
saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Basic Types and Algebra of Types

1

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Type systems

2

Each programming language has its own type system, i.e., the information and rules
that govern its types and their values—called inhabitants of their type. More precisely,
a type system includes:
1. a set of basic types;
2. mechanisms to define new types;
3. mechanisms that compute on types, which include:

1. equivalence rules, which specify when two types correspond to the same type;
2. compatibility rules, which specify when one can use a type in place of another

one;
3. type inference rules/techniques, which specify how to assign a type to an

expression, starting from the information on its components;
4. the specification of whether to check type constraints statically or dynamically.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Basic Types

3

Basic (primitive/simple/scalar) types are all types that define denotable values of the language.
Common denotable values are 42, 3.14, and ‘A’ and their (basic) types can be respectively called
int, float, and char. We use the verb “can”, because values, and thus their types, are not
equally understood by all languages.

How we characterise 42 and int depends on the language we are considering. In Java, we would
use 4 bytes to represent 42 and the type int would range over all whole numbers from to

. In Rust, we would need to further specify what “kind” of integer we are interested in
storing, e.g., the type i32 would give us a size and range similar to that of Java, while the type
u32 would only consider positive numbers (thus the range to).

As languages adopt different syntaxes, they also provide different ways to declare basic types

• Java adopts the syntax type variableName

• Rust provides the statement let variableName : type

−231

231 − 1

0 232 − 1

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Unit (vs Void) type

4

The most basic type is the one containing just one element (the set is a singleton).

The only inhabitant of the Unit type is the singleton unit (also represented as ()) and
it is usually associated with operations whose return type is non-usable (e.g., because
they acted via some side effect, like printing on the screen). This is consistent with a
mapping of the input (whatever that is) to the same, inscrutable output (the unit).

Languages like Java and C have a similar concept with the void type which, however,
holds some differences with Unit. For example, while we can pass the unit as the
argument of operations, we cannot obtain nor pass a void: as the name says, it
represents emptiness and one cannot define other types using void subcomponents.
This discrepancy with Unit becomes visible, e.g., in Java generics, which required the
introduction of the Void type of which null (instead of void) is the only inhabitant.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Boolean type

5

Booleans denote the type of logical values and usually include:

• values: the two values of truth, true and false;

• operations: the main logical operations, such as conjunction (&), disjunction (|),
negation (!), equality (==), exclusive or (^), etc.

Where present (e.g., ANSI C does not have one such a type), its values are denotable,
expressible, and storable. Interestingly, while one would assume one bit would suffice to
store booleans, the actual memory representation depends on the language hardware
model, the architecture’s basic addressable unit, and other alignment requirements.

For example, in Rust the variables of type bool require one byte. In (the) Java (Virtual
Machine) bools require 2 bytes (8 as header, 1 for the value, and 7 of padding).

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Character type

6

Characters denote all characters from a given (and defined at the language level)
set of symbols and usually include:

• values: a set of character codes, e.g., two common sets are ASCII and UNICODE;

• operations: highly dependent on the language; we usually find equality (==),
comparisons (<,>).

The values are denotable, expressible, and storable and, usually, in-memory
representation consists of one byte (ASCII) or two bytes (UNICODE).

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Integer type

7

Integers denote some range of whole numbers and usually include:

• values: a finite subset of integers, normally fixed at the time of definition of the
language and, depending on the storage byte-size for the representation ,
ranging for signed (two-complement representation) and

 for unsigned ones. Some languages have built-in support for
integers of arbitrary length;

• operations: equality (==), comparisons (<,>), and the main arithmetic
operations (+, -, *, /, %).

The values are denotable, expressible, and storable.

r
[2r−1,2r−1 − 1]

[0,2r − 1]

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Real type

8

Reals denote some range of real numbers and usually include:

• values: a finite subset of reals, normally fixed at the time of definition of the language. Mainly
stored either via a fixed-point or floating-point representation. Both represent reals
separating their integers and decimals.

• Fixed point numbers reserve specific bits for the integers and the decimals. Using a -byte
signed format, with out of bits for decimals we range with numbers
at a constant distance of .

• Floating point numbers use the format , where is the sign (omitted when
unsigned), is the number (mantissa), the base, and is the exponent that places the
float. The IEEE 754 format defines two formats, both with , but with single (8-byte)
and double (11-byte) precision/exponent.

• operations: equality (==), comparisons (<,>) and the main arithmetic operations (+, -, *, /, %).
The values are denotable, expressible, and storable.

n
f n [−2n−1/2f,2n−1/2f]

1/2f

s ⋅ m ⋅ be s
m b e

b = 2

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Enumeration types

9

An enumeration type consists of a finite set of constants, each characterised by its own name.
C, Rust, and Java (and other languages) provide all the same syntax, e.g.,

enum RogueOne { Jyn, Cassian, Chirrut, K2SO, Bodhi, Baze }
which introduces a new type named RogueOne consisting of a set of 6 elements, each marked by its
own name. The operations available on enums consist of comparisons and a mechanism to obtain all
values or pass from one to the next. From a pragmatic point of view, enums have two benefits: 1) they
help readability, since the names of the values constitute a clear form of self-documentation of the
program and 2) they let the type checking verify that an enumeration-typed variable takes only the
correct values.
Not all languages integrate enums in a safe way, e.g., in C enum RogueOne { Jyn, … } is syntactic
sugar for

typedef int RogueOne; const RogueOne Jyn=0, Cassian=1, …;
which equate integers to RogueOnes and prevents the distinction (and check the correctness)
between them.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Extensional vs Intensional types

10

Integers (and Floats and Chars, …) and Enumerators have one important
difference: The user specifies Enumerators in an extensional way, i.e., they list
all possible inhabitants of that type. On the contrary, languages specify
integers, floats, etc. intensionally, i.e., by means of predicates that define
their membership over some domains of possible values (e.g., 32-bit integers,
floating point numbers, UNICODE chars).

The rationale is to use intensional definitions when we have a defined set of
properties that identify only the inhabitants (valid values) of the type we are
defining—with the pro of saving memory if the set of inhabitants is large and
making the definition possible, in case of infinite sets. On the other hand,
extensional definitions are useful when we do not have a clear set of rules that
define the inhabitants of the type (e.g., an intentional way to define our
RogueOne type could be through a rule like “the main 6 characters of the movie
RogueOne”, or not !?)

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Composite types

11

Enumeration types (à la C) surreptitiously introduced a new concept: we can
create new types by composing the basic ones.

In C enumerations, we made named sets of elements, which correspond to
integers, but other structures are possible, among which the most basic are:
arrays, sets, and pointers.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Array types

12

An array type denotes a collection of elements of some type, each indexed by at
least one identifying key of some type (when 2 or more keys are involved, we talk
about multidimensional arrays, e.g., matrices, datacubes, etc.).

The most common notion of arrays assumes keys as non-negative integers within
an interval (usually considering the range for elements, which
simplifies its layout in memory) and let the user define the type of the elements.
Other forms of arrays, usually called maps or associative arrays, let the user fix
both the types of the keys and the elements.

[0, n] n + 1

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Array types

13

Let us see the syntax of C, Java, and Rust for declaring a linear array of integers:

Notice that that both C and Rust fix in the type declaration the size of the array (3), while Java
abstracts from it in types and leaves the initialisation define the size of the array (more on this later).

Most languages (also C, Java, and Rust) extend linear-array declarations to multi-key ones

While C, Java, and Rust coalesce the concept of multidimensional arrays and array of array (on the
latter), some languages (e.g., Pascal) keep these separated.

int x[3] int[] x let x: [i32;3]
x[0] = 0

int x[3] = {0,0,0} x = new int[3] x = [0,0,0]

int x[10][10] int[][] x let x: [[i32;10];10]

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Array types

14

The simplest operation on an array is the selection of an element by means of its index value. The most
common notation (C, Java, Rust) is a[e] where a is the variable of type array and e is an expression. For
multidimensional arrays, common syntaxes are a[e][e][e] or
a[e, e, e] — the second is for languages that have both
multidimensional and array of arrays. Other whole-array
operations are e.g., assignment (=), comparisons (==,<,>), and
arithmetic operations (performed pairwise).

Since they know the index type of arrays, safe languages verify
that every access to an element of the array really takes place
within its “limits” (as it does not make sense to access non-
existing elements). Except some special cases, this check can
only occur at runtime, which is where safe languages put
appropriate checks at each access. Languages like Java and
Rust guarantee this invariant at runtime (raising an error/
exception when violated) but C does not. While these checks
slow (a bit) programs, they prevent buffer-overflow attacks.

HEY,20

HEYSUPE
RSECRET
PASSWD

H E Y S
U P E R
S E C R
E T P A
S S W D
X Y Z W

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Array types

15

An array is usually stored in a contiguous portion of memory.
For a one-dimensional array, the allocation follows the order
of the indices. For multidimensional arrays, there are mainly
two techniques, called row-major and column-major order.

In row order, two elements are contiguous if they differ by
one in the last index. In column order two elements are
contiguous if they differ by one in the first index. The row
order is a little more common than the column one, mainly
because row-wise accesses are more common than column-
wise ones. Indeed, the locality principle of cache-miss loading
favours row-wise sweeping algorithms on row-major orders
and, vice versa, column-wise ones on column-major order.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

The number of dimensions and their intervals determine the shape of an array. An important
aspect of a language definition is deciding whether and when to fix the shape of arrays. If the
shape is fixed, we can either decide to define it at compilation (for compiled languages) or when
we process it declaration (at runtime). Alternatively, we can have dynamic arrays whose shape is
determined and change at runtime.

If we decide to define the array at compilation time, also
called “in static form”, we can store it in the stack frame
of the block that carries its definition. In this case, we
know the size needed to store the array (the offset
between the first and the last items of the array), so,
accessing an element of the array is similar to accessing
variables of scalar types (save for some calculations
needed, e.g., when accessing multidimensional arrays).

Array types

16

b ‘c’
c 3.14

a[0] 42
a[1] 101
a[2] 300
… …

…

Stack frame

Frame pointer

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

If we decide to define the array when we process its
declaration we will know its (fixed) shape at the
moment when the control reaches the declaration of
the array. An example of this is, e.g., if the size
depends on the value of some variable.
We can allocate the array in the stack frame of the
block that carries its definition. However, since we
know the size of the array only when we load the
frame, we cannot safely preallocate space in the stack
—a wrong estimation would either waste memory or
overlap with other static variables. To work around
this problem, we use the heap and store in the frame
the pointer to the beginning of that memory region.
The descriptor of such an array goes by the name of
dope vector, also used in the case of dynamic arrays
(with some additional items in the dope vector to
track its state).

Array types

17

b ‘c’
c 3.14
a[]

a[]_T 8
a[]_R 1
a[]_L 10
a[]_EC 5
a[]_ME 100
a[]_S 8

… …
…

A

Stack frame

Frame pointer

pointer to heap location
type of elements

rank of array
length

extent in use (dynamic)
max extent (dynamic)

stride (dynamic)

dope vector

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Difference among C, Java, and Rust Array types

18

Let us see the syntax of C, Java, and Rust for declaring a linear array of integers:

In C, the declaration corresponds to the (static) allocation of the array, which we
can use right away.

In Java, we do not create the array when we declare its variable, but (like any non-
primitive Java type) the name is a reference to some “array of integer” value. E.g.,
at line 3, we assign to x a new array (in the heap).

Also in Rust, the declaration only introduces the annotation of the name x, which
we later bind to a (static) array (line 3). In this case, the type carries to the
assignment to check the size constraint.

int x[3] int[] x let x: [i32;3]
x[0] = 0

int x[3] = {0,0,0} x = new int[3] x = [0,0,0]

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Set types

19

A set type denotes a flat, orderless data structure with unique values of the same type.

The possible operations on sets include testing inclusion and common set
manipulation operations: union, intersection, difference, and complement.

An efficient way to represent a set is by means of a bit array of length equal to the
cardinality of the base type. This array is called characteristic and, in it, the bit
indicates whether the element of the base type (given a standard ordering) belongs
in the set. This representation allows efficient execution of set operations (bitwise
operations on the physical machine), however it is unsuitable for large subsets of basic
types. To work around this problem, languages often either limit the types one can use
as the base types of a set or they choose alternative representations, e.g., via hash
tables, trading some speed off the sake of memory.

jth

jth

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Reference types

20

A reference gives indirect access to some other value (e.g., possibly
assigned to some variable), i.e., they refer some datum. The typical
operations supported by references are creation, equality check,
and dereferencing, i.e., accessing the referenced datum.
References are particularly present in low-level languages, where
they are used to pass/share large or mutable data.
The most common implementation of references is that of the
physical address, the pointer, of the datum in memory. However,
pointers are just one instance of references, which can be e.g.,
indexes into arrays. References can refer references, as in data
structures like trees and lists.
References can introduce complexity in programs, since they ask
the programmer to think in dynamic rather than static terms.
Without due diligence or dedicated checks, references can become
“wild” (uninitialised references whose access can cause
unexpected behaviour) or “dangling” (when their datum has been
deallocated and access can lead to unexpected behaviour,
especially when compatible data overwrites the deallocated
datum).

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Reference types

21

Languages with a reference variable model rarely
provide reference types, since every variable is
always a reference (e.g., Java).

Languages with modifiable variables provide
references that let the programmer refer values
without dereferencing them automatically.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Reference types

22

In C, int* x specifies a reference (pointer)
to a memory location (i.e., editable variables)
that contain a value of type integer.

Depending on the language (model), pointers
can refer arbitrary locations or follow some
constraints. E.g., Pascal requires pointers to
refer values allocated on the heap, while C
admits pointers that refer the stack or the
global area.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Reference types

23

Languages with references usually define a “canonical” pointer
that inhabits the reference type (the same, for any associated
type): null. Pointers should assume null until they are assigned.
The usual way to initialise a pointer is to use a construct that
allocates a value and returns a reference to that object, e.g., in C
int* p;
p = NULL;
p = malloc (sizeof (int));
C does not specify an implicit initialisation, so it is not safe to
assume that p is valid after its declaration. This is why it is
usually suggested to explicitly initialise pointers to NULL if we
foresee to allocate their memory later in the program.
Then, we use malloc to allocate a specific amount of bytes (the
sizeof (int), above) on the heap. Since malloc ignores
types, it always returns a void pointer (*void), indicating that
it refers to a region of memory whose type is unknown.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Reference types

24

Languages with references usually provide some
variable referencing operator, i.e., to refer the
memory location of variables. E.g., & in C
float pi = 3.1415;
float* p = NULL;
p = π
The pointer p points to the location that
contains the variable pi.
Contrarily to malloc, variable referencing lets
pointers refer locations on the stack.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Reference types

25

Language with references usually also provide a
dereferencing operator, e.g., * in C
float pi = 3.1415;
float* p = NULL;
p = π
*p = *p + 1;
where we assign the value 4.1415 to pi by dereferencing
p both in the left and right side of the assignment. The
dereferencing on the left let us read the content of the
location referenced by p (the content of the variable pi),
while the dereferencing on the right let us write on the
location referenced by p (the one corresponding to pi).

Note that the assignment does not modify the value of p,
since it is always used in its dereferenced form.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Reference types

26

Language with references can incur in implicit
deallocation, e.g., (in C)
int* p = malloc (sizeof (int));
*p = 5;
p = null;
we can create an unaccessible memory region, since we
destroyed the only pointer to reach it.

This “unreleased” pieces of memory can grow over time
(as long as the program runs) and can incur in a
phenomenon called “memory leak”. The problem of
recovering these portions of memory has been subject
to studies in different directions, from garbage
collectors (e.g., Java) to type systems that prevent this
kind of behaviours (e.g., Rust).

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Reference types

27

Languages with references usually provide an explicit
deallocation operator to release the memory
referenced by a pointer. C provides the free operator
int* p = malloc (sizeof (int));
*p = 5;
free(p);
p = NULL;

As in the case of uninitialised pointers, it is a good
practice to NULLify a freed pointer. Calling free on a
pointer to the stack is a semantic error (it could lead
to unpredictable behaviour).

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Reference types, Rust

28

Rust is known for its safe treatment of pointers. The language provides
the same operators as C, but puts in place static checks that allow the
compiler to automatically free unused memory and prevent null
references, dangling pointers, double frees, and pointer invalidation.

&T Allow one or more
references to read T

&mut T
Allows a single

reference to read and
write T

*const T Unsafe read access to T

*mut T Unsafe read and write
access to T

Box<T>
Heap-allocated T with a
single owner that may

read and write T

Rc<T> Heap-allocated T with
many readers

Arc<T>
Same as a Rc<T> but

with safety guarantees
for multi-threading

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Power sets (towards product types)

29

We assume the axiom of power set, i.e.,

We call the set P from the axiom above the
power set of , also written . The right-to-
left direction of implies that is unique.
Informally, we can see as the set of all the
subsets generated by any combination (also the
empty one) of elements in .

∀S ∃P ∀R [R ∈ P ⟺ ∀Q (Q ∈ R ⟹ Q ∈ S)]

S ℘(S)
⟺ ℘(S)

℘(S)

S

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Ordered Pairs and Cartesian Products (towards product types)

30

Let and and let then
 ,

 ,
 and

Let
called the Cartesian product of and

a ∈ A b ∈ B {{a}, {a, b}} ≜ (a, b)
{a} ⊆ A {b} ⊆ B
{a} ∈ ℘(A) {b} ∈ ℘(B)
{a, b} ⊆ A ∪ B {a, b} ∈ ℘(A ∪ B)
{{a}, {a, b}} ≜ (a, b) ⊂ ℘(A ∪ B)
(a, b) ∈ ℘(℘(A ∪ B))

{(a, b) |a ∈ A ∧ b ∈ B} ≜ S × T
S T

(a, b) ∈ A × B ⊂ ℘(℘(S ∪ T))

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Product Types

31

Arrays, sets, and pointers are examples of composite types that “take as
parameter” one type.

When we combine two or more types in some fixed structure, we talk about
product types.

The name comes from the notion of “direct product” from mathematics, which is
a generalisation of the Cartesian product

The most common product types are pairs, tuples, records, and variants.

By convention, the empty product is the Unit.

A × B ≜ {(a, b) |a ∈ A ∧ b ∈ B}

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Product Types • Pairs and Tuples

32

The simplest form of product type is the pair. Given two types and , the pair
type denotes the set of all possible pairs (all the possible combinations)
of the values in and . The generalisation of pairs are tuples, which define the
product of an arbitrary, finite number of types as

A B
A × B

A B
T1, ⋯, Tn

n

∏
i=1

Ti = T1 × ⋯ × Tn

C and Java do not support directly pairs/tuples (one can implement them using
records). Rust supports tuples with the syntax (T1, …, Tn), e.g., (i32, i32) is
a pair of integers that can represent a coordinate system.
Since tuples define types based on the order of its
components, Rust follows that abstraction to access the
components of a tuple value, e.g., coords.0

let coords: (i32,i32);
coords=(89,97);
let x = coords.0;
let y = coords.1;

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Product Types • Records

33

Records interpret type products by replacing the positional adjustment of type
components in tuples with their identification by means of (distinct) labels.

Languages implement records in different ways, e.g., as structures, classes (Java
17 introduced records). The elements of records are usually called fields.

struct Person {
 char name[5];
 int age;
};

record Person (
 char[] name,
 int age
){}

struct Person {
 name: [char; 5],
 age: i32
}

struct Person p = {
 .name = { ‘E’, ‘v’, ‘a’ },
 .age = 25
};
char* name = p.name;
int age = p.age;

Person p = new Person(
 new char[]{ ‘e’, ‘v’, ‘a’ },
 25
);
char[] name = c.name();
int age = c.age();

let p: Person = Person {
 name: [‘E’, ‘v’, ‘a’, ‘’, ‘’],
 age: 25
};
let name = c.name;
let age = c.age;

C Java Rust

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Product Types • Records

34

In records, the order of fields is generally significant and possibly followed in their memory
representation, e.g., storing fields in contiguous locations, even if bitwise alignment may entail
gaps between fields (e.g., in Person, names will always take 5 bytes). While in C this is not
evident, Rust forces us to always “fill” the possible, missing value with some default ones (e.g.,
the empty char values for “Eva”). Since Java allocates objects in the heap, the problem does not
present itself (indeed, we cannot specify, in the type, constraints on the size of name).
struct Person {
 char name[5];
 int age;
};

record Person (
 char[] name,
 int age
){}

struct Person {
 name: [char; 5],
 age: i32
}

struct Person p = {
 .name = { ‘E’, ‘v’, ‘a’ },
 .age = 25
};
char* name = p.name;
int age = p.age;

Person p = new Person(
 new char[]{ ‘e’, ‘v’, ‘a’ },
 25
);
char[] name = c.name();
int age = c.age();

let p: Person = Person {
 name: [‘E’, ‘v’, ‘a’, ‘’, ‘’],
 age: 25
};
let name = c.name;
let age = c.age;

C Java Rust

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Product Types • Pattern Matching

35

While product types produce new data types, there is a powerful programming construct
that helps consuming them in a structured way: pattern matching.

Pattern matching checks and locates specific elements against some pattern, e.g., in Rust

let x: i32 = 2;
let isEven = match x%2 {
 1 => true,
 _ => false
}

Safe implementations of pattern matching guarantee exhaustive matching, which help
excluding common errors such as missing cases, impossible case, and redundant cases.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Product Types • Pattern Matching

36

struct Person { name: [char; 3], age: i32 }
struct PersonR { name: [char; 3], age: [char; 4] }
let eva = Person{ name: ['E','v','a'], age: 25 };
let Person{ name, age } = eva;
let evaR = PersonR{ name, age: match age {
 1..=10 => ['K','i','d','!'],
 11..=20 => ['T','e','e','n'],
 _ => ['O', 'l', 'd', '!']
}}

While product types produce new data types, there is a powerful programming
construct that helps consuming them in a structured way: pattern matching. Pattern
matching checks and locates specific elements against some pattern, e.g., in Rust

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Product Types • Recursive Types

37

record IntList(int n, IntList cons){}

IntList l = new IntList(
1, new IntList(
2, new IntList(3, null)

)
);

Recursive types (as a concept) are useful to define data structures, such as Lists and
Trees, that can dynamically grow. Product types are one way to express recursive types.
Note, in the example below, in Java, the usage of null to “close” the structure.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Sum Types

38

Product types describe compositions of types. There might be cases where we
want to denote that some variable can hold a disjoint union of types, e.g.,

So that, declaring that x is of type means that x can either contain an
integer or a char. The union of the tagged sets () tells us that, even if
there might be coinciding elements in the sets, we always know to what set
those values originally belong in (e.g., and).

int = {−13,0,1,17,⋯} int* = {(−13,i), (0,i), (1,i), (17,i), ⋯}

char = {Y,1,Z,0,H, ⋯} char* = {(Y, c), (1,c), (Z, c), (0,c), (H, c), ⋯}

int ⊔ char = int* ∪ char* = {(−13,i), (Y, c), (0,i), (1,i), (1,c), (17,i), (Z, c), (0,c), (H, c), ⋯}

int ⊔ char
int* ∪ char*

(0,c) (0,i)

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Sum Types

39

Disjoint unions of types are usually called sum types (but also tagged unions,
union types, choice type, variant types, and coproducts).

A practical example of a sum type is that of an Address type, able to range over
both PhysicalAddress and VirtualAddress types (e.g., a person’s postal
address and their email).

Some languages (especially, those inspired by Pascal and of the ML family)
provide direct support to sum types via some dedicated operator, e.g.,

type Address = PhysicalAddress + VirtualAddress

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Sum Types

40

Besides having explicit operators in the language, we already saw a type that can
help up define sets of values: enumerations. Languages like Java and Rust
extended enumerations to capture the case of sum types. E.g.,

enum Address {
 PhysicalAddress { long: i32, lat: i32 },
 VirtualAddress { email: [char; 20] }
}
let a = Address::PhysicalAddress{ long: 15, lat: 25 };
match a {
 Address::PhysicalAddress{ long, lat } => …,
 Address::VirtualAddress{ email } => …
}

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Sum Types

41

Besides using
enumerations (as in
Rust), Java recently
introduced sealed
classes, which define the
only data structures
permitted to appear as
one of the possible
types present in a given
sum type.

sealed class Address permits
Address.PhysicalAddress, Address.VirtualAddress {
 static class PhysicalAddress extends Address {
 int lon; int lat;
 PhysicalAddress(int lon, int lat) { … }
 }
 static class VirtualAddress extends Address {
 char[] email;
 VirtualAddress(char[] email) { … }
 }
}
Address a = new Address.PhysicalAddress(15, 25);
switch (a) {
 case Address.PhysicalAddress p -> …;
 case Address.VirtualAddress v -> …;
 default -> …
}

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Sum Types

42

C has a notion of union of structures. C unions are a way
to have the same memory location hold different types
of data—e.g., an integer or a char—, where the memory
is allocated according to the biggest structure—e.g.,
that the size of char, in the previous example.

However, the language does not discipline the way in
which users interact with (the location of a) union
variable—e.g., given a variable x of the union type in the
example above, we can write an integer in it and then
read it as a char, without any error/warnings raised by
the compiler.

union Data {
 int i;
 char c;
};

union Data data;
data.i = 10;
data.c = 'A';

// data.i = 65

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Sum Types • Recursive Types

43

Sums are an alternative to product types (no need for nulls) for recursive types.

IntList l = new IntList.Cons(1,
 new IntList.Cons(2,
 new IntList.Cons(3, new IntList.End())));

sealed class IntList permits
IntList.Cons, IntList.End {

 static class Cons extends IntList {
 int n; IntList cons;
 Cons(int n, IntList cons){…}
 }
 static class End extends IntList {
 End(){}
 }
}

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Relations (towards Functions)

44

Given a sequence of sets , we call the set a
relation on the Cartesian product when relates the elements

, i.e., when, for some , .

When we say that is a binary relation. Given and if
 we usually also write . Conventionally, with , we call

the elements of in the domain of () and the elements of
 in the range of ()

S1, …, Sn ℝ ⊆ S1 × ⋯ × Sn
S1 × ⋯ × Sn ℝ

s1 ∈ S1, ⋯, sn ∈ Sn s1, ⋯, sn (s1, ⋯, sn) ∈ ℝ

ℝ ⊆ S × T ℝ s ∈ S t ∈ T
(s, t) ∈ ℝ s ℝ t ℝ ⊆ S × T

S ℝ ℝ dom(ℝ) ⊆ S
T ℝ ℝ ran(ℝ) ⊆ T

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Functions

45

When , , , and then we call a partial function.

When is a partial function, we usually adopt the notation
(alternative to and) and we call the argument of and the
value of for . We also say that maps into and we adopt an alternative
(mapping) notation

When we can a total function. Unless specified differently,
when talking about functions, we intend total ones.

ℝ ⊆ S × T s ℝ t s ℝ t′ t = t′ ℝ

ℝ ℝ(s) = t
(s, t) ∈ ℝ s ℝ t s ℝ t

ℝ s ℝ s t
ℝ ⊆ S × T ≡ ℝ : S → T

dom(ℝ) = S ℝ

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Functions

46

Given , and , by
definition , then

Given the definition above, we have an alternative way of writing as .

We can do this because we consider the characteristic function of a subset
 of a set such that (with) where when

 and otherwise.

 induces a family of functions each describing one subset of , i.e., we have
a function that defines a one-to-one correspondence (bijection) between each
element in and its characteristic function in .

f : S → T f ⊂ ℘(℘(S ∪ T)) f ∈ ℘(℘(℘(S ∪ T)))
℘(S × T) ≜ TS f ∈ TS

℘(S) 2s

χQ
Q S χQ : S → 2 2 ≜ {0,1} χQ(q) = 1
q ∈ Q ∩ S 0

χ Q S

℘(S) 2S

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Function types

47

High-level languages frequently support the definition of functions (or procedures),
however, only a few denote the type of functions (i.e., give them a name in the
language). E.g., if f is a function defined as R f(P p){ … }, we can denote its type
as P->R , where P is the type of the unary parameter accepted by f and R is the type of
the value returned by f. The set-theoretic representation of P->R is .

This naming discipline follows the polyadicity of functions, e.g., a function of shape

R f(P1 p1, …, Pn pn){ … } has type P1->…->Pn->R or

The values of a function type are denotable in all languages, but only some (so called,
“functional” languages) make them expressible (or storable). The main operation
allowed on a function type value is the application, i.e., the invocation of a function on
some arguments (actual parameters).

RP

RP1...Pn

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

The Algebra of Types

48

Product, Sum, and Function
types recall the existence of
some algebra—a discipline
that defines the rules for
manipulating (type) symbols
—of types, therefore defined
“algebraic (data) types”.

Type systems can make use
of the properties of this
algebra to express and check
properties of programs.

inspired to Burget, Joel. “The Algebra (and Calculus!) of Algebraic Data Types.” Codewords.recurse.com.

Types Algebra Inhabitants

Void 0 the empty type/symbol

Unit 1 the singleton-value type

Bool, Char n

A + B a + b
0 + a = a + 0 = a The sum of the inhabitants of A and B

A x B a x b
a x b x 1 = a x b The product of all inhabitants of A and B

A -> B The combinations of B given A, e.g.,
Unit -> Bool (2^1) and Bool -> Unit (1^2)ba

Unit -> Bool (A) Unit
unit

(B) Bool f1 true
f2 false

Bool -> Unit (A) Bool
true false

(B) Unit f1 unit unit

Bool -> Bool (A) Bool
true false

(B) Bool
f1 true true
f2 true false
f3 false true
f4
 false false

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Type equivalence

49

One of the main questions we can ask about types of a program is

“when are two types equal?”

which underpins some of the correctness tests of type checking.

Answering questions on equality does not have a single interpretation, as it might depend
on the context from where we are checking equality.

For example, let P be a type defined as a subset of integers and f a function that can sum
any two integers. From the perspective of f, we can consider P as equivalent to integers,
since we know the function can work on a superset of the values in T. Conversely, if f
accepted only values of T, we cannot safely assume integer parameters as equal to T as, e.g.,
the body of the function might consider some invariant from T, invalidated by the integers.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Preorders and equivalences

50

Given a set , we call the set a binary relation on when is a subset of the Cartesian
product of by itself, i.e., . Given two elements we say they are in
the relation, denoted , if . Binary relations have different of properties:

• Reflexive: for any , ;

• Symmetric: for any and , ;

• Antisymmetric: for any and implies ;

• Transitive: for any , , and implies

When is reflexive and transitive, we call a preorder. When is a symmetric preorder,
we call it an equivalence. When is an antisymmetric preorder we call it a partial order.

S ℝ S ℝ
S ℝ ⊆ S × S {s1, s2} ⊆ S

s1 ℝ s2 (s1, s2) ∈ ℝ

s (s, s) ∈ ℝ

s1 s2 {(s1, s2), (s2, s1)} ⊆ ℝ

s1 s2 {(s1, s2), (s2, s1)} ⊆ ℝ s1 = s2

s1 s2 s3 {(s1, s2), (s2, s3)} ⊆ ℝ (s1, s3) ∈ ℝ

ℝ ℝ ℝ
ℝ

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Nominal type equivalence

51

In type systems that consider a nominal notion of type equivalence each new type
definition introduces a new name, different from any existing one.

Let be a function that, given a type T, it gives us its associated name
, then .

Hence although the types Dollar = int and Euro = int are functionally
indistinguishable to e.g., a function that takes one or the other as parameter, in a
nominal system they are not equivalent. Although quite simple, the idea behind
nominal system is the one most adherent to the programmers intention: e.g., if the
programmer used types to distinguish between Dollars and Euros, there might be
some invariants (e.g., their denominations) not captured a the level of types that
the programmer rely upon in the body of functions.

name(T) = n
n T1 NTE T2 ⟺ name(T1) = name(T2)

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Duck Typing

52

While nominal type-checking is usually performed statically, we know that
type-checks can also happen at runtime (the main case being that of
interpreted languages).

A popular way of performing type
checking at runtime is via the so
called duck typing method, which
works by checking if a given value
supports the operators expected
by the program.

sum(p){ return p.x + p.y }
loc(p){ return p.x % p.y % p.z }
c = { x: 15, y: 25, z: 63 }
s = { x: 64 , y: 17 }
sum(c) // 40
sum(s) // 81
loc(c) // 15
loc(s) // Error: s has no field 'z'

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Structural Type equivalence

53

Duck typing introduced an alternative to nominal type equivalence: as long as we cannot observe
structural differences between values, we can consider them of the same type.

In general, this interpretation takes the name of structural type equivalence and we can also
perform it statically. However, since we do not know in advance what paths values will take in the
program, we need to perform more conservative checks than the “operational” ones seen for
duck typing: we test types for equivalence by comparing all their operations, structures, and
subelements.

Of course, this makes the definition of structural equivalence more involved, e.g.,

struct Ta{f1 : Ta1, ⋯, fn : Tan} STE struct Tb{f1 : Tb1, ⋯, fn : Tbn} ⟺ ∀i ∈ [1,n], Tai STE Tbi

(Ta1, ⋯, Tan) STE (Tb1, ⋯, Tbn) ⟺ ∀i ∈ [1,n], Tai STE Tbi

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

On the adoption of Nominal vs Structural type systems

54

Besides embodying a tight notion of equivalence, nominal typing has several other benefits:

• a direct link for the runtime to e.g., print, marshal, and check type coercion (spoiler);

• an intuitive denotation of recursive types—types whose definition refers the type itself like
lists and trees (e.g., a List of Lists or even mutually recursive ones, e.g., Trees of Lists of
Trees);

• checking subtyping (spoiler) is a(n almost trivial) direct check of the nominal, declared
subtype relations among the named types.

These advantages decreed the “success” of nominal type systems, present in many mainstream
programming languages, e.g., Java and Rust. C also has a prominently nominal type system,
although the typedef declaration allows users to equate different types with coinciding aliases
(this feature is usually regarded as being unsafe, e.g., recall the Dollars vs Euros example).

IntList := (int × IntList) + Unit ListIntList := (ListInt × ListIntList) + Unit vs
μt . ((μt′ . (int × t′) + Unit) × t) + Unit

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Type compatibility

55

The example for duck typing showed that we can correctly use a structure
containing the fields x, y, and z in a function sum that just asks for values with
the x and y fields. This means that sometimes we can use a weakened version
of equivalence and still obtain correct program. This weakened form of
equivalence is usually called type compatibility.

Formally, since equivalence is a symmetric preorder, it subsumes
compatibility, which is a preorder (reflexive and transitive), but not the other
way around (not all compatible types are equivalent).

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Type compatibility

56

The compatibility relation varies among languages. Some common interpretations of
compatibility (besides equivalence) are, let T and S be two types:

• the values of S are a subset of the values of T, e.g., intervals;

• the values of S are a subset of canonically-correspondent values of T. This is typical of types
like, e.g., float and int types, where any int n has a canonical corresponded float n.0;

• the values of S are a subset of arbitrary-correspondent values of T. Here, we drop the
requirement of canonicity from the previous point and assume the presence of some
arbitrary transformation that converts any value in S to a value of T, e.g., we can make int
and float compatible by converting floats (e.g., via rounding) into ints;

• all operations on the values of T are also possible on the values of S. This is the example
shown for duck typing and the principle behind some notion of subtyping (spoiler);

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Type coercion and type casting

57

The last three points on alternative notions of type compatibility assume the existence of some type
conversion mechanism, able to bridge the differences between values of different types. Also in this
case, languages adopt two ways (frequently mixed) of performing these conversions:

We call type coercion the implicit application of some canonical/arbitrary type conversion. An example is
e.g., a sum function that accepts floats and, if we pass to it integers, the compiler/interpreter inserts
the necessary conversions implicitly, without reporting a compatibility error. In both cases, conversions
are either syntactic, when the types share the same representation in memory (this is the case, e.g., of
intervals, where no conversion applies) or happen via some canonical/arbitrary conversion, which
transforms the memory representation of a value of some type into a value of another—e.g., integers
into floats (canonical) and vice versa (arbitrary).

We call type casting the explicit annotation in the language of a type (and value) conversion, which
applies some user-defined conversion procedure. Type casting has also a documentation value, making
type conversions statically explicit. As an example of type casting, C and Java adopt a minimalistic syntax
S s = (S) t while Rust provide a more verbose one let s: S = t as S .

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Type inference

58

The type checker of a language verifies that a program respects the rules imposed by the type
system (in particular, compatibility). To perform its checks, the type checker must determine
the type of the expressions present in the program, using the information on types that the
programmer has inserted in the program.

Concretely, the type checker determines the type of expressions by visiting the parse tree of
the program, starting from its leaves (variables and constants whose type is known), it descend
to the root and calculates the type of the expressions from the information accumulated along
its path (e.g., the type system could establish that + is an operator which, applied to two
expressions of type int results into an expression of type int).

Knowing that the type checker can infer some information from a reduced amount of type
annotations, languages can spare the programmer the task of annotating all expressions. Type
inference is the process of attributing types to expressions, omitting explicit type annotations.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Type inference

59

Sometimes, the inference algorithm cannot directly infer the type of some expression, but it rather
needs to keep its type “open”, proceed with other parts of the program, and “return” on that expression
later on—of course, if it collected all the available information and it cannot still fix the type of the
considered expression, the algorithm “gives up” and report to the user the need for more information.

Technically, keeping the type of the expression “open” means assigns to the latter a type variable,
which, proceeding with the exploration of the parse trees, it enriches with constraints (e.g., we might
meet a + operation applied on it, which limits the range of possible types to only those that support it).
The procedure that performs this check on the constraints is a renowned resolution strategy from logic
programming known as the unification algorithm.

C does not provide relevant support for type inference. Java and Rust provide simple forms of it.
Languages of the ML family, based on the Hindley-Milner type system [1,2], provide more complete type
inference support.

[1] Hindley, J. Roger (1969). "The Principal Type-Scheme of an Object in Combinatory Logic". Transactions of the American Mathematical Society. 146: 29–6

[2] Milner, Robin (1978). "A Theory of Type Polymorphism in Programming". Journal of Computer and System Sciences. 17 (3): 348–374.

