
saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Introduction to types

1

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

A bit of history

2

The term type systems (or type theory) refers to a broad field of study in logic,
mathematics, and philosophy. Researchers first formalised type systems in this
sense in the early 1900s as ways of avoiding the logical paradoxes, such as
Russell’s paradox, that threatened the foundations of mathematics.

Doxiadis, Apostolos, and Christos Papadimitriou. Logicomix: An epic search for truth. Bloomsbury Publishing USA, 2015.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

A bit of history

3

The term type systems (or type theory) refers to a broad field of study in logic,
mathematics, and philosophy. Researchers first formalised type systems in this
sense in the early 1900s as ways of avoiding the logical paradoxes, such as
Russell’s paradox, that threatened the foundations of mathematics.

Doxiadis, Apostolos, and Christos Papadimitriou. Logicomix: An epic search for truth. Bloomsbury Publishing USA, 2015.

Let R = {x |x ∉ x}
then R ∈ R ⟺ R ∉ R

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

A bit of history

4

The term type systems (or type theory) refers to a broad field of study in logic,
mathematics, and philosophy. Researchers first formalised type systems in this
sense in the early 1900s as ways of avoiding the logical paradoxes, such as
Russell’s paradox, that threatened the foundations of mathematics.

Let R = {x |x ∉ x}
then R ∈ R ⟺ R ∉ R
Let Set ⊢ x, R = {x |x ∉ x} ⟹ Set(Set) ⊢ R ∧ R ∉ R
Let Set(Set) ⊢ x, R = {x |x ∉ x} ⟹ Set(Set(Set)) ⊢ R ∧ R ∉ R
. . .

type of

Russel’s intuition on the introduction
of types: set inclusion is conditional
to types.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

A bit of history

5

During the twentieth century, types have become standard tools in logic,
especially in proof theory, and have permeated the language of philosophy and
science.

In computer science, there are two major research branches on type systems:
the more practical one concerns applications to programming languages; the
more abstract one focuses on connections with varieties of logic. Both
branches use similar concepts, notations, and techniques, but with some
important differences in orientation, e.g., abstract research usually concerns
systems in which every well-typed computation is guaranteed to terminate,
whereas most practical applications sacrifice this property for the sake of
features like recursive definitions.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

A bit of history

6

A plausible definition of type system in computer science is:

A tractable syntactic method for proving the absence
of certain program behaviours by classifying clauses
according to the types of values they compute.

An important element in the above definition is its emphasis on classification of
terms—syntactic clauses—according to the properties of the values that they will
compute when executed.

A type system can be regarded as calculating a kind of static approximation to
the runtime behaviours of the terms in a program.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Types of data

7

Looking at the more practical side of types, we can interpret them as

collections of homogenous and actually-present values

Hence, a type is a collection of values, e.g., integers. The adjective
homogeneous, somewhat informal, suggests that such values must share some
structural properties, which makes them all similar to each other.

The actually-present part of the interpretation above speaks to the practical
side of calling and manipulating values that can be presented (written, named)
in a finite way. For example, the real numbers are not actually presentable,
because there are real numbers with infinite decimal expansion, which cannot
be obtained by means of any algorithm. Hence, their approximations in
programming languages (e.g., real and float) are their representable subset.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Types of data • Support to conceptual organisation

8

Types can help discipline the conceptual organisation of programs.

Indeed, types let programmers express the difference among the entities that
form the solution to a given problem. For example, a hotel reservation program
likely contains concepts such as customers, dates, prices, rooms, etc. The
programmer can define a type for each of these concepts. Using types helps to
logically separate conceptually-different elements, such as a room and a price.
These might share similar implementations, e.g., they could both be integers,
but at the design level, they are considered separate types.

The use of distinct types is both a documentation and design tool: knowing the
type of a variable help us understanding what role that variable has in the
program. In this sense, types play a role similar to that of comments. However,
unlike comments, we can use types to reason on the programs they annotate,
e.g., by signalling the wrongful assignment of a variable declared as “Room” to
a value annotated as “Price” (see the “correctness” part, in the continuation).

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Types of data • Support to abstraction

9

A particular declination of support for conceptual organisation offered by types
is that of giving concrete backing to module systems in languages—where
modules package and tie together different software units.

The typical example of this kind of usage of types are interfaces, which
associate a type (e.g., Integer) to operations one can apply on it (e.g., +, -, %,
conversions). Indeed, we can view an interface as a kind of “summary" of the
facilities provided by the module or as part of a contract between
implementors and users.

Having software units in terms of types (modules with interfaces) leads to a
more abstract style of design. Since programmers can abstract from each unit’s
implementation, they can focus on designing software top-down: from the
contracts modules offer to each other to their independent implementation
(this also supports code restructuring and reuse).

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Types of data • Support for correctness

10

The most famous benefit of types is type-checking, i.e., the possibility to use types
to detect programming errors. For example, if we can discover an error before
running our program, we can fix it immediately, instead of discovering it while we
use the program (or worse, when our users do). Moreover, the error reports from
checking types are often more accurate and easier to act upon than analysing some
runtime stack-trace of the error (if any).

Simple type systems can prevent us from assigning the wrong value to a variable,
but more advanced ones can pinpoint, e.g., the mismatching between return types
of if-then-else clauses, which manifest as inconsistencies at the level of types.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Types of data • Support for correctness

11

Of course, the strength of the effect of types on program correctness depends on
the expressiveness of the type system and on the programming task in question.
For example, if we encode all our data structures as lists we will not get as much
help from the compiler as if we defined a different type for each of them.

Types also greatly help refactoring (the act of restructuring existing code). For
example, without the support of a (static) type system, if we change the definition
of a data structure we need to search and update all the code that involves said
data structure. With a (static) type system, once we changed the declaration of the
type of the structure, a passage of the type checker will point out all of those sites
where the type is used inconsistently and need fixing.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Types of data • Support for correctness (safety)

12

The support for correctness mentioned before speaks to the more general concept
of “language safety” — as in “well-typed programs do not go wrong” [1] or “safe
languages make it impossible to shoot yourself in the foot while programming” [2].

Broadly, safety refers to a language’s ability to guarantee the integrity of its
abstractions (and of higher-level abstractions introduced by the programmer using
the definitional facilities of the language). Safe languages are also called strongly-
typed ones (and unsafe ones weakly-typed).

For example, a language may provide arrays, with access and update operations, as
an abstraction of the underlying memory. Using this language, we might expect to
change an array only by using the update operation on it explicitly—and not, for
example, by writing past the end of some other data structure. Similarly, we can
expect to access lexically-scoped variables only from within their scopes.

[1] Milner, Robin. "A theory of type polymorphism in programming." Journal of computer and system sciences 17.3 (1978): 348-375.
[2] Pierce, Benjamin C. Types and programming languages. MIT press, 2002.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Types of data • Support for correctness (safety)

13

Notably, we can achieve language safety through type safety, but types are not
the only arrow in our quiver. For example, we can have runtime checks that trap
nonsensical operations at the moment the program attempts them and stop it or
raise an exception.

Conversely, unsafe languages provide “best effort” safety guarantees that help
programmers eliminate the most obvious slips but do not guarantee the
preservation of their abstractions.

In this perspective, we can consider “safe” a language like Java—where its
compiler (using its type system) can detect a plethora of problems but the
language deals with other classes of issues via runtime checks, e.g., by raising
exceptions on out-of-bound array access and null-pointer references—but not a
language like C since, e.g., it can let programs access arrays beyond their end.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Types of data • Support for implementation

14

Types can help improve the efficiency of programs. Indeed, designers introduced
the first type systems in the 1950s in languages such as Fortran to improve the
efficiency of numerical calculations by distinguishing between integer-valued
arithmetic expressions and real-valued ones; this allowed the compiler to use
different representations and generate optimised machine instructions.

In safe languages, types help improve efficiency by eliminating many of the
dynamic checks to guarantee safety. Modern high-performance compilers heavily
rely on information gathered by the type-checker to optimise code-generation.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Types of data • Other applications

15

Types have been used in computer and network security, e.g., typing lies at the
core of the security model of Java and of the JINI “plug and play” architecture for
network devices. Similarly, researchers have used type-checking algorithms in
program analysis tools other than compilers, e.g., alias and exception analysis.

Automated theorem provers use type systems—usually powerful ones, based on
dependent types—to represent logical propositions and proofs.

Also databases and data-management systems use types, e.g., in the form of
Document Type Definitions and other kinds of schemas (XML, JSON schemas) and
query languages that integrate these schema languages to type-check the
correctness of queries.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

16

A bit of history, timeline1.4 Capsule History 11

1870s origins of formal logic Frege (1879)

1900s formalization of mathematics Whitehead and Russell (1910)

1930s untyped lambda-calculus Church (1941)

1940s simply typed lambda-calculus Church (1940), Curry and Feys (1958)

1950s Fortran Backus (1981)

Algol-60 Naur et al. (1963)

1960s Automath project de Bruijn (1980)

Simula Birtwistle et al. (1979)

Curry-Howard correspondence Howard (1980)

Algol-68 (van Wijngaarden et al., 1975)

1970s Pascal Wirth (1971)

Martin-Löf type theory Martin-Löf (1973, 1982)

System F, Fω Girard (1972)

polymorphic lambda-calculus Reynolds (1974)

CLU Liskov et al. (1981)

polymorphic type inference Milner (1978), Damas and Milner (1982)

ML Gordon, Milner, and Wadsworth (1979)

intersection types Coppo and Dezani (1978)

Coppo, Dezani, and Sallé (1979), Pottinger (1980)

1980s NuPRL project Constable et al. (1986)

subtyping Reynolds (1980), Cardelli (1984), Mitchell (1984a)

ADTs as existential types Mitchell and Plotkin (1988)

calculus of constructions Coquand (1985), Coquand and Huet (1988)

linear logic Girard (1987) , Girard et al. (1989)

bounded quantification Cardelli and Wegner (1985)

Curien and Ghelli (1992), Cardelli et al. (1994)

Edinburgh Logical Framework Harper, Honsell, and Plotkin (1992)

Forsythe Reynolds (1988)

pure type systems Terlouw (1989), Berardi (1988), Barendregt (1991)

dependent types and modularity Burstall and Lampson (1984), MacQueen (1986)

Quest Cardelli (1991)

effect systems Gifford et al. (1987), Talpin and Jouvelot (1992)

row variables; extensible records Wand (1987), Rémy (1989)

Cardelli and Mitchell (1991)

1990s higher-order subtyping Cardelli (1990), Cardelli and Longo (1991)

typed intermediate languages Tarditi, Morrisett, et al. (1996)

object calculus Abadi and Cardelli (1996)

translucent types and modularity Harper and Lillibridge (1994), Leroy (1994)

typed assembly language Morrisett et al. (1998)

Figure 1-1: Capsule history of types in computer science and logic

1.4 Capsule History 11

1870s origins of formal logic Frege (1879)

1900s formalization of mathematics Whitehead and Russell (1910)

1930s untyped lambda-calculus Church (1941)

1940s simply typed lambda-calculus Church (1940), Curry and Feys (1958)

1950s Fortran Backus (1981)

Algol-60 Naur et al. (1963)

1960s Automath project de Bruijn (1980)

Simula Birtwistle et al. (1979)

Curry-Howard correspondence Howard (1980)

Algol-68 (van Wijngaarden et al., 1975)

1970s Pascal Wirth (1971)

Martin-Löf type theory Martin-Löf (1973, 1982)

System F, Fω Girard (1972)

polymorphic lambda-calculus Reynolds (1974)

CLU Liskov et al. (1981)

polymorphic type inference Milner (1978), Damas and Milner (1982)

ML Gordon, Milner, and Wadsworth (1979)

intersection types Coppo and Dezani (1978)

Coppo, Dezani, and Sallé (1979), Pottinger (1980)

1980s NuPRL project Constable et al. (1986)

subtyping Reynolds (1980), Cardelli (1984), Mitchell (1984a)

ADTs as existential types Mitchell and Plotkin (1988)

calculus of constructions Coquand (1985), Coquand and Huet (1988)

linear logic Girard (1987) , Girard et al. (1989)

bounded quantification Cardelli and Wegner (1985)

Curien and Ghelli (1992), Cardelli et al. (1994)

Edinburgh Logical Framework Harper, Honsell, and Plotkin (1992)

Forsythe Reynolds (1988)

pure type systems Terlouw (1989), Berardi (1988), Barendregt (1991)

dependent types and modularity Burstall and Lampson (1984), MacQueen (1986)

Quest Cardelli (1991)

effect systems Gifford et al. (1987), Talpin and Jouvelot (1992)

row variables; extensible records Wand (1987), Rémy (1989)

Cardelli and Mitchell (1991)

1990s higher-order subtyping Cardelli (1990), Cardelli and Longo (1991)

typed intermediate languages Tarditi, Morrisett, et al. (1996)

object calculus Abadi and Cardelli (1996)

translucent types and modularity Harper and Lillibridge (1994), Leroy (1994)

typed assembly language Morrisett et al. (1998)

Figure 1-1: Capsule history of types in computer science and logic

1.4 Capsule History 11

1870s origins of formal logic Frege (1879)

1900s formalization of mathematics Whitehead and Russell (1910)

1930s untyped lambda-calculus Church (1941)

1940s simply typed lambda-calculus Church (1940), Curry and Feys (1958)

1950s Fortran Backus (1981)

Algol-60 Naur et al. (1963)

1960s Automath project de Bruijn (1980)

Simula Birtwistle et al. (1979)

Curry-Howard correspondence Howard (1980)

Algol-68 (van Wijngaarden et al., 1975)

1970s Pascal Wirth (1971)

Martin-Löf type theory Martin-Löf (1973, 1982)

System F, Fω Girard (1972)

polymorphic lambda-calculus Reynolds (1974)

CLU Liskov et al. (1981)

polymorphic type inference Milner (1978), Damas and Milner (1982)

ML Gordon, Milner, and Wadsworth (1979)

intersection types Coppo and Dezani (1978)

Coppo, Dezani, and Sallé (1979), Pottinger (1980)

1980s NuPRL project Constable et al. (1986)

subtyping Reynolds (1980), Cardelli (1984), Mitchell (1984a)

ADTs as existential types Mitchell and Plotkin (1988)

calculus of constructions Coquand (1985), Coquand and Huet (1988)

linear logic Girard (1987) , Girard et al. (1989)

bounded quantification Cardelli and Wegner (1985)

Curien and Ghelli (1992), Cardelli et al. (1994)

Edinburgh Logical Framework Harper, Honsell, and Plotkin (1992)

Forsythe Reynolds (1988)

pure type systems Terlouw (1989), Berardi (1988), Barendregt (1991)

dependent types and modularity Burstall and Lampson (1984), MacQueen (1986)

Quest Cardelli (1991)

effect systems Gifford et al. (1987), Talpin and Jouvelot (1992)

row variables; extensible records Wand (1987), Rémy (1989)

Cardelli and Mitchell (1991)

1990s higher-order subtyping Cardelli (1990), Cardelli and Longo (1991)

typed intermediate languages Tarditi, Morrisett, et al. (1996)

object calculus Abadi and Cardelli (1996)

translucent types and modularity Harper and Lillibridge (1994), Leroy (1994)

typed assembly language Morrisett et al. (1998)

Figure 1-1: Capsule history of types in computer science and logic

1.4 Capsule History 11

1870s origins of formal logic Frege (1879)

1900s formalization of mathematics Whitehead and Russell (1910)

1930s untyped lambda-calculus Church (1941)

1940s simply typed lambda-calculus Church (1940), Curry and Feys (1958)

1950s Fortran Backus (1981)

Algol-60 Naur et al. (1963)

1960s Automath project de Bruijn (1980)

Simula Birtwistle et al. (1979)

Curry-Howard correspondence Howard (1980)

Algol-68 (van Wijngaarden et al., 1975)

1970s Pascal Wirth (1971)

Martin-Löf type theory Martin-Löf (1973, 1982)

System F, Fω Girard (1972)

polymorphic lambda-calculus Reynolds (1974)

CLU Liskov et al. (1981)

polymorphic type inference Milner (1978), Damas and Milner (1982)

ML Gordon, Milner, and Wadsworth (1979)

intersection types Coppo and Dezani (1978)

Coppo, Dezani, and Sallé (1979), Pottinger (1980)

1980s NuPRL project Constable et al. (1986)

subtyping Reynolds (1980), Cardelli (1984), Mitchell (1984a)

ADTs as existential types Mitchell and Plotkin (1988)

calculus of constructions Coquand (1985), Coquand and Huet (1988)

linear logic Girard (1987) , Girard et al. (1989)

bounded quantification Cardelli and Wegner (1985)

Curien and Ghelli (1992), Cardelli et al. (1994)

Edinburgh Logical Framework Harper, Honsell, and Plotkin (1992)

Forsythe Reynolds (1988)

pure type systems Terlouw (1989), Berardi (1988), Barendregt (1991)

dependent types and modularity Burstall and Lampson (1984), MacQueen (1986)

Quest Cardelli (1991)

effect systems Gifford et al. (1987), Talpin and Jouvelot (1992)

row variables; extensible records Wand (1987), Rémy (1989)

Cardelli and Mitchell (1991)

1990s higher-order subtyping Cardelli (1990), Cardelli and Longo (1991)

typed intermediate languages Tarditi, Morrisett, et al. (1996)

object calculus Abadi and Cardelli (1996)

translucent types and modularity Harper and Lillibridge (1994), Leroy (1994)

typed assembly language Morrisett et al. (1998)

Figure 1-1: Capsule history of types in computer science and logic

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Dynamic vs Static Typing

17

A language is “statically typed” if we can check types at compile time, on the
program text. Unless the runtime needs type-level information (we will see
some examples where we might want to preserve some of this information), the
compiler can remove it (and its related checks) from the generated code.

We talk about “dynamically typed” languages when type checking takes place
while the program is running. Specifically, dynamic type checking requires that
each value has a runtime descriptor that specifies its type and, at each
operation, the runtime checks that the program preforms operations only on
operands of the correct type.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Manifest vs Inferred typing

18

As seen, static vs dynamic typing relates to when a language (interpreter or
compiler) performs type-checking. Manifest vs inferred typing determines how
much information about types the programmer must put in their programs.
A manifest-typed language needs the programmer to type-annotate all variables
and operations. An inferred-typed language needs no annotations, since it equips
algorithms that deduce types from the context (declarations, operations).
While static vs dynamic typing leave little (useful) room to hybridisation, manifest vs
inferred typing is a spectrum determined by both ergonomics and algorithmic
factors. For example, reading the program x = 5 we (as programmers) can deduce
that the type of x might be integer. However, with more complex programs, we
could struggle to keep in mind all details and would rather benefit from the
additional documental information provided by types. At the other end, asking to
annotate everything can sensibly slow down programming. For these reasons,
balancing manifest vs inferred typing is not a clean-cut decision and it concerns
what support/effort a language offer to/requires from the programmers.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Dynamic vs Static Typing

19

When talking about the trade-offs of using dynamically- vs statically-typed
languages, frequently programmers make some confusion.
One example is the assumption that statically-typed languages are manifest-
typed and dynamically-typed are inferred. This is somewhat true for many
languages, but at different degrees. For example, Java is a language famous for its
verbose manifest, static typing, but new versions refined the inference
capabilities of its type checker to let users omit many type annotations.
Another assumption is that dynamically-typed languages are interpreted. This
comes from some folklore belief that languages determine how one executes
their programs. We can have compilers for dynamically-typed languages that
equip the operations performed by the source program with the necessary control
code to check types at runtime. The other direction is true too, e.g., Futamura
projections [1] use partial evaluation to obtain compilers from interpreters.

[1] Futamura, Yoshihiko. "Partial evaluation of computation process—an approach to a compiler-compiler." Higher-Order and Symbolic Computation 12.4 (1999): 381-391.

saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Dynamic vs Static Typing

20

Hence, asking to choose between a dynamically- vs statically-typed language does
not concern how much information programmers (must) put regarding types
(manifest vs inferred) or whether the programs is interpreted or compiled
(implementation). Instead, the main factors that can orient the choice between
either approach are correctness, performance, and program expressiveness.

As mentioned, static typing means finding errors before we run our program. This
eliminates the need for annotating terms and performing checks at runtime and
unlocks some optimisations, increasing performance. However, statically-typed
languages have a common “defect”: depending on the expressiveness of types and
the accuracy of the type-checking algorithm, they can reject programs that would
execute correctly (e.g., the code on the right). This is due to
the undecidability of programs (termination), which makes it
impossible to know what branches will or will not execute
and forces type-checking to consider all possible states of
computation.

int x
if(e) x=“A”
else x = 5

