
Corso di Linguaggi di Programmazione
Prova scritta del 3 Febbraio 2026.

Tempo a disposizione: ore 2.
Svolgere gli esercizi 1–4, 5–6 e 7–8 su tre fogli separati.
Scrivere nome, cognome e matricola su ogni foglio consegnato.

1.FOGLIO 1 ▷ Descrivere le regole di semantica operazionale strutturata per l’espressione booleana b0 xor b1, secondo la
disciplina di valutazione esterna-sinistra (ES). Per espressioni di questo tipo, la valutazione ES e quella IS
(interna-sinistra) danno sempre lo stesso risultato? Motivare la risposta.

2.FOGLIO 1 ▷ Fornire una definizione regolare per la categoria sintattica Ide, dove un identificatore è una qualunque
sequenza su alfabeto A={a,...,z,A,...,Z}∪{0,1,...,9}∪{!,?} tale che comincia con una lettera minuscola,
contiene almeno una lettera maiuscola o una cifra, e termina con un simbolo non alfanumerico.

3.FOGLIO 1 ▷ Sia L1={a2nb2m |n,m≥0} e L1∩L2={a4nb2n |n≥0}, come è definito L2? A quali classi appartengono i
linguaggi L1,L2 e L1∩L2?

4.FOGLIO 1 ▷ Si consideri la grammatica G con simbolo iniziale S:

S → bAd
A → a |aBa

B → ϵ

(i) Quale linguaggio genera G? (ii) Costruire un parser di classe LL(1) per il linguaggio L(G).

5.FOGLIO 2 ▷ Si consideri il seguente frammento di codice, assumendo venga usata la regola di scope dinamico e si
permetta il passaggio di funzioni come parametro.

x := 1

procedure PrintX ()

print(x)

procedure ChangeAndCall (f)

x := 3

f()

procedure Store(f)

x := 5

g := f

return g

procedure Main ()

x := 10

h := Store(PrintX)

ChangeAndCall (h)

Main ()

Cosa viene stampato con shallow binding? Cosa viene stampato con deep binding? Motivare brevemente
le risposte.

6.FOGLIO 2 ▷ Si consideri il seguente frammento di codice scritto in un linguaggio imperativo che usa scope statico,
passaggio dei parametri per valore e pila dei RDA classica (senza ottimizzazioni automatiche e senza
trasformazioni della tail recursion)

function F(n, acc)

if n == 0 then

return acc

else

return F(n - 1, acc + n)

function G(n)

acc := 0

while n > 0 do

acc := acc + n

n := n - 1

return acc

Dal punto di vista semantico, le due funzioni sono sempre equivalenti? Se si, specificare sotto quali ipotesi
sul linguaggio. Se no, fornire un controesempio.

Dal punto di vista della gestione e dell’uso della memoria ci sono differenze fra le due funzioni? Discutere
brevemente.

7.FOGLIO 3 ▷ È dato il seguente frammento di codice in uno pseudolinguaggio con passaggio per riferimento e garbage
collection con contatore dei riferimenti; nel linguaggio, new alloca dinamicamente memoria nello heap.

type A = struct { A next; }

A f(){

A p = new A();

A q = new A();

p.next = q;

return p;

}

A g(A t){

A a = new A();

a.next = t;

A out = t;

return out;

}

A x = g(f());

x = g(x.next);

(i) Quanti oggetti di tipo A sono creati sullo heap in totale? (ii) Si rappresentino le configurazioni della
memoria ai punti di chiamata e assegnamento significativi (ad es., f, g, assegnamento di x), mostrando
uno schema degli oggetti in memoria e il loro valore del contatore, in modo da illustrare l’evoluzione della
memoria e il risultato finale ottenuto al termine del frammento.

8.FOGLIO 3 ▷ Viene dato uno pseudolinguaggio con tipaggio nominale, tipi base come String e Int, prodotto A x B e
somma A + B e passaggio per riferimento senza riferimenti nulli. Si codifichino i due tipi Team e Risorsa.
Team ha un nome, può avere una lista di sottoteam, di tipo Team, e può avere una lista di risorse allocate di
tipo Risorsa. Risorsa ha un nome e può avere una lista di assegnatari, di tipo Team. Oltre alla definizione
dei tipi, scrivere il codice che genera correttamente (anche per il type checker) i valori: Team “Backend”
che ha come sottoteam “API” e “Database”, dove “API” e “Database” utilizzano entrambi la stessa
Risorsa “Server”, di cui sono assegnatari. Per la creazione dei valori è possibile usare la notazione
Tipo v = new Tipo { a: new Tipo ..., ..., z: e } e v.a =

