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The Small-world Effect

1
Al

A renowned (and measurable) network phenomenon is
the small-world effect.

Informally, we have a small-world effect when we can
find shorter-than-expected distances between pairs of

nodes.

The typical example to illustrate a small-world effect is
Milgram’s experiment, where people were asked to get
a letter from an initial holder to a distant target person
by passing it from acquaintance to acquaintance
through their social network. The letters that made it to

the target did so in a remarkably small number of
steps.

saverio.giallorenzo @gmail.com



Web Science * Measures and Metrics, Networks MA Digital Humanities and Digital Knowledge, UniBo

The Small-world Effect o=
Mathematically, let dl-j be the length of the shortest path
through a network between nodes 1 and J; then, the
mean distance ; for a node i corresponds to N,

_ ZJ 4 =

and the mean distance for the whole
Zl’ fi B Zij dlj

n n2

L.

l

n

network corresponds to £ = (for

single-component networks).

Simplistically—as we will see more accurate measures
using random graphs —a family of networks shows small-

world effects when £ o« log n (i.e., when ¢ is directly
proportional to log n by a constant k).
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The Small-world Effect
Properties of small-world networks include:

W
CHll

- many highly-clustered groups (e.g., cliques) where all N
nodes are densely connected 1

- hubs that serve as “mediators” to shorten the lengths
between other edges

- these networks are particularly robust to random
perturbations (e.qg., deletion of a random node rarely

causes a sensible change of £)—thanks to the low
hub-to-leaf ratio. Vice versa, rare/selective deletions of

hubs dramatically increase ¢
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Degree Distribution

Reminder: the degree of a node corresponds to the number
of edges attached to that node.

Consider an undirected network and let p ; be the fraction of

nodes that have degree d. E.q., in the network on the right
we have:

That ratio is essentially the probability of a given node to
have that degree.
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Power Laws and Scale-free Networks

Let us take the degrees of (a portion) of the Internet and plot the

degree distribution—bottom-left. The figure shows that most of

> 04- the nodes Iin the network have a low degree. However, there exists
S a significant “tail” of nodes with substantially higher degree
3 (indeed it reaches a degree of 2000+).
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Power Laws and Scale-free Networks

Let us take the degrees of (a portion) of the Internet and plot the

degree distribution—bottom-right. The figure shows that most of

5 04- the nodes in the network have a low degree. However, there exists
S a significant “tail” of nodes with substantially higher degree
g (indeed it reaches a degree of 2000+).
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Power Laws and Scale-free Networks

More specifically, when ~ 10’3
S 4 plotted in a log-log scale, S 1 [
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Fraction p ; of nodes with degree d

Power Laws and Scale-free Networks

Distributions of this kind are described by the formulalnp, = —alnd + ¢

where a and ¢ are constants that respectively modify the slope and
normalise the curve of the distribution.

10" 2 _
_ Taking the exponential of both sides of the formula, we have
- p,=Cd™ (with C = €°).
: Since the distribution is dependent on a power (with
107 exponent @) of the degree d, it is called a
E ‘power law” distribution.
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Power Laws and Scale-free Networks

Detecting power-laws by just visualising the distribution (particularly in log-log form)
cannot be trusted. Indeed, in our example we see a “decelving” hon-monotonically
decreasing (direct scale) and non-straight (log-log scale) distribution curve.
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Power Laws and Scale-free Networks

To detect power-law g
behaviours, we can use the :
cumulative distribution

function, which is defined by

—
ek

0.01 E

o0
the formula Pd — Zpd, . SO
d'=d I
that P, is the fraction of nodes .

that have degree d or greater.

Fraction p, of nodes with degree d or greater
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Power Laws and Scale-free Networks

1

Also here we are looking for a straight-line behaviour.
However, while the curve lends itself to less-
statistically-biased visual interpretations, we can get a
precise measure of how close our distribution

approximates a power-law by calculating the value of «.

=
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0.001 =

0.0001 E

Indeed, if p, = Cd ™ then

10 100 1000

Fraction p, of nodes with degree d or greater
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so that & becomes the exponent determining the & = 1 +n 2 In d 1/2

distribution (on d ) as ; min
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Power Laws and Scale-free Networks

=

Also here we are looking for a straight-line
behaviour. However, while the curve lends itself
to less-statistically-biased visual interpretations,
we can get a precise measure of how close our
distribution approximates a power-law by

calculating the value of a.

0.1 =
0.01 £ =

0.001 E

Indeed, if p, = Cd ™ then
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Assuming a > 1

so that @ becomes the exponent determining the distribution (on d) as

Fraction p, of nodes with degree d or greater
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Empirically, in power-law distributions 2 < a < 3. =1+ Z . d.. —1/2
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Power Laws and Scale-free Networks

Networks whose degree distribution follows
a power-law behaviour are usually called
scale-free networks.

The reason for the name comes from the
fact that power laws are scale-invariant, i.e.,

that scaling the argument, here d, by a
constant factor just causes a multiplication
of the original power-law relation by that
constant.

This is also why we look for straight-line
behaviours in log-log plots, which reduce the
“noise” derived from constant
multiplications.
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Properties of Scale-free Networks

Scale-free networks are highly robust networks that can

- survive the failure of a sensible number of their nodes.
o 0.4 -
= E.g., If we removed nodes randomly from the Internet, the
D . . g .
S network would retain its characterising behaviours. If central
E hubs were to be removed (by choice or luck), we should
? repeat that operation many times to significantly change the
g 0y behaviours (e.qg., disrupt the connectivity) of the network.
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Distribution of Other Centrality Measures

The degree is not the only measure we can study the
distribution of.

Other examples are eigenvector centrality (and its
variants), betweenness centrality, and closeness centrality.

—
W

Eigenvector centrality is an extended form of degree
(centrality), which takes into account not only how many
neighbours a node has, but also how central those
neighbours themselves are.

0.01 £

Figenvector centrality often has a right-skewed distribution 5 *™"'

(similar to that of the degree). E.g., looking at the
cumulative distribution of eigenvector centralities for the
nodes of the Internet we see the typical straight line on the 10 10 10
Iogarithmic scales. Eigenvector centrality x

Fraction of nodes having centrality x or greater

saverio.giallorenzo @gmail.com 16



Web Science * Measures and Metrics, Networks

MA Digital Humanities and Digital Knowledge, UniBo

Distribution of Other Centrality Measures

Betweenness centrality also tends to assume the
same distribution — e.g., on the right, the
cumulative distribution of betweenness for the
nodes of the Internet.
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Distribution of Other Centrality Measures

Closeness centrality is an exception to that
pattern. The measure is the reciprocal of the
mean shortest-path distance from a node to
all other reachable nodes.

The values of the mean distance typically
have a small range, as they are limited by the
diameter of the network, which is typically

between 1 and log n.

Hence, closeness centrality cannot have a
broad distribution or a long tall.
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Local Clustering Coefficient

The clustering coefficient quantifies the density of triads — I.e., strongly
connected triangles of nodes — in a network.

Surprisingly, many large networks have a high clustering coefficient, i.e., there is
typically a probability between about 10% and 60% that two neighbours of a
node will be neighbours themselves.

For example, a study on a large network of collaborations among physicists
revealed a high clustering coefficient (0.45), which points to some underlying (non-
random) pattern of selection of collaborators that gives rise to a high density of
triangles.
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Local Clustering Coefficient

Besides the network-level clustering coefficient, we can also study the distribution
of (hode-level) local clustering coefficient (the fraction of pairs of neighbours of
node / that are themselves neighbours):

~ (number of pairs of neighbours of i that are connected )
B (number of pairs of neighbours of i)

l

—
[
I
|

Interestingly, on average nodes with high degree
tend to have low local clustering. E.g., looking at
Internet nodes, their average local clustering

coefficient and their degree d, we notice an
iInverse relation.

Average local clustering coefficient C.

0001 Lol Lol Lol
1 10 100 1000

Degree d
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Local Clustering Coefficient

Besides the network-level clustering coefficient, we can also study the distribution
of (hode-level) local clustering coefficient (the fraction of pairs of neighbours of
node / that are themselves neighbours):

~ (number of pairs of neighbours of i that are connected )
B (number of pairs of neighbours of i)

l

An explanation of that phenomenon is that nodes tend to
aggregate and connect internally within their “groups”™.

S
[
I
|

Hence, in networks showing this behaviour, nodes that belong
to small groups are constrained to have low degree but at the
same time their local clustering coefficient tend to be larger

because each group, being mostly detached from the rest of _ _
the network, boosts their internal clustering coefficient 0,001 Ll il o

1 10 100 1000

Average local clustering coefficient C.

Degree d
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Cohesion

The term “cohesion” indicates the likelihood of nodes being connected to each
other. Notably, cohesion (the measure) does not indicate social aggregation —
e.d., In a “hate” network a high network cohesion implies /ess social cohesion.

The simplest measure of cohesion is density, i.e., the ratio between the number
of ties in the network with respect to the total number of possible ties n(n — 1)/2.

While simple, density cohesion is not very useful as an absolute measure, e.g., In
a 10-person network, a node is likely to have ties with all 9 others. On the
contrary, in a 1000-person network it Is much more unlikely that an actor has
anything close to 999 ties with the rest of the members.

To avoid the issue of comparing sensibly different networks over density alone,
we can resort to a cohesion measure on the average degree of the network. This
IS obtained by calculating the average of the degrees (humber of ties) of each
node (i.e., the row sums of the adjacency matrix).
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Cohesion and Connectedness

When measuring cohesiveness, it can be useful to consider network subgroups,
specifically, to think about cohesion as the number and size of components in a
network.

The simplest of these is the size of the main component: the bigger the main
component (in terms of nodes), the greater the global cohesion of the network.

When more than one component exist, we can look at the number of components
INn the network. If ¢ Is the number of components and n that of nodes, we can

obtain the component ratio as (¢ — 1)/(n — 1), which has maximum value 1
when every node is isolate and minimum 0 when there Is just one component.

Unfortunately, the component ratio is too-blunt of a measure as networks that
vary In density and average degree may have the same component ratio.

saverio.giallorenzo @gmail.com 23



Web Science « Measures and Metrics, Networks MA Digital Humanities and Digital Knowledge, UniBo

Connectedness

Connectedness is a more sensitive measure of cohesion defined as the

proportion of pairs of nodes that can reach each other by a path of any length —
or, alternatively, the proportion of pairs of nodes that are located in the same

component.

The formula for connectedness in directed non-reflexive networks is

Zi;éj rij
nn—1)

Where r;;is 1 when 1 and j are in the same component, 0 otherwise.

Inversi, we can define a cohesion measure, called fragmentation, as 1 minus
connectedness, which gives the ratio of pairs of nodes that cannot reach each

other by any means.
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Connectedness

The typical usage of connectedness or
fragmentation is in evaluating changes to "
a network either in reality or as part of a
what-if simulation.

For example, if we are trying to prevent a
terrorist organisation from coordinating
attacks, we could figure out which key
actors to arrest in order to maximally
fragment the network.

A computer algorithm could search
through the space of combinations of
actors to determine a good set whose
removal would maximally increase
fragmentation.
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Compactness

A variation on connectedness, called compactness, weights the paths
connecting nodes inversely by their length:

2
nn—1)

Essentially, we replaced r;; of connectedness with the reciprocal of the geodesic

j
distance from 1 to j — with dl.]_. I'= 0 when no path exists between i and ;.

Intuitively, compactness considers network cohesion as a measure of how
“easily” things can flow through it, accounting also for disconnected

components — e.g., with compactness ~ 1 nodes tend to be all connected and
close (1-, 2-step paths).
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Reciprocity

If ties are directed, we are often interested In
the extent to which a tie from Ato B is
matched by one from B to A.

A simple measure of reciprocity is to count
the number of reciprocated ties and divide
these by the total number of ties.

A more refined measure is that of symmetric
pairs, i.e., reciprocated ties together with the
degenerate case where neither actors choose

the other, that Is, a reciprocated zero in the
adjacency matrix.

saverio.
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Transitivity and Clustering Coefficients

For many social relations we might expect that
if AR Band B £ Cthen A % C.

When this Is the case we say that the triad is
transitive. E.qg., friends of friends are friends.

When networks have a high levels of
transitivity, they assume a clustered structure.

To measure transitivity in directed networks, we
count, across all possible triads i, j, and k, the
proportion of triads for whichi X j, ] X k

and i £ k. Mathematically: Zi,j,k Ay Ay Ay

Zi,j,k Al] A]k
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Transitivity and Clustering Coefficients

A declination of transitivity for undirected
networks is the clustering coefficient, which
captures the ratio between high- and low-
density areas in a network.

Specifically, the most-used clustering
coefficient is the weighted overall clustering
coefficient, which, interestingly,
mathematically corresponds to the formula for
the transitivity coefficient of directed networks:
C - number of pairs of neighbours of i that are connected - Zi,j,k AZJ A]k Aik

number of pairs of neighbours of i z
ik i Ajk
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Triad Census

Measuring transitivity involves counting the
occurrences of at least two triadic configurations,

which are labeled “transitive” and “intransitive”.

One measure of transitivity is the number of transitive
triads divided by the number of transitive plus
intransitive triads.

However, there are many other triadic configurations

which could be used to characterise a network. Intransitive

saverio.giallorenzo@gmail.com 30
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Triad ansus . ’ /" / /\

Specifically, for directed graphs we find 16 © S
possible configurations, labelled following R 2200 3-102

the MAN convention:
- Mutual, I.e., dyads with reciprocated ties;

- Asym_metr'c’ '-e-’_ dyads with 5- 021U 6 - 021C 7-111D 8- 111U
unreciprocated ties;

- Null, I.e., dyads with no tie; /\ A / A
Where the label of a triad corresponds to 0

the number of Ms, As, and Ns of the triad, 9-030T 10 - 030C 11 - 201 12 - 120D
e.g., 003 is a triad that has no mutual

dyads (0), no asymmetric dyads ), and
has three unrelated (null) nodes (3

Variants stand for Downward, Upward
13 - 120U 14 - 120C 15-210 16 - 300
Cyclic, and Transitive
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Triad Census

As an example, let us look at the triad census in a food
web (who-eats-who) during the seasons, where nodes
are species (or thereof aggregations).

In a food web, the transitive triad (030T), represents
“omnivores”. That is, a species A eats species B, which
eats C, but A also eats C, so A is eating at two separate
levels of the food chain. A triad containing a mutual
dyad, such as 120, reflects a pair of species that eat
each other. This is not as rare as it sounds, but could
also be due to the aggregation of different species into a
single node.

Triad [Spring|Summer [Fall |Winter
003 4487 4359| 4539| 4906
012 1937 2001 1884| 1663
102 75 71 88 118
021D 115 136, 119 88
021U 259 300, 273 180
021C 156 153 113 67
111D 25 27| 44 37
111U 14 13 11 13
030T 46 54| 46 39
030C 7 4 0 0
201 0 0 1 1
120D 8 6 7 8
120U 7 8 7 9
120C 1 5 5 5
210 3 3 3 6
300 0 0 0 0
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Triad Census

A pattern we can observe is that In warmer seasons, we
have many triads that begin with 0, meaning they have
no mutual dyads.

Contrarily, in colder seasons, there are triads that have
1s or even 2s as the first number (Mutual). These are
triads in which there are pairs that eat each other.

One explanation is that when the weather is warmer,
there are more species available and there is no need to
resort to reciprocal trophic interactions.

In winter, there is a kind of contraction of the ecosystem,
with less variety available and more reciprocal
interactions.

Triad [Spring|Summer [Fall [Winter
003 4487 4359| 4539| 4906
012 1937 2001 1884, 1663
102 75 71 88 118
021D 115 136 119 88
021U 259 300 273 180
021C 156 153 113 67
111D 25 27 44 37
111U 14 13| 11 13
030T 46 54| 46 39
030C 7 4 0 0
201 0 0 1 1
120D 8 6 7 8
120U 7 8 7 9
120C 1 5 5 5
210 3 3 3 6
300 0 0 0 0
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Centralisation and Core-periphery Indices

Centralisation refers to the extent a network is
dominated by a single node. A maximally
centralised network looks like a star: the node at
the center of the network has ties to all other
nodes, and no other ties exist.

More in general, we can measure the division of a
network between a densely-connected core and a
loosely-connected periphery.
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One way to think of core-periphery structures is in
terms of the average probabillities of edges within
and between these two groups of nodes.
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Centralisation and Core-periphery Indices

A simple method for finding the core-periphery
structure assumes that the nodes in the core have Or o0&
higher degree than the nodes in the periphery and
divide the nodes according to degree. While , ‘
simple, the results returned by more sophisticated ~ ..\\. N\l

e
TP
oqd 1L

—

methods do not differ too much from this C NSl g
rudimentary degree-based division. C 5 5
- - O- NS =gt -
Another method is to find the k-cores of the s -
network—a k-core is a group of nodes that each - 3 e

has connections to at least k other members of the

group—"“slicing” the network into different, nested
layers.

In both cases, core and peripheries can be multi-
layered or dichotomised.
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Centralisation and Core-periphery Indices

A more refined method for detecting dichotomic
core—periphery structures relies on finding the
division into core and periphery, defined by a value

g:, such that it minimises a measure p that

calculates the difference between the number of
edges Iin the periphery and the expected number of
such edges if placed at random (simplified formula);

g
W\

\ |
),'
\
WA s\ |
Net/ \‘ N ’
»( ‘\\ S / " (24
Ta®. INaT

(O
e
/)
d

0O If k ecore
1 otherwise

B Zl] (Al] _pij) 8i g]
B 2

and Pij equal to the average probability of the same

of edges, Iif placed at random.
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Random Graphs

A random graph is a

model network In

which the values of °
certain properties of
the network are
fixed, but the °
network Is, In other
respects, random.

s

e
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Random Graphs

A random graph is a model network in which the values of certain properties of the
network are fixed, but the network is, in other respects, random.

One of the simplest examples of a random graph is the one where we fix only the
number of nodes n and the number of edges m, i.e., we choose m distinct pairs of
nodes uniformly at random from all possible pairs and connect them with an edge.

This model is often referred to by its mathematical name G(n, m).

More specifically, we can define a random graph model as a family of networks
defined by a probabillity distribution:

pairs of nodes between which we could place an edge

1
&/ ways of placing the m edges

P(G) =
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Random Graphs

A special family of random graphs is that of G(n, p), where we fix not the number
of edges but the probability of edges between nodes, so that we have n nodes, but

we place an edge between each distinct pair with independent probability p.

In this model the number of edges is not fixed.

G(n, p) is the ensemble of simple networks with 7 nodes in which each network G
appears with probability defined by the distribution P(G) = p™(1 — p)(z)—m

G(n, p) is most-closely associated with the names of Paul Erdés and Alfréd Rényi,
who published a celebrated series of papers about the model in the late 1950s and

early 1960s.

This is why it is frequent to find the model referred to as the “Erd6s—-Rényi model”
or the “Erd6s—Rényi random graph” or simply ER random graphs (as in UCINET).
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Random Graphs

What makes the G(n, p) family important
IS their capacity to simulate the tendency
of real-world networks to become sparser
and sparser the larger they grow —formally,
their average degree grows slower than
their size.

-
. T——
I‘. -
> y ’
Kl .
l ¢ .
-~

This is captured by the degree distribution e\

. } oy 3 /
of G(n, p), which for smaller values of n by L\ _
follows a binomial Bernoullian distribution A /]
while for larger values approximates a Poissonian one.

The family is so fundamental to graph theory that ER graphs are frequently simply

called “random graphs” and, although G(n, p) fails to capture many other features of
real networks, it is the main reference for random networks in network measures,
besides being instrumental to explore graph theory in general.
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Small-worldness and random graphs

One usage of random graphs is in the formal
definition of small-worldness, i.e., the likelihood
that a given network presents a small-world -

configuration calculated as o > 1. i

The calculation of o Is performed In three steps:

1. we calculate the ratio between the clustering

coefficient in the network and the clustering () —

C,
coefficient of an ER random graph with the L
r

same size the network.

2. we calculate the ratio betweenithe average
path length in the network and the average L
path length of the random graph from 1.

3. we calculate the ratio between 1. and 2.
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Small-worldness, regular and random graphs

However, o tends to be sensible to network size
and density. This led to the definition of an

additional measure, @, which estimates the
tendency of a network to resemble either a
random or a regular one.

To define w, we first need to introduce regular
graphs, as another family of graphs where all
nodes have the same degree. These regular 1:1 l 1 l
graphs are also called lattices, since we can

visualise these as grids or meshes of nodes

where the same connection pattern repeats
over the whole network.
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Small-worldness, regular and random graphs

To calculate w, we consider both a random graph and a
regular one. We calculate w in three steps:

where C and L are respectively the average clustering L

coefficient and average shortest path length of G. 2

1. we calculate the ratio between the average shortest a) — T ——
path of the ER random graph with the same size the
network and the average shortest path of the network; L (

2. we calculate the ratio between the average clustering l

coefficient of the network and the average clustering
coefficient of a regular network of the same size;

3. we calculate the difference between 1. and 2.

For w < 0 the network is closer to a lattice, for @ > 0 it is closer to a random graph, for ® ~ 0
the network approximates a small-work one.
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Visual Recap

visualisation

degree 0.5
distribution nf
oL

Bernoullian-to-Poissonian
degree distribution,

depending on n

ER random

0.5

0.25
L L
0 10 20

Short average path length
(Z o< log n) and high local
clustering (c > 1, w =~ 0)

Small-world

L0 ofln

0 10 20

Degree distribution
follows a power law

2 <a<3

Scale-free

saverio.giallorenzo@gmail.com

44



