CORSO DI LINGUAGGI DI PROGRAMMAZIONE
PROVA SCRITTA DEL 13 GENNAIO 2026.

Tempo a disposizione: ore 2.
Svolgere gli esercizi 1-4, 5-6 e 7-8 su tre fogli separati.
Scrivere nome, cognome e matricola su ogni foglio consegnato.

rocrio [l >

rocrio il >
rocrio >

rocrio [l >
rocrio Bl

rocrio Pl

1.

6.

Siano date due classi di linguaggi formali A e B, tali che AC B. Si chiede se le seguenti due affermazioni
siano vere. Giustificare la risposta. (Suggerimento: pensate alle classi dei linguaggi regolari, o liberi
deterministici, o liberi.)

(a) Se A & chiusa rispetto all’operazione di unione, allora anche B lo é.

(b) Se B ¢ chiusa rispetto all’operazione di unione, allora anche A lo .
1l linguaggio L={a"b™c*|n,m,k>0} & regolare? Giustificare la risposta.
Si consideri la grammatica G con simbolo iniziale S:

S — aSb|B|e
B — €|cB

(1) Quale linguaggio genera G? (i) G & ambigua? In caso affermativo, manipolarla per renderla non
ambigua. (#¢) Manipolare G per ottenerne una equivalente senza produzioni unitarie.

. Costruire un parser bottom-up per il linguaggio generato dalla grammatica G' del punto precedente.

. Si consideri il seguente frammento di codice assumendo che si abbia scope dinamico. Si dica cosa viene

stampato in caso di deep binding e in caso di shallow binding.

procedure P(f) {
var x := 10;

procedure R() {

var x := 20,
fO;
print(x);
3
RO;
print(x);
}
procedure Q() {
print(x);
}
procedure S() {
var x := 100;
P(Q);
print(x);
}
SO
print(x);

1l solito LLM di turno, a una domanda sulla differenza fra shallow biding e deep binding in caso di
scope statico, risponde come segue. “Frase perfetta da esame: con scope statico il problema del deep e
shallow binding non si pone, poiché le variabili non locali vengono risolte in base alla struttura lessicale
del programma e ambiente ¢ determinato al momento della definizione della funzione”. E’ davvero una
“frase perfetta da esame” o si tratta di un’allucinazione? Commentare brevemente. (Suggerimento: *non*
considerare I'esempio dell’esercizio precedente).



rocrio By »

rocrio By »

7. Uno pseudolinguaggio permette il dereferenziamento dei puntatori con 'operatore *, usato anche per

8.

indicare il tipo puntatore Ax, new A() alloca una nuova struttura di tipo A nello heap, riportandone il
puntatore e free( a ) libera la memoria rispetto a un puntatore. Il codice seguente presenta problemi nella
gestione dei riferimenti? Di che tipo? La tecnica “lock and keys” quali di questi problemi risolverebbe?
Motivare la risposta.

struct A { int x; A* next; 3};
Ax q;

A*x r = new A();

*r.x = 10;

q=r;

*r.next = new A();

*r.next.x = 20;

free( r );
*Qg.next.x
free( q );

30,

Assumendo uno pseudolinguaggio con tipi somma e prodotto e polimorfismo di sottotipo e universale,
caratterizzare la definizione dei tipi Maybe<T> e Result<T,E> — si puo usare la sintassi di definizione dei
tipi type A: ... con + per somma, x per prodotto, A <: B per indicare che A & un sottotipo di B e
<A,B,...> per i parametri di tipo. Il pseudolinguaggio supporta la definizione di operazioni con la sintassi
a( Input ): Ritorno. Considerando le definizioni di f, g e h riportate sotto, indicare se l'istruzione
h(f(g(‘a’))) viene valutata come corretta per un controllore dei tipi, introducendo, nel caso servano, i
necessari vincoli di sottotipaggio. Infine, indicare uno o pit costrutti linguistici necessari per permettere
I'uso dei tipi somma nelle implementazioni.

f( Maybe< Int > ) : Result< Char, NaN >
g( Char ) : Maybe< Int >
h( Result< Char, Error > ) : Char



