objects on the
heap and increasing the amount of memory available

decreases the frequency of invocation of the collector is
called and, thus, the total cost of memory management.

other current

saverio.giallorenzo@gmail.com 16

Programming Languages B.Sc. Computer Science, UniBo

Memory safety via borrow-checking

Borrow-checking is a technique (as present in, e.g., Rust) that tries to strike a
balance between the safety of garbage-collected languages (Java) and the control
provided by languages with memory-management constructs (C).

Borrow-checking works by restricting how programs can use pointers, so that, If
the compiler allows the compilation of a program, then we know 1t 1s free from

errors such as dangling and wild pointers, double frees, and similar memory-
safety errors.

The technique hinges on the definition, in the language, of ownership, such that

every value in a program has a single owner (its variable) that determines its

lifetime. We already saw a similar concept with stack-allocated values and scopes,
where, when the owner goes out of scope (and freed) also its owned values do.

saverio.giallorenzo@gmail.com 17

Programming Languages B.Sc. Computer Science, UniBo

Brief reminder of memory allocation (with Rust)

fn myFn() A
let s1: &str = "stack-allocated string";

}Iet s2: String = "heap-allocated string”.to_string();

addr[0x10dc46b32]

Data type: *const u8

value: “data-allocated string”

In both cases, the compiler links the de- Heap 2ddrl0x7f9ec7dos240]
allocation of the stack- and heap-allocated value: “heap-allocated string”
objects to the “lifetime” of the owner, here, the

method myFn, and is able to deallocate them oddr 67 fecs7e230:]
when we remove the frame of myFn from the value: ©x10dclbsa, Len: 2
StaCk. StaCk type: §&str

value: 0x7f9ec7d04240, len: 22

saverio.giallorenzo@gmail.com 18

Programming Languages

B.Sc. Computer Science, UniBo

Chains of ownership

As seen, we can nest data structures within each other, forming chains of ownership.

struct Person { name: String, birth: 132 }
arx = Vec::new();

let mut n
marx.

dI'X

dI'X

1]
1]
1]
1]

p

- P
arx.
- P
arx.

p
p

Ust
Uskh
Ust
Uskh

Uskh

(Person {
(Person {
(Person {
(Person {
(Person {

name :

nailr
nailr
nailr
nailr

@ ®Dd® D @D

“Chico”.to_string() , birth:
“Harpo”.to_string() , birth:
“Groucho".to_string(), birth:
“Gummo”.to_string() , birth:
“Zeppo”.to_string() , birth:

1887 });
1888 });
1890 });
1893 });
1901 });

Also In this case, when marx goes out of scope, the ownership checker knows that It Is
safe to remove it from the stack, with all the objects in the heap It owns.

stack frame

[1]

M

— o]
marx cap:5
len:4 cap:8| len:5

birth:
1887

birth:

cap:8| len:5 1888

Chico

Harpo heap

name

name

saverio.giallorenzo@gmail.com

19

Programming Languages

B.Sc. Computer Science, UniBo

Extending Ownership

The concept of ownership we have seen so far 1s quite simple: 1t Is essentially
a tree where, by deallocating the root, we know we can deallocate all its
subnodes. While this prevents us from building circular graphs of ownership,
we can safely extend this idea In several directions:

* We can move the ownership of values from one owner to another;

 We can give more freedom from the ownership rules to some simple types,
like integers, floating-point numbers, and characters;

* We can provide special reference-counted pointer types (Rc and Arc), which
allow values to have multiple owners, under some restrictions.

* We can let owners “borrow a reference” to a value, as long as we restrict
references to non-owning pointers with limited lifetimes.

saverio.giallorenzo@gmail.com

20

Programming Languages B.Sc. Computer Science, UniBo

Moves

In Rust, for most types (besides some exceptions, discussed afterwards), operations
like assigning a value to a variable, passing a value to a fu nctlon or returning a value
do not perform any copy but rather move the ~

stack n 1 | 3

OwnerShlp of the value. frame
[0 2]

INOERDOEEE

heap

let s = vec![“udon”, “ramen”, “soba”];
let t = s; v w
let u = s; "3 § e 8 3

S t
AL AL

For example, the simple program above would Stack— T 3‘-
not compile in Rust. The reason Is that first we fme i
assign to s the vector, then, we pass i1t to t,

so, now s is an uninitialised variable (it owns ‘e BB o[4 4Te s 5o 4] |
no value) and the second assignment would

not make sense. B -~ ; ﬁ

saverio.giallorenzo@gmail.com 21

Programming Languages B.Sc. Computer Science, U

niBo

Further Moves

let x = vec![10, 20, 30]; Of course, moves interact with control-flow

1f false constructs.

let a = Xx;

} else { For example, the code on the left would not
tet ¢ = 2; ile, since (although it is i ible to ent
} compile, since (although it is impossible to enter
let ¢ = x: it) we have a conditional branch (if) that moves

the value owned by x to a, so that the last
Instruction would assign an uninitialised variable.

The general principle is that, if it is possible for a variable to have had its

value moved away and it is not certain that it has been given a new value
since, we consider the variable uninitialized.

saverio.giallorenzo@gmail.com

22

Programming Languages B.Sc. Computer Science, UniBo

Further Moves

An interesting case is that of indexed

collections, where we could assign (move) the
content of some of the elements In, e.g., a

vector, into a variable.

let v = vec![“a”.to_string()];
let first = v[0];

However, to allow this, we would need to remember that, now, the first element of

the vector v has become uninitialized, and track that information until the vector is
deallocated. In general, this Is not a feasible path, unless we severely limit what

kind of expressions we can use to access vectors.

Indeed, If we just allowed constants, we could keep track of what values become
uninitialised, however, with general expressions, we cannot predict what elements
of any given vector become uninitialised due to a move.

So we do not allow assigning (moving) elements out of collections, but rather let
the programmer reference or or copy its values.

saverio.giallorenzo@gmail.com 23

Programming Languages B.Sc. Computer Science, UniBo

Copy Types

While the move semantics makes It clean and cheap to pass values around, there

are some cases where it is easier (for the progsrammer) to pass values “by value”,
l.e., by making a copy of It.

This is the case for Copy types, i.e., values of types that are cheap (or useful) enough
to make a copy of, rather than moving their ownership. This Is what happens, in Rust,
with numbers (integers and floats), which are just patterns of bits in memory,
without any heap resources or dependencies on anything other than the bytes it

comprises, so it is relatively cheap and, above all, safe to create independent copies
of the values rather than moving them like any other type of variable. This is the
same with chars and bool types, as well as tuples or fixed-size arrays of Copy types.

To make a counterexample, String 1s not a Copy type, because it owns a heap-
allocated array. Besides standard Copy types, users can define their struct Copy
types, as long as these use only Copy types in their fields.

saverio.giallorenzo@gmail.com 24

Programming Languages B.Sc. Computer Science, UniBo

Rc and Arc: Shared Ownership

While for the general case it I1s enough for values to have unique owners, sometimes we
need to share the ownership of values among a set of owners, e.g., who can safely read
the value, because It iIs iImmutable.

For these cases, Rust provides the reference-counted pointer types, called Reference
Count (Rc<T>) and atomic reference count (Arc<T>).

Intuitively, Rc/Arc types are quite similar (the second . .
adds some checks to make reference-counting thread fame
safe) and they keep track of the number of references to
a value to determine whether or not the value is still in
use. If there are zero references to a value, the value can

: he value ,
be cleaned up without any references becoming invalid. -

let s: Rc<String> = Rc::new("a".to_string());
let t: Rc<String> = s.clone();
let u: Rc<String> = s.clone();

saverio.giallorenzo@gmail.com 25

Programming Languages B.Sc. Computer Science, UniBo

Rc and Arc: Shared Ownership

In the example, each of the three Rc<String> pointers refers to the same
block of memory, which holds a reference count and space for the String.

The usual ownership rules apply to the Rc pointers themselves: each clone
Increment the counter while each deallocation of a pointer decreases, until
the last extant is deallocated and the runtime also
deallocates the referenced String in the heap.

let s: Rc<String> = Rc::new("a".to_string());
let t: Rc<String> = s.clone();
let u: Rc<String> = s.clone();

saverio.giallorenzo@gmail.com 26

Programming Languages B.Sc. Computer Science, U

niBo

Rc and Arc: Shared Ownership

As we discussed for garbage collectors, one well-known problem -~

with reference counting Is that we cannot deallocate graphs of | - 1
reference-counted values.

Also reference-count types can suffer from this problem, and Rust makes such
situations explicit and rare.

Indeed, we cannot create a cycle without, at some point, making an older
value point to a newer value, which implies that at least the the older value Is

mutable. This is the reason why Rc pointers hold their referents immutable. Of
course, there are some cases that require us to create cyclical structures In
memory. Rust accommodates this need with Reference Cells, which provide an
Interface to allow referenced values to change to the cost of renouncing static
guarantees on the usage of pointers for runtime checks (which might make the
program fail, if the reference is used improperly).

saverio.giallorenzo@gmail.com 27

Programming Languages B.Sc. Computer Science, UniBo

Borrowing References

The pointer types seen until now are owning pointers: when the owner is dropped, the referent goes with

It. Rust also has non-owning pointers, called references, which have no effect on their referents’ lifetimes
but rather depend on it: references must never outlive their referents. This is why, in Rust-speak, creating

a reference to some value is called borrowing the value, with the motto “what is borrowed must
eventually return”.

A reference gives access to a value without affecting its ownership and can be of two kinds:

* shared references let the user read but not modify its referent. Since it Is a read-only reference, we can
safely have as many shared references to a value as we like. This Is the simplest form of referencing, as
uses the same syntax seen, e.g., in C, &e generates a shared reference to the value held in variable e, so
If e has the type T, then &e has the type &T, and &T is always a subtype of Copy.

* mutable references let the user both read and modify the value, but it makes it impossible to have any
other references to that value active at the same time. The syntax to generate a mutable reference iIs
gmut e, which generates a mutable reference to the value held in variable e. Types-wise we have &mut

T, which are not subtypes of Copy.

Reference are never NULL in Rust. The absence of the NULL value for pointers comes from the checks
performed by the compiler, which makes sure that variables are never used until they are initialised (there
are no wild pointers) and the fact that there is no (safe) way to have the language generate custom
references (e.g., from a given integer).

saverio.giallorenzo@gmail.com 28

Programming Languages

B.Sc. Computer Science, UniBo

Lifetimes

The Rust compiler validates borrows by reasoning on the lifetimes of variables; essentially making sure
that no reference outlives its referent.

let x: &str;

{1 . o borrowed value does not live long enough
et y = a7,
}X = ay; "y dropped here while still borrowed
rintln!("{s", X
println!("{}", X); P (")

- borrow later used here

In the example above, the compiler complains because x would access invalid memory, since the value
referred by vy Is deallocated once out of the inner scope.

The interactions between variables do not change lifetimes but rather impose constraints for the
compiler to check. In the example, x=&y sets the constraint that the lifetime of y should be as long as that
of x, which triggers the error raised by the compiler. Actually, the check on lifetimes done by Rust is more
refined than this coarse rule, and it makes the lifetime of x and y related as long as x Is assigned to y and

we need to read x (as in the example, where we try to print it). Indeed, if we remove the reading of x the
program would compile (i.e., since x is never used, we can get rid of it after the assignment).

saverio.giallorenzo@gmail.com

29

Programming Languages B.Sc. Computer Science, Uni

iBo

Lifetime Annotations

While the Rust compiler is quite smart in inferring lifetimes (like type
inference), in some cases we need to provide information on lifetimes—
through lifetime annotations—to clarify ambiguous situations.

fn snd(a: §str, b: §str) -> &§str { For example, in the example on the

return if true { a } else { b } left, the compiler needs to know

} | whether the reference returned from

fn main() { the function borrows from a or b, so
}et E = "E"; the compiler asks the programmer to
et —]| II; ° ° ° °

}Snd(62, &b): explicitly add this constraint.

N\

expected named lifetime parameter

|

1 | fn snd(sl1l: &str, s2: §str) -> &str {
|
|

saverio.giallorenzo@gmail.com

30

Programming Languages B.Sc. Computer Science, UniBo

Lifetime Annotations

Si{fug’gasiég, 'b> 1 To solve this issue, we need to use lifetime parameters—in a way,
Vi &'b 132: similar to type parameters.
}Z‘ §°b 132 In Rust, these annotations go at the level of types and, as mentioned,
fn main() { Rust does already a g.ood job at inferrin.g lifetimes, along with types:
let x = 10; when we create a variable of a certain (inferred) type S it also has a
}et r; fresh lifetime parameter 'l, which becomes constrained by how we use
let v = 20 the referred value.
{Iet c -5 { Lifetime annotations can make lifetimes of related variables explicit,
X: &X, e.g., In the struct S in the example, we declare it to have two lifetime
y: &Y, parameters, where one (‘a) identifies the lifetime of one field (x), while
}?t &y the other (‘b) identifies the lifetimes of two files (y and z).
}T = S.X; This make our example compile, where the lifetime of x can outlive
! that of y and z, since they are distinct. Without this annotation, X, v,

orintln!("{}", r); and z would have shared the same lifetime, resulting in a compilation
} error.

saverio.giallorenzo@gmail.com 31

Programming Languages B.Sc. Computer Science, UniBo

Lifetime Annotations

The concept 1s similar for functions, where each type of each variable and the
return type have associated a different lifetime, I.e.,

saverio.giallorenzo@gmail.com 32

Programming Languages B.Sc. Computer Science, UniBo

Lifetime Annotations

In our example, since the function snd decides at runtime which reference, between
a and b, to return, we clarify that they must share the same lifetime.

fn snd<‘1>(a: &§'1 str, b: &§'1 str) -> &§'1 str {
return if true { a } else { b }

i
fn main() A
}Iet a = “a"; let b = "b"; snd(&a, §b);

Concretely, the function just has one lifetime parameter, ‘1 that binds together (i.e.,
constraints to be equal) the lifetimes of a and b.

The meaning of the annotation of the return type with ‘1 is slightly different: this
does not mean that a, b, and the return value of snd must all have the exact same

lifetime but rather than the returned reference is borrowed from the argument with
the same annotation (in this case, either a or b).

saverio.giallorenzo@gmail.com 33

Programming Languages

B.Sc. Computer Science, UniBo

Lifetime Annotations

To further clarify, let us look at an extension of the example saw before.

Remind that the lifetime constraint on snd Is that the returned reference must
not outlive those of a and b.

fn snd<'1>(a: &§'1 str, b: &'1 str) -> §'1l str { The example breaks this
: return if true { a } else { b !} constraints, since the

lifetime of r outlives that
fn main() {

of b (the one of a is fine).
let r: &str;

let a = “a”.to_string();

{ 9 |r=snd(&a,&b);
let b = “b”.to string(); 10}} "” borrowed value does not live long enough
r = snd(ga, &b); o . .
! |- b~ dropped here while still borrowed
. 11 . ! " II’ ;
srintlnt("{}", r) |println!("{}", r)

| - borrow later used here

saverio.giallorenzo@gmail.com

34

Programming Languages B.Sc. Computer Science, UniBo

Mutable References

As we have seen, values borrowed by shared references are read-only. On the contrary, a

value borrowed by a mutable reference is reachable exclusively via that reference.
Moreover, across the lifetime of a mutable reference there must be no other usable path to
Its referent or to any value reachable from there. The only references whose lifetimes may
overlap with a mutable reference are those borrowed from the mutable reference itself.

In the example, we violate the rule for

fn concat(l: &mut String, r: &String) 1 mutable references (last instruction): we

}1-PUSh_5tT(ro); borrow both a mutable and immutable

reference to greet.

fn main() { Of course, vice versa, we can see the
let mut greet = "Hello".to_string(); violation from the side of the shared
let subject = "World".to_string(); reference: since we borrow a shared
concat(&mut greet, &subject); reference to greet, it must be read-
concat(&mut greet, &greet); only, so the borrowing of a mutable

oo reference is illegal.

saverio.giallorenzo@gmail.com 35

Recap: Ownership and Shared and Mutable References

Ownership tree Borrowing a shared reference Borrowing a mutable reference
. Inaccessible
variable

O () shared o mutable

heap- reference reference

O O C allocated not @ ‘ & O O . &mut
values read-only
O O C O O C O O C

read-only accessible only
through the reference

averio.giallorenzo@gmail.com

36

Programming Languages B.Sc. Computer Science, UniBo

