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Type systems
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Each programming language has its own type system, i.e., the information and rules 
that govern its types and their values—called inhabitants of their type. More precisely, 
a type system includes: 
1. a set of basic types;  
2. mechanisms to define new types; 
3. mechanisms that compute on types, which include: 

1. equivalence rules, which specify when two types correspond to the same type; 
2. compatibility rules, which specify when one can use a type in place of another 

one;  
3. type inference rules/techniques, which specify how to assign a type to an 

expression, starting from the information on its components; 
4. the specification of whether to check type constraints statically or dynamically.
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Basic Types
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Basic (primitive/simple/scalar) types are all types that define denotable values of the language. 
Common denotable values are 42, 3.14, and ‘A’ and their (basic) types can be respectively called 
int, float, and char. We use the verb “can”, because values, and thus their types, are not 
equally understood by all languages. 

How we characterise 42 and int depends on the language we are considering. In Java, we would 
use 4 bytes to represent 42 and the type int would range over all whole numbers from  to 

. In Rust, we would need to further specify what “kind” of integer we are interested in 
storing, e.g., the type i32 would give us a size and range similar to that of Java, while the type 
u32 would only consider positive numbers (thus the range  to ). 

As languages adopt different syntaxes, they also provide different ways to declare basic types 

• Java adopts the syntax type variableName 

• Rust provides the statement let variableName : type
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Unit (vs Void) type
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The most basic type is the one containing just one element (the set is a singleton). 

The only inhabitant of the Unit type is the singleton unit (also represented as ()) and 
it is usually associated with operations whose return type is non-usable (e.g., because 
they acted via some side effect, like printing on the screen).  This is consistent with a 
mapping of the input (whatever that is) to the same, inscrutable output (the unit). 

Languages like Java and C have a similar concept with the void type which, however, 
holds some differences with Unit. For example, while we can pass the unit as the 
argument of operations, we cannot obtain nor pass a void: as the name says, it 
represents emptiness and one cannot define other types using void subcomponents. 
This discrepancy with Unit becomes visible, e.g., in Java generics, which required the 
introduction of the Void type of which null (instead of void) is the only inhabitant.
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Boolean type
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Booleans denote the type of logical values and usually include: 

• values: the two values of truth, true and false;  

• operations: the main logical operations, such as conjunction (&), disjunction (|), 
negation (!), equality (==), exclusive or (^), etc.  

Where present (e.g., ANSI C does not have one such a type), its values are denotable, 
expressible, and storable. Interestingly, while one would assume one bit would suffice to 
store booleans, the actual memory representation depends on the language hardware 
model, the architecture’s basic addressable unit, and other alignment requirements.  

For example, in Rust the variables of type bool require one byte. In (the) Java (Virtual 
Machine) bools require 2 bytes (8 as header, 1 for the value, and 7 of padding).
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Character type
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Characters denote all characters from a given (and defined at the language level) 
set of symbols and usually include: 

• values: a set of character codes, e.g., two common sets are ASCII and UNICODE; 

• operations: highly dependent on the language; we usually find equality (==), 
comparisons (<,>). 

The values are denotable, expressible, and storable and, usually, in-memory 
representation consists of one byte (ASCII) or two bytes (UNICODE).
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Integer type
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Integers denote some range of whole numbers and usually include: 

• values: a finite subset of integers, normally fixed at the time of definition of the 
language and, depending on the storage byte-size for the representation , 
ranging  for signed (two-complement representation) and 

 for unsigned ones. Some languages have built-in support for 
integers of arbitrary length; 

• operations: equality (==), comparisons (<,>), and the main arithmetic 
operations (+, -, *, /, %). 

The values are denotable, expressible, and storable.

r
[2r−1,2r−1 − 1]

[0,2r − 1]
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Real type
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Reals denote some range of real numbers and usually include: 

• values: a finite subset of reals, normally fixed at the time of definition of the language. Mainly 
stored either via a fixed-point or floating-point representation. Both represent reals 
separating their integers and decimals.  

• Fixed point numbers reserve specific bits for the integers and the decimals. Using a -byte 
signed format, with  out of  bits for decimals we range  with numbers 
at a constant distance of . 

• Floating point numbers use the format , where  is the sign (omitted when 
unsigned),  is the number (mantissa),  the base, and  is the exponent that places the 
float. The IEEE 754 format defines two formats, both with , but with single (8-byte) 
and double (11-byte) precision/exponent. 

• operations: equality (==), comparisons (<,>) and the main arithmetic operations (+, -, *, /, %). 
The values are denotable, expressible, and storable.

n
f n [−2n−1/2f,2n−1/2f]

1/2f

s ⋅ m ⋅ be s
m b e

b = 2
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Enumeration types
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An enumeration type consists of a finite set of constants, each characterised by its own name. 
C, Rust, and Java (and other languages) provide all the same syntax, e.g.,  

enum RogueOne { Jyn, Cassian, Chirrut, K2SO, Bodhi, Baze }  
which introduces a new type named RogueOne consisting of a set of 6 elements, each marked by its 
own name. The operations available on enums consist of comparisons and a mechanism to obtain all 
values or pass from one to the next. From a pragmatic point of view, enums have two benefits: 1) they 
help readability, since the names of the values constitute a clear form of self-documentation of the 
program and 2) they let the type checking verify that an enumeration-typed variable takes only the 
correct values. 
Not all languages integrate enums in a safe way, e.g., in C enum RogueOne { Jyn, … } is syntactic 
sugar for  

typedef int RogueOne; const RogueOne Jyn=0, Cassian=1, …; 
which equate integers to RogueOnes and prevents the distinction (and check the correctness) 
between them.
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Extensional vs Intensional types
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Integers (and Floats and Chars, …) and Enumerators have one important 
difference: The user specifies Enumerators in an extensional way, i.e., they list 
all possible inhabitants of that type. On the contrary, languages specify 
integers, floats, etc. intensionally, i.e., by means of predicates that define 
their membership over some domains of possible values (e.g., 32-bit integers, 
floating point numbers, UNICODE chars). 

The rationale is to use intensional definitions when we have a defined set of 
properties that identify only the inhabitants (valid values) of the type we are 
defining—with the pro of saving memory if the set of inhabitants is large and 
making the definition possible, in case of infinite sets. On the other hand, 
extensional definitions are useful when we do not have a clear set of rules that 
define the inhabitants of the type (e.g., an intentional way to define our 
RogueOne type could be through a rule like “the main 6 characters of the movie 
RogueOne”, or not !?)
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Composite types
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Enumeration types (à la C) surreptitiously introduced a new concept: we can 
create new types by composing the basic ones. 

In C enumerations, we made named sets of elements, which correspond to 
integers, but other structures are possible, among which the most basic are: 
arrays, sets, and pointers.
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Array types
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An array type denotes a collection of elements of some type, each indexed by at 
least one identifying key of some type (when 2 or more keys are involved, we talk 
about multidimensional arrays, e.g., matrices, datacubes, etc.).  

The most common notion of arrays assumes keys as non-negative integers within 
an interval (usually considering the  range for  elements, which 
simplifies its layout in memory) and let the user define the type of the elements. 
Other forms of arrays, usually called maps or associative arrays, let the user fix 
both the types of the keys and the elements.

[0, n] n + 1
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Array types
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Let us see the syntax of C, Java, and Rust for declaring a linear array of integers: 

      

Notice that that both C and Rust fix in the type declaration the size of the array (3), while Java 
abstracts from it in types and leaves the initialisation define the size of the array (more on this later). 

Most languages (also C, Java, and Rust) extend linear-array declarations to multi-key ones 

While C, Java, and Rust coalesce the concept of multidimensional arrays and array of array (on the 
latter), some languages (e.g., Pascal) keep these separated.

int x[3] int[] x  let x: [i32;3]
x[0] = 0

int x[3] = {0,0,0} x = new int[3] x = [0,0,0]

int x[10][10] int[][] x let x: [[i32;10];10]
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Array types
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The simplest operation on an array is the selection of an element by means of its index value. The most 
common notation (C, Java, Rust) is a[e] where a is the variable of type array and e is an expression. For 
multidimensional arrays, common syntaxes are a[ e ][ e ][ e ] or 
a[ e, e, e ] — the second is for languages that have both 
multidimensional and array of arrays. Other whole-array 
operations are e.g., assignment (=), comparisons (==,<,>), and 
arithmetic operations (performed pairwise). 

Since they know the index type of arrays, safe languages verify 
that every access to an element of the array really takes place 
within its “limits” (as it does not make sense to access non-
existing elements). Except some special cases, this check can 
only occur at runtime, which is where safe languages put 
appropriate checks at each access. Languages like Java and 
Rust guarantee this invariant at runtime (raising an error/
exception when violated) but C does not. While these checks 
slow (a bit) programs, they prevent buffer-overflow attacks.

HEY,20

HEYSUPE
RSECRET
PASSWD

H E Y S
U P E R
S E C R
E T P A
S S W D
X Y Z W
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Array types
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An array is usually stored in a contiguous portion of memory. 
For a one-dimensional array, the allocation follows the order 
of the indices. For multidimensional arrays, there are mainly 
two techniques, called row-major and column-major order.  

In row order, two elements are contiguous if they differ by 
one in the last index. In column order two elements are 
contiguous if they differ by one in the first index. The row 
order is a little more common than the column one, mainly 
because row-wise accesses are more common than column-
wise ones. Indeed, the locality principle of cache-miss loading 
favours row-wise sweeping algorithms on row-major orders 
and, vice versa, column-wise ones on column-major order.
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The number of dimensions and their intervals determine the shape of an array. An important 
aspect of a language definition is deciding whether and when to fix the shape of arrays. If the 
shape is fixed, we can either decide to define it at compilation (for compiled languages) or when 
we process it declaration (at runtime). Alternatively, we can have dynamic arrays whose shape is 
determined and change at runtime. 

If we decide to define the array at compilation time, also 
called “in static form”, we can store it in the stack frame 
of the block that carries its definition. In this case, we 
know the size needed to store the array (the offset 
between the first and the last items of the array), so, 
accessing an element of the array is similar to accessing 
variables of scalar types (save for some calculations 
needed, e.g., when accessing multidimensional arrays).

Array types

16

b ‘c’
c 3.14

a[0] 42
a[1] 101
a[2] 300
… …

…

Stack frame

Frame pointer
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If we decide to define the array when we process its 
declaration we will know its (fixed) shape at the 
moment when the control reaches the declaration of 
the array. An example of this is, e.g., if the size 
depends on the value of some variable.  
We can allocate the array in the stack frame of the 
block that carries its definition. However, since we 
know the size of the array only when we load the 
frame, we cannot safely preallocate space in the stack
—a wrong estimation would either waste memory or 
overlap with other static variables. To work around 
this problem, we use the heap and store in the frame 
the pointer to the beginning of that memory region. 
The descriptor of such an array goes by the name of 
dope vector, also used in the case of dynamic arrays 
(with some additional items in the dope vector to 
track its state).

Array types

17

b ‘c’
c 3.14
a[]

a[]_T 8
a[]_R 1
a[]_L 10
a[]_EC 5
a[]_ME 100
a[]_S 8

… …
…

A

Stack frame

Frame pointer

pointer to heap location 
type of elements

rank of array
length

extent in use (dynamic)
max extent (dynamic)

stride (dynamic)

dope vector
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Difference among C, Java, and Rust Array types
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Let us see the syntax of C, Java, and Rust for declaring a linear array of integers: 

      

In C, the declaration corresponds to the (static) allocation of the array, which we 
can use right away. 

In Java, we do not create the array when we declare its variable, but (like any non-
primitive Java type) the name is a reference to some “array of integer” value. E.g., 
at line 3, we assign to x a new array (in the heap). 

Also in Rust, the declaration only introduces the annotation of the name x, which 
we later bind to a (static) array (line 3). In this case, the type carries to the 
assignment to check the size constraint.

int x[3] int[] x  let x: [i32;3]
x[0] = 0

int x[3] = {0,0,0} x = new int[3] x = [0,0,0]
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Set types
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A set type denotes a flat, orderless data structure with unique values of the same type. 

The possible operations on sets include testing inclusion and common set 
manipulation operations: union, intersection, difference, and complement. 

An efficient way to represent a set is by means of a bit array of length equal to the 
cardinality of the base type. This array is called characteristic and, in it, the  bit 
indicates whether the  element of the base type (given a standard ordering) belongs 
in the set. This representation allows efficient execution of set operations (bitwise 
operations on the physical machine), however it is unsuitable for large subsets of basic 
types. To work around this problem, languages often either limit the types one can use 
as the base types of a set or they choose alternative representations, e.g., via hash 
tables, trading some speed off the sake of memory.

jth

jth
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Reference types
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A reference gives indirect access to some other value (e.g., possibly 
assigned to some variable), i.e., they refer some datum. The typical 
operations supported by references are creation, equality check, 
and dereferencing, i.e., accessing the referenced datum. 
References are particularly present in low-level languages, where 
they are used to pass/share large or mutable data. 
The most common implementation of references is that of the 
physical address, the pointer, of the datum in memory. However, 
pointers are just one instance of references, which can be e.g., 
indexes into arrays. References can refer references, as in data 
structures like trees and lists.  
References can introduce complexity in programs, since they ask 
the programmer to think in dynamic rather than static terms. 
Without due diligence or dedicated checks, references can become 
“wild” (uninitialised references whose access can cause 
unexpected behaviour) or “dangling” (when their datum has been 
deallocated and access can lead to unexpected behaviour, 
especially when compatible data overwrites the deallocated 
datum).
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Reference types
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Languages with a reference variable model rarely 
provide reference types, since every variable is 
always a reference (e.g., Java). 

Languages with modifiable variables provide 
references that let the programmer refer values 
without dereferencing them automatically. 
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Reference types
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In C, int* x specifies a reference (pointer) 
to a memory location (i.e., editable variables) 
that contain a value of type integer.  

Depending on the language (model), pointers 
can refer arbitrary locations or follow some 
constraints. E.g., Pascal requires pointers to 
refer values allocated on the heap, while C 
admits pointers that refer the stack or the 
global area. 
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Reference types
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Languages with references usually define a “canonical” pointer 
that inhabits the reference type (the same, for any associated 
type): null. Pointers should assume null until they are assigned. 
The usual way to initialise a pointer is to use a construct that 
allocates a value and returns a reference to that object, e.g., in C 
int* p; 
p = NULL; 
p = malloc (sizeof (int)); 
C does not specify an implicit initialisation, so it is not safe to 
assume that p is valid after its declaration. This is why it is 
usually suggested to explicitly initialise pointers to NULL if we 
foresee to allocate their memory later in the program. 
Then, we use malloc to allocate a specific amount of bytes (the 
sizeof (int), above) on the heap. Since malloc ignores 
types, it always returns a void pointer (*void), indicating that 
it refers to a region of memory whose type is unknown.
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Reference types
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Languages with references usually provide some 
variable referencing operator, i.e., to refer the 
memory location of variables. E.g., & in C 
float pi = 3.1415; 
float* p = NULL; 
p = &pi; 
The pointer p points to the location that 
contains the variable pi.  
Contrarily to malloc, variable referencing lets 
pointers refer locations on the stack.
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Reference types

25

Language with references usually also provide a 
dereferencing operator, e.g., * in C 
float pi = 3.1415; 
float* p = NULL; 
p = &pi; 
*p = *p + 1; 
where we assign the value 4.1415 to pi by dereferencing 
p both in the left and right side of the assignment. The 
dereferencing on the left let us read the content of the 
location referenced by p (the content of the variable pi), 
while the dereferencing on the right let us write on the  
location referenced by p (the one corresponding to pi). 

Note that the assignment does not modify the value of p, 
since it is always used in its dereferenced form. 
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Reference types
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Language with references can incur in implicit 
deallocation, e.g., (in C) 
int* p = malloc (sizeof (int)); 
*p = 5; 
p = null; 
we can create an unaccessible memory region, since we 
destroyed the only pointer to reach it. 

This “unreleased” pieces of memory can grow over time 
(as long as the program runs) and can incur in a 
phenomenon called “memory leak”. The problem of 
recovering these portions of memory has been subject 
to studies in different directions, from garbage 
collectors (e.g., Java) to type systems that prevent this 
kind of behaviours (e.g., Rust).
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Reference types
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Languages with references usually provide an explicit 
deallocation operator to release the memory 
referenced by a pointer. C provides the free operator 
int* p = malloc (sizeof (int)); 
*p = 5; 
free( p ); 
p = NULL; 

As in the case of uninitialised pointers, it is a good 
practice to NULLify a freed pointer.  Calling free on a 
pointer to the stack is a semantic error (it could lead 
to unpredictable behaviour).
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Reference types, Rust
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Rust is known for its safe treatment of pointers. The language provides 
the same operators as C, but puts in place static checks that allow the 
compiler to automatically free unused memory and prevent null 
references, dangling pointers, double frees, and pointer invalidation.

&T Allow one or more 
references to read T

&mut T
Allows a single 

reference to read and 
write T

*const T Unsafe read access to T

*mut T Unsafe read and write 
access to T

Box<T>
Heap-allocated T with a 
single owner that may 

read and write T 

Rc<T> Heap-allocated T with 
many readers

Arc<T>
Same as a Rc<T> but 

with safety guarantees 
for multi-threading



saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Power sets (towards product types)
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We assume the axiom of power set, i.e., 
 

We call the set P from the axiom above the 
power set of , also written . The right-to-
left direction of  implies that  is unique. 
Informally, we can see  as the set of all the 
subsets generated by any combination (also the 
empty one) of elements in .

∀S ∃P ∀R [ R ∈ P ⟺ ∀Q (Q ∈ R ⟹ Q ∈ S) ]

S ℘(S)
⟺ ℘(S)

℘(S)

S
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Ordered Pairs and Cartesian Products (towards product types)
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Let  and  and let  then  
 ,   

 ,  
 and  

 
  

Let  
called the Cartesian product of  and  

a ∈ A b ∈ B {{a}, {a, b}} ≜ (a, b)
{a} ⊆ A {b} ⊆ B
{a} ∈ ℘(A) {b} ∈ ℘(B)
{a, b} ⊆ A ∪ B {a, b} ∈ ℘(A ∪ B)
{{a}, {a, b}} ≜ (a, b) ⊂ ℘(A ∪ B)
(a, b) ∈ ℘( ℘(A ∪ B) )

{(a, b) |a ∈ A ∧ b ∈ B} ≜ S × T
S T

(a, b) ∈ A × B ⊂ ℘( ℘(S ∪ T) )
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Product Types
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Arrays, sets, and pointers are examples of composite types that “take as 
parameter” one type.  

When we combine two or more types in some fixed structure, we talk about 
product types. 

The name comes from the notion of “direct product” from mathematics, which is 
a generalisation of the Cartesian product    

The most common product types are pairs, tuples, records, and variants. 

By convention, the empty product is the Unit.

A × B ≜ {(a, b) |a ∈ A ∧ b ∈ B}
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Product Types • Pairs and Tuples

32

The simplest form of product type is the pair. Given two types  and , the pair 
type  denotes the set of all possible pairs (all the possible combinations) 
of the values in  and . The generalisation of pairs are tuples, which define the 
product of an arbitrary, finite number of types  as

A B
A × B

A B
T1, ⋯, Tn

n

∏
i=1

Ti = T1 × ⋯ × Tn

C and Java do not support directly pairs/tuples (one can implement them using 
records). Rust supports tuples with the syntax (T1, …, Tn), e.g., (i32, i32) is 
a pair of integers that can represent a coordinate system. 
Since tuples define types based on the order of its 
components, Rust follows that abstraction to access the 
components of a tuple value, e.g., coords.0

let coords: (i32,i32); 
coords=(89,97); 
let x = coords.0; 
let y = coords.1;
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Product Types • Records

33

Records interpret type products by replacing the positional adjustment of type 
components in tuples with their identification by means of (distinct) labels. 

Languages implement records in different ways, e.g., as structures, classes (Java 
17 introduced records). The elements of records are usually called fields.

struct Person { 
 char name[ 5 ]; 
 int age; 
};

record Person ( 
 char[] name, 
 int age 
){}

struct Person { 
 name: [ char; 5 ], 
 age: i32 
}

struct Person p = {  
  .name = { ‘E’, ‘v’, ‘a’ },  
  .age = 25 
}; 
char* name = p.name; 
int age = p.age;

Person p = new Person(  
    new char[]{ ‘e’, ‘v’, ‘a’ }, 
    25  
); 
char[] name = c.name(); 
int age = c.age();

let p: Person = Person {  
  name: [ ‘E’, ‘v’, ‘a’, ‘’, ‘’ ], 
  age: 25  
}; 
let name = c.name; 
let age = c.age; 

C Java Rust
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Product Types • Records

34

In records, the order of fields is generally significant and possibly followed in their memory 
representation, e.g., storing fields in contiguous locations, even if bitwise alignment may entail 
gaps between fields (e.g., in Person, names will always take 5 bytes). While in C this is not 
evident, Rust forces us to always “fill” the possible, missing value with some default ones (e.g., 
the empty char values for “Eva”). Since Java allocates objects in the heap, the problem does not 
present itself (indeed, we cannot specify, in the type, constraints on the size of name).
struct Person { 
 char name[ 5 ]; 
 int age; 
};

record Person ( 
 char[] name, 
 int age 
){}

struct Person { 
 name: [ char; 5 ], 
 age: i32 
}

struct Person p = {  
  .name = { ‘E’, ‘v’, ‘a’ },  
  .age = 25 
}; 
char* name = p.name; 
int age = p.age;

Person p = new Person(  
    new char[]{ ‘e’, ‘v’, ‘a’ }, 
    25  
); 
char[] name = c.name(); 
int age = c.age();

let p: Person = Person {  
  name: [ ‘E’, ‘v’, ‘a’, ‘’, ‘’ ], 
  age: 25  
}; 
let name = c.name; 
let age = c.age; 

C Java Rust
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Product Types • Pattern Matching

35

While product types produce new data types, there is a powerful programming construct 
that helps consuming them in a structured way: pattern matching.  

Pattern matching checks and locates specific elements against some pattern, e.g., in Rust

let x: i32 = 2; 
let isEven = match x%2 { 
  1 => true, 
  _ => false 
}

Safe implementations of pattern matching guarantee exhaustive matching, which help 
excluding common errors such as missing cases, impossible case, and redundant cases.
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struct Person { name: [ char; 3 ], age: i32 } 
struct PersonR { name: [ char; 3 ], age: [ char; 4 ] } 
let eva = Person{ name: ['E','v','a'], age: 25 }; 
let Person{ name, age } = eva; 
let evaR = PersonR{ name, age: match age { 
    1..=10 => [ 'K','i','d','!' ], 
    11..=20 => [ 'T','e','e','n' ], 
    _ => [ 'O', 'l', 'd', '!' ] 
}}

While product types produce new data types, there is a powerful programming 
construct that helps consuming them in a structured way: pattern matching. Pattern 
matching checks and locates specific elements against some pattern, e.g., in Rust
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record IntList( int n, IntList cons ){} 

IntList l = new IntList(  
1, new IntList(  
2, new IntList( 3, null )  

)  
);

Recursive types (as a concept) are useful to define data structures, such as Lists and 
Trees, that can dynamically grow. Product types are one way to express recursive types. 
Note, in the example below, in Java,  the usage of null to “close” the structure.
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Product types describe compositions of types. There might be cases where we 
want to denote that some variable can hold a disjoint union of types, e.g., 

 

 

 

So that, declaring that x is of type  means that x can either contain an 
integer or a char. The union of the tagged sets ( ) tells us that, even if 
there might be coinciding elements in the sets, we always know to what set 
those values originally belong in (e.g.,  and ). 

int = {−13,0,1,17,⋯} int* = {(−13,i), (0,i), (1,i), (17,i), ⋯}

char = {Y,1,Z,0,H, ⋯} char* = {(Y, c), (1,c), (Z, c), (0,c), (H, c), ⋯}

int ⊔ char = int* ∪ char* = {(−13,i), (Y, c), (0,i), (1,i), (1,c), (17,i), (Z, c), (0,c), (H, c), ⋯}

int ⊔ char
int* ∪ char*

(0,c) (0,i)
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Disjoint unions of types are usually called sum types (but also tagged unions, 
union types, choice type, variant types, and coproducts). 

A practical example of a sum type is that of an Address type, able to range over 
both PhysicalAddress and VirtualAddress types (e.g., a person’s postal 
address and their email). 

Some languages (especially, those inspired by Pascal and of the ML family) 
provide direct support to sum types via some dedicated operator, e.g., 

type Address = PhysicalAddress + VirtualAddress
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Besides having explicit operators in the language, we already saw a type that can 
help up define sets of values: enumerations. Languages like Java and Rust 
extended enumerations to capture the case of sum types. E.g., 

enum Address { 
    PhysicalAddress { long: i32, lat: i32 }, 
    VirtualAddress { email: [ char; 20 ] } 
} 
let a = Address::PhysicalAddress{ long: 15, lat: 25 }; 
match a { 
  Address::PhysicalAddress{ long, lat } => …, 
  Address::VirtualAddress{ email } => … 
}
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Besides using 
enumerations (as in 
Rust), Java recently 
introduced sealed 
classes, which define the 
only data structures 
permitted to appear as 
one of the possible 
types present in a given 
sum type.

sealed class Address permits  
Address.PhysicalAddress, Address.VirtualAddress { 
 static class PhysicalAddress extends Address { 
  int lon; int lat; 
  PhysicalAddress( int lon, int lat ) { … }  
 } 
 static class VirtualAddress extends Address { 
  char[] email; 
  VirtualAddress( char[] email ) { … } 
 } 
} 
Address a = new Address.PhysicalAddress( 15, 25 ); 
switch ( a ) { 
 case Address.PhysicalAddress p -> …; 
 case Address.VirtualAddress v -> …; 
 default -> … 
}
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C has a notion of union of structures. C unions are a way 
to have the same memory location hold different types 
of data—e.g., an integer or a char—, where the memory 
is allocated according to the biggest structure—e.g.,  
that the size of char, in the previous example. 

However, the language does not discipline the way in 
which users interact with (the location of a) union 
variable—e.g., given a variable x of the union type in the 
example above, we can write an integer in it and then 
read it as a char, without any error/warnings raised by 
the compiler.

union Data { 
   int i; 
   char c; 
};  

union Data data; 
data.i = 10; 
data.c = 'A'; 

// data.i = 65
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Sums are an alternative to product types (no need for nulls) for recursive types.

IntList l = new IntList.Cons( 1, 
 new IntList.Cons( 2,  
  new IntList.Cons( 3, new IntList.End() ) ) );

sealed class IntList permits 
IntList.Cons, IntList.End { 

  static class Cons extends IntList { 
   int n; IntList cons; 
   Cons( int n, IntList cons ){…} 
  } 
  static class End extends IntList { 
   End(){} 
  } 
}
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Given a sequence of sets , we call the set  a 
relation on the Cartesian product  when  relates the elements 

, i.e., when, for some  , .  

When  we say that  is a binary relation. Given  and  if 
 we usually also write . Conventionally, with , we call 

the elements of  in  the domain of  (  ) and the elements of  
 in  the range of  (  )

S1, …, Sn ℝ ⊆ S1 × ⋯ × Sn
S1 × ⋯ × Sn ℝ

s1 ∈ S1, ⋯, sn ∈ Sn s1, ⋯, sn (s1, ⋯, sn) ∈ ℝ

ℝ ⊆ S × T ℝ s ∈ S t ∈ T
(s, t) ∈ ℝ s ℝ t ℝ ⊆ S × T

S ℝ ℝ dom(ℝ) ⊆ S
T ℝ ℝ ran(ℝ) ⊆ T
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When  ,  ,  , and  then we call  a partial function.  

When  is a partial function, we usually adopt the notation  
(alternative to  and ) and we call  the argument of  and  the 
value of  for . We also say that  maps  into  and we adopt an alternative 
(mapping) notation  

When  we can  a total function. Unless specified differently, 
when talking about functions, we intend total ones.

ℝ ⊆ S × T s ℝ t s ℝ t′ t = t′ ℝ

ℝ ℝ(s) = t
(s, t) ∈ ℝ s ℝ t s ℝ t

ℝ s ℝ s t
ℝ ⊆ S × T ≡ ℝ : S → T

dom(ℝ) = S ℝ
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Given ,   and , by 
definition  , then  

Given the definition above, we have an alternative way of writing  as .  

We can do this because we consider the characteristic function  of a subset 
 of a set  such that  (with ) where  when 

 and  otherwise.  

 induces a family of functions each describing one subset  of , i.e., we have 
a function that defines a one-to-one correspondence (bijection) between each 
element in  and its characteristic function in .

f : S → T f ⊂ ℘( ℘(S ∪ T) ) f ∈ ℘( ℘( ℘(S ∪ T) ) )
℘(S × T) ≜ TS f ∈ TS

℘(S) 2s

χQ
Q S χQ : S → 2 2 ≜ {0,1} χQ(q) = 1
q ∈ Q ∩ S 0

χ Q S

℘(S) 2S
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High-level languages frequently support the definition of functions (or procedures), 
however, only a few denote the type of functions (i.e., give them a name in the 
language). E.g., if f is a function defined as R f( P p ){ … }, we can denote its type 
as P->R , where P is the type of the unary parameter accepted by f and R is the type of 
the value returned by f. The set-theoretic representation of P->R is . 

This naming discipline follows the polyadicity of functions, e.g., a function of shape  

R f( P1 p1, …, Pn pn ){ … } has type P1->…->Pn->R or  

The values of a function type are denotable in all languages, but only some (so called, 
“functional” languages) make them expressible (or storable). The main operation 
allowed on a function type value is the application, i.e., the invocation of a function on 
some arguments (actual parameters).

RP

RP1...Pn
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Product, Sum, and Function 
types recall the existence of 
some algebra—a discipline 
that defines the rules for 
manipulating (type) symbols
—of types, therefore defined 
“algebraic (data) types”. 

Type systems can make use 
of the properties of this 
algebra to express and check 
properties of programs.

inspired to Burget, Joel. “The Algebra (and Calculus!) of Algebraic Data Types.” Codewords.recurse.com.

Types Algebra Inhabitants

Void 0 the empty type/symbol

Unit 1 the singleton-value type

Bool, Char n

A + B a + b 
0 + a = a + 0 = a The sum of the inhabitants of A and B 

A x B a x b 
a x b x 1 = a x b The product of all inhabitants of A and B

A -> B The combinations of B given A, e.g.,  
Unit -> Bool (2^1) and Bool -> Unit (1^2)ba

Unit -> Bool (A) Unit
unit

(B) Bool f1 true
f2 false

Bool -> Unit (A) Bool
true false

(B) Unit f1 unit unit

Bool -> Bool (A) Bool
true false

(B) Bool
f1 true true
f2 true false
f3 false true
f4
 false false
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One of the main questions we can ask about types of a program is  

“when are two types equal?” 

which underpins some of the correctness tests of type checking.  

Answering questions on equality does not have a single interpretation, as it might depend 
on the context from where we are checking equality.  

For example, let P be a type defined as a subset of integers and f a function that can sum 
any two integers. From the perspective of f, we can consider P as equivalent to integers, 
since we know the function can work on a superset of the values in T. Conversely, if f 
accepted only values of T, we cannot safely assume integer parameters as equal to T as, e.g., 
the body of the function might consider some invariant from T, invalidated by the integers.
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Given a set , we call the set  a binary relation on  when  is a subset of the Cartesian 
product of  by itself, i.e., . Given two elements  we say they are in 
the relation, denoted , if . Binary relations have different of properties: 

• Reflexive: for any ,  ; 

• Symmetric: for any  and ,  ; 

• Antisymmetric: for any  and   implies  ; 

• Transitive: for any , , and   implies  

When  is reflexive and transitive, we call  a preorder. When  is a symmetric preorder, 
we call it an equivalence. When  is an antisymmetric preorder we call it a partial order.

S ℝ S ℝ
S ℝ ⊆ S × S {s1, s2} ⊆ S

s1 ℝ s2 (s1, s2) ∈ ℝ

s (s, s) ∈ ℝ

s1 s2 {(s1, s2), (s2, s1)} ⊆ ℝ

s1 s2 {(s1, s2), (s2, s1)} ⊆ ℝ s1 = s2

s1 s2 s3 {(s1, s2), (s2, s3)} ⊆ ℝ (s1, s3) ∈ ℝ

ℝ ℝ ℝ
ℝ
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In type systems that consider a nominal notion of type equivalence each new type 
definition introduces a new name, different from any existing one.  

Let  be a function that, given a type T, it gives us its associated name 
, then . 

Hence although the types Dollar = int and Euro = int are functionally 
indistinguishable to e.g., a function that takes one or the other as parameter, in a 
nominal system they are not equivalent. Although quite simple, the idea behind 
nominal system is the one most adherent to the programmers intention: e.g., if the 
programmer used types to distinguish between Dollars and Euros, there might be 
some invariants (e.g., their denominations) not captured a the level of types that 
the programmer rely upon in the body of functions.

name(T) = n
n T1 NTE T2 ⟺ name(T1) = name(T2)
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While nominal type-checking is usually performed statically, we know that 
type-checks can also happen at runtime (the main case being that of 
interpreted languages).  

A popular way of performing type 
checking at runtime is via the so 
called duck typing method, which 
works by checking if a given value 
supports the operators expected 
by the program.

sum( p ){ return p.x + p.y } 
loc( p ){ return p.x % p.y % p.z } 
c = { x: 15, y: 25, z: 63 } 
s = { x: 64 , y: 17 } 
sum( c ) // 40 
sum( s ) // 81 
loc( c ) // 15 
loc( s ) // Error: s has no field 'z'
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Duck typing introduced an alternative to nominal type equivalence: as long as we cannot observe 
structural differences between values, we can consider them of the same type.  

In general, this interpretation takes the name of structural type equivalence and we can also 
perform it statically. However, since we do not know in advance what paths values will take in the 
program, we need to perform more conservative checks than the “operational” ones seen for 
duck typing: we test types for equivalence by comparing all their operations, structures, and 
subelements.  

Of course, this makes the definition of structural equivalence more involved, e.g., 

struct Ta{f1 : Ta1, ⋯, fn : Tan} STE struct Tb{f1 : Tb1, ⋯, fn : Tbn} ⟺ ∀i ∈ [1,n], Tai STE Tbi

(Ta1, ⋯, Tan) STE (Tb1, ⋯, Tbn) ⟺ ∀i ∈ [1,n], Tai STE Tbi
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Besides embodying a tight notion of equivalence, nominal typing has several other benefits: 

• a direct link for the runtime to e.g., print, marshal, and check type coercion (spoiler); 

• an intuitive denotation of recursive types—types whose definition refers the type itself like 
lists and trees (e.g., a List of Lists or even mutually recursive ones, e.g., Trees of Lists of 
Trees); 

• checking subtyping (spoiler) is a(n almost trivial) direct check of the nominal, declared 
subtype relations among the named types. 

These advantages decreed the “success” of nominal type systems, present in many mainstream 
programming languages, e.g., Java and Rust. C also has a prominently nominal type system, 
although the typedef declaration allows users to equate different types with coinciding aliases 
(this feature is usually regarded as being unsafe, e.g., recall the Dollars vs Euros example).

IntList := (int × IntList) + Unit ListIntList := (ListInt × ListIntList) + Unit vs
μt . ((μt′ . (int × t′ ) + Unit) × t) + Unit
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The example for duck typing showed that we can correctly use a structure 
containing the fields x, y, and z in a function sum that just asks for values with 
the x and y fields. This means that sometimes we can use a weakened version 
of equivalence and still obtain correct program. This weakened form of 
equivalence is usually called type compatibility. 

Formally, since equivalence is a symmetric preorder, it subsumes 
compatibility, which is a preorder (reflexive and transitive), but not the other 
way around (not all compatible types are equivalent).
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The compatibility relation varies among languages. Some common interpretations of 
compatibility (besides equivalence) are, let T and S be two types: 

• the values of S are a subset of the values of T, e.g., intervals; 

• the values of S are a subset of canonically-correspondent values of T. This is typical of types 
like, e.g., float and int types, where any int n has a canonical corresponded float n.0; 

• the values of S are a subset of arbitrary-correspondent values of T. Here, we drop the 
requirement of canonicity from the previous point and assume the presence of some 
arbitrary transformation that converts any value in S to a value of T, e.g., we can make int 
and float compatible by converting floats (e.g., via rounding) into ints; 

• all operations on the values of T are also possible on the values of S. This is the example 
shown for duck typing and the principle behind some notion of subtyping (spoiler);
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The last three points on alternative notions of type compatibility assume the existence of some type 
conversion mechanism, able to bridge the differences between values of different types. Also in this 
case, languages adopt two ways (frequently mixed) of performing these conversions: 

We call type coercion the implicit application of some canonical/arbitrary type conversion. An example is 
e.g., a sum function that accepts floats and, if we pass to it integers, the compiler/interpreter inserts 
the necessary conversions implicitly, without reporting a compatibility error. In both cases, conversions 
are either syntactic, when the types share the same representation in memory (this is the case, e.g., of 
intervals, where no conversion applies) or happen via some canonical/arbitrary conversion, which 
transforms the memory representation of a value of some type into a value of another—e.g., integers 
into floats (canonical) and vice versa (arbitrary). 

We call type casting the explicit annotation in the language of a type (and value) conversion, which 
applies some user-defined conversion procedure. Type casting has also a documentation value, making 
type conversions statically explicit. As an example of type casting, C and Java adopt a minimalistic syntax 
S s = ( S ) t while Rust provide a more verbose one let s: S = t as S .
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The type checker of a language verifies that a program respects the rules imposed by the type 
system (in particular, compatibility). To perform its checks, the type checker must determine 
the type of the expressions present in the program, using the information on types that the 
programmer has inserted in the program. 

Concretely, the type checker determines the type of expressions by visiting the parse tree of 
the program, starting from its leaves (variables and constants whose type is known), it descend 
to the root and calculates the type of the expressions from the information accumulated along 
its path (e.g., the type system could establish that + is an operator which, applied to two 
expressions of type int results into an expression of type int). 

Knowing that the type checker can infer some information from a reduced amount of type 
annotations, languages can spare the programmer the task of annotating all expressions. Type 
inference is the process of attributing types to expressions, omitting explicit type annotations.
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Sometimes, the inference algorithm cannot directly infer the type of some expression, but it rather 
needs to keep its type “open”, proceed with other parts of the program, and “return” on that expression 
later on—of course, if it collected all the available information and it cannot still fix the type of the 
considered expression, the algorithm “gives up” and report to the user the need for more information. 

Technically, keeping the type of the expression “open” means assigns to the latter a type variable, 
which, proceeding with the exploration of the parse trees, it enriches with constraints (e.g., we might 
meet a + operation applied on it, which limits the range of possible types to only those that support it). 
The procedure that performs this check on the constraints is a renowned resolution strategy from logic 
programming known as the unification algorithm. 

C does not provide relevant support for type inference. Java and Rust provide simple forms of it. 
Languages of the ML family, based on the Hindley-Milner type system [1,2], provide more complete type 
inference support.

[1] Hindley, J. Roger (1969). "The Principal Type-Scheme of an Object in Combinatory Logic". Transactions of the American Mathematical Society. 146: 29–6

[2] Milner, Robin (1978). "A Theory of Type Polymorphism in Programming". Journal of Computer and System Sciences. 17 (3): 348–374.


