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References can become dangling (also called wild) when they reference 
an invalid destination. These include pointers to deallocated memory 
as well as reallocated one (e.g., after we freed it). In all these cases, 
dereferencing a dangling pointer can lead to 
unpredictable behaviour, since the referenced 
memory location contains unexpected data. 

Usually, wild pointers—intended as uninitialised 
pointers—are easier to catch, by looking at 
accesses to uninitialised variables.  

On the contrary, detecting dangling references is 
harder and entails tracking and reasoning on all 
the possible combinations of code where pointer values go through 
(sometimes this is even impossible, e.g., in compiled libraries).

{ 
 char *dp = NULL; 
 { 
  char c = “a”; 
  dp = &c; 
 }  
}
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A way to handle dangling references are tombstones.  

Essentially, tombstones work by associating every 
allocation accessed by a pointer with a companion 
additional word allocated on memory, called the 
tombstone.  

At initialisation, the tombstone contains the address 
of the allocated element, while the pointer itself 
receives the address of the tombstone. 

All pointer dereferences become two-hop lookups, 
where we first access the tombstone and then the 
pointer of the  object. 

RIP

{ 
 char *dp = NULL; 
 { 
  char c = “a”; 
  dp = &c; 
 }  
}
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dp
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c “a”
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The two-hop lookup keeps all possible duplications 
of the pointer in check, as they all point to the same 
tombstone.  

As long the the memory location of the pointed 
object is allocated, its tombstone points to it.  

When we deallocate the object, we mark it as “dead” 
with a dedicated word in its tombstone (hence, the 
name) and raise an error at any successive 
dereferencing.

RIP

{ 
 char *dp = NULL; 
 { 
  char c = “a”; 
  dp = &c; 
 }  
}

dp

dp
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Although simple, the tombstone mechanism has a 
hefty bill to pay.  

Efficiency-wise, we are duplicating all pointer 
dereferences (the two-hop lookup) and will spend 
some time also in creating the tombstone.  

Space-wise, for each pointer in our program we have 
a memory location occupied by its tombstone (both 
for the heap and the stack), which we cannot reclaim 
(unless we employ some clever reference-counting 
techniques), resulting in the possibility of running 
out of space in the graveyard.

RIP

{ 
 char *dp = NULL; 
 { 
  char c = “a”; 
  dp = &c; 
 }  
}

dp

dp
c “a”

dp
c “a”
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RIP
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Locks and keys are an alternative to tombstones, but only 
for pointers to the heap: every time we allocate an object on 
the heap, we associate it to a “lock” made of a memory 
word that stores a random value. Now, a pointer consists in 
a pair: the actual address and a “key”, i.e., a memory word 
initialised to the value of the lock of the pointed object.  

Then, each time we dereference a pointer, we check that the 
key can open the lock, i.e., that the two words coincide. This 
also means that, when we assign the pointer, the 
assignment copies both the pointer and the key, used to 
check the correspondence. 

At deallocation, we both delete the object in memory and 
set its lock to a canonical value (outside the domain of keys) 
and invalidate any possible successive dereferencing, which, 
like in tombstones, would raise an error.

NULL

{ 
 char *dp = NULL; 
 { 
  char c = “a”; 
  dp = &c; 
 }  
}

dp

dp
c

dp
c
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It can happen that successive allocations could use 
the memory area previously used as a lock (for 
another lock or for other purposes), however it is 
statistically unlikely that an error will not be detected 
because a former lock happens to have the same 
value it had before its cancellation. 

Locks and keys also have a significant cost. In terms of 
space, they cost even more than tombstones, since an 
additional word is needed for each pointer—although 
both locks and keys are deallocated together with the 
object or pointer they are part of. From the point of 
view of the efficiency, locks and keys determine costs 
both at creation, assignment, and dereferencing, since 
now we always perform an equivalence check.

NULL

{ 
 char *dp = NULL; 
 { 
  char c = “a”; 
  dp = &c; 
 }  
}

dp

dp
c

dp
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In languages without explicit memory deallocation on the heap, we need a 
mechanism to automatically handle the deallocation of objects in the heap  
no longer in use. The general term for one such mechanism is “garbage 
collection”—introduced for the first time in LISP (around 1960) but present in 
many modern languages such as Javascript, Python, and Java—and we call 
“garbage collector” an implementation of said mechanism. 

From a logical point of view, the operations of a garbage collector include: 

1. Garbage detection: to detect whether objects in memory are in-use or not; 

2. Garbage collection: release the memory occupied by not in-use objects. 

Following the nomenclature, we call “garbage” those objects not in-use that 
the garbage collector can detect and collect.
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Since garbage collection is one of the main determinants in the performance of garbage-
collected languages (e.g., the Java runtime provides 7 different garbage-collection 
algorithms, tweaked for different execution scenarios), real-world, modern techniques are 
quite performant and sophisticated. Here, we will see the most common ones. 

In general, how garbage collection works depends on how detection works—and garbage 
detection and garbage collection are frequently performed in close temporal succession.  

Moreover, it becomes easier to work on the objects in memory if the collector knows their 
shape/boundaries and, similarly, what locations of an object correspond to pointers—
since the garbage collector needs to follow those pointers to detect whether deallocating 
an object would make other objects, pointed by the latter, garbage. 

We can provide this information both statically and dynamically (with the usual 
expressiveness vs performance trade-offs) by letting the compiler/runtime associate each 
object to a descriptor of their type, reporting, e.g., the size and the offsets of the location 
of pointers. Then, at runtime, the garbage collector would use this association to simplify 
the traversal of the objects in memory.
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The simplest way we can identify garbage is by finding those objects that have 
no pointers to them. The technique of reference counters follows this 
definition and is probably the most basic way to realise a garbage collector. 

When we allocate an object on the heap, the runtime also initialises a 
reference counter (an integer, inaccessible to the programmer) of that object 
and it makes sure to keep the counter of each object synchronised with the 
number of active pointers to that object. 

Hence, at the time of object creation, its counter has value 1. Then, the runtime 
increases the counter each time we assign its pointer to a pointer variable and 
decreases the counter each time it loses a pointer variable, e.g., because the 
pointer variable went out of scope or we re-assigned it to another pointer.



saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Garbage Collection • Reference Count

11

When a reference counter reaches 0, its object becomes garbage and we can 
deallocate it from memory.  

As mentioned, this action might not just affect the object in question and rather 
concern other objects (pointed by the object), whose counters we need to 
decrease. 

Hence, when marking an object as garbage (i.e., setting their counters to 0), we  
first need to perform a visit of the object and decrement all the pointers it refers 
to (and possibly marked the related objects as garbage).  

Since this is a recursive visit of the memory structure from 
the object, one of the main limitations of this technique is 
its impossibility to deal with recursive structures—this is 
not a problem of the algorithm but rather a limitation of 
the definition of garbage of reference counting.

2 1

1 1
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Mark and sweep takes its name from how it performs detection and collection. 

Mark indicates that detection uses markings to identify garbage, following two 
steps: first, it traverses the heap and marks all objects as garbage, second, it 
traverses the stack, it follows the active pointers to the objects in the heap, and 
it removes the previous markings from the ones we visit (recursively); 

Sweep results in a flat visit of the heap to collect all marked objects.

Mark Sweep
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Garbage Collection • Mark and Sweep
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Unlike reference-count garbage collectors, mark-and-sweep collectors are not incremental—
they do not free memory as soon as they detect garbage.  

On the contrary, it is the runtime that invokes them when it deems it useful, e.g., when the 
heap is exhausting its available memory. 

Mark-and-sweep garbage collectors are also an example of stop-the-world garbage collection, 
where the garbage collector needs to completely halt the execution of the program to make 
sure to see all objects, i.e., that no new objects are allocated and no existing objects become 
unreachable while the collector is running. 

Mark-and-sweep (and stop-the-world) techniques are more performant and easier to 
implement than incremental ones—which slow programs and demand more memory for their 
bookkeeping functions. However, they have two major drawbacks. First, the pausing has a 
detrimental effect on the performance and responsiveness of the program, making stop-the-
world garbage collection unsuitable for highly interactive programs. Second, without memory-
allocation policies that contrast memory fragmentation, the performance of the mark phase 
depends on the size of both the heap (first mark phase) and the stack (second mark phase).
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The mark phase is naturally recursive and the obvious implementation needs 
a stack whose maximum depth is proportional to the longest chain through 
the heap. However, if the runtime decides to invoke the collector because the 
program exhausted its allocated memory, we might not have the space to hold 
the stack needed by the collector to work—remember that, usually, stack and 
heap grow from the opposite ends of a linear vector, so, exhausting the heap 
means we exhausted also the stack. 

To minimise the memory required by this step we can encode the stack in  the 
already-existing fields in the heap, using a technique called “pointer reversal”. 
Specifically, since the collector explores the path from a given object, it can 
reverse the pointers it follows, so that each points back to the previous block 
instead of going forward to the next.
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The technique requires just two 
pointers to work: the curr pointer, 
which indicates the object currently 
under examination, and the prev 
pointer, which indicates the object that 
preceded the current in the visit.  

As the garbage collector moves from 
one object to the next, it changes the 
pointer it follows to refer back to the 
previous object. When it returns to a 
visited object, it restores the pointer 
(to the curr value).  

To avoid loops in visits, the collector 
marks the visited/reversed pointers 
(shaded, on the right), to distinguish 
them from unvisited pointers.
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An evolution of the mark and sweep technique is “stop and 
copy”, which achieves compaction while simultaneously 
eliminating the first phase of the marking and the sweep. 

The technique works by dividing the heap into two regions of 
equal size. All allocations happen in the “current” half while 
the “other” is empty. Then, when the “current" half is almost 
full, the collector explores the “current” half, from the root 
set, and copies each reachable object contiguously into the 
“other” half. When the collector finishes its exploration, it 
swaps its pointers to the “current” and “other” halves. 

While this method halves the amount of available heap 
memory, the time required by a stop-and-copy collector is 
proportional to the amount of non-garbage objects on the 
heap and increasing the amount of memory available 
decreases the frequency of invocation of the collector is 
called and, thus, the total cost of memory management.

Strutturare i dati 337

Fromspace Tospace

libera

Root set

Figura 10.16 Stop and copy prima della chiamata al garbage collector.

Nel più semplice garbage collector basato su copia (detto stop and copy) lo
heap è diviso in due parti di uguali dimensioni (i due semispazi). Durante l’ese-
cuzione normale, solo uno dei due semispazi è in uso: la memoria è allocata ad
un’estremità del semispazio, mentre la memoria libera consiste di un unico bloc-
co contiguo che si assottiglia ad ogni nuova allocazione, si veda la Figura 10.16.
L’allocazione è estremamente efficiente e non c’è frammentazione.

Quando la memoria del semispazio è esaurita, viene invocato il garbage col-
lector. Questi, a partire dai puntatori presenti sulla pila (il root set) inizia una
visita delle strutture concatenate presenti nel semispazio corrente (il fromspace),
copiandole una dopo l’altra nell’altro semispazio (il tospace), compattandole ad
un’estremità di questo, vedi la Figura 10.17. Al termine di questo processo, il ruo-
lo dei due semispazi viene invertito e l’esecuzione ritorna al programma utente.

La visita e la copia della parte viva può essere eseguita in modo efficiente
usando una semplice tecnica nota come algoritmo di Cheney, Figura 10.18. Ini-
zialmente si copiano nel tospace tutti gli oggetti immediatamente raggiungibili a
partire dal root set. Questo primo insieme di oggetti copiati in modo contiguo nel
tospace è gestito come una coda: si prende in considerazione il primo di tali og-
getti, aggiungendo in fondo alla coda (cioè copiando nel tospace) gli oggetti pun-
tati dai puntatori presenti nell’oggetto e contemporaneamente modificando questi
puntatori. In questo modo abbiamo copiato nel tospace tutti i figli del primo og-
getto. Continuiamo ad elaborare la coda fino a quando questa non si sia svuotata.
A quel punto avremo nel tospace una copia degli oggetti vivi del fromspace22.

22Qualche precauzione deve essere presa per evitare di copiare più volte gli oggetti raggiungibili

free
338 Capitolo 10

Fromspace Tospace

libera

Root set

Figura 10.17 Stop and copy dopo l’esecuzione del garbage collector.

Un garbage collector stop and copy può essere reso arbitrariamente efficiente,
a patto di avere abbastanza memoria per i due semispazi. Infatti, il tempo richiesto
da un collector stop and copy è proporzionale alla quantità di oggetti vivi presenti
sullo heap. Non è irragionevole supporre che tale quantità sia approssimativa-
mente costante in un qualsiasi momento dell’esecuzione di un programma. Se
aumentiamo la memoria per i due semispazi, diminuiremo la frequenza con la
quale è chiamato il collector e, dunque, il costo totale di garbage collection.

10.12 Sommario del capitolo

Il capitolo ha trattato un aspetto cruciale della definizione di un linguaggio di
programmazione, quello che riguarda l’organizzazione dei dati in strutture astratte
chiamate tipi di dato. Ricordiamo i seguenti aspetti principali:

• la definizione di tipo, come insieme di valori ed operazioni, e il ruolo dei tipi
nel progetto, realizzazione ed esecuzione di un programma;

• i sistemi di tipi, come l’insieme dei costrutti e dei meccanismi che regolano e
definiscono l’uso dei tipi in un linguaggio di programmazione;

• la distinzione tra controlli di tipo dinamici e controlli statici;
• il concetto di sistema di tipi type safe, cioè sicuro rispetto ai tipi;
• i principali tipi scalari, tra i quali troviamo i tipi discreti;

con più di un puntatore.

free

current other

other current
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Memory safety via borrow-checking
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Borrow-checking is a technique (as present in, e.g., Rust) that tries to strike a 
balance between the safety of garbage-collected languages (Java) and the control 
provided by languages with memory-management constructs (C). 

Borrow-checking works by restricting how programs can use pointers, so that, if 
the compiler allows the compilation of a program, then we know it is free from 
errors such as dangling and wild pointers, double frees, and similar memory-
safety errors. 

The technique hinges on the definition, in the language, of ownership, such that 
every value in a program has a single owner (its variable) that determines its 
lifetime. We already saw a similar concept with stack-allocated values and scopes, 
where, when the owner goes out of scope (and freed) also its owned values do.  
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Brief reminder of memory allocation (with Rust)
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fn myFn() { 
 let s1: &str = "stack-allocated string"; 
 let s2: String = "heap-allocated string”.to_string(); 
}

addr[0x7f9ec7d04240] 
type: *const u8 
value: “heap-allocated string”

addr[0x7ffee57e2308] 
type: &str 
value: 0x10dc46b32, len: 22  
addr[0x7ffee064d278] 
type: &str 
value: 0x7f9ec7d04240, len: 22

…

Data

Stack

Heap

addr[0x10dc46b32] 
type: *const u8 
value: “data-allocated string”

In both cases, the compiler links the de-
allocation of the stack- and heap-allocated 
objects to the “lifetime” of the owner, here, the 
method myFn, and is able to deallocate them 
when we remove the frame of myFn from the 
stack.
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As seen, we can nest data structures within each other, forming chains of ownership. 

Also in this case, when marx goes out of scope, the ownership checker knows that it is 
safe to remove it from the stack, with all the objects in the heap it owns.

struct Person { name: String, birth: i32 } 
let mut marx = Vec::new(); 
marx.push(Person { name: “Chico”.to_string()  , birth: 1887 });  
marx.push(Person { name: “Harpo”.to_string()  , birth: 1888 }); 
marx.push(Person { name: “Groucho".to_string(), birth: 1890 }); 
marx.push(Person { name: “Gummo”.to_string()  , birth: 1893 }); 
marx.push(Person { name: “Zeppo”.to_string()  , birth: 1901 });

Chains of ownership

19

stack frame

cap:5
len:4 heapbirth:

1887
{marx

    Chicolen:5cap:8

[0]

name

birth:
1888len:5cap:8   Harpo

name

[1]

…
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Extending Ownership
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The concept of ownership we have seen so far is quite simple: it is essentially 
a tree where, by deallocating the root, we know we can deallocate all its 
subnodes. While this prevents us from building circular graphs of ownership, 
we can safely extend this idea in several directions: 

• We can move the ownership of values from one owner to another; 

• We can give more freedom from the ownership rules to some simple types, 
like integers, floating-point numbers, and characters; 

• We can provide special reference-counted pointer types (Rc and Arc), which 
allow values to have multiple owners, under some restrictions. 

• We can let owners “borrow a reference” to a value, as long as we restrict 
references to non-owning pointers with limited lifetimes.
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In Rust, for most types (besides some exceptions, discussed afterwards), operations 
like assigning a value to a variable, passing a value to a function, or returning a value 
do not perform any copy but rather move the 
ownership of the value.

After carrying out the initialization of s, since Rust and C++ use similar representa‐
tions for vectors and strings, the situation looks just as it did in C++ (Figure 4-9).

Figure 4-9. How Rust represents a vector of strings in memory

But recall that, in Rust, assignments of most types move the value from the source to
the destination, leaving the source uninitialized. So after initializing t, the program’s
memory looks like Figure 4-10.

Figure 4-10. !e result of assigning s to t in Rust

What has happened here? The initialization let t = s; moved the vector’s three
header fields from s to t; now t owns the vector. The vector’s elements stayed just
where they were, and nothing happened to the strings either. Every value still has a
single owner, although one has changed hands. There were no reference counts to be
adjusted. And the compiler now considers s uninitialized.

So what happens when we reach the initialization let u = s;? This would assign the
uninitialized value s to u. Rust prudently prohibits using uninitialized values, so the
compiler rejects this code with the following error:

Moves | 89

Moves

21

let s = vec![ “udon”, “ramen”, “soba” ]; 
let t = s; 
let u = s;

After carrying out the initialization of s, since Rust and C++ use similar representa‐
tions for vectors and strings, the situation looks just as it did in C++ (Figure 4-9).

Figure 4-9. How Rust represents a vector of strings in memory

But recall that, in Rust, assignments of most types move the value from the source to
the destination, leaving the source uninitialized. So after initializing t, the program’s
memory looks like Figure 4-10.

Figure 4-10. !e result of assigning s to t in Rust

What has happened here? The initialization let t = s; moved the vector’s three
header fields from s to t; now t owns the vector. The vector’s elements stayed just
where they were, and nothing happened to the strings either. Every value still has a
single owner, although one has changed hands. There were no reference counts to be
adjusted. And the compiler now considers s uninitialized.

So what happens when we reach the initialization let u = s;? This would assign the
uninitialized value s to u. Rust prudently prohibits using uninitialized values, so the
compiler rejects this code with the following error:

Moves | 89

For example, the simple program above would 
not compile in Rust. The reason is that first we 
assign to s the vector, then, we pass it to t, 
so, now s is an uninitialised variable (it owns 
no value) and the second assignment would 
not make sense.
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Of course, moves interact with control-flow 
constructs.  

For example, the code on the left would not 
compile, since (although it is impossible to enter 
it) we have a conditional branch (if ) that moves 
the value owned by x to a, so that the last 

instruction would assign an uninitialised variable. 

The general principle is that, if it is possible for a variable to have had its 
value moved away and it is not certain that it has been given a new value 
since, we consider the variable uninitialized.

Further Moves

22

let x = vec![10, 20, 30];  
if false { 
 let a = x; 
} else { 
 let c = 2; 
} 
let c = x;
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An interesting case is that of indexed 
collections, where we could assign (move) the 
content of some of the elements in, e.g., a 
vector, into a variable. 

However, to allow this, we would need to remember that, now, the first element of 
the vector v has become uninitialized, and track that information until the vector is 
deallocated. In general, this is not a feasible path, unless we severely limit what 
kind of expressions we can use to access vectors. 

Indeed, if we just allowed constants, we could keep track of what values become 
uninitialised, however, with general expressions, we cannot predict what elements 
of any given vector become uninitialised due to a move. 

So we do not allow assigning (moving) elements out of collections, but rather let 
the programmer reference or or copy its values.

Further Moves

23

let v = vec![“a”.to_string()]; 
let first = v[0];
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While the move semantics makes it clean and cheap to pass values around, there 
are some cases where it is easier (for the programmer) to pass values “by value”, 
i.e., by making a copy of it.  

This is the case for Copy types, i.e., values of types that are cheap (or useful) enough 
to make a copy of, rather than moving their ownership. This is what happens, in Rust, 
with numbers (integers and floats), which are just patterns of bits in memory, 
without any heap resources or dependencies on anything other than the bytes it 
comprises, so it is relatively cheap and, above all, safe to create independent copies 
of the values rather than moving them like any other type of variable. This is the 
same with chars and bool types, as well as tuples or fixed-size arrays of Copy types. 

To make a counterexample, String is not a Copy type, because it owns a heap-
allocated array. Besides standard Copy types, users can define their struct Copy 
types, as long as these use only Copy types in their fields.

Copy Types

24
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While for the general case it is enough for values to have unique owners, sometimes we 
need to share the ownership of values among a set of owners, e.g., who can safely read 
the value, because it is immutable.  

For these cases, Rust provides the reference-counted pointer types, called Reference 
Count (Rc<T>) and atomic reference count (Arc<T>).  

Intuitively, Rc/Arc types are quite similar (the second 
adds some checks to make reference-counting thread 
safe) and they keep track of the number of references to 
a value to determine whether or not the value is still in 
use. If there are zero references to a value, the value can 
be cleaned up without any references becoming invalid.

Rc and Arc: Shared Ownership

25

let s: Rc<String> = Rc::new("a".to_string());  
let t: Rc<String> = s.clone(); 
let u: Rc<String> = s.clone(); 

Rc and Arc: Shared Ownership
Although most values have unique owners in typical Rust code, in some cases it’s dif‐
ficult to find every value a single owner that has the lifetime you need; you’d like the
value to simply live until everyone’s done using it. For these cases, Rust provides the
reference-counted pointer types Rc and Arc. As you would expect from Rust, these
are entirely safe to use: you cannot forget to adjust the reference count, create other
pointers to the referent that Rust doesn’t notice, or stumble over any of the other sorts
of problems that accompany reference-counted pointer types in C++.

The Rc and Arc types are very similar; the only difference between them is that an Arc
is safe to share between threads directly—the name Arc is short for atomic reference
count—whereas a plain Rc uses faster non-thread-safe code to update its reference
count. If you don’t need to share the pointers between threads, there’s no reason to
pay the performance penalty of an Arc, so you should use Rc; Rust will prevent you
from accidentally passing one across a thread boundary. The two types are otherwise
equivalent, so for the rest of this section, we’ll only talk about Rc.

Earlier we showed how Python uses reference counts to manage its values’ lifetimes.
You can use Rc to get a similar effect in Rust. Consider the following code:

use std::rc::Rc;

// Rust can infer all these types; written out for clarity
let s: Rc<String> = Rc::new("shirataki".to_string());
let t: Rc<String> = s.clone();
let u: Rc<String> = s.clone();

For any type T, an Rc<T> value is a pointer to a heap-allocated T that has had a refer‐
ence count affixed to it. Cloning an Rc<T> value does not copy the T; instead, it simply
creates another pointer to it and increments the reference count. So the preceding
code produces the situation illustrated in Figure 4-12 in memory.

Figure 4-12. A reference-counted string with three references
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In the example, each of the three Rc<String> pointers refers to the same 
block of memory, which holds a reference count and space for the String.  

The usual ownership rules apply to the Rc pointers themselves: each clone 
increment the counter while each deallocation of a pointer decreases, until 
the last extant is deallocated and the runtime also 
deallocates the referenced String in the heap.  

Rc and Arc: Shared Ownership

26

let s: Rc<String> = Rc::new("a".to_string());  
let t: Rc<String> = s.clone(); 
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Rc and Arc: Shared Ownership
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You can use Rc to get a similar effect in Rust. Consider the following code:
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// Rust can infer all these types; written out for clarity
let s: Rc<String> = Rc::new("shirataki".to_string());
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let u: Rc<String> = s.clone();

For any type T, an Rc<T> value is a pointer to a heap-allocated T that has had a refer‐
ence count affixed to it. Cloning an Rc<T> value does not copy the T; instead, it simply
creates another pointer to it and increments the reference count. So the preceding
code produces the situation illustrated in Figure 4-12 in memory.
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As we discussed for garbage collectors, one well-known problem 
with reference counting is that we cannot deallocate graphs of 
reference-counted values.  

Also reference-count types can suffer from this problem, and Rust makes such 
situations explicit and rare.  

Indeed, we cannot create a cycle without, at some point, making an older 
value point to a newer value, which implies that at least the the older value is 
mutable. This is the reason why Rc pointers hold their referents immutable. Of 
course, there are some cases that require us to create cyclical structures in 
memory. Rust accommodates this need with Reference Cells, which provide an 
interface to allow referenced values to change to the cost of renouncing static 
guarantees on the usage of pointers for runtime checks (which might make the 
program fail, if the reference is used improperly). 

Rc and Arc: Shared Ownership
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The pointer types seen until now are owning pointers: when the owner is dropped, the referent goes with 
it. Rust also has non-owning pointers, called references, which have no effect on their referents’ lifetimes 
but rather depend on it: references must never outlive their referents. This is why, in Rust-speak, creating 
a reference to some value is called borrowing the value, with the motto “what is borrowed must 
eventually return”. 
A reference gives access to a value without affecting its ownership and can be of two kinds:  
• shared references let the user read but not modify its referent. Since it is a read-only reference, we can 

safely have as many shared references to a value as we like. This is the simplest form of referencing, as 
uses the same syntax seen, e.g., in C, &e generates a shared reference to the value held in variable e, so 
if e has the type T, then &e has the type &T, and &T is always a subtype of Copy. 

• mutable references let the user both read and modify the value, but it makes it impossible to have any 
other references to that value active at the same time. The syntax to generate a mutable reference is  
&mut e, which generates a mutable reference to the value held in variable e. Types-wise we have &mut 
T, which are not subtypes of Copy.  

Reference are never NULL in Rust. The absence of the NULL value for pointers comes from the checks 
performed by the compiler, which makes sure that variables are never used until they are initialised (there 
are no wild pointers) and the fact that there is no (safe) way to have the language generate custom 
references (e.g., from a given integer).

Borrowing References
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The Rust compiler validates borrows by reasoning on the lifetimes of variables; essentially making sure 
that no reference outlives its referent. 

In the example above, the compiler complains because x would access invalid memory, since the value 
referred by y is deallocated once out of the inner scope. 

The interactions between variables do not change lifetimes but rather impose constraints for the 
compiler to check. In the example, x=&y sets the constraint that the lifetime of y should be as long as that 
of x, which triggers the error raised by the compiler. Actually, the check on lifetimes done by Rust is more 
refined than this coarse rule, and it makes the lifetime of x and y related as long as x is assigned to y and 
we need to read x (as in the example, where we try to print it). Indeed, if we remove the reading of x the 
program would compile (i.e., since x is never used, we can get rid of it after the assignment).

Lifetimes
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let x: &str; 
{ 
 let y = "a"; 
 x = &y; 
} 
println!( "{}", x );

 | 
6| x = &y; 
 |     ^^ borrowed value does not live long enough 
7| } 
 | - `y` dropped here while still borrowed 
8| println!( "{}", x ) 
 |                 - borrow later used here
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While the Rust compiler is quite smart in inferring lifetimes (like type 
inference), in some cases we need to provide information on lifetimes—
through lifetime annotations—to clarify ambiguous situations. 

For example, in the example on the 
left, the compiler needs to know 
whether the reference returned from 
the  function borrows from  a or b, so 
the compiler asks the programmer to 
explicitly add this constraint.

Lifetime Annotations
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fn snd(a: &str, b: &str) -> &str { 
 return if true { a } else { b } 
} 
fn main() { 
 let a = "a"; 
 let b = "b"; 
 snd( &a, &b ); 
} 

  | 
1 | fn snd(s1: &str, s2: &str) -> &str { 
  |            ----      ----     ^ expected named lifetime parameter 
  |
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To solve this issue, we need to use lifetime parameters—in a way, 
similar to type parameters. 

In Rust, these annotations go at the level of types and, as mentioned, 
Rust does already a good job at inferring lifetimes, along with types: 
when we create a variable of a certain (inferred) type S it also has a 
fresh lifetime parameter 'l, which becomes constrained by how we use 
the referred value.  

Lifetime annotations can make lifetimes of related variables explicit, 
e.g., in the struct S in the example, we declare it to have two lifetime 
parameters, where one (‘a) identifies the lifetime of one field (x), while 
the other (‘b) identifies the lifetimes of two files (y and z). 

This make our example compile, where the lifetime of x can outlive 
that of y and z, since they are distinct. Without this annotation, x, y, 
and z would have shared the same lifetime, resulting in a compilation 
error.

Lifetime Annotations
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struct S<'a,'b> {  
 x: &'a i32,  
 y: &'b i32, 
 z: &’b i32  
} 
fn main() { 
 let x = 10; 
 let r; 
 { 
  let y = 20; 
  { 
   let s = S {  
    x: &x, 
    y: &y, 
    z: &y 
   }; 
   r = s.x; 
  } 
 } 
 println!( "{}", r ); 
}
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The concept is similar for functions, where each type of each variable and the 
return type have associated a different lifetime, i.e.,  

Lifetime Annotations
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fn snd(a: &str, b: &str) -> &str { 
 return if true { a } else { b } 
} 
fn main() { 
 let a = “a"; let b = "b"; snd( &a, &b ); 
}

fn snd<‘c,’d,’e>(a: &’c str, b: &’d str) -> &’e str { 
 return if true { a } else { b } 
} 
fn main() { 
 let a = “a"; let b = "b"; snd( &a, &b ); 
}
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In our example, since the function snd decides at runtime which reference, between 
a and b, to return, we clarify that they must share the same lifetime. 

Concretely, the function just has one lifetime parameter, ‘l that binds together (i.e., 
constraints to be equal) the lifetimes of a and b. 

The meaning of the annotation of the return type with ‘l is slightly different: this 
does not mean that a, b, and the return value of snd must all have the exact same 
lifetime but rather than the returned reference is borrowed from the argument with 
the same annotation (in this case, either a or b).

Lifetime Annotations
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fn snd<‘l>(a: &’l str, b: &’l str) -> &’l str { 
 return if true { a } else { b } 
} 
fn main() { 
 let a = “a"; let b = "b"; snd( &a, &b ); 
}
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To further clarify, let us look at an extension of the example saw before. 

Remind that the lifetime constraint on snd is that the returned reference must 
not outlive those of a and b.  

The example breaks this 
constraints, since the 
lifetime of r outlives that 
of b (the one of a is fine).

Lifetime Annotations
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fn snd<'l>(a: &’l str, b: &'l str) -> &'l str { 
  return if true { a } else { b } 
} 
fn main() { 
 let r: &str; 
 let a = “a”.to_string(); 
 { 
  let b = “b”.to_string(); 
  r = snd( &a, &b ); 
 } 
 println!( "{}", r ); 
}

9 |r=snd(&a,&b); 
  |         ^^ borrowed value does not live long enough 
10|} 
  |- `b` dropped here while still borrowed 
11|println!( "{}", r ); 
  |- borrow later used here
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As we have seen, values borrowed by shared references are read-only. On the contrary, a 
value borrowed by a mutable reference is reachable exclusively via that reference. 
Moreover, across the lifetime of a mutable reference there must be no other usable path to 
its referent or to any value reachable from there. The only references whose lifetimes may 
overlap with a mutable reference are those borrowed from the mutable reference itself.  

In the example, we violate the rule for 
mutable references (last instruction): we 
borrow both a mutable and immutable 
reference to greet. 

Of course, vice versa, we can see the 
violation from the side of the shared 
reference: since we borrow a shared 
reference to greet, it must be read-
only, so the borrowing of a mutable 
reference is illegal. 

fn concat(l: &mut String, r: &String) { 
 l.push_str( r ); 
} 

fn main() { 
 let mut greet = "Hello".to_string(); 
 let subject = "World".to_string(); 
 concat(&mut greet, &subject ); 
 concat(&mut greet, &greet ); 
}~~~~~~~~~~~~~~~~~~~~~~~~~~
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Recap: Ownership and Shared and Mutable References

36

overlap. In our case, both references’ lifetimes contain the call to extend, so Rust
rejects the code.

These errors both stem from violations of Rust’s rules for mutation and sharing:

Shared access is read-only access.
Values borrowed by shared references are read-only. Across the lifetime of a
shared reference, neither its referent, nor anything reachable from that referent,
can be changed by anything. There exist no live mutable references to anything in
that structure, its owner is held read-only, and so on. It’s really frozen.

Mutable access is exclusive access.
A value borrowed by a mutable reference is reachable exclusively via that refer‐
ence. Across the lifetime of a mutable reference, there is no other usable path to
its referent or to any value reachable from there. The only references whose life‐
times may overlap with a mutable reference are those you borrow from the muta‐
ble reference itself.

Rust reported the extend example as a violation of the second rule: since we’ve bor‐
rowed a mutable reference to wave, that mutable reference must be the only way to
reach the vector or its elements. The shared reference to the slice is itself another way
to reach the elements, violating the second rule.

But Rust could also have treated our bug as a violation of the first rule: since we’ve
borrowed a shared reference to wave’s elements, the elements and the Vec itself are all
read-only. You can’t borrow a mutable reference to a read-only value.

Each kind of reference affects what we can do with the values along the owning path
to the referent, and the values reachable from the referent (Figure 5-9).

Figure 5-9. Borrowing a reference a!ects what you can do with other values in the same
ownership tree
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