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In general, if a type system does not allow us to express that some types 
accept some other types as parameters, we call the type system monomorphic. 

As an example, in a monomorphic type system we cannot define a “generic” 
function to find the maximum between two elements, regardless of their type, 
and we would need to define specific functions for each instantiation of a 
comparable data type, e.g.,  

max_int: int->int->int, max_float: float->float->float, etc. 

although in the implementation we could probably abstract from knowing we 
are handling integers and floats, as long as we can compare their 
inhabitants.



saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Type Polymorphism
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Summarising, a polymorphic type system allows developers to specify a set of 
operations on a given, parametric type that abstracts from some details of the 
concrete instantiation of the type. 

Although the concept of polymorphism in types is generally understood, the way in 
which programming languages interpret and implement it varies. 

Broadly, there are three kinds of polymorphism: 

• ad-hoc polymorphism (overloading), where we overload the definition of a given 
operation on different specific types; 

• subtype polymorphism (subtyping), where we set abstract-to-specific relations 
among types and obtain polymorphism with operations over abstract ones; 

• parametric polymorphism (universal), where we have abstract symbols that 
represent type parameters.
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As the terms ad-hoc and overload suggest, this kind of polymorphism uses the 
capability of a language compiler/runtime to distinguish from the call context 
among alternative definitions of operations with the same name. 

The most common example of ad-hoc polymorphism are the arithmetic 
operators. E.g., +, in most languages is overloaded (on numerals, like ints and 
floats, but also on chars and strings). 

Depending on the language and the call-site context, the compiler or the 
runtime must have enough information from types to know what 
implementation of a given, overloaded operation the program needs to use at 
a given call site.
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Overloading is a sort of syntactic abbreviation that disappears as soon as we 
resolve the invocation, making overloading a dispatch mechanism.  

When the dispatch happens statically (e.g., at compile time) we replace each 
overloaded symbol with an unambiguous name that uniquely denotes the 
specific implementation.  

When the dispatch happens at runtime we have dynamic dispatch, usually 
happening through lookup tables. 

Notably, overloading and type coercion frequently go hand in hand, e.g., 
(depending on the language) we can write 1 + 2.0 which, e.g., would coerce 1 
into 1.0 and use the definition of + for floats (which also returns a float, 
e.g., 3.0).



saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Ad-hoc Polymorphism (Overloading)

6

From our example on the “max” generic function, the ad-hoc polymorphic 
solution could be (written in Java — C and Rust do not support overloading) 

int max( int i, int j ){ 
 return i > j ? i : j; 
} 

float max( float i, float j ){ 
 return i > j ? i : j; 
}
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Subtype polymorphism relies on a binary relation  on types where  
reads “  is a subtype of  ”. The meaning of the relation is usually that of 
specification, i.e., if  then  is a type more specific than  and we can 
safely use  in every place where  is needed (as postulated by the Liskov 
substitution principle [1]). 

A typical example of subtype polymorphism is the Animal type and its 
subtypes Cat and Dog. We can use values of the Cat and Dog type as long as 
we needed an Animal (e.g., they both can breath and sleep). 

<: S <: T
S T

S <: T S T
S T

[1] Liskov, Barbara H., and Jeannette M. Wing. "A behavioral notion of subtyping." ACM Transactions on Programming Languages and Systems (TOPLAS) 16.6 (1994): 1811-1841.
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Usually,  is a preoder (  and ) as such, 
we cannot use Animal where we assume to have a Cat or a Dog, e.g., we 
cannot assume all Animals (have the operation) bark as the a Dog would.  

Completing the picture,  is usually also antisymmetric, making it a partial 
preorder, i.e., it also holds true that . 

Subtype polymorphism is typically found in object-oriented languages, given 
its closeness to the concept of inheritance (we will see this when talking about 
OO).

<: T <: T S <: T ∧ R <: S ⟹ R <: T

<:
T <: S ∧ S <: T ⟹ T = S

[1] Liskov, Barbara H., and Jeannette M. Wing. "A behavioral notion of subtyping." ACM Transactions on Programming Languages and Systems (TOPLAS) 16.6 (1994): 1811-1841.
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Intuitively, we can view  as a relation between some  type the 
context assumes and some  type we want to use instead of . 

Let’s consider the record types 

type Animal:{name:string} 

type Dog:{name:string,bark:string} 

where, for some , Dog  Animal. 

We can define an AnimalHouse and a DogHouse 

type AnimalHouse:{tenant: Animal} 

type DogHouse:{tenant:Dog} 

S <: T Target
Substitute T

<: <:

Animal and Dog are an 
example of width subtyping, 
where subtype records add 
more fields than their super 
types.  

AnimalHouse and DogHouse 
exemplify depth subtyping, 
where we replace the fields 
with their subtypes, excluding 
writes.
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Subtype Polymorphism, record subtyping
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Intuitively, we can view  as a relation between some  type the 
context assumes and some  type we want to use instead of . 

Let’s consider the record types 

type Animal:{name:string} 

type Dog:{name:string,bark:string} 

where, for some , Dog  Animal. 

We can define an AnimalHouse and a DogHouse 

type AnimalHouse:{tenant: Animal} 

type DogHouse:{tenant:Dog} 

S <: T Target
Substitute T

<: <:

Excluding writes,  

DogHouse <: AnimalHouse  

The fact that the “direction” of 
the subtyping relation between 
DogHouse and AnimalHouse and 
Dog and Animal is the same is 
called covariance.
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Intuitively, we can view  as a relation between some  type the 
context assumes and some  type we want to use instead of . 

Let’s consider the record types 

type Animal:{name:string} 

type Dog:{name:string,bark:string} 

where, for some , Dog  Animal. 

We can define an AnimalHouse and a DogHouse 

type AnimalHouse:{tenant: Animal} 

type DogHouse:{tenant:Dog} 

S <: T Target
Substitute T

<: <:

If we consider writes,  

DogHouse  AnimalHouse 

reverses the “direction” of the 
subtyping relation Dog  
Animal, making it 
contravariant. Hence, we can 
safely replace writes on values 
of type DogHouse with values 
of type AnimalHouse.

:>

<:
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Intuitively, we can view  as a relation between some  type the 
context assumes and some  type we want to use instead of . 

Let’s consider the record types 

type Animal:{name:string} 

type Dog:{name:string,bark:string} 

where, for some , Dog  Animal. 

We can define two functions A2B and D2B 

type A2B: Animal -> Bool 

type D2B: Dog -> Bool

S <: T Target
Substitute T

<: <:

A similar phenomenon happens 
with function types. A2B and 
D2B have the same output 
(Bool) but, although Dog <: 
Animal, A2B <: D2B, i.e., they 
have a contravariant relation.  

The reason is that we can 
always replace D2B, to which 
the context expects to provide 
Dogs, with A2B, which uses 
fewer information.



saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Subtype Polymorphism, covariance and contravariance
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Intuitively, we can view  as a relation between some  type the 
context assumes and some  type we want to use instead of . 

Let’s consider the record types 

type Animal:{name:string} 

type Dog:{name:string,bark:string} 

where, for some , Dog  Animal. 

We can define two functions U2A and U2D 

type U2A: Unit -> Animal 

type U2D: Unit -> Dog

S <: T Target
Substitute T

<: <:

In this case, U2D <: U2A is 
covariant.  

The two functions expect the 
same input (Unit) from the 
context and the context 
expect Animals as output, 
which can be safely replaced 
by Dogs.
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Intuitively, we can view  as a relation between some  type the context 
assumes and some  type we want to use instead of . 

A bit more elaborate example includes the record type 

type EliteDog: { name: string, bark: string, pedigree: string } 

where, for some , EliteDog  Dog  Animal. 

Then, we can define two functions D2D and A2E 

type D2D: Dog -> Dog 

type A2E: Animal -> EliteDog 

A2E <: D2D, which exemplifies a general rule of functional types: argument types 
are contravariant (Dog <: Animal) and return types are covariant (EliteDog <: Dog).

S <: T Target
Substitute T

<: <: <:
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Contravariance Covariance

Fuel Wood Bamboo Entertainment Music Metal

Consumers

<: <:

Consumer  
of fuel

Product

Consumer  
of wood

Consumer  
of bamboo

<: <:

Product

Producers

<: <:

Producer of 
Metal

Producer of 
Music

<:

Producer of 
Entertainment

<:
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Contravariance Covariance

Fuel Wood Bamboo Entertainment Music Metal

Consumers

<: <:

Fuel -> Unit

Product

Wood -> Unit Bamboo -> Unit

<: <:

Product

Producers

<: <:

Unit -> MetalUnit -> Music

<:

Unit -> Ent.

<:
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Subtype Polymorphism, subsumption
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The act of deciding whether   is called subsumption. 

There are mainly two strategies to define subsumption (dependent on the two 
ways in which we can define type membership): extensionally or intensionally. 

Extensionally, we have that  if . 

Intensionally, if , then the predicate that defines the membership for  
1) must be part of the predicate for  and 2) must apply on the same domain 
as the one for . 

In many cases, type systems define specific subtyping relations for basic types, 
e.g., int  float or char <: string

S <: T

S <: T ∀s ∈ S, [[s]] ∈ T

S <: T T
S

S

<:
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From our example on the “max” generic function, the subtype polymorphic solution 
could be written 

Integer <: Float 

max( Float i, Float j ) -> Float { … } 

Notice that, using this solution, we lose information on the values of the subtypes  
that we have as input and, indeed, we can only safely return a value of the 
supertype (Float) and not the specific one (which is only known at call site of max). 

This can cause problems, e.g., due to the need of forcing a casting of the value 
returned from max to be usable in a given context (e.g., we find the maximum 
between two integers and we feed the former into a function that accepts 
integers).
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Subtype Polymorphism
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From our example on the “max” generic function, the subtype polymorphic solution 
could be written 

Integer <: Comparable 

Float <: Comparable 

max( Comparable i, Comparable j ) -> Comparable { … } 

Notice that, using this solution, we lose information on the values of the 
“comparables” that we have as input and, indeed, we can only safely return a value 
of the supertype (comparable) and not the specific one (which is only known at call 
site of max). 

This can cause problems, e.g., due to the need of forcing a casting of the value 
returned from max to be usable in a given context (e.g., we find the maximum between 
two integers and we feed the former into a function that accepts integers).
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Some data structures have invariants that let us provide type safety although we 
do not fully know their full shape. 

An example we already saw of these data structures is the type Set, for which we 
said there are usually defined some typical operations such as union, 
intersection, subtraction, and inclusion testing. 

An observation we can make is that, for an implementor of the Set data 
structure, the operations on sets remain the same whether a given set instance 
handles integers, chars, or arrays. More specifically, the operations of the 
Set are parametric to the elements in the set, e.g., (simplistically) if we need to 
test for inclusion, we would apply the definition of integer equivalence if we 
have a Set of integers and the same goes for chars, arrays, etc. 

In this case, we say that Set is a parametric type and, when instantiated with, 
e.g., integers, that the latter is its (actual) type parameter.
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Extending a type system with parametric types introduces the possibility of 
parametric polymorphism. 

In general, when using parametric polymorphism, we cannot make any 
assumptions on the shape of the type parameters, which essentially forces us 
(and the type system) to consider any possible types in implementations. 

This is the reason why parametric polymorphism is also called universal 
polymorphism, i.e., because we read the type parameter declaration Set(T) 
as  T . Set(T). ∀
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As an example, consider 
r( T ): List( T ) -> List( T ) , 
f: A -> B, 
map( T, S ): List( T ) -> (T -> S) -> List( S ) 
then, let l: List( A ) 
map( r( l ), f ) = r( map( l, f ) ) 

Intuitively, since r ignores the shape of T (which can literally be any type T) it 
must only work on the non-parametric type constructor List and all r can do 
is rearrange the list (e.g., remove items based on their index, duplicate them, 
etc.) independent of their values. Thus, we can safely (as far as types can 
“see”) swap applying f to each element of the rearranged list (left) and 
rearrange the list after the application of f to each of its elements (right).

∀

[1] Wadler, Philip. "Theorems for free!." Proceedings of the fourth international conference on Functional programming languages and computer architecture. 1989.
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While parametric polymorphism assumes no knowledge on type parameters 
(and could provide useful properties on this abstraction [1]), some languages 
with parametric polymorphism provide a type introspection operator (e.g., 
instanceof in Java) that lets the user check whether a value belongs in a given 
type, at the detriment of the properties of abstraction.  
Parametric polymorphism captures the universality of type expressions, but 
sometimes it is useful to express boundaries over the universal quantifier, e.g., 
to limit the quantification only on types with certain properties. 
A common way to express these constraints is by mixing subtyping and 
parametric polymorphism, as done in Java and Rust. 
For example, a polymorphic version of our max function can have the type 

 T, T  Comparable, max: T -> T -> T∀ <:
[1] Wadler, Philip. "Theorems for free!." Proceedings of the fourth international conference on Functional programming languages and computer architecture. 1989.
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To be able to express parameters in types, we need to introduce a new 
notation that makes it explicit when types accept parameters. 

For example, Java and Rust can support parametric types via generics (and 
traits). We can write a parametric version of Set as Set<T>, where Set is a 
polymorphic type that accepts one (formal) type parameter, here captured 
with the type variable T. Similarly, we can define max as (Java and Rust) 

<T extends Comparable> T max (T x, T y){…}     

fn max<T: Comparable>(x:T, y:T)->T{…} 

which takes in and returns a T.
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Parametric Polymorphism introduces the notion of universal types — as a 
shorthand for universally quantified types — where definitions like 

<T extends Comparable> T max (T x, T y){…}     

and 

fn max<T: Comparable>(x:T, y:T)->T{…} 

have max with type  in which the 
universal  indicates that the definition is valid for (and parametric to) any 
type  (as long as it is a subtype of Comparable).

∀T . T <: Comparable . T × T − > T
∀

T
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Mixing parametric polymorphism and subtyping introduces the notion of subtyping of 
parametric types, e.g.,  

if Dog  Animal, does Set<Dog>  Set<Animal>? 

The matter is similar to that of depth subtyping for records, where it is safe to 
consider Set<Dog>  Set<Animal> as long as we do not perform writes on the 
Set.  

The notion above plays with width subtyping of the parametric types, e.g.,  

type Set<T>: {add:T->(),remove:T->(),includes:T->Bool} 

type List<T>:{add:T->(),remove:T->(),includes:T->Bool,get:int->T} 

where List<S>  Set<T> depending on the usage of the parametric type and the 
relation of the type parameters S and T.

<: <:

<:

<:
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Parametric Polymorphism and subtyping
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While in the general case it is safe to consider Set<Dog>  Set<Animal> as long as we do 
not perform writes on the Set, languages with (some form of) parametric polymorphism 
annotate explicitly the intended “direction” the user expects to use parametric types 

Vector< Dog > dv = new Vector< Dog >(); 
dv.add( new Dog() ); 
// covariant (Dog :> *), read only 
Vector< ? extends Dog > cov = dv; 
Dog d = cov.get( 0 ); // Dog :> * 
Animal a = cov.get( 0 ); // Animal :> * 
// contravariant (Dog <: *), write only 
Vector< ? super Dog > con = dv; 
con.add( new EliteDog() ); // EliteDog <: * 
con.add( new Dog() ); // Dog <: * 
// below, since we do not specify its use in the type 
// we assume "invariance" and report a typing error 
Vector< Animal > inv = dv;  ❌

<:
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In Java and C++ the type array is a parametric polymorphic type… in disguise. The languages 
added support for polymorphic types in later releases, while much of the preexisting code used 
non-polymorphic arrays. To make arrays useful, without polymorphism, the implementors 
decided to make both writes and reads covariant. Hence, the type system does not reject 

Animal[] a = new Dog[1]; 

a[ 0 ] = new Dog(); 

reads are fine for both the type checker and the runtime  

Animal a0 = a[ 0 ]; 

and since we “forced” covariance, writing is OK for the type checker … 

a[0] = new Animal();  

… but it breaks runtime checks (for contravariance of array update — e.g., it correctly accepts 
EliteDog, but not Animal), and it produces an ArrayStoreException.

// ← which we should not accept in general, without  
// knowing the “direction” of the usage of a 
// i.e., if we are going to use it in a covariant (read) 
// contravariant (write) way

Expensive
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Monads, proposed by Eugenio Moggi to represent 
computations in programming languages, are an 
abstraction used mainly in functional languages to 
simplify the composition and resolution (handling the 
control flow, side effects, etc.) of chains of functions. 

Here, we look at monads simplistically.  

We consider them as “containers” that encapsulate 
some functionality and we focus on monadic types 
that have become more and more common in 
mainstream programming languages: Options and 
Results. 
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The Option (also called Maybe) type is useful to gracefully handle (and dispense a 
language from) null pointers. 

Recalling pointer types, we remarked the existence, in some type systems, of a special 
inhabitant of the type, called null, which indicates that the pointer does not refer to a 
valid (initialised/usable) memory location. The inventor of null references, Turing-
awardee Tony Hoare, famously called it his “billion-dollar mistake”. 

[…] in 1965. At that time, I was designing the first comprehensive 
type system for references in an object oriented language 
(ALGOL W). My goal was to ensure that all use of references 
should be absolutely safe, with checking performed 
automatically by the compiler. But I couldn't resist the 
temptation to put in a null reference, simply because it was so 
easy to implement. This has led to innumerable errors, 
vulnerabilities, and system crashes, which have probably caused 
a billion dollars of pain and damage in the last forty years.

Also known for the invention of quicksort, 
Hoare logic, the dining philosophers 
problem, and communicating sequential 
processes (CSP) language.
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Option/Maybe types mitigate (if not remove) the problem of null pointers by 
presenting, at the type level, the duality of valid vs invalid pointers, mixing 
parametric and sum types. 

There are different, equivalent interpretations of Option/Maybe types, e.g.,  

type Maybe<T> : Some<T> + None 

where a value of type Maybe<T> is either a wrapper around some value of type 
T (Some<T>) or the singleton value of type None (equivalent to Unit). 

Java introduced the Optional type in 
version 8. Optional provides a dedicated, 
functional-inspired interface, e.g.,  
Optional< Integer > opt = Option.of( 42 ); 
var d = 2 * opt.orElseGet( () -> 0 );

Rust uses enums to encode Option types 
and mainly relies on pattern matching to 
manage its cases 
let opt: Option< i32 > = Some( 42 ); 
let d = match opt { 
 Some( x ) => 2*x, 
 None => 0        }
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We can think of Result types as a refinement of Maybe/Option types, where we 
use polymorphic and sum types to distinguish between the successful result 
of some computation and some faulty execution, signalled/informed by some 
error. 

A possible implementation of this idea is 

type Result< T, E >  : Ok< T > + Err< E > 
let res: [ Result< i32, &str >; 3 ] =  
 [Ok(40), Err("Error"), Ok(2)]; 
let mut acc: i32 = 0; 
for r in &res { 
 acc += match r { 
  Ok( _r ) => _r, 
  Err( _ ) => 0 
 } 
}

In essence, Result types represent an alternative 
to exception handling (and reasoning/dealing 
with the dynamic behaviour associated to it) that 
forces a more linear handling of computation 
states, since the programmer must (as long as the 
type system forces them to) either totally discard 
the result (e.g., because they do not care about its 
execution) or consider all its possible states.


