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The term type systems (or type theory) refers to a broad field of study in logic, 
mathematics, and philosophy. Researchers first formalised type systems in this 
sense in the early 1900s as ways of avoiding the logical paradoxes, such as 
Russell’s paradox, that threatened the foundations of mathematics. 

Doxiadis, Apostolos, and Christos Papadimitriou. Logicomix: An epic search for truth. Bloomsbury Publishing USA, 2015.
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Let R = {x |x ∉ x}
then R ∈ R ⟺ R ∉ R
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The term type systems (or type theory) refers to a broad field of study in logic, 
mathematics, and philosophy. Researchers first formalised type systems in this 
sense in the early 1900s as ways of avoiding the logical paradoxes, such as 
Russell’s paradox, that threatened the foundations of mathematics. 

Let R = {x |x ∉ x}
then R ∈ R ⟺ R ∉ R
Let Set ⊢ x, R = {x |x ∉ x} ⟹ Set(Set) ⊢ R ∧ R ∉ R
Let Set(Set) ⊢ x, R = {x |x ∉ x} ⟹ Set(Set(Set)) ⊢ R ∧ R ∉ R
. . .

type of 

Russel’s intuition on the introduction 
of types: set inclusion is conditional 
to types.



saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

A bit of history

5

During the twentieth century, types have become standard tools in logic, 
especially in proof theory, and have permeated the language of philosophy and 
science.

In computer science, there are two major research branches on type systems: 
the more practical one concerns applications to programming languages; the 
more abstract one focuses on connections with varieties of logic. Both 
branches use similar concepts, notations, and techniques, but with some 
important differences in orientation, e.g., abstract research usually concerns 
systems in which every well-typed computation is guaranteed to terminate, 
whereas most practical applications sacrifice this property for the sake of 
features like recursive definitions. 
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A plausible definition of type system in computer science is: 

A tractable syntactic method for proving the absence 
of certain program behaviours by classifying clauses 
according to the types of values they compute. 

An important element in the above definition is its emphasis on classification of 
terms—syntactic clauses—according to the properties of the values that they will 
compute when executed.  

A type system can be regarded as calculating a kind of static approximation to 
the runtime behaviours of the terms in a program.



saverio.giallorenzo@gmail.com

Programming Languages B.Sc. Computer Science, UniBo

Types of data

7

Looking at the more practical side of types, we can interpret them as

collections of homogenous and actually-present values

Hence, a type is a collection of values, e.g., integers. The adjective 
homogeneous, somewhat informal, suggests that such values must share some 
structural properties, which makes them all similar to each other.  

The actually-present part of the interpretation above speaks to the practical 
side of calling and manipulating values that can be presented (written, named) 
in a finite way. For example, the real numbers are not actually presentable, 
because there are real numbers with infinite decimal expansion, which cannot 
be obtained by means of any algorithm. Hence, their approximations in 
programming languages (e.g., real and float) are their representable subset.
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Types can help discipline the conceptual organisation of programs.  

Indeed, types let programmers express the difference among the entities that 
form the solution to a given problem. For example, a hotel reservation program 
likely contains concepts such as customers, dates, prices, rooms, etc. The 
programmer can define a type for each of these concepts. Using types helps to 
logically separate conceptually-different elements, such as a room and a price. 
These might share similar implementations, e.g., they could both be integers, 
but at the design level, they are considered separate types. 

The use of distinct types is both a documentation and design tool: knowing the 
type of a variable help us understanding what role that variable has in the 
program. In this sense, types play a role similar to that of comments. However, 
unlike comments, we can use types to reason on the programs they annotate, 
e.g., by signalling the wrongful assignment of a variable declared as “Room” to 
a value annotated as “Price” (see the “correctness” part, in the continuation).
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A particular declination of support for conceptual organisation offered by types 
is that of giving concrete backing to module systems in languages—where 
modules package and tie together different software units. 

The typical example of this kind of usage of types are interfaces, which 
associate a type (e.g., Integer) to operations one can apply on it (e.g., +, -, %, 
conversions). Indeed, we can view an interface as a kind of “summary" of the 
facilities provided by the module or as part of a contract between 
implementors and users. 

Having software units in terms of types (modules with interfaces) leads to a 
more abstract style of design. Since programmers can abstract from each unit’s 
implementation, they can focus on designing software top-down: from the 
contracts modules offer to each other to their independent implementation 
(this also supports code restructuring and reuse).
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The most famous benefit of types is type-checking, i.e., the possibility to use types 
to detect programming errors. For example, if we can discover an error before 
running our program, we can fix it immediately, instead of discovering it while we 
use the program (or worse, when our users do). Moreover, the error reports from 
checking types are often more accurate and easier to act upon than analysing some 
runtime stack-trace of the error (if any). 

Simple type systems can prevent us from assigning the wrong value to a variable, 
but more advanced ones can pinpoint, e.g., the mismatching between return types 
of if-then-else clauses, which manifest as inconsistencies at the level of types. 
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Of course, the strength of the effect of types on program correctness depends on 
the expressiveness of the type system and on the programming task in question. 
For example, if we encode all our data structures as lists we will not get as much 
help from the compiler as if we defined a different type for each of them. 

Types also greatly help refactoring (the act of restructuring existing code). For 
example, without the support of a (static) type system, if we change the definition 
of a data structure we need to search and update all the code that involves said 
data structure. With a (static) type system, once we changed the declaration of the 
type of the structure, a passage of the type checker will point out all of those sites 
where the type is used inconsistently and need fixing.
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The support for correctness mentioned before speaks to the more general concept 
of “language safety” — as in “well-typed programs do not go wrong” [1] or “safe 
languages make it impossible to shoot yourself in the foot while programming” [2]. 

Broadly, safety refers to a language’s ability to guarantee the integrity of its 
abstractions (and of higher-level abstractions introduced by the programmer using 
the definitional facilities of the language). Safe languages are also called strongly-
typed ones (and unsafe ones weakly-typed). 

For example, a language may provide arrays, with access and update operations, as 
an abstraction of the underlying memory. Using this language, we might expect to  
change an array only by using the update operation on it explicitly—and not, for 
example, by writing past the end of some other data structure. Similarly, we can 
expect to access lexically-scoped variables only from within their scopes.

[1] Milner, Robin. "A theory of type polymorphism in programming." Journal of computer and system sciences 17.3 (1978): 348-375.
[2] Pierce, Benjamin C. Types and programming languages. MIT press, 2002.
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Notably, we can achieve language safety through type safety, but types are not 
the only arrow in our quiver. For example, we can have runtime checks that trap 
nonsensical operations at the moment the program attempts them and stop it or 
raise an exception. 

Conversely, unsafe languages provide “best effort” safety guarantees that help 
programmers eliminate the most obvious slips but do not guarantee the 
preservation of their abstractions. 

In this perspective, we can consider “safe” a language like Java—where its 
compiler (using its type system) can detect a plethora of problems but the 
language deals with other classes of issues via runtime checks, e.g., by raising 
exceptions on out-of-bound array access and null-pointer references—but not a 
language like C since, e.g., it can let programs access arrays beyond their end.
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Types can help improve the efficiency of programs. Indeed, designers introduced 
the first type systems in the 1950s in languages such as Fortran to improve the 
efficiency of numerical calculations by distinguishing between integer-valued 
arithmetic expressions and real-valued ones; this allowed the compiler to use 
different representations and generate optimised machine instructions.  

In safe languages, types help improve efficiency by eliminating many of the 
dynamic checks to guarantee safety. Modern high-performance compilers heavily 
rely on information gathered by the type-checker to optimise code-generation. 
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Types have been used in computer and network security, e.g., typing lies at the 
core of the security model of Java and of the JINI “plug and play” architecture for 
network devices. Similarly, researchers have used type-checking algorithms in 
program analysis tools other than compilers, e.g., alias and exception analysis.  

Automated theorem provers use type systems—usually powerful ones, based on 
dependent types—to represent logical propositions and proofs. 

Also databases and data-management systems use types, e.g., in the form of 
Document Type Definitions and other kinds of schemas (XML, JSON schemas) and 
query languages that integrate these schema languages to type-check the 
correctness of queries.
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A bit of history, timeline1.4 Capsule History 11

1870s origins of formal logic Frege (1879)

1900s formalization of mathematics Whitehead and Russell (1910)

1930s untyped lambda-calculus Church (1941)

1940s simply typed lambda-calculus Church (1940), Curry and Feys (1958)

1950s Fortran Backus (1981)

Algol-60 Naur et al. (1963)

1960s Automath project de Bruijn (1980)

Simula Birtwistle et al. (1979)

Curry-Howard correspondence Howard (1980)

Algol-68 (van Wijngaarden et al., 1975)

1970s Pascal Wirth (1971)

Martin-Löf type theory Martin-Löf (1973, 1982)

System F, Fω Girard (1972)

polymorphic lambda-calculus Reynolds (1974)

CLU Liskov et al. (1981)

polymorphic type inference Milner (1978), Damas and Milner (1982)

ML Gordon, Milner, and Wadsworth (1979)

intersection types Coppo and Dezani (1978)

Coppo, Dezani, and Sallé (1979), Pottinger (1980)

1980s NuPRL project Constable et al. (1986)

subtyping Reynolds (1980), Cardelli (1984), Mitchell (1984a)

ADTs as existential types Mitchell and Plotkin (1988)

calculus of constructions Coquand (1985), Coquand and Huet (1988)

linear logic Girard (1987) , Girard et al. (1989)

bounded quantification Cardelli and Wegner (1985)

Curien and Ghelli (1992), Cardelli et al. (1994)

Edinburgh Logical Framework Harper, Honsell, and Plotkin (1992)

Forsythe Reynolds (1988)

pure type systems Terlouw (1989), Berardi (1988), Barendregt (1991)

dependent types and modularity Burstall and Lampson (1984), MacQueen (1986)

Quest Cardelli (1991)

effect systems Gifford et al. (1987), Talpin and Jouvelot (1992)

row variables; extensible records Wand (1987), Rémy (1989)

Cardelli and Mitchell (1991)

1990s higher-order subtyping Cardelli (1990), Cardelli and Longo (1991)

typed intermediate languages Tarditi, Morrisett, et al. (1996)

object calculus Abadi and Cardelli (1996)

translucent types and modularity Harper and Lillibridge (1994), Leroy (1994)

typed assembly language Morrisett et al. (1998)
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A language is “statically typed” if we can check types at compile time, on the 
program text. Unless the runtime needs type-level information (we will see 
some examples where we might want to preserve some of this information), the 
compiler can remove it (and its related checks) from the generated code. 

We talk about “dynamically typed” languages when type checking takes place 
while the program is running. Specifically, dynamic type checking requires that 
each value has a runtime descriptor that specifies its type and, at each 
operation, the runtime checks that the program preforms operations only on 
operands of the correct type.
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As seen, static vs dynamic typing relates to when a language (interpreter or 
compiler) performs type-checking. Manifest vs inferred typing determines how 
much information about types the programmer must put in their programs. 
A manifest-typed language needs the programmer to type-annotate all variables 
and operations. An inferred-typed language needs no annotations, since it equips 
algorithms that deduce types from the context (declarations, operations). 
While static vs dynamic typing leave little (useful) room to hybridisation, manifest vs 
inferred typing is a spectrum determined by both ergonomics and algorithmic 
factors. For example, reading the program x = 5 we (as programmers) can deduce 
that the type of x might be integer. However, with more complex programs, we 
could struggle to keep in mind all details and would rather benefit from the 
additional documental information provided by types. At the other end, asking to 
annotate everything can sensibly slow down programming. For these reasons, 
balancing manifest vs inferred typing is not a clean-cut decision and it concerns 
what support/effort a language offer to/requires from the programmers.
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When talking about the trade-offs of using dynamically- vs statically-typed 
languages, frequently programmers make some confusion. 
One example is the assumption that statically-typed languages are manifest-
typed and dynamically-typed are inferred. This is somewhat true for many 
languages, but at different degrees. For example, Java is a language famous for its 
verbose manifest, static typing, but new versions refined the inference 
capabilities of its type checker to let users omit many type annotations. 
Another assumption is that dynamically-typed languages are interpreted. This 
comes from some folklore belief that languages determine how one executes 
their programs. We can have compilers for dynamically-typed languages that 
equip the operations performed by the source program with the necessary control 
code to check types at runtime. The other direction is true too, e.g., Futamura 
projections [1] use partial evaluation to obtain compilers from interpreters. 

[1] Futamura, Yoshihiko. "Partial evaluation of computation process—an approach to a compiler-compiler." Higher-Order and Symbolic Computation 12.4 (1999): 381-391.
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Hence, asking to choose between a dynamically- vs statically-typed language does 
not concern how much information programmers (must) put regarding types 
(manifest vs inferred) or whether the programs is interpreted or compiled 
(implementation). Instead, the main factors that can orient the choice between 
either approach are correctness, performance, and program expressiveness. 

As mentioned, static typing means finding errors before we run our program. This 
eliminates the need for annotating terms and performing checks at runtime and 
unlocks some optimisations, increasing performance. However, statically-typed 
languages have a common “defect”: depending on the expressiveness of types and 
the accuracy of the type-checking algorithm, they can reject programs that would 
execute correctly (e.g., the code on the right). This is due to 
the undecidability of programs (termination), which makes it 
impossible to know what branches will or will not execute 
and forces type-checking to consider all possible states of 
computation.

int x 
if(e) x=“A” 
else x = 5


