
Corso di Linguaggi di Programmazione
Prova scritta del 13 Gennaio 2026.

Tempo a disposizione: ore 2.
Svolgere gli esercizi 1–4, 5–6 e 7–8 su tre fogli separati.
Scrivere nome, cognome e matricola su ogni foglio consegnato.

1.FOGLIO 1 ▷ Siano date due classi di linguaggi formali A e B, tali che A⊆B. Si chiede se le seguenti due affermazioni
siano vere. Giustificare la risposta. (Suggerimento: pensate alle classi dei linguaggi regolari, o liberi
deterministici, o liberi.)

(a) Se A è chiusa rispetto all’operazione di unione, allora anche B lo è.

(b) Se B è chiusa rispetto all’operazione di unione, allora anche A lo è.

2.FOGLIO 1 ▷ Il linguaggio L={anbmck |n,m,k≥0} è regolare? Giustificare la risposta.

3.FOGLIO 1 ▷ Si consideri la grammatica G con simbolo iniziale S:

S → aSb |B |ϵ
B → ϵ |cB

(i) Quale linguaggio genera G? (ii) G è ambigua? In caso affermativo, manipolarla per renderla non
ambigua. (iii) Manipolare G per ottenerne una equivalente senza produzioni unitarie.

4.FOGLIO 1 ▷ Costruire un parser bottom-up per il linguaggio generato dalla grammatica G del punto precedente.

5.FOGLIO 2 ▷ Si consideri il seguente frammento di codice assumendo che si abbia scope dinamico. Si dica cosa viene
stampato in caso di deep binding e in caso di shallow binding.

var x := 1;

procedure P(f) {

var x := 10;

procedure R() {

var x := 20;

f();

print(x);

}

R();

print(x);

}

procedure Q() {

print(x);

}

procedure S() {

var x := 100;

P(Q);

print(x);

}

S();

print(x);

6.FOGLIO 2 ▷ Il solito LLM di turno, a una domanda sulla differenza fra shallow biding e deep binding in caso di
scope statico, risponde come segue. “Frase perfetta da esame: con scope statico il problema del deep e
shallow binding non si pone, poiché le variabili non locali vengono risolte in base alla struttura lessicale
del programma e l’ambiente è determinato al momento della definizione della funzione”. E’ davvero una
“frase perfetta da esame” o si tratta di un’allucinazione? Commentare brevemente. (Suggerimento: *non*
considerare l’esempio dell’esercizio precedente).

7.FOGLIO 3 ▷ Uno pseudolinguaggio permette il dereferenziamento dei puntatori con l’operatore *, usato anche per
indicare il tipo puntatore A*, new A() alloca una nuova struttura di tipo A nello heap, riportandone il
puntatore e free(a) libera la memoria rispetto a un puntatore. Il codice seguente presenta problemi nella
gestione dei riferimenti? Di che tipo? La tecnica “lock and keys” quali di questi problemi risolverebbe?
Motivare la risposta.

struct A { int x; A* next; };

A* q;

A* r = new A();

*r.x = 10;

q = r;

*r.next = new A();

*r.next.x = 20;

free(r);

*q.next.x = 30;

free(q);

8.FOGLIO 3 ▷ Assumendo uno pseudolinguaggio con tipi somma e prodotto e polimorfismo di sottotipo e universale,
caratterizzare la definizione dei tipi Maybe<T> e Result<T,E> – si può usare la sintassi di definizione dei
tipi type A: ... con + per somma, x per prodotto, A <: B per indicare che A è un sottotipo di B e
<A,B,...> per i parametri di tipo. Il pseudolinguaggio supporta la definizione di operazioni con la sintassi
a(Input): Ritorno. Considerando le definizioni di f, g e h riportate sotto, indicare se l’istruzione
h(f(g(‘a’))) viene valutata come corretta per un controllore dei tipi, introducendo, nel caso servano, i
necessari vincoli di sottotipaggio. Infine, indicare uno o più costrutti linguistici necessari per permettere
l’uso dei tipi somma nelle implementazioni.

f(Maybe< Int >) : Result< Char, NaN >

g(Char) : Maybe< Int >

h(Result< Char, Error >) : Char

