
saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Polymorphic Types

1

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Monomorphic vs Polymorphic types

2

In general, if a type system does not allow us to express that some types
accept some other types as parameters, we call the type system monomorphic.

As an example, in a monomorphic type system we cannot define a “generic”
function to find the maximum between two elements, regardless of their type,
and we would need to define specific functions for each instantiation of a
comparable data type, e.g.,

max_int: int->int->int, max_float: float->float->float, etc.

although in the implementation we could probably abstract from knowing we
are handling integers and floats, as long as we can compare their
inhabitants.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Type Polymorphism

3

Summarising, a polymorphic type system allows developers to specify a set of
operations on a given, parametric type that abstracts from some details of the
concrete instantiation of the type.

Although the concept of polymorphism in types is generally understood, the way in
which programming languages interpret and implement it varies.

Broadly, there are three kinds of polymorphism:

• ad-hoc polymorphism (overloading), where we overload the definition of a given
operation on different specific types;

• subtype polymorphism (subtyping), where we set abstract-to-specific relations
among types and obtain polymorphism with operations over abstract ones;

• parametric polymorphism (universal), where we have abstract symbols that
represent type parameters.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Ad-hoc Polymorphism (Overloading)

4

As the terms ad-hoc and overload suggest, this kind of polymorphism uses the
capability of a language compiler/runtime to distinguish from the call context
among alternative definitions of operations with the same name.

The most common example of ad-hoc polymorphism are the arithmetic
operators. E.g., +, in most languages is overloaded (on numerals, like ints and
floats, but also on chars and strings).

Depending on the language and the call-site context, the compiler or the
runtime must have enough information from types to know what
implementation of a given, overloaded operation the program needs to use at
a given call site.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Ad-hoc Polymorphism (Overloading)

5

Overloading is a sort of syntactic abbreviation that disappears as soon as we
resolve the invocation, making overloading a dispatch mechanism.

When the dispatch happens statically (e.g., at compile time) we replace each
overloaded symbol with an unambiguous name that uniquely denotes the
specific implementation.

When the dispatch happens at runtime we have dynamic dispatch, usually
happening through lookup tables.

Notably, overloading and type coercion frequently go hand in hand, e.g.,
(depending on the language) we can write 1 + 2.0 which, e.g., would coerce 1
into 1.0 and use the definition of + for floats (which also returns a float,
e.g., 3.0).

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Ad-hoc Polymorphism (Overloading)

6

From our example on the “max” generic function, the ad-hoc polymorphic
solution could be (written in Java — C and Rust do not support overloading)

int max(int i, int j){
 return i > j ? i : j;
}

float max(float i, float j){
 return i > j ? i : j;
}

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtype Polymorphism (Subtyping)

7

Subtype polymorphism relies on a binary relation on types where
reads “ is a subtype of ”. The meaning of the relation is usually that of
specification, i.e., if then is a type more specific than and we can
safely use in every place where is needed (as postulated by the Liskov
substitution principle [1]).

A typical example of subtype polymorphism is the Animal type and its
subtypes Cat and Dog. We can use values of the Cat and Dog type as long as
we needed an Animal (e.g., they both can breath and sleep).

<: S <: T
S T

S <: T S T
S T

[1] Liskov, Barbara H., and Jeannette M. Wing. "A behavioral notion of subtyping." ACM Transactions on Programming Languages and Systems (TOPLAS) 16.6 (1994): 1811-1841.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtype Polymorphism (Subtyping)

8

Usually, is a preoder (and) as such,
we cannot use Animal where we assume to have a Cat or a Dog, e.g., we
cannot assume all Animals (have the operation) bark as the a Dog would.

Completing the picture, is usually also antisymmetric, making it a partial
preorder, i.e., it also holds true that .

Subtype polymorphism is typically found in object-oriented languages, given
its closeness to the concept of inheritance (we will see this when talking about
OO).

<: T <: T S <: T ∧ R <: S ⟹ R <: T

<:
T <: S ∧ S <: T ⟹ T = S

[1] Liskov, Barbara H., and Jeannette M. Wing. "A behavioral notion of subtyping." ACM Transactions on Programming Languages and Systems (TOPLAS) 16.6 (1994): 1811-1841.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtype Polymorphism, record subtyping

9

Intuitively, we can view as a relation between some type the
context assumes and some type we want to use instead of .

Let’s consider the record types

type Animal:{name:string}

type Dog:{name:string,bark:string}

where, for some , Dog Animal.

We can define an AnimalHouse and a DogHouse

type AnimalHouse:{tenant: Animal}

type DogHouse:{tenant:Dog}

S <: T Target
Substitute T

<: <:

Animal and Dog are an
example of width subtyping,
where subtype records add
more fields than their super
types.

AnimalHouse and DogHouse
exemplify depth subtyping,
where we replace the fields
with their subtypes, excluding
writes.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtype Polymorphism, record subtyping

10

Intuitively, we can view as a relation between some type the
context assumes and some type we want to use instead of .

Let’s consider the record types

type Animal:{name:string}

type Dog:{name:string,bark:string}

where, for some , Dog Animal.

We can define an AnimalHouse and a DogHouse

type AnimalHouse:{tenant: Animal}

type DogHouse:{tenant:Dog}

S <: T Target
Substitute T

<: <:

Excluding writes,

DogHouse <: AnimalHouse

The fact that the “direction” of
the subtyping relation between
DogHouse and AnimalHouse and
Dog and Animal is the same is
called covariance.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtype Polymorphism, record subtyping

11

Intuitively, we can view as a relation between some type the
context assumes and some type we want to use instead of .

Let’s consider the record types

type Animal:{name:string}

type Dog:{name:string,bark:string}

where, for some , Dog Animal.

We can define an AnimalHouse and a DogHouse

type AnimalHouse:{tenant: Animal}

type DogHouse:{tenant:Dog}

S <: T Target
Substitute T

<: <:

If we consider writes,

DogHouse AnimalHouse

reverses the “direction” of the
subtyping relation Dog
Animal, making it
contravariant. Hence, we can
safely replace writes on values
of type DogHouse with values
of type AnimalHouse.

:>

<:

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtype Polymorphism, covariance and contravariance

12

Intuitively, we can view as a relation between some type the
context assumes and some type we want to use instead of .

Let’s consider the record types

type Animal:{name:string}

type Dog:{name:string,bark:string}

where, for some , Dog Animal.

We can define two functions A2B and D2B

type A2B: Animal -> Bool

type D2B: Dog -> Bool

S <: T Target
Substitute T

<: <:

A similar phenomenon happens
with function types. A2B and
D2B have the same output
(Bool) but, although Dog <:
Animal, A2B <: D2B, i.e., they
have a contravariant relation.

The reason is that we can
always replace D2B, to which
the context expects to provide
Dogs, with A2B, which uses
fewer information.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtype Polymorphism, covariance and contravariance

13

Intuitively, we can view as a relation between some type the
context assumes and some type we want to use instead of .

Let’s consider the record types

type Animal:{name:string}

type Dog:{name:string,bark:string}

where, for some , Dog Animal.

We can define two functions U2A and U2D

type U2A: Unit -> Animal

type U2D: Unit -> Dog

S <: T Target
Substitute T

<: <:

In this case, U2D <: U2A is
covariant.

The two functions expect the
same input (Unit) from the
context and the context
expect Animals as output,
which can be safely replaced
by Dogs.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtype Polymorphism, covariance and contravariance

14

Intuitively, we can view as a relation between some type the context
assumes and some type we want to use instead of .

A bit more elaborate example includes the record type

type EliteDog: { name: string, bark: string, pedigree: string }

where, for some , EliteDog Dog Animal.

Then, we can define two functions D2D and A2E

type D2D: Dog -> Dog

type A2E: Animal -> EliteDog

A2E <: D2D, which exemplifies a general rule of functional types: argument types
are contravariant (Dog <: Animal) and return types are covariant (EliteDog <: Dog).

S <: T Target
Substitute T

<: <: <:

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtype Polymorphism, covariance and contravariance

15

Contravariance Covariance

Fuel Wood Bamboo Entertainment Music Metal

Consumers

<: <:

Consumer
of fuel

Product

Consumer
of wood

Consumer
of bamboo

<: <:

Product

Producers

<: <:

Producer of
Metal

Producer of
Music

<:

Producer of
Entertainment

<:

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtype Polymorphism, covariance and contravariance

16

Contravariance Covariance

Fuel Wood Bamboo Entertainment Music Metal

Consumers

<: <:

Fuel -> Unit

Product

Wood -> Unit Bamboo -> Unit

<: <:

Product

Producers

<: <:

Unit -> MetalUnit -> Music

<:

Unit -> Ent.

<:

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtype Polymorphism, subsumption

17

The act of deciding whether is called subsumption.

There are mainly two strategies to define subsumption (dependent on the two
ways in which we can define type membership): extensionally or intensionally.

Extensionally, we have that if .

Intensionally, if , then the predicate that defines the membership for
1) must be part of the predicate for and 2) must apply on the same domain
as the one for .

In many cases, type systems define specific subtyping relations for basic types,
e.g., int float or char <: string

S <: T

S <: T ∀s ∈ S, [[s]] ∈ T

S <: T T
S

S

<:

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtype Polymorphism

18

From our example on the “max” generic function, the subtype polymorphic solution
could be written

Integer <: Float

max(Float i, Float j) -> Float { … }

Notice that, using this solution, we lose information on the values of the subtypes
that we have as input and, indeed, we can only safely return a value of the
supertype (Float) and not the specific one (which is only known at call site of max).

This can cause problems, e.g., due to the need of forcing a casting of the value
returned from max to be usable in a given context (e.g., we find the maximum
between two integers and we feed the former into a function that accepts
integers).

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtype Polymorphism

19

From our example on the “max” generic function, the subtype polymorphic solution
could be written

Integer <: Comparable

Float <: Comparable

max(Comparable i, Comparable j) -> Comparable { … }

Notice that, using this solution, we lose information on the values of the
“comparables” that we have as input and, indeed, we can only safely return a value
of the supertype (comparable) and not the specific one (which is only known at call
site of max).

This can cause problems, e.g., due to the need of forcing a casting of the value
returned from max to be usable in a given context (e.g., we find the maximum between
two integers and we feed the former into a function that accepts integers).

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Parametric Types

20

Some data structures have invariants that let us provide type safety although we
do not fully know their full shape.

An example we already saw of these data structures is the type Set, for which we
said there are usually defined some typical operations such as union,
intersection, subtraction, and inclusion testing.

An observation we can make is that, for an implementor of the Set data
structure, the operations on sets remain the same whether a given set instance
handles integers, chars, or arrays. More specifically, the operations of the
Set are parametric to the elements in the set, e.g., (simplistically) if we need to
test for inclusion, we would apply the definition of integer equivalence if we
have a Set of integers and the same goes for chars, arrays, etc.

In this case, we say that Set is a parametric type and, when instantiated with,
e.g., integers, that the latter is its (actual) type parameter.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Parametric Polymorphism (Universal)

21

Extending a type system with parametric types introduces the possibility of
parametric polymorphism.

In general, when using parametric polymorphism, we cannot make any
assumptions on the shape of the type parameters, which essentially forces us
(and the type system) to consider any possible types in implementations.

This is the reason why parametric polymorphism is also called universal
polymorphism, i.e., because we read the type parameter declaration Set(T)
as T . Set(T). ∀

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Theorems for free, example

22

As an example, consider
r(T): List(T) -> List(T) ,
f: A -> B,
map(T, S): List(T) -> (T -> S) -> List(S)
then, let l: List(A)
map(r(l), f) = r(map(l, f))

Intuitively, since r ignores the shape of T (which can literally be any type T) it
must only work on the non-parametric type constructor List and all r can do
is rearrange the list (e.g., remove items based on their index, duplicate them,
etc.) independent of their values. Thus, we can safely (as far as types can
“see”) swap applying f to each element of the rearranged list (left) and
rearrange the list after the application of f to each of its elements (right).

∀

[1] Wadler, Philip. "Theorems for free!." Proceedings of the fourth international conference on Functional programming languages and computer architecture. 1989.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Hybrid and Bounded Parametric Polymorphism

23

While parametric polymorphism assumes no knowledge on type parameters
(and could provide useful properties on this abstraction [1]), some languages
with parametric polymorphism provide a type introspection operator (e.g.,
instanceof in Java) that lets the user check whether a value belongs in a given
type, at the detriment of the properties of abstraction.
Parametric polymorphism captures the universality of type expressions, but
sometimes it is useful to express boundaries over the universal quantifier, e.g.,
to limit the quantification only on types with certain properties.
A common way to express these constraints is by mixing subtyping and
parametric polymorphism, as done in Java and Rust.
For example, a polymorphic version of our max function can have the type

 T, T Comparable, max: T -> T -> T∀ <:
[1] Wadler, Philip. "Theorems for free!." Proceedings of the fourth international conference on Functional programming languages and computer architecture. 1989.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Parametric Polymorphism

24

To be able to express parameters in types, we need to introduce a new
notation that makes it explicit when types accept parameters.

For example, Java and Rust can support parametric types via generics (and
traits). We can write a parametric version of Set as Set<T>, where Set is a
polymorphic type that accepts one (formal) type parameter, here captured
with the type variable T. Similarly, we can define max as (Java and Rust)

<T extends Comparable> T max (T x, T y){…}

fn max<T: Comparable>(x:T, y:T)->T{…}

which takes in and returns a T.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Parametric Polymorphism (Universal)

25

Parametric Polymorphism introduces the notion of universal types — as a
shorthand for universally quantified types — where definitions like

<T extends Comparable> T max (T x, T y){…}

and

fn max<T: Comparable>(x:T, y:T)->T{…}

have max with type in which the
universal indicates that the definition is valid for (and parametric to) any
type (as long as it is a subtype of Comparable).

∀T . T <: Comparable . T × T − > T
∀

T

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Parametric Polymorphism and subtyping

26

Mixing parametric polymorphism and subtyping introduces the notion of subtyping of
parametric types, e.g.,

if Dog Animal, does Set<Dog> Set<Animal>?

The matter is similar to that of depth subtyping for records, where it is safe to
consider Set<Dog> Set<Animal> as long as we do not perform writes on the
Set.

The notion above plays with width subtyping of the parametric types, e.g.,

type Set<T>: {add:T->(),remove:T->(),includes:T->Bool}

type List<T>:{add:T->(),remove:T->(),includes:T->Bool,get:int->T}

where List<S> Set<T> depending on the usage of the parametric type and the
relation of the type parameters S and T.

<: <:

<:

<:

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Parametric Polymorphism and subtyping

27

While in the general case it is safe to consider Set<Dog> Set<Animal> as long as we do
not perform writes on the Set, languages with (some form of) parametric polymorphism
annotate explicitly the intended “direction” the user expects to use parametric types

Vector< Dog > dv = new Vector< Dog >();
dv.add(new Dog());
// covariant (Dog :> *), read only
Vector< ? extends Dog > cov = dv;
Dog d = cov.get(0); // Dog :> *
Animal a = cov.get(0); // Animal :> *
// contravariant (Dog <: *), write only
Vector< ? super Dog > con = dv;
con.add(new EliteDog()); // EliteDog <: *
con.add(new Dog()); // Dog <: *
// below, since we do not specify its use in the type
// we assume "invariance" and report a typing error
Vector< Animal > inv = dv; ❌

<:

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

The (strange case) of C++/Java’s arrays

28

In Java and C++ the type array is a parametric polymorphic type… in disguise. The languages
added support for polymorphic types in later releases, while much of the preexisting code used
non-polymorphic arrays. To make arrays useful, without polymorphism, the implementors
decided to make both writes and reads covariant. Hence, the type system does not reject

Animal[] a = new Dog[1];

a[0] = new Dog();

reads are fine for both the type checker and the runtime

Animal a0 = a[0];

and since we “forced” covariance, writing is OK for the type checker …

a[0] = new Animal();

… but it breaks runtime checks (for contravariance of array update — e.g., it correctly accepts
EliteDog, but not Animal), and it produces an ArrayStoreException.

// ← which we should not accept in general, without
// knowing the “direction” of the usage of a
// i.e., if we are going to use it in a covariant (read)
// contravariant (write) way

Expensive

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Monadic types: Option and Result Types

29

Monads, proposed by Eugenio Moggi to represent
computations in programming languages, are an
abstraction used mainly in functional languages to
simplify the composition and resolution (handling the
control flow, side effects, etc.) of chains of functions.

Here, we look at monads simplistically.

We consider them as “containers” that encapsulate
some functionality and we focus on monadic types
that have become more and more common in
mainstream programming languages: Options and
Results.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Option/Maybe Type

30

The Option (also called Maybe) type is useful to gracefully handle (and dispense a
language from) null pointers.

Recalling pointer types, we remarked the existence, in some type systems, of a special
inhabitant of the type, called null, which indicates that the pointer does not refer to a
valid (initialised/usable) memory location. The inventor of null references, Turing-
awardee Tony Hoare, famously called it his “billion-dollar mistake”.

[…] in 1965. At that time, I was designing the first comprehensive
type system for references in an object oriented language
(ALGOL W). My goal was to ensure that all use of references
should be absolutely safe, with checking performed
automatically by the compiler. But I couldn't resist the
temptation to put in a null reference, simply because it was so
easy to implement. This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused
a billion dollars of pain and damage in the last forty years.

Also known for the invention of quicksort,
Hoare logic, the dining philosophers
problem, and communicating sequential
processes (CSP) language.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Option/Maybe Type

31

Option/Maybe types mitigate (if not remove) the problem of null pointers by
presenting, at the type level, the duality of valid vs invalid pointers, mixing
parametric and sum types.

There are different, equivalent interpretations of Option/Maybe types, e.g.,

type Maybe<T> : Some<T> + None

where a value of type Maybe<T> is either a wrapper around some value of type
T (Some<T>) or the singleton value of type None (equivalent to Unit).

Java introduced the Optional type in
version 8. Optional provides a dedicated,
functional-inspired interface, e.g.,
Optional< Integer > opt = Option.of(42);
var d = 2 * opt.orElseGet(() -> 0);

Rust uses enums to encode Option types
and mainly relies on pattern matching to
manage its cases
let opt: Option< i32 > = Some(42);
let d = match opt {
 Some(x) => 2*x,
 None => 0 }

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Result Type

32

We can think of Result types as a refinement of Maybe/Option types, where we
use polymorphic and sum types to distinguish between the successful result
of some computation and some faulty execution, signalled/informed by some
error.

A possible implementation of this idea is

type Result< T, E > : Ok< T > + Err< E >
let res: [Result< i32, &str >; 3] =
 [Ok(40), Err("Error"), Ok(2)];
let mut acc: i32 = 0;
for r in &res {
 acc += match r {
 Ok(_r) => _r,
 Err(_) => 0
 }
}

In essence, Result types represent an alternative
to exception handling (and reasoning/dealing
with the dynamic behaviour associated to it) that
forces a more linear handling of computation
states, since the programmer must (as long as the
type system forces them to) either totally discard
the result (e.g., because they do not care about its
execution) or consider all its possible states.

