
saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Exceptions

1

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Failures and Results

2

Depending on the computation we want to specify, we might need to program operations that
fail, e.g., when some value is outside some interval, like in a division with 0 as denominator or
in an array lookup with an index that it outside its boundaries.

Besides being able to express these situations in programs, we should (must) also find ways to
structure them, such that other operations that depend on the results of the failing one are
aware of this possibility — and the static checks of the language can aid us dealing with them.

We already saw one solution to this problem with monadic Result types, which encapsulate
and structure the passage/access of successful and failing outcomes.

However, while Results help making all possible errors explicit, they can become
cumbersome to compose when nesting operations (e.g., when we compose one or more
operations that do not handle the failure directly but just “forward” them to their caller).
Moreover, Results force the developer to always “unwrap” their value to act on them,
determining a larger (and more difficult to peruse) codebase.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Alternatives to Result types

3

Of course, there are (usually less refined/elegant) alternatives to Results

One is defining some exceptional values that the operation use to signal the failure
to the caller, e.g., we might have a naïve implementation of the division that uses 0
to indicate a failure. Of course, this method is quite limited, since, e.g., we conflate
legit and failing calls (e.g., 0/1 and 1/0).

Another way is through the inversion of control between the caller and the callee,
where a function that might fail asks the caller to pass, besides its ordinary inputs,
a function that it calls in case of failure. While this might work in principle (only in
languages that support functions as operation arguments), it makes reasoning on
the flow of programs more complex and the usage of operations more obscure (we
might need to know what the operation does with our error-handling function to
write them correctly).

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Exceptions

4

Exceptions are an alternative to (and much more popular than) Results.

The idea behind exceptions it that an exceptional condition (a rare failure
occurrence) causes a direct transfer of control to an exception handler
defined at some point in the call stack of the program. This can be in the
operation calling the failing one, in the one above the former or even
completely absent, in which case (if done on purpose) it means that there is
nothing the programmer can do to recover from the exception and the only
solution is to abort the program.

For example, for the division operator, we can call it an (unrecoverable)
exception the fact that the system runs out of memory, while failing with a
denominator equal to 0 is its characterising behaviour.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Exception handling

5

C or Rust do not provide direct support to exception handling and users resort
to one of the mentioned alternatives — e.g., Rust mainly relies on “smart”
operators for Result types that minimise the length of the codebase.

Other languages, like Java, provide exception-handling constructs that lexically
bind exception handlers to blocks of code, which they replace in case they
“catch” an exception.

In Java, exceptions are so embedded in the language that calling / with 1 and
0 as arguments, i.e., 1/0, causes the expression to raise a

java.lang.ArithmeticException: / by zero

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Exception handling

6

To handle exceptions, Java (and similar languages) provides the try-catch construct, e.g.,
try {
 System.out.println(“Let’s try to divide by zero”);
 double x = 1 / 0;
} catch (ArithmeticException exception){
 System.err.println(“You shall not divide by zero!”);
}

Where the try block encloses the code that might raise some exception and the catch block
encloses the behaviour that we need to execute if we catch some (specific) exception.

Notably, the code in the try block does not execute “atomically”. Indeed, the code in the
catch block replaces the code in the try only from the instruction that raises (throws, in Java-
speak) the exception. In the example, the output (on the standard I/O) of our program prints
the first string, “Let’s try …”, followed by the second one, “You shall not …”.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Exception handling

7

To handle exceptions, Java (and similar languages) provides the try-catch construct, e.g.,
try {
 System.out.println(“Let’s try to divide by zero”);
 double x = 1 / 0;
} catch (ArithmeticException exception){
 System.err.println(“You shall not divide by zero!”);
}

Note that the catch block accepts an argument: the exception it expects to intercept (and bind).
In general, to structure the handling of exceptions, catch clauses specify the exceptions they
intercept via names, which languages frequently conflate into symbols of their type system.

In Java, for instance, this mix enhances the flexibility of the try-catch construct via subtyping:
all raisable and catchable values are subtypes of the special type Throwable—named after the
Java exception-rising statement throw. In our example, the catch block declares it expects to
intercept exceptions of the (subtype) ArithmeticException.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Exceptions and Subtyping

8

class MyException extends Throwable { … }

try {
 throw new MyException();
} catch (MyException exception){
 System.err.println(“Caught an exception!”);
}

In Java, developers rarely define direct subtypes of the Throwable type, but
rather use subtypes of the two Throwable-subtypes Error and Exception.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Exceptions and Subtyping: Explicit vs Implicit Exceptions

9

The distinction between Errors and Exceptions is that the Java type system forces
the developer to explicitly handle any Throwable subtype, save for Errors and a special
subtype of Exception, called RuntimeException.

Errors and RuntimeExceptions respectively represent runtime-level and application-
level unrecoverable failures that should abort the execution of the program, so the
programmer should handle them only if they know (they exist and) how to recover from
them.
Thus, in Java, exceptions are… not really that exceptional (in the sense of the definition
of “rare failure occurrences”) and are the predominant construct the language provides
to handle failures.

Throwable
<:
<:

Error
Exception

<:
<:

RuntimeException
…

<: …

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Explicit Exceptions

10

Focussing on Exceptions, Java forces developers to explicitly handle them in
two possible ways. Either they declare that an operation throws an
Exception or they must handle the thrown exception within the operation.

void o(){
 try {
 throw new MyException();
 } catch (MyException e){
 …
 }
}

void o() throws MyException{
 throw new MyException();
}

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Implementing try-catch behaviours

11

void e() throws E1 {
 bool x = true;
 throw new E1();
}

void f(bool x) throws E1, E2 {
 if(x){
 try { e(); bool y = false; }
 catch(E1 e){
 throw new E2();
 }

 } else {
e();

} }

void g() {
 try { bool z = false; f(true); }
 catch(E1 e){}
 catch(E2 e){}
}

cs

z FALSE

catch E1

catch E2

g

…g_catch_E1

…g_catch_E2

entry point

cs

z FALSE

catch E1

catch E2

g

cs

x TRUE

catch E1
f

f_catch_E1 …

1

2

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Implementing try-catch behaviours

12

void e() throws E1 {
 bool x = true;
 throw new E1();
}

void f(bool x) throws E1, E2 {
 if(x){
 try { e(); bool y = false; }
 catch(E1 e){
 throw new E2();
 }

 } else {
f();

} }

void g() {
 try { bool z = false; f(true); }
 catch(E1 e){}
 catch(E2 e){}
}

entry point

cs

z FALSE

catch E1

catch E2

g

cs

x TRUE

catch E1
f3

cs

x TRUE
e

4

cs

z FALSE

catch E1

catch E2

g

cs

x TRUE

catch E1
f

E1

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Implementing try-catch behaviours

13

void e() throws E1 {
 bool x = true;
 throw new E1();
}

void f(bool x) throws E1, E2 {
 if(x){
 try { e(); bool y = false; }
 catch(E1 e){
 throw new E2();
 }

 } else {
f();

} }

void g() {
 try { bool z = false; f(true); }
 catch(E1 e){}
 catch(E2 e){}
}

entry point

cs

z FALSE

catch E1

catch E2

g

cs

x TRUE

catch E1
f5

csf_catch_E1

6

cs

z FALSE

catch E1

catch E2

g

cs

x TRUE

catch E1
f

E2

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Implementing try-catch behaviours

14

void e() throws E1 {
 bool x = true;
 throw new E1();
}

void f(bool x) throws E1, E2 {
 if(x){
 try { e(); bool y = false; }
 catch(E1 e){
 throw new E2();
 }

 } else {
f();

} }

void g() {
 try { bool z = false; f(true); }
 catch(E1 e){}
 catch(E2 e){}
}

entry point

cs

z FALSE

catch E1

catch E2

g

7
8

cs

z FALSE

catch E1

catch E2

g

E2

csg_catch_E2

