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A renowned (and measurable) network phenomenon is 
the small-world effect.


Informally, we have a small-world effect when we can 
find shorter-than-expected distances between pairs of 
nodes. 


The typical example to illustrate a small-world effect is 
Milgram’s experiment, where people were asked to get 
a letter from an initial holder to a distant target person 
by passing it from acquaintance to acquaintance 
through their social network. The letters that made it to 
the target did so in a remarkably small number of 
steps. 
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Figure 7 (a) A network with a power-law degree distribution, where the size of nodes rep-
resents the number of neighbors; (b) its degree distribution; and (c) the degree distribution
replotted on double logarithmic scales.
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Figure 8 Random rewiring processes, where p is the proportion of rewired edges.

themselves as peripheral in their social boundaries or what consequences are expected
at the collective level, which deserves scholarly attention for future research.

Barabási and Albert (1999) provided a plausible explanation for the edge-formation
mechanism that leads to power-law degree distributions but failed to explain the high
transitivity that is commonly observed in social networks. In fact, it is not di!cult
to generate highly transitive networks. For example, consider the network depicted
in Figure 8a. In this network every node has exactly the same number of neighbors:
four. Such a network is called a regular network. Notice that this network is highly tran-
sitive because two of the four neighbors of every node are connected and so are the
other two. However, a regular network is not a good representation of real-world net-
works. First, all nodes in a regular network have the same number of neighbors, and the
degree distribution is uniform, which is unlikely in real-world networks. Second and
more important, a regular network is much “larger” than empirical networks, which
are characterized by “small worlds.” To solve these problems,Watts and Strogatz (1998)
proposed an insightful mechanism of edge formation, namely, random rewiring.

"e Watts–Strogatz model, o#en called the small world network model, interpolates
between a regular network (Figure 8a) and a random network (Figure 8c) by rewiring
edges from their original positions to random positions. Starting with a regular
network, each of the existing edges in the network is chosen with probability p and
replaced between two nodes chosen uniformly at random. "is procedure is called
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themselves as peripheral in their social boundaries or what consequences are expected
at the collective level, which deserves scholarly attention for future research.

Barabási and Albert (1999) provided a plausible explanation for the edge-formation
mechanism that leads to power-law degree distributions but failed to explain the high
transitivity that is commonly observed in social networks. In fact, it is not di!cult
to generate highly transitive networks. For example, consider the network depicted
in Figure 8a. In this network every node has exactly the same number of neighbors:
four. Such a network is called a regular network. Notice that this network is highly tran-
sitive because two of the four neighbors of every node are connected and so are the
other two. However, a regular network is not a good representation of real-world net-
works. First, all nodes in a regular network have the same number of neighbors, and the
degree distribution is uniform, which is unlikely in real-world networks. Second and
more important, a regular network is much “larger” than empirical networks, which
are characterized by “small worlds.” To solve these problems,Watts and Strogatz (1998)
proposed an insightful mechanism of edge formation, namely, random rewiring.

"e Watts–Strogatz model, o#en called the small world network model, interpolates
between a regular network (Figure 8a) and a random network (Figure 8c) by rewiring
edges from their original positions to random positions. Starting with a regular
network, each of the existing edges in the network is chosen with probability p and
replaced between two nodes chosen uniformly at random. "is procedure is called
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Mathematically, let  be the length of the shortest path 
through a network between nodes  and ; then, the 
mean distance  for a node  corresponds to 

 and the mean distance for the whole 

network corresponds to  (for 
single-component networks).


Simplistically—as we will see more accurate measures 
using random graphs—a family of networks shows small-
world effects when  (i.e., when  is directly 
proportional to  by a constant ).

dij
i j

ℓi i

ℓi =
∑j dij

n
ℓ =

∑i ℓi

n
=

∑ij dij

n2

ℓ ∝ log n ℓ
log n k
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themselves as peripheral in their social boundaries or what consequences are expected
at the collective level, which deserves scholarly attention for future research.

Barabási and Albert (1999) provided a plausible explanation for the edge-formation
mechanism that leads to power-law degree distributions but failed to explain the high
transitivity that is commonly observed in social networks. In fact, it is not di!cult
to generate highly transitive networks. For example, consider the network depicted
in Figure 8a. In this network every node has exactly the same number of neighbors:
four. Such a network is called a regular network. Notice that this network is highly tran-
sitive because two of the four neighbors of every node are connected and so are the
other two. However, a regular network is not a good representation of real-world net-
works. First, all nodes in a regular network have the same number of neighbors, and the
degree distribution is uniform, which is unlikely in real-world networks. Second and
more important, a regular network is much “larger” than empirical networks, which
are characterized by “small worlds.” To solve these problems,Watts and Strogatz (1998)
proposed an insightful mechanism of edge formation, namely, random rewiring.

"e Watts–Strogatz model, o#en called the small world network model, interpolates
between a regular network (Figure 8a) and a random network (Figure 8c) by rewiring
edges from their original positions to random positions. Starting with a regular
network, each of the existing edges in the network is chosen with probability p and
replaced between two nodes chosen uniformly at random. "is procedure is called
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themselves as peripheral in their social boundaries or what consequences are expected
at the collective level, which deserves scholarly attention for future research.

Barabási and Albert (1999) provided a plausible explanation for the edge-formation
mechanism that leads to power-law degree distributions but failed to explain the high
transitivity that is commonly observed in social networks. In fact, it is not di!cult
to generate highly transitive networks. For example, consider the network depicted
in Figure 8a. In this network every node has exactly the same number of neighbors:
four. Such a network is called a regular network. Notice that this network is highly tran-
sitive because two of the four neighbors of every node are connected and so are the
other two. However, a regular network is not a good representation of real-world net-
works. First, all nodes in a regular network have the same number of neighbors, and the
degree distribution is uniform, which is unlikely in real-world networks. Second and
more important, a regular network is much “larger” than empirical networks, which
are characterized by “small worlds.” To solve these problems,Watts and Strogatz (1998)
proposed an insightful mechanism of edge formation, namely, random rewiring.

"e Watts–Strogatz model, o#en called the small world network model, interpolates
between a regular network (Figure 8a) and a random network (Figure 8c) by rewiring
edges from their original positions to random positions. Starting with a regular
network, each of the existing edges in the network is chosen with probability p and
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themselves as peripheral in their social boundaries or what consequences are expected
at the collective level, which deserves scholarly attention for future research.

Barabási and Albert (1999) provided a plausible explanation for the edge-formation
mechanism that leads to power-law degree distributions but failed to explain the high
transitivity that is commonly observed in social networks. In fact, it is not di!cult
to generate highly transitive networks. For example, consider the network depicted
in Figure 8a. In this network every node has exactly the same number of neighbors:
four. Such a network is called a regular network. Notice that this network is highly tran-
sitive because two of the four neighbors of every node are connected and so are the
other two. However, a regular network is not a good representation of real-world net-
works. First, all nodes in a regular network have the same number of neighbors, and the
degree distribution is uniform, which is unlikely in real-world networks. Second and
more important, a regular network is much “larger” than empirical networks, which
are characterized by “small worlds.” To solve these problems,Watts and Strogatz (1998)
proposed an insightful mechanism of edge formation, namely, random rewiring.

"e Watts–Strogatz model, o#en called the small world network model, interpolates
between a regular network (Figure 8a) and a random network (Figure 8c) by rewiring
edges from their original positions to random positions. Starting with a regular
network, each of the existing edges in the network is chosen with probability p and
replaced between two nodes chosen uniformly at random. "is procedure is called
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themselves as peripheral in their social boundaries or what consequences are expected
at the collective level, which deserves scholarly attention for future research.

Barabási and Albert (1999) provided a plausible explanation for the edge-formation
mechanism that leads to power-law degree distributions but failed to explain the high
transitivity that is commonly observed in social networks. In fact, it is not di!cult
to generate highly transitive networks. For example, consider the network depicted
in Figure 8a. In this network every node has exactly the same number of neighbors:
four. Such a network is called a regular network. Notice that this network is highly tran-
sitive because two of the four neighbors of every node are connected and so are the
other two. However, a regular network is not a good representation of real-world net-
works. First, all nodes in a regular network have the same number of neighbors, and the
degree distribution is uniform, which is unlikely in real-world networks. Second and
more important, a regular network is much “larger” than empirical networks, which
are characterized by “small worlds.” To solve these problems,Watts and Strogatz (1998)
proposed an insightful mechanism of edge formation, namely, random rewiring.

"e Watts–Strogatz model, o#en called the small world network model, interpolates
between a regular network (Figure 8a) and a random network (Figure 8c) by rewiring
edges from their original positions to random positions. Starting with a regular
network, each of the existing edges in the network is chosen with probability p and
replaced between two nodes chosen uniformly at random. "is procedure is called
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N2

Properties of small-world networks include:


- many highly-clustered groups (e.g., cliques) where all 
nodes are densely connected


- hubs that serve as “mediators” to shorten the lengths 
between other edges


- these networks are particularly robust to random 
perturbations (e.g., deletion of a random node rarely 
causes a sensible change of )—thanks to the low 
hub-to-leaf ratio. Vice versa, rare/selective deletions of 
hubs dramatically increase 
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Reminder: the degree of a node corresponds to the number 
of edges attached to that node.


Consider an undirected network and let  be the fraction of 
nodes that have degree . E.g., in the network on the right 
we have:





That ratio is essentially the probability of a given node to 
have that degree.
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Figure 10.3: The degree distribution of the Internet. A histogram of the degree
distribution of the nodes of the Internet at the level of autonomous systems.

Thus we cannot tell the complete structure of a network from its degree distri-
bution alone. The degrees give us important information about a network, but
they don’t give us complete information.

It is often illuminating to make a plot of the degree distribution of a large
network as a function of k. Figure 10.3 shows a plot of pk for the Internet at
the level of autonomous systems. The figure reveals something interesting: For the Internet there are

no nodes of degree zero,
since a node is not consid-
ered part of the Internet un-
less it is connected to at least
one other.

most of the nodes in the network have low degree—one or two or three—but
there is a significant “tail” to the distribution, corresponding to nodes with
substantially higher degree. The plot cuts off at degree 20, but in fact the tail
goes much further than this. The highest degree node in the network has
degree 2407. Since there are, for this particular data set, a total of 19 956 nodes
in the network, that means that the most highly connected node is connected
to about 12% of all other nodes in the network. We call such a well-connected
node a hub.3 Hubs will play an important role in the developments of the

3We used the word hub in a different and more technical sense in Section 7.1.5 to describe nodes
in directed networks that point to many “authorities.” Both senses are common in the networks
literature, and in many cases the reader must deduce from the context which is being used. In
this book we will mostly use the word in the less technical sense introduced here, of a node with
unusually high degree. When we use it in the other sense of Section 7.1.5 we will say so explicitly.
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Let us take the degrees of (a portion) of the Internet and plot the 
degree distribution—bottom-left. The figure shows that most of 
the nodes in the network have a low degree. However, there exists 
a significant “tail” of nodes with substantially higher degree 
(indeed it reaches a degree of 2000+).
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Let us take the degrees of (a portion) of the Internet and plot the 
degree distribution—bottom-right. The figure shows that most of 
the nodes in the network have a low degree. However, there exists 
a significant “tail” of nodes with substantially higher degree 
(indeed it reaches a degree of 2000+).
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Figure 10.3: The degree distribution of the Internet. A histogram of the degree
distribution of the nodes of the Internet at the level of autonomous systems.

Thus we cannot tell the complete structure of a network from its degree distri-
bution alone. The degrees give us important information about a network, but
they don’t give us complete information.

It is often illuminating to make a plot of the degree distribution of a large
network as a function of k. Figure 10.3 shows a plot of pk for the Internet at
the level of autonomous systems. The figure reveals something interesting: For the Internet there are

no nodes of degree zero,
since a node is not consid-
ered part of the Internet un-
less it is connected to at least
one other.

most of the nodes in the network have low degree—one or two or three—but
there is a significant “tail” to the distribution, corresponding to nodes with
substantially higher degree. The plot cuts off at degree 20, but in fact the tail
goes much further than this. The highest degree node in the network has
degree 2407. Since there are, for this particular data set, a total of 19 956 nodes
in the network, that means that the most highly connected node is connected
to about 12% of all other nodes in the network. We call such a well-connected
node a hub.3 Hubs will play an important role in the developments of the

3We used the word hub in a different and more technical sense in Section 7.1.5 to describe nodes
in directed networks that point to many “authorities.” Both senses are common in the networks
literature, and in many cases the reader must deduce from the context which is being used. In
this book we will mostly use the word in the less technical sense introduced here, of a node with
unusually high degree. When we use it in the other sense of Section 7.1.5 we will say so explicitly.

315

Degree d

Fr
ac

tio
n 

 o
f n

od
es

 w
ith

 d
eg

re
e 

p d
d



saverio.giallorenzo@gmail.com

MA Digital Humanities and Digital Knowledge, UniBoWeb Science • Measures and Metrics, Networks

Power Laws and Scale-free Networks

8

10.3 | D����� �������������

0 5 10 15 20

Degree  k

0

0.2

0.4

F
ra

ct
io

n
 p

k o
f 

n
o

d
es

 w
it

h
 d

eg
re

e 
k

Figure 10.3: The degree distribution of the Internet. A histogram of the degree
distribution of the nodes of the Internet at the level of autonomous systems.

Thus we cannot tell the complete structure of a network from its degree distri-
bution alone. The degrees give us important information about a network, but
they don’t give us complete information.

It is often illuminating to make a plot of the degree distribution of a large
network as a function of k. Figure 10.3 shows a plot of pk for the Internet at
the level of autonomous systems. The figure reveals something interesting: For the Internet there are

no nodes of degree zero,
since a node is not consid-
ered part of the Internet un-
less it is connected to at least
one other.

most of the nodes in the network have low degree—one or two or three—but
there is a significant “tail” to the distribution, corresponding to nodes with
substantially higher degree. The plot cuts off at degree 20, but in fact the tail
goes much further than this. The highest degree node in the network has
degree 2407. Since there are, for this particular data set, a total of 19 956 nodes
in the network, that means that the most highly connected node is connected
to about 12% of all other nodes in the network. We call such a well-connected
node a hub.3 Hubs will play an important role in the developments of the

3We used the word hub in a different and more technical sense in Section 7.1.5 to describe nodes
in directed networks that point to many “authorities.” Both senses are common in the networks
literature, and in many cases the reader must deduce from the context which is being used. In
this book we will mostly use the word in the less technical sense introduced here, of a node with
unusually high degree. When we use it in the other sense of Section 7.1.5 we will say so explicitly.
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More specifically, when 
plotted in a log-log scale, 
power-law distributions 
tend to follow a straight-line 
behaviour
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Figure 10.6: Histogram of the degree distribution if the Internet, created using loga-
rithmic binning. In this histogram the widths of the bins are constant on a logarithmic
scale, meaning that on a linear scale each bin is wider by a constant factor than the
one before it. The counts in the bins are normalized by dividing by bin width to make
counts in different bins comparable.

one, so if we wish to plot the counts on the same axes, or otherwise compare
them directly, we should divide the number of samples in the larger bin by five.
More generally, we should divide sample counts by the width of their bins to
make counts in bins of different widths comparable.

We need not restrict ourselves to only two different sizes of bins. We could
use larger and larger bins as we go further out in the tail. We can even make
every bin a different size, each one a little larger than the one before it. One
commonly used version of this idea is called logarithmic binning. In this scheme,
each bin is made wider than its predecessor by a constant factor a. For instance,
if the first bin in a histogram covers the interval 1  k < 2 (meaning that all
nodes of degree 1 fall in this bin) and a ⇤ 2, then the second would cover the
interval 2  k < 4 (nodes of degrees 2 and 3), the third the interval 4  k < 8,
and so forth. In general the nth bin would cover the interval an�1  k < an

and have width an � an�1. The most common choice for a is a ⇤ 2, since larger
values tend to give bins that are too coarse while smaller ones give bins with
non-integer limits.

320

Log-log plotting

Fr
ac

tio
n 

 o
f n

od
es

 w
ith

 d
eg

re
e 

p d
d

Degree d



saverio.giallorenzo@gmail.com

MA Digital Humanities and Digital Knowledge, UniBoWeb Science • Measures and Metrics, Networks

Power Laws and Scale-free Networks

9

Distributions of this kind are described by the formula  
where  and  are constants that respectively modify the slope and 

normalise the curve of the distribution.


Taking the exponential of both sides of the formula, we have 
  (with ).


Since the distribution is dependent on a power (with 
exponent ) of the degree , it is called a 

“power law” distribution.

ln pd = − α ln d + c
α c

pd = Cd−α C = ec

α d
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Figure 10.6: Histogram of the degree distribution if the Internet, created using loga-
rithmic binning. In this histogram the widths of the bins are constant on a logarithmic
scale, meaning that on a linear scale each bin is wider by a constant factor than the
one before it. The counts in the bins are normalized by dividing by bin width to make
counts in different bins comparable.

one, so if we wish to plot the counts on the same axes, or otherwise compare
them directly, we should divide the number of samples in the larger bin by five.
More generally, we should divide sample counts by the width of their bins to
make counts in bins of different widths comparable.

We need not restrict ourselves to only two different sizes of bins. We could
use larger and larger bins as we go further out in the tail. We can even make
every bin a different size, each one a little larger than the one before it. One
commonly used version of this idea is called logarithmic binning. In this scheme,
each bin is made wider than its predecessor by a constant factor a. For instance,
if the first bin in a histogram covers the interval 1  k < 2 (meaning that all
nodes of degree 1 fall in this bin) and a ⇤ 2, then the second would cover the
interval 2  k < 4 (nodes of degrees 2 and 3), the third the interval 4  k < 8,
and so forth. In general the nth bin would cover the interval an�1  k < an

and have width an � an�1. The most common choice for a is a ⇤ 2, since larger
values tend to give bins that are too coarse while smaller ones give bins with
non-integer limits.
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Figure 10.3: The degree distribution of the Internet. A histogram of the degree
distribution of the nodes of the Internet at the level of autonomous systems.

Thus we cannot tell the complete structure of a network from its degree distri-
bution alone. The degrees give us important information about a network, but
they don’t give us complete information.

It is often illuminating to make a plot of the degree distribution of a large
network as a function of k. Figure 10.3 shows a plot of pk for the Internet at
the level of autonomous systems. The figure reveals something interesting: For the Internet there are

no nodes of degree zero,
since a node is not consid-
ered part of the Internet un-
less it is connected to at least
one other.

most of the nodes in the network have low degree—one or two or three—but
there is a significant “tail” to the distribution, corresponding to nodes with
substantially higher degree. The plot cuts off at degree 20, but in fact the tail
goes much further than this. The highest degree node in the network has
degree 2407. Since there are, for this particular data set, a total of 19 956 nodes
in the network, that means that the most highly connected node is connected
to about 12% of all other nodes in the network. We call such a well-connected
node a hub.3 Hubs will play an important role in the developments of the

3We used the word hub in a different and more technical sense in Section 7.1.5 to describe nodes
in directed networks that point to many “authorities.” Both senses are common in the networks
literature, and in many cases the reader must deduce from the context which is being used. In
this book we will mostly use the word in the less technical sense introduced here, of a node with
unusually high degree. When we use it in the other sense of Section 7.1.5 we will say so explicitly.
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Detecting power-laws by just visualising the distribution (particularly in log-log form) 
cannot be trusted. Indeed, in our example we see a “deceiving” non-monotonically 
decreasing (direct scale) and non-straight (log-log scale) distribution curve.T�� ��������� �� ����-����� ��������
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Figure 10.6: Histogram of the degree distribution if the Internet, created using loga-
rithmic binning. In this histogram the widths of the bins are constant on a logarithmic
scale, meaning that on a linear scale each bin is wider by a constant factor than the
one before it. The counts in the bins are normalized by dividing by bin width to make
counts in different bins comparable.

one, so if we wish to plot the counts on the same axes, or otherwise compare
them directly, we should divide the number of samples in the larger bin by five.
More generally, we should divide sample counts by the width of their bins to
make counts in bins of different widths comparable.

We need not restrict ourselves to only two different sizes of bins. We could
use larger and larger bins as we go further out in the tail. We can even make
every bin a different size, each one a little larger than the one before it. One
commonly used version of this idea is called logarithmic binning. In this scheme,
each bin is made wider than its predecessor by a constant factor a. For instance,
if the first bin in a histogram covers the interval 1  k < 2 (meaning that all
nodes of degree 1 fall in this bin) and a ⇤ 2, then the second would cover the
interval 2  k < 4 (nodes of degrees 2 and 3), the third the interval 4  k < 8,
and so forth. In general the nth bin would cover the interval an�1  k < an

and have width an � an�1. The most common choice for a is a ⇤ 2, since larger
values tend to give bins that are too coarse while smaller ones give bins with
non-integer limits.
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To detect power-law 
behaviours, we can use the 
cumulative distribution 
function, which is defined by 

the formula  , so 

that  is the fraction of nodes 
that have degree  or greater.

Pd =
∞

∑
d′￼=d

pd′￼

Pd
d

Power Laws and Scale-free Networks

11
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Figure 10.7: Cumulative distribution function for the degrees of nodes on the Internet.
For a distribution with a power-law tail, as is approximately the case for the degree
distribution of the Internet, the cumulative distribution function, Eq. (10.7), also follows
a power law, but with a slope 1 less than that of the original distribution.

this in Fig. 10.7 for the case of the Internet, and the (approximate) straight-line
form is clearly visible. Three more examples are shown in Fig. 10.8, for the
in- and out-degree distributions of the World Wide Web and for the in-degree
distribution of a citation network.

This approach has some advantages. In particular, the calculation of Pk
does not require us to bin the values of k as we do with a normal histogram.
Pk is perfectly well defined for any value of k and can be plotted just as a normal
function. When the bins in a degree histogram contain more than one value
of k—i.e., when their width is greater than 1—the binning of the data necessarily
throws away some information, eliminating, as it does, the distinction between
any two values that fall into the same bin. The cumulative distribution function,
on the other hand, preserves all of the information contained in the data,
because no bins are involved. The most obvious manifestation of this difference
is that the number of points in a plot like Fig. 10.5 or Fig. 10.6 is relatively small,
whereas in a cumulative distribution plot like Fig. 10.7 there are as many points
along the k (horizontal) axis as there are distinct values of k.

The cumulative distribution function is easy to calculate. We simply sort the
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Also here we are looking for a straight-line behaviour. 
However, while the curve lends itself to less-
statistically-biased visual interpretations, we can get a 
precise measure of how close our distribution 
approximates a power-law by calculating the value of .


Indeed, if  then 


 


so that  becomes the exponent determining the 

distribution ( on  ) as 

α

pd = Cd−α

Pd = C
∞

∑
d′￼=d

d′￼−α ≃ C∫
∞

d
d′￼−α ∂d′￼ =

C
α − 1

d−(α−1)

α
d
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Figure 10.7: Cumulative distribution function for the degrees of nodes on the Internet.
For a distribution with a power-law tail, as is approximately the case for the degree
distribution of the Internet, the cumulative distribution function, Eq. (10.7), also follows
a power law, but with a slope 1 less than that of the original distribution.

this in Fig. 10.7 for the case of the Internet, and the (approximate) straight-line
form is clearly visible. Three more examples are shown in Fig. 10.8, for the
in- and out-degree distributions of the World Wide Web and for the in-degree
distribution of a citation network.

This approach has some advantages. In particular, the calculation of Pk
does not require us to bin the values of k as we do with a normal histogram.
Pk is perfectly well defined for any value of k and can be plotted just as a normal
function. When the bins in a degree histogram contain more than one value
of k—i.e., when their width is greater than 1—the binning of the data necessarily
throws away some information, eliminating, as it does, the distinction between
any two values that fall into the same bin. The cumulative distribution function,
on the other hand, preserves all of the information contained in the data,
because no bins are involved. The most obvious manifestation of this difference
is that the number of points in a plot like Fig. 10.5 or Fig. 10.6 is relatively small,
whereas in a cumulative distribution plot like Fig. 10.7 there are as many points
along the k (horizontal) axis as there are distinct values of k.

The cumulative distribution function is easy to calculate. We simply sort the
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Also here we are looking for a straight-line 
behaviour. However, while the curve lends itself 
to less-statistically-biased visual interpretations, 
we can get a precise measure of how close our 
distribution approximates a power-law by 
calculating the value of .


Indeed, if  then 


 


so that  becomes the exponent determining the distribution (on ) as 


Empirically, in power-law distributions .

α

pd = Cd−α

Pd = C
∞

∑
d′￼=d

d′￼−α ≃ C∫
∞

d
d′￼−α ∂d′￼ =

C
α − 1

d−(α−1)

α d

2 ≤ α ≤ 3
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Figure 10.7: Cumulative distribution function for the degrees of nodes on the Internet.
For a distribution with a power-law tail, as is approximately the case for the degree
distribution of the Internet, the cumulative distribution function, Eq. (10.7), also follows
a power law, but with a slope 1 less than that of the original distribution.

this in Fig. 10.7 for the case of the Internet, and the (approximate) straight-line
form is clearly visible. Three more examples are shown in Fig. 10.8, for the
in- and out-degree distributions of the World Wide Web and for the in-degree
distribution of a citation network.

This approach has some advantages. In particular, the calculation of Pk
does not require us to bin the values of k as we do with a normal histogram.
Pk is perfectly well defined for any value of k and can be plotted just as a normal
function. When the bins in a degree histogram contain more than one value
of k—i.e., when their width is greater than 1—the binning of the data necessarily
throws away some information, eliminating, as it does, the distinction between
any two values that fall into the same bin. The cumulative distribution function,
on the other hand, preserves all of the information contained in the data,
because no bins are involved. The most obvious manifestation of this difference
is that the number of points in a plot like Fig. 10.5 or Fig. 10.6 is relatively small,
whereas in a cumulative distribution plot like Fig. 10.7 there are as many points
along the k (horizontal) axis as there are distinct values of k.

The cumulative distribution function is easy to calculate. We simply sort the
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Figure 10.7: Cumulative distribution function for the degrees of nodes on the Internet.
For a distribution with a power-law tail, as is approximately the case for the degree
distribution of the Internet, the cumulative distribution function, Eq. (10.7), also follows
a power law, but with a slope 1 less than that of the original distribution.

this in Fig. 10.7 for the case of the Internet, and the (approximate) straight-line
form is clearly visible. Three more examples are shown in Fig. 10.8, for the
in- and out-degree distributions of the World Wide Web and for the in-degree
distribution of a citation network.

This approach has some advantages. In particular, the calculation of Pk
does not require us to bin the values of k as we do with a normal histogram.
Pk is perfectly well defined for any value of k and can be plotted just as a normal
function. When the bins in a degree histogram contain more than one value
of k—i.e., when their width is greater than 1—the binning of the data necessarily
throws away some information, eliminating, as it does, the distinction between
any two values that fall into the same bin. The cumulative distribution function,
on the other hand, preserves all of the information contained in the data,
because no bins are involved. The most obvious manifestation of this difference
is that the number of points in a plot like Fig. 10.5 or Fig. 10.6 is relatively small,
whereas in a cumulative distribution plot like Fig. 10.7 there are as many points
along the k (horizontal) axis as there are distinct values of k.

The cumulative distribution function is easy to calculate. We simply sort the
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Networks whose degree distribution follows 
a power-law behaviour are usually called 
scale-free networks.


The reason for the name comes from the 
fact that power laws are scale-invariant, i.e., 
that scaling the argument, here , by a 
constant factor just causes a multiplication 
of the original power-law relation by that 
constant.


This is also why we look for straight-line 
behaviours in log-log plots, which reduce the 
“noise” derived from constant 
multiplications.
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Scale-free networks are highly robust networks that can 
survive the failure of a sensible number of their nodes.


E.g., if we removed nodes randomly from the Internet, the 
network would retain its characterising behaviours. If central 
hubs were to be removed (by choice or luck), we should 
repeat that operation many times to significantly change the 
behaviours (e.g., disrupt the connectivity) of the network.
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Figure 10.3: The degree distribution of the Internet. A histogram of the degree
distribution of the nodes of the Internet at the level of autonomous systems.

Thus we cannot tell the complete structure of a network from its degree distri-
bution alone. The degrees give us important information about a network, but
they don’t give us complete information.

It is often illuminating to make a plot of the degree distribution of a large
network as a function of k. Figure 10.3 shows a plot of pk for the Internet at
the level of autonomous systems. The figure reveals something interesting: For the Internet there are

no nodes of degree zero,
since a node is not consid-
ered part of the Internet un-
less it is connected to at least
one other.

most of the nodes in the network have low degree—one or two or three—but
there is a significant “tail” to the distribution, corresponding to nodes with
substantially higher degree. The plot cuts off at degree 20, but in fact the tail
goes much further than this. The highest degree node in the network has
degree 2407. Since there are, for this particular data set, a total of 19 956 nodes
in the network, that means that the most highly connected node is connected
to about 12% of all other nodes in the network. We call such a well-connected
node a hub.3 Hubs will play an important role in the developments of the

3We used the word hub in a different and more technical sense in Section 7.1.5 to describe nodes
in directed networks that point to many “authorities.” Both senses are common in the networks
literature, and in many cases the reader must deduce from the context which is being used. In
this book we will mostly use the word in the less technical sense introduced here, of a node with
unusually high degree. When we use it in the other sense of Section 7.1.5 we will say so explicitly.
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The degree is not the only measure we can study the 
distribution of.


Other examples are eigenvector centrality (and its 
variants), betweenness centrality, and closeness centrality.


Eigenvector centrality is an extended form of degree 
(centrality), which takes into account not only how many 
neighbours a node has, but also how central those 
neighbours themselves are.


Eigenvector centrality often has a right-skewed distribution 
(similar to that of the degree). E.g., looking at the 
cumulative distribution of eigenvector centralities for the 
nodes of the Internet we see the typical straight line on the 
logarithmic scales.
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Figure 10.10: Cumulative distribution functions for centralities of nodes on the In-
ternet. Both eigenvector centrality and betweenness appear to roughly follow a power
law, at least in the tail of the distribution.

this distribution is again roughly power-law in form. Again there are some
other networks that also have power-law betweenness distributions and others
still that have skewed but non-power-law distributions.

An exception to this pattern is the closeness centrality (Section 7.1.6), which
is the reciprocal of the mean shortest-path distance from a node to all other
reachable nodes. The values of the mean distance typically have quite a small
range—they are bounded above by the diameter of the network, which, as
discussed in Section 10.2, is typically of order log n, and bounded below12

by 1. This means in practice that the closeness centrality cannot have a broad
distribution or a long tail. In Fig. 10.11, for instance, we show a histogram of
closeness centrality values for our snapshot of the Internet, and the distribution
spans less than an order of magnitude from its minimum value of 0.137 to a
maximum of 0.434. There is no long tail to the distribution and it has quite a
complicated form with several peaks and dips.

12Technically, the lower bound is slightly less than 1. The mean distance from i to all other
nodes is `i ⇤ (1/n)Õi di j where di j is the shortest distance between i and j. Noting that dii ⇤ 0
and all other di j � 1, we then have `i � (n � 1)/n.
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Betweenness centrality also tends to assume the 
same distribution — e.g., on the right, the 
cumulative distribution of betweenness for the 
nodes of the Internet.
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Figure 10.10: Cumulative distribution functions for centralities of nodes on the In-
ternet. Both eigenvector centrality and betweenness appear to roughly follow a power
law, at least in the tail of the distribution.

this distribution is again roughly power-law in form. Again there are some
other networks that also have power-law betweenness distributions and others
still that have skewed but non-power-law distributions.

An exception to this pattern is the closeness centrality (Section 7.1.6), which
is the reciprocal of the mean shortest-path distance from a node to all other
reachable nodes. The values of the mean distance typically have quite a small
range—they are bounded above by the diameter of the network, which, as
discussed in Section 10.2, is typically of order log n, and bounded below12

by 1. This means in practice that the closeness centrality cannot have a broad
distribution or a long tail. In Fig. 10.11, for instance, we show a histogram of
closeness centrality values for our snapshot of the Internet, and the distribution
spans less than an order of magnitude from its minimum value of 0.137 to a
maximum of 0.434. There is no long tail to the distribution and it has quite a
complicated form with several peaks and dips.

12Technically, the lower bound is slightly less than 1. The mean distance from i to all other
nodes is `i ⇤ (1/n)Õi di j where di j is the shortest distance between i and j. Noting that dii ⇤ 0
and all other di j � 1, we then have `i � (n � 1)/n.
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is the reciprocal of the mean shortest-path distance from a node to all other
reachable nodes. The values of the mean distance typically have quite a small
range—they are bounded above by the diameter of the network, which, as
discussed in Section 10.2, is typically of order log n, and bounded below12

by 1. This means in practice that the closeness centrality cannot have a broad
distribution or a long tail. In Fig. 10.11, for instance, we show a histogram of
closeness centrality values for our snapshot of the Internet, and the distribution
spans less than an order of magnitude from its minimum value of 0.137 to a
maximum of 0.434. There is no long tail to the distribution and it has quite a
complicated form with several peaks and dips.

12Technically, the lower bound is slightly less than 1. The mean distance from i to all other
nodes is `i ⇤ (1/n)Õi di j where di j is the shortest distance between i and j. Noting that dii ⇤ 0
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Closeness centrality is an exception to that 
pattern. The measure is the reciprocal of the 
mean shortest-path distance from a node to 
all other reachable nodes. 

The values of the mean distance typically 
have a small range, as they are limited by the 
diameter of the network, which is typically 
between 1 and . 

Hence, closeness centrality cannot have a 
broad distribution or a long tail.

log n
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Figure 10.11: Histogram of closeness centralities of nodes on the Internet. Unlike
Fig. 10.10 this is a normal non-cumulative histogram showing the actual distribution of
closeness centralities. This distribution does not follow a power law.

10.6 C��������� ������������
In Section 7.3 we introduced the clustering coefficient, which is the average
probability that two neighbors of the same node are themselves neighbors.
The clustering coefficient quantifies the density of triangles in a network and
is of interest because in many cases it is found to have values sharply different
from what one would expect on the basis of chance. To see what we mean by
this, look again at Table 10.1 on page 305, which gives measured values of the
clustering coefficient for a variety of networks (in the column denoted C, which
gives values for the coefficient defined in Eq. (7.28)). Most of the values are
on the order of tens of percent—there is typically a probability between about
10% and 60% that two neighbors of a node will be neighbors themselves.

As we will see in Section 12.3, if we consider a network with a given degree
distribution in which connections between nodes are made at random, the
clustering coefficient takes the value

C ⇤
1
n

⇥
hk2i � hki

⇤2

hki3 , (10.25)

where hki and hk2i are the mean degree and mean-square degree in the net-
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The clustering coefficient quantifies the density of triads — i.e., strongly 
connected triangles of nodes — in a network.


Surprisingly, many large networks have a high clustering coefficient, i.e., there is 
typically a probability between about 10% and 60% that two neighbours of a 
node will be neighbours themselves.


For example, a study on a large network of collaborations among physicists 
revealed a high clustering coefficient (0.45), which points to some underlying (non-
random) pattern of selection of collaborators that gives rise to a high density of 
triangles.
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Besides the network-level clustering coefficient, we can also study the distribution 
of (node-level) local clustering coefficient (the fraction of pairs of neighbours of 
node i that are themselves neighbours):

Ci =
(number of pairs of neighbours of i that are connected )

(number of pairs of neighbours of i)

Interestingly, on average nodes with high degree 
tend to have low local clustering. E.g., looking at 
Internet nodes, their average local clustering 
coefficient and their degree , we notice an 
inverse relation. 

d
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which is the fraction of pairs of neighbors of node i that are themselves neigh-
bors. If we calculate the local clustering coefficient for all nodes in a network,
in many cases an interesting pattern emerges: we find that on average nodes of
higher degree tend to have lower local clustering [402,458].
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Figure 10.12: Local clustering as a func-
tion of degree on the Internet. A plot of
the measured mean local clustering coeffi-
cient of nodes on the Internet (at the level of
autonomous systems) as a function of node
degree.

Figure 10.12, for example, shows the average value of the local
clustering coefficient as a function of degree k on the Internet and
the decrease with k in this case is clear. It has been conjectured
that plots of this type take either the form Ci ⇠ k�0.75 [458] or the
form Ci ⇠ k�1 [402]. In this particular case neither of these con-
jectures matches the data very well, but for some other networks
they appear reasonable.

One possible explanation for the decrease in Ci is that, in
some networks at least, nodes tend to clump together into groups
or communities, with nodes being connected mostly to others
within their own group. (See Chapter 14 for a detailed discus-
sion of the phenomenon of community structure.) In a network
showing this kind of behavior, nodes that belong to small groups
are constrained to have low degree, because they have relatively
few fellow group members to connect to, while those in larger
groups can have higher degree. (They don’t have to have higher
degree, but they can.) At the same time, the local clustering co-
efficient of nodes in small groups will tend to be larger because
each group, being mostly detached from the rest of the network,
functions roughly as its own small network and, as discussed
earlier, smaller networks are expected to have higher clustering
(see Eq. (10.25) and the accompanying discussion). In a network
with many groups spanning a range of different sizes, therefore,
we would expect nodes of lower degree to have higher clustering
on average, as in Fig. 10.12.14

10.7 A���������� ������
Assortative mixing or homophily is the tendency of nodes to connect to others
that are like them in some way. We discussed assortative mixing in Section 7.7
and gave examples such as the high school friendships depicted in Figs. 7.12
and 7.13, where school students tend to associate more with others of the same

14An alternative proposal is that the behavior of the local clustering coefficient arises through
hierarchical structure in a network—that not only are there groups, but that the groups are divided
into smaller groups, and those into still smaller ones, and so on. See Refs. [144, 402, 443].
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Besides the network-level clustering coefficient, we can also study the distribution 
of (node-level) local clustering coefficient (the fraction of pairs of neighbours of 
node i that are themselves neighbours):

Ci =
(number of pairs of neighbours of i that are connected )

(number of pairs of neighbours of i)

An explanation of that phenomenon is that nodes tend to 
aggregate and connect internally within their “groups”.


Hence, in networks showing this behaviour, nodes that belong 
to small groups are constrained to have low degree but at the 
same time their local clustering coefficient tend to be larger 
because each group, being mostly detached from the rest of 
the network, boosts their internal clustering coefficient
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which is the fraction of pairs of neighbors of node i that are themselves neigh-
bors. If we calculate the local clustering coefficient for all nodes in a network,
in many cases an interesting pattern emerges: we find that on average nodes of
higher degree tend to have lower local clustering [402,458].
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Figure 10.12: Local clustering as a func-
tion of degree on the Internet. A plot of
the measured mean local clustering coeffi-
cient of nodes on the Internet (at the level of
autonomous systems) as a function of node
degree.

Figure 10.12, for example, shows the average value of the local
clustering coefficient as a function of degree k on the Internet and
the decrease with k in this case is clear. It has been conjectured
that plots of this type take either the form Ci ⇠ k�0.75 [458] or the
form Ci ⇠ k�1 [402]. In this particular case neither of these con-
jectures matches the data very well, but for some other networks
they appear reasonable.

One possible explanation for the decrease in Ci is that, in
some networks at least, nodes tend to clump together into groups
or communities, with nodes being connected mostly to others
within their own group. (See Chapter 14 for a detailed discus-
sion of the phenomenon of community structure.) In a network
showing this kind of behavior, nodes that belong to small groups
are constrained to have low degree, because they have relatively
few fellow group members to connect to, while those in larger
groups can have higher degree. (They don’t have to have higher
degree, but they can.) At the same time, the local clustering co-
efficient of nodes in small groups will tend to be larger because
each group, being mostly detached from the rest of the network,
functions roughly as its own small network and, as discussed
earlier, smaller networks are expected to have higher clustering
(see Eq. (10.25) and the accompanying discussion). In a network
with many groups spanning a range of different sizes, therefore,
we would expect nodes of lower degree to have higher clustering
on average, as in Fig. 10.12.14
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Assortative mixing or homophily is the tendency of nodes to connect to others
that are like them in some way. We discussed assortative mixing in Section 7.7
and gave examples such as the high school friendships depicted in Figs. 7.12
and 7.13, where school students tend to associate more with others of the same

14An alternative proposal is that the behavior of the local clustering coefficient arises through
hierarchical structure in a network—that not only are there groups, but that the groups are divided
into smaller groups, and those into still smaller ones, and so on. See Refs. [144, 402, 443].

335

d



saverio.giallorenzo@gmail.com

MA Digital Humanities and Digital Knowledge, UniBoWeb Science • Measures and Metrics, Networks

Cohesion

22

The term “cohesion” indicates the likelihood of nodes being connected to each 
other. Notably, cohesion (the measure) does not indicate social aggregation — 
e.g., in a “hate” network a high network cohesion implies less social cohesion.


The simplest measure of cohesion is density, i.e., the ratio between the number 
of ties in the network with respect to the total number of possible ties . 


While simple, density cohesion is not very useful as an absolute measure, e.g., in 
a 10-person network, a node is likely to have ties with all 9 others. On the 
contrary, in a 1000-person network it is much more unlikely that an actor has 
anything close to 999 ties with the rest of the members. 


To avoid the issue of comparing sensibly different networks over density alone, 
we can resort to a cohesion measure on the average degree of the network. This 
is obtained by calculating the average of the degrees (number of ties) of each 
node (i.e., the row sums of the adjacency matrix).

n(n − 1)/2
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When measuring cohesiveness, it can be useful to consider network subgroups, 
specifically, to think about cohesion as the number and size of components in a 
network. 


The simplest of these is the size of the main component: the bigger the main 
component (in terms of nodes), the greater the global cohesion of the network. 


When more than one component exist, we can look at the number of components 
in the network. If  is the number of components and  that of nodes, we can 
obtain the component ratio as , which has maximum value 1 
when every node is isolate and minimum 0 when there is just one component. 


Unfortunately, the component ratio is too-blunt of a measure as networks that 
vary in density and average degree may have the same component ratio.

c n
(c − 1)/(n − 1)
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Connectedness is a more sensitive measure of cohesion defined as the 
proportion of pairs of nodes that can reach each other by a path of any length — 
or, alternatively, the proportion of pairs of nodes that are located in the same 
component. 


The formula for connectedness in directed non-reflexive networks is





Where  is 1 when  and  are in the same component, 0 otherwise.


Inversi, we can define a cohesion measure, called fragmentation, as 1 minus 
connectedness, which gives the ratio of pairs of nodes that cannot reach each 
other by any means.

∑i≠j rij

n(n − 1)

rij i j
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The typical usage of connectedness or 
fragmentation is in evaluating changes to 
a network either in reality or as part of a 
what-if simulation. 


For example, if we are trying to prevent a 
terrorist organisation from coordinating 
attacks, we could figure out which key 
actors to arrest in order to maximally 
fragment the network. 


A computer algorithm could search 
through the space of combinations of 
actors to determine a good set whose 
removal would maximally increase 
fragmentation.

Comput Math Organiz Theor (2006) 12: 21–34 31

Fig. 7 Terrorist network compiled by Krebs (2002)

A run of the algorithm using F measure selects the three red nodes identified in red in Fig. 7
(nodes A, B and C). Removing these nodes yields a fragmentation measure of 0.59, and
breaks the graph into 7 components (including two large ones comprising the left and right
halves of the graph).

The second question we ask (KPP-Pos) is, given that we would like to diffuse certain
information, which actors would we want to be exposed to the information so as to potentially
reach all other actors quickly and surely? Let us assume that information that travels more
than two links tends to degrade or be viewed with suspicion. Hence we want the smallest set
of nodes that can reach all others within two links or less (i.e., we use the m-reach criterion
with m = 2). The algorithm finds that a set of just three nodes (the square nodes in Fig. 7,
labeled A, C and D) reaches 100% of the network.

6.2. Advice-seeking dataset

These data consist of advice-seeking ties among members of a global consulting company,
reported by Cross, Borgatti and Parker (2002). The data were collected on a 1 to 5 strength-
of-tie scale, but for this analysis we examine only the strongest ties (rated 5). A diagram is
shown in Fig. 8.

We begin with a KPP-Neg analysis, and seek a small set of nodes to remove so as to
disconnect the graph. As shown in the figure, when we request a set of two nodes using the
distance-weighted fragmentation criterion, the algorithm selects the set {HB, WD}, which
gives a DF score of 0.817 and a division into four components (including one isolate). A
search for a set of three nodes yields {HB, WD, BM} with a score of 0.843 and a division
into six components (including three isolates).

Turning now to a KPP-Pos analysis, we seek a small set of nodes that are well connected
to the entire network. To begin, we use the criterion of simple adjacency. Table 1 shows the

Springer
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A variation on connectedness, called compactness, weights the paths 
connecting nodes inversely by their length:





Essentially, we replaced  of connectedness with the reciprocal of the geodesic 
distance from  to  — with  when no path exists between  and . 


Intuitively, compactness considers network cohesion as a measure of how 
“easily” things can flow through it, accounting also for disconnected 
components — e.g., with compactness  1 nodes tend to be all connected and 
close (1-, 2-step paths).

∑i≠j d−1
ij

n(n − 1)

rij
i j d−1

ij = 0 i j

≈
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If ties are directed, we are often interested in 
the extent to which a tie from A to B is 
matched by one from B to A. 


A simple measure of reciprocity is to count 
the number of reciprocated ties and divide 
these by the total number of ties. 


A more refined measure is that of symmetric 
pairs, i.e., reciprocated ties together with the 
degenerate case where neither actors choose 
the other, that is, a reciprocated zero in the 
adjacency matrix.
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For many social relations we might expect that 
if A  B and B  C then A  C. 

When this is the case we say that the triad is 
transitive. E.g., friends of friends are friends. 

When networks have a high levels of 
transitivity, they assume a clustered structure. 

To measure transitivity in directed networks, we 
count, across all possible triads , , and , the 
proportion of triads for which ,  
and . Mathematically: 

ℛ ℛ ℛ

i j k
i ℛ j j ℛ k

i ℛ k ∑i,j,k Aij Ajk Aik

∑i,j,k Aij Ajk
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A declination of transitivity for undirected 
networks is the clustering coefficient, which 
captures the ratio between high- and low-
density areas in a network. 


Specifically, the most-used clustering 
coefficient is the weighted overall clustering 
coefficient, which, interestingly, 
mathematically corresponds to the formula for 
the transitivity coefficient of directed networks:

∑i,j,k Aij Ajk Aik

∑i,j,k Aij Ajk
Ci =

number of pairs of neighbours of i that are connected
number of pairs of neighbours of i ⇒



saverio.giallorenzo@gmail.com

MA Digital Humanities and Digital Knowledge, UniBoWeb Science • Measures and Metrics, Networks

Triad Census

30

Measuring transitivity involves counting the 
occurrences of at least two triadic configurations, 
which are labeled “transitive” and “intransitive”. 


One measure of transitivity is the number of transitive 
triads divided by the number of transitive plus 
intransitive triads.


However, there are many other triadic configurations 
which could be used to characterise a network. 

Transitive

Intransitive
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Specifically, for directed graphs we find 16 
possible configurations, labelled following 
the MAN convention:

- Mutual, i.e., dyads with reciprocated ties;

- Asymmetric, i.e., dyads with 

unreciprocated ties;

- Null, i.e., dyads with no tie;

Where the label of a triad corresponds to 
the number of Ms, As, and Ns of the triad, 
e.g., 003 is a triad that has no mutual 
dyads (0), no asymmetric dyads (0), and 
has three unrelated (null) nodes (3).

Variants stand for Downward, Upward, 
Cyclic, and Transitive

Heider’s balance theory maintains that particular configura-
tions of three persons tend toward balance and stability over
time, whereas others are imbalanced, stressful, and unstable
[3]. A number of theorists have developed variations of
balance theory, with transitivity representing one of the most
widely used extensions.

In our approach, we examine triads and their evolution over
time in an online social network in order to extract certain
macroscopic network properties and to make predictions about
the subsequent state of the network. Examining the growth
of social networks over time has emerged as a challenging
problem in the study of social networks. Parameters such as
the degree distribution, diameter, and the clustering coefficient
are typical metrics obtained in these analyses [5]–[11].

Research in this area can be primarily divided into multiple
categories [4]. In the first type, the arrival of new nodes
and models of node engagement are used as the basis for
analysis. Formally, this method is known as stream mining
[5]. In the second category of research, referred to as mining
static data, the primary focus is on obtaining the macroscopic
statistical properties of the network. In our studies, we focus
on microscopic evolution within local groups.

Leskovec et. al [5] had a detailed study on changes in
microscopic node behaviours. Their main focus was on node
arrival and the edge initiation process as well as edge des-
tination selection. They found that most edge formation is
local and proceeds in the transitivity direction of triangle
closure. They validated preferential attachment in the large
scale networks and modelled node arrival and edge formation
based on different statistical functions and triangle closure.
Most functions are based on degree, common friends and the
last time of activities. In another study by Golder and Yardi
[12] a network’s tendency toward mutuality and transitivity
were observed examining several possible triads’ configu-
rations. What makes our approach different from that of
previous research is that here we examine all possible triads,
as subgroups of three people, and we do not restrict our ob-
servation to closing triangles only. In other words, we observe
all different configurations of three nodes in the network.
In addition, instead of trying to describe and reproduce the
network through statistical functions, we monitor the flow of
the networks triads and use these analyses to describe aspects
of global network properties. Local and global predictions are
provided based on the observed evolution of triads in the data.

III. STRUCTURAL BALANCE THEORY AND TRIADS

The triad census has been used in many sociological em-
pirical investigations and social psychological theories, such
as balance and transitivity [13]. Heider’s balance theory [3],
later generalized as structural balance, proposes that people
tend to maintain consistency or balance in their cognitions, for
example they will like friends of their friends. Balance theory
is usually applied to signed complete networks. However, any
unsigned network can be mapped easily to a complete signed
one by assuming present edges as positive and absent edges

Fig. 1: The triad isomorphism classes (M-A-N labelling) [18]

as negative. Several variations of balance theory have been
developed, such as those of ranked clusters and transitivity.

Local groups of three users and the ties between them define
triads. Figure 1 shows sixteen isomorphism classes for the
sixty-four different triad states. What makes triads special to
study is their ability to link local characteristic to global prop-
erties. Empirical and mathematical studies show that global
network properties can be derived through information in a
triad census [14]–[17]. In other words, instead of observing
the whole network in order to derive global properties, it
is sufficient to focus only on groups of three. According to
the classic labelling scheme M-A-N, each triad type has a
label with at most four characters, the number of mutual,
asymmetric and null dyads. The fourth character, if present, is
used to distinguish further among types. “D” for Down; “U”
for up; “T” for transitive; “C” for cyclic.

For the network of size n there will be
(n
3

)
different triads.

The triad census consists of a frequency distribution for the 16
isomorphism triad configurations. the triad census is presented
in the format of a vector of length 16, mainly called T . In our
method, we use random samples to estimate the census. The
estimated vector is usually referred to T ′u. In section IV we
show T ′ is enough for extracting network properties and also
for the estimation of actual T .

A. Triad Census and Theories of Balance and Transitivity

A triad census can be used to infer graph properties
such as structural balance, clusterability, ranked clusters, and
transitivity. In a triad census, different distributions of triad
categories represent various theoretical models. There are five
main models which can be inferred based on the triad census.
The first model is balance, which consists only of triads 102,
and 300. This model only allows for symmetric ties within
a cluster and no ties between them, and only allows for at
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As an example, let us look at the triad census in a food 
web (who-eats-who) during the seasons, where nodes 
are species (or thereof aggregations).


In a food web, the transitive triad (030T), represents 
“omnivores”. That is, a species A eats species B, which 
eats C, but A also eats C, so A is eating at two separate 
levels of the food chain. A triad containing a mutual 
dyad, such as 120, reflects a pair of species that eat 
each other. This is not as rare as it sounds, but could 
also be due to the aggregation of different species into a 
single node.

Triad Spring Summer Fall Winter
003 4487 4359 4539 4906
012 1937 2001 1884 1663
102 75 71 88 118
021D 115 136 119 88
021U 259 300 273 180
021C 156 153 113 67
111D 25 27 44 37
111U 14 13 11 13
030T 46 54 46 39
030C 7 4 0 0
201 0 0 1 1
120D 8 6 7 8
120U 7 8 7 9
120C 1 5 5 5
210 3 3 3 6
300 0 0 0 0
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A pattern we can observe is that in warmer seasons, we 
have many triads that begin with 0, meaning they have 
no mutual dyads.


Contrarily, in colder seasons, there are triads that have 
1s or even 2s as the first number (Mutual). These are 
triads in which there are pairs that eat each other. 


One explanation is that when the weather is warmer, 
there are more species available and there is no need to 
resort to reciprocal trophic interactions. 


In winter, there is a kind of contraction of the ecosystem, 
with less variety available and more reciprocal 
interactions.

Triad Spring Summer Fall Winter
003 4487 4359 4539 4906
012 1937 2001 1884 1663
102 75 71 88 118
021D 115 136 119 88
021U 259 300 273 180
021C 156 153 113 67
111D 25 27 44 37
111U 14 13 11 13
030T 46 54 46 39
030C 7 4 0 0
201 0 0 1 1
120D 8 6 7 8
120U 7 8 7 9
120C 1 5 5 5
210 3 3 3 6
300 0 0 0 0
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Centralisation refers to the extent a network is 
dominated by a single node. A maximally 
centralised network looks like a star: the node at 
the center of the network has ties to all other 
nodes, and no other ties exist. 


More in general, we can measure the division of a 
network between a densely-connected core and a 
loosely-connected periphery.


One way to think of core-periphery structures is in 
terms of the average probabilities of edges within 
and between these two groups of nodes.

C�������� ���������

p11 > p12 > p22. This is what we mean by core–periphery structure. It is
neither assortative nor disassortative in the traditional sense, yet it still has
two clear groups, a dense core group (group 1) and a sparse periphery group
(group 2), with an intermediate probability of connections between the groups.
(The last remaining logical possibility p11 < p12 < p22 is the same thing, just
with the group labels 1 and 2 swapped around, so that group 2 is the core and
group 1 is the periphery.)

Figure 14.15: Core–periphery struc-
ture. A small network with a dense core
(solid nodes) and a sparser periphery
(open nodes).

In principle, core–periphery structure need not be limited to just
two groups. One could have three or more groups ranging from the
innermost core with the highest density to the outermost periphery
with the lowest, as depicted in Fig. 14.16a. Networks of this kind
are sometimes said to have onion structure [126], the different groups
being analogous to the layers of an onion, from the core outward
to the periphery. A network also need not have just one core. It is
possible, indeed likely in large networks, for there to be two or more
dense core regions that are not directly connected to one another—
see Fig. 14.16b.

A very simple method for finding core–periphery structure
would be just to assume that the nodes in the core have higher degree
than the nodes in the periphery and divide the nodes according to
degree. Simple though it is, this method actually works quite well.
The results returned by more sophisticated methods typically do not
differ that much from this rudimentary degree-based division.

Another simple method is to construct the k-cores of the network
(see Section 7.2.2). Recall that a k-core is a group of nodes that

each has connections to at least k other members of the group. By definition
k-cores form a nested set, with higher k-cores being entirely contained within
lower ones, like Russian matryoshka dolls. Moreover, they become denser as
k increases, since all nodes within the kth core must have degree at least k.
Thus the k-cores provide one possible version of the onion structure described
above. The k-cores are also easy to construct—a simple algorithm is given in
Section 7.2.2.

Another method for detecting core–periphery structure—of the two-group
kind only—has been proposed by Borgatti and Everett [78]. The description
in their original paper is rather complicated, but the method boils down to
the optimization of a measure somewhat akin to modularity (see Sections 7.7.1
and 14.2). Their basic goal is to find the division of a network into core and
periphery that minimizes the number of edges in the periphery. A straight
minimization, however, will not work. It is clear that the overall minimum is
always achieved by putting all nodes in the core and none at all in the periphery.
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A simple method for finding the core-periphery 
structure assumes that the nodes in the core have 
higher degree than the nodes in the periphery and 
divide the nodes according to degree. While 
simple, the results returned by more sophisticated 
methods do not differ too much from this 
rudimentary degree-based division. 


Another method is to find the k-cores of the 
network—a k-core is a group of nodes that each 
has connections to at least k other members of the 
group—“slicing” the network into different, nested 
layers.


In both cases, core and peripheries can be multi-
layered or dichotomised.
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A more refined method for detecting dichotomic 
core–periphery structures relies on finding the 
division into core and periphery, defined by a value 

, such that it minimises a measure  that 
calculates the difference between the number of 
edges in the periphery and the expected number of 
such edges if placed at random (simplified formula):


                    


and  equal to the average probability of the same 
of edges, if placed at random.

gi ρ

pij
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A random graph is a 
model network in 
which the values of 
certain properties of 
the network are 
fixed, but the 
network is, in other 
respects, random. 
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(a) p ⇤ 0 (b) p ⇤ 1

Figure 11.1: Limits of the random graph for p ⇤ 0 and p ⇤ 1. These two figures show
two random graphs with their nodes arranged in a circle. (a) When p ⇤ 0 the random
graph has no edges, every node is its own component, and the largest component has
size 1. (b) When p ⇤ 1 every possible edge is present, all nodes belong to a single
component, and the largest component has size n.

Figure 11.1b shows the opposite limit of p ⇤ 1, in which every possible edge
in the network is present and the network is an n-node clique in the technical
sense of the word (Section 7.2.1), meaning that every node is connected directly
to every other. In this case, the nodes form a single component that spans the
entire network.

The largest component in the network has size 1 in the first of these situations
(p ⇤ 0) and size n in the second (p ⇤ 1). Apart from one of these being much
larger than the other, there is an important qualitative difference between these
two cases: in the first case the size of the largest component is independent of
the number of nodes n in the network, while in the second it is proportional
to n, or extensive in the scientific jargon. A network component whose size
grows in proportion to n we call a giant component.

This distinction between the two cases is an important one. In many appli-
cations of networks it is crucial that there be a component that fills most of the
network. It doesn’t necessarily have to fill the entire network, but it should at
least fill a large fraction. For instance, in the Internet it is important that there be
a path through the network from most computers to most others. If there were
not, the network wouldn’t be able to perform its intended role of providing
computer-to-computer communications for its users. Moreover, as discussed
in Section 10.1, most networks do in fact have a large component that fills most
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A random graph is a model network in which the values of certain properties of the 
network are fixed, but the network is, in other respects, random. 


One of the simplest examples of a random graph is the one where we fix only the 
number of nodes n and the number of edges m, i.e., we choose m distinct pairs of 
nodes uniformly at random from all possible pairs and connect them with an edge. 
This model is often referred to by its mathematical name .


More specifically, we can define a random graph model as a family of networks 
defined by a probability distribution:

G(n, m)

Random Graphs
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pairs of nodes between which we could place an edge
P(G) =

1

((n
2)
m ) ways of placing the m edges
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A special family of random graphs is that of , where we fix not the number 
of edges but the probability of edges between nodes, so that we have n nodes, but 
we place an edge between each distinct pair with independent probability . 


In this model the number of edges is not fixed. 


 is the ensemble of simple networks with  nodes in which each network  
appears with probability defined by the distribution 


 is most-closely associated with the names of Paul Erdős and Alfréd Rényi, 
who published a celebrated series of papers about the model in the late 1950s and 
early 1960s.


This is why it is frequent to find the model referred to as the “Erdős–Rényi model” 
or the “Erdős–Rényi random graph” or simply ER random graphs (as in UCINET).

G(n, p)

p

G(n, p) n G
P(G) = pm(1 − p)(n

2)−m

G(n, p)
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What makes the  family important 
is their capacity to simulate the tendency 
of real-world networks to become sparser 
and sparser the larger they grow—formally, 
their average degree grows slower than 
their size.


This is captured by the degree distribution 
of , which for smaller values of  
follows a binomial Bernoullian distribution 
while for larger values approximates a Poissonian one. 


The family is so fundamental to graph theory that ER graphs are frequently simply 
called “random graphs” and, although  fails to capture many other features of 
real networks, it is the main reference for random networks in network measures, 
besides being instrumental to explore graph theory in general.

G(n, p)

G(n, p) n

G(n, p)
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σ =
C
Cr

L
Lr

One usage of random graphs is in the formal 
definition of small-worldness, i.e., the likelihood 
that a given network presents a small-world 
configuration calculated as .

The calculation of  is performed in three steps:

1. we calculate the ratio between the clustering 

coefficient in the network and the clustering 
coefficient of an ER random graph with the 
same size the network. 


2. we calculate the ratio between the average 
path length in the network and the average 
path length of the random graph from 1.


3. we calculate the ratio between 1. and 2.

σ > 1
σ
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However,  tends to be sensible to network size 
and density. This led to the definition of an 
additional measure, , which estimates the 
tendency of a network to resemble either a 
random or a regular one.


To define , we first need to introduce regular 
graphs, as another family of graphs where all 
nodes have the same degree. These regular 
graphs are also called lattices, since we can 
visualise these as grids or meshes of nodes 
where the same connection pattern repeats 
over the whole network.

σ

ω

ω
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and combining this with Eq. (6.13) we get

c ⇤
2m
n
. (6.15)

This relation too will come up repeatedly throughout the book.
Occasionally we will come across networks in which all nodes have the

same degree. In graph theory, such networks are called regular graphs or regular

networks. A regular network in which all nodes have degree k is sometimes
called k-regular. An example of a regular network is a periodic lattice such as a
square or triangular lattice. On the square lattice, for instance, every node has
degree four.

An infinite square lattice is
an example of a 4-regular
network.

6.10.1 D������ ��� ��������

The maximum possible number of edges in a simple network (i.e., one with no
multiedges or self-edges) is

�n
2
�
⇤ 1

2 n(n � 1). The connectance or density ⇢ of a
network is the fraction of those edges that are actually present:

⇢ ⇤
m�n
2
� ⇤

2m
n(n � 1) ⇤

c
n � 1 , (6.16)

where we have made use of Eq. (6.15) in the last equality. Most of the networks
we are interested in are sufficiently large that (6.16) can be safely approximated
as

⇢ ⇤
c
n
. (6.17)

The density lies strictly in the range 0  ⇢  1. It can be thought of as the
probability that a pair of nodes, picked uniformly at random from the whole
network, is connected by an edge. This probability plays an important role in
the random graph model discussed in Chapter 11.

Now consider a sequence of networks of increasing size n. If the density ⇢
remains non-zero as n becomes large the networks are said to be dense. In
a dense network the fraction of non-zero elements in the adjacency matrix is
non-vanishing in the limit of large n. A network where ⇢ ! 0 in the limit
of large n is said to be sparse, and the fraction of non-zero elements in the
adjacency matrix tends to zero.

These definitions only apply if you can actually take the limit n ! 1, or at
least extrapolate the limiting behavior from a sequence of networks of different
sizes. When we are working with theoretical models of networks, as we will
in later chapters of the book, we can take the limit formally and state whether
a network is sparse or dense, but in practical situations involving observed
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To calculate , we consider both a random graph and a 
regular one. We calculate  in three steps:

where C and L are respectively the average clustering 
coefficient and average shortest path length of G.

1. we calculate the ratio between the average shortest 

path of the ER random graph with the same size the 
network and the average shortest path of the network;


2. we calculate the ratio between the average clustering 
coefficient of the network and the average clustering 
coefficient of a regular network of the same size;


3. we calculate the difference between 1. and 2.


For  the network is closer to a lattice, for  it is closer to a random graph, for  
the network approximates a small-work one.

ω
ω

ω < 0 ω > 0 ω ≈ 0

ω =
Lr

L
−

C
Cl
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Short average path length 
( ) and high local 
clustering ( , )
ℓ ∝ log n

σ > 1 ω ≈ 0

Degree distribution 
follows a power law 

( )2 ≤ α ≤ 3

degree 
distribution

visualisation

ER random

Bernoullian-to-Poissonian 
degree distribution, 

depending on n

Small-world Scale-free


