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Given a chosen metrics to simplify and represent a studied network, we could 
count on our innate ability to find patterns from a visualisation of the network 
to discover some facts of the network by inspecting it.


However, this approach does not scale the larger the network gets.


A better approach is to define mathematical measures that capture interesting 
features of network structure quantitatively, boiling down large volumes of 
complex structural data into numbers that are an indication of the studied 
phenomena.
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The simplest and most popular kind of metrics. Conventionally, 1 indicates the 
presence of a relationship and 0 indicates its absence. 


Being the “ground floor" of the information, it can always be obtained starting 
from another metric, defining a threshold value (cut-off point) below which all 
values are reported to 0 and above to 1. 


The information that is lost in this way is often compensated by the greater 
ease of analysis.
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This metric indicates for each relation the “type” that it assumes, with respect to 
multiple-choice list (example: lover, friend, colleague, enemy, ...). 


The analysis can be carried out at the level of a single type (e.g., networks that 
have “lover” as a link between the nodes), with effects on the measures (e.g., 
reduction of density) of which it is important to be aware. 
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The simplest ordinal metric refers to a three-value scale, of the type “-1 0 +1”, 
where:


• - 1 implies the presence of a “negative” relationship (e.g., “aversion of one actor 
to another”);


• 0 indicates indifference;


• +1 implies the complementary situation to the negative one.


Other ordinal measures refer to larger scales, e.g., the Likert one or based on the 
request to each actor to express the order with which (s)he would like to have 
relations with the other nodes of the network. 


Ordinals can always be brought back to one of the previous scales, losing 
information.
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Scalar metrics are useful when handling values representing either physical 
quantities - like metres, kilograms, seconds, amperes, moles - or information 
units and units of account - money, goods, services, assets, labor, income, 
expenses.


Scalar measures have been developed more recently, through the adaptation 
of algorithms originally created for the much simpler binary metrics.
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One of the simplest measures is the degree 
of a node.


In an undirected network, the degree of a 
node is the number of edges connected to 
it.


E.g., in a social network of friendships 
between individuals a person’s degree is the 
number of friends they have.


Despite its simplicity, the degree is one of 
most useful and most widely used of 
network concepts and it plays an important 
role in other measures.
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(a) (b)

Figure 6.11: Degree of a node. (a) The central node has degree five because it has five
attached edges. (b) The central node has five neighbors, but its degree is eight, because
it has eight attached edges.

network concepts. It will play a large role in many of the developments in this
book. Throughout the book we will denote the degree of node i by ki . For a
network of n nodes the degree can be written in terms of the adjacency matrix
as15

ki ⇤

n’
j⇤1

Aij . (6.12)

Every edge in an undirected network has two ends and if there are m edges
in total then there are 2m ends of edges. But the number of ends of edges is
also equal to the sum of the degrees of all the nodes, so

2m ⇤

n’
i⇤1

ki ⇤
’

i j

Ai j , (6.13)

a result that we will use many times throughout this book.
The mean degree c of a node in an undirected network is

c ⇤
1
n

n’
i⇤1

ki , (6.14)

15Note that this expression gives the correct result even if there are multiedges in the network,
so long as the adjacency matrix is defined as in Section 6.2. It also works if there are self-edges, pro-
vided each self-edge edge is represented by a diagonal element Aii ⇤ 2 as discussed in Section 6.2,
and not 1.
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deg(i) =
n

∑
j=1

Aij

deg(1) = 8 ⋯ deg(5) = 2 ⋯ deg(3) = 1
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Centrality measures answer to the question:


“Which are the most important or central nodes in a network?”


Of course, there are many possible definitions of “importance” and there are 
correspondingly many centrality measures for networks.
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One of the simplest centrality measure for a node in a network is just its degree. 


In directed networks, nodes have both an in-degree and an out-degree, and both 
may be useful as measures of centrality in the appropriate circumstances. 


Although degree centrality is a simple centrality measure, it can be very illuminating. 


For example, in a social network those individuals who have many followers might 
have more influence, more access to information, or more prestige than those who 
have fewer. 


A non-social network example is the use of citation counts in the evaluation of 
scientific papers. The number of citations a paper receives from other papers, which 
is its in-degree in the directed citation network, gives a quantitative measure of how 
influential the paper is. 
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In many circumstances a node’s importance in a network is increased by having 
connections to other nodes that are themselves important. 


For example, you might have only one friend in the world, but if that friend is the 
president of the United States then you yourself may be an important person. Thus 
centrality is not only about how many people you know but also who you know. 


Eigenvector centrality is an extension of degree centrality that takes this factor into 
account. Instead of just awarding one point for every network neighbour a node has, 
eigenvector centrality awards a number of points proportional to the centrality 
scores of the neighbours.
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Considering an undirected network of n nodes, the eigenvector centrality  of 
node i is proportional to the sum of the eigenvectors centralities of i’s 
neighbours. 


Mathematically


xi

xi = ∑
j ∈ neighbours(i)

xj

Since it is a sum, a node can achieve a high eigenvector centrality either by 
having a lot of neighbours with modest centrality or a few neighbours with high 
centrality (and everything in between) - the intuitive interpretation of this is that 
nodes can be influential either by reaching a lot of nodes or by reaching just a 
few, highly-influential nodes.
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Mathematically

proportionality

factor
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n

∑
j=1

Aij xj ⇒ α−1
x1
⋮
xn

= A
x1
⋮
xn
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Mathematically

proportionality

factor

We need to solve a system of 
linear equations, which leads us 

to the matrix notation, for all 
values x1, ⋯, xn
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Mathematically

proportionality

factor

Still, we do not know what values  
assume. However, our last transformation let us 
understand that the vector of centralities is one of 
the possible eigenvectors of the matrix 

x1, ⋯, xn

A

We need to solve a system of 
linear equations, which leads us 

to the matrix notation, for all 
values x1, ⋯, xn
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Mathematically

κ x = A x
Matrix

Eigenvector Eigenvector

Eigenvalue

proportionality

factor

Still, we do not know what values  
assume. However, our last transformation let us 
understand that the vector of centralities is one of 
the possible eigenvectors of the matrix 

x1, ⋯, xn

A

We need to solve a system of 
linear equations, which leads us 

to the matrix notation, for all 
values x1, ⋯, xn
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⋮
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⋮
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understand that the vector of centralities is one of 
the possible eigenvectors of the matrix 
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Mathematically

κ x = A x
Matrix

Eigenvector Eigenvector

Eigenvalue

κ
x1
⋮
xn

= A
x1
⋮
xn

⇒
x1
⋮
xn

= κ−1A
x1
⋮
xn

proportionality

factor

Still, we do not know what values  
assume. However, our last transformation let us 
understand that the vector of centralities is one of 
the possible eigenvectors of the matrix 

x1, ⋯, xn

A

Now, we “just” need to 
find what values  and 
 assume.

x
κ

We need to solve a system of 
linear equations, which leads us 

to the matrix notation, for all 
values x1, ⋯, xn
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How do we choose  and ?


Assuming we want our centrality values to be all positive, then we can use the 
Perron–Frobenius theorem, by which


for a square matrix with all elements non-negative (like our adjacency matrix ) 
there exists a unique largest eigenvalue ( ) and the corresponding eigenvector 

( ), called leading, that have strictly positive components


The eigenvector centrality  of node  is the element of the leading eigenvector 
of the adjacency matrix and the value of the constant  is the leading eigenvalue.

κ x

A
κ

x

xi i ith

κ
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Although we fixed  and , the centrality measure remains arbitrary within a 
multiplicative constant.


This is not a problem, when we use that measure within the nework. Indeed, the 
multiplicative constant does not matter much, as we are applying 
transformations to the values in our adjacency matrix that maintain their 
proportions.


However, when using eigenvector centrality in absolute terms (e.g., when 
comparing different matrices) we need to normalise those values, to make them 
comparable. One possibility, here, is to normalise the centralities, e.g., by 
requiring that they sum to  (which ensures that the average centrality stays 
constant as the network gets larger). 

x κ

n
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For the case of directed networks, the eigenvector centrality poses some 
complications due to the asymmetricity of adjacency matrices. This translates 
into two sets of eigenvectors, left and right, and two leading eigenvectors.


Which to choose among the two depends on the reason of the calculation of the 
centrality measure. The right eigenvector measures centrality as bestowed by 
others to the node. The left eigenvectors measures centrality as connections 
of the node to the others. 


For example, in the Web and in citation networks, a good indication of the 
importance of a node is how many nodes point to it. However, if we consider 
transport networks, hubs that connect to a lot of locations tend to be more 
important.
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There are still problems with this definition of centrality. 


Let us illustrate them with an example.


Consider the left (inbound) eigenvector centrality on the 
network on the right. Since Node A has only outgoing 
edges and no ingoing ones, its eigenvector centrality is 
zero. Node B, which has one ingoing edge, also have 
eigenvector centrality zero, because calculated from its 
only ingoing edge from A, which has centrality zero.


This simple example points to a problem: a node may 
be pointed by others that themselves are pointed by 
many more, but if the trail ends have in-degree zero, 
the final value of the centrality will be zero.

M������� ��� �������

correct answer is to use the right eigenvector. The reason is that centrality in
directed networks is usually bestowed by other nodes that point towards you,
rather than by you pointing to others. On the World Wide Web, for instance,
it is a good indication of the importance of a web page that it is pointed to
by many other important web pages. On the other hand, the fact that a page
might itself point to important pages is neither here nor there. Anyone can set
up a page that points to a thousand others, but that does not make the page
important.3 Similar considerations apply also to citation networks and other
directed networks. Thus the correct definition of eigenvector centrality for a
node i in a directed network makes it proportional to the centralities of the
nodes that point to it:

xi ⇤ �1
’

j

Ai j x j , (7.4)

which gives Ax ⇤ x in matrix notation, where x is the right leading eigenvector.

A

B

Figure 7.1: A portion of a directed net-
work. Node A in this network has only
outgoing edges and hence will have
eigenvector centrality zero. Node B has
outgoing edges and one ingoing edge,
but the ingoing one originates at A, and
hence node B will also have centrality
zero.

However, there are still problems with this definition. Consider
Fig. 7.1. Node A in this figure is connected to the rest of the network,
but has only outgoing edges and no ingoing ones. Such a node
will always have eigenvector centrality zero because all terms in the
sum in Eq. (7.4) are zero. This might not seem to be a problem:
perhaps a node that no one points to should have centrality zero. But
then consider node B. Node B has one ingoing edge, but that edge
originates at node A, and hence B also has centrality zero—all terms
in the sum in Eq. (7.4) are again zero. Taking this argument further,
we see that a node may be pointed to by others that themselves are
pointed to by many more, and so on through many generations, but
if the trail ends at a node or nodes that have in-degree zero, it is all
for nothing—the final value of the centrality will still be zero.

In mathematical terms, only nodes that are in a strongly con-
nected component of two or more nodes, or the out-component
of such a strongly connected component, can have non-zero eigen-
vector centrality.4 In many cases, however, it is appropriate for nodes
with high in-degree to have high centrality even if they are not in a

strongly-connected component or its out-component. Web pages with many
links, for instance, can reasonably be considered important even if they are not

3Arguably, this is not entirely true. Web pages that point to many others are often directories
of one sort or another and can be useful as starting points for web surfing. This, however, is a
different kind of importance from that highlighted by the eigenvector centrality and a different,
complementary centrality measure is needed to quantify it. See Section 7.1.5.

4For the left eigenvector it would be the in-component.

162
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To solve the problem of zero-trailing in eigenvector centrality for directed 
networks, Katz proposed a centrality measure that gives each node a small 
amount of centrality “for free” regardless of its position in the network or the 
centrality of its neighbours


Mathematically xi = α∑
j

Aij xj + β

In the formula,  is related to the eigenvalue but  is the “for free” part that all 
nodes receive. By adding , we ensure that even nodes with zero in-degree 
still get the non-zero centrality , which they can “pass” to the other nodes 
they point to. Thus, any node that is pointed by many others has a high 
centrality, even if it is not in a strongly connected component. 

α β
β

β
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The caveat here is that, while in eigenvector centrality the multiplicative 
constant for  did not matter, now  (which contains ) conflicts with . 
Indeed, if  all nodes have the same centrality . Past , with  being 
the largest eigenvalue of , the centrality diverge. Thus  .

κ α κ β
α → 0 β κ−1

1 κ1
A 0 < α < 1/κ1

To solve the problem of zero-trailing in eigenvector centrality for directed 
networks, Katz proposed a centrality measure that gives each node a small 
amount of centrality “for free” regardless of its position in the network or the 
centrality of its neighbours


Mathematically xi = α∑
j

Aij xj + β
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While  shall be contained within 0 and , there is no broad agreement on which  
value  should take. 


Interestingly, Katz centrality captures the degree and eigenvector centralities at its 
extremes: the former for , the latter for .


Concretely, this means that small values of  favour strongly connected 
components while values closer to  give small non-zero values to nodes that are 
not in strongly connected components of size two or more.

α κ−1
1

α

α → 0 α → κ−1
1

α
κ−1

1
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One problem with Katz centrality is that, if a node with high Katz centrality 
has edges pointing to many others, then all of those others also get high 
centrality. Concretely, a high-centrality node pointing to one million others 
gives all one million of them high centrality.


To see the practice of this issue, consider websites like Amazon or eBay which 
link to the web pages of thousands of manufacturers and sellers. Now, 
following Katz centrality, if Amazon is an important website and has a link to a 
semi-unknown website, also that website receives a high Katz centrality. 


Would that be a good representation of the reality of centrality in the Web?
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To solve this problem, we define a variant of the Katz centrality where we derive 
the centrality of the neighbours as proportional to their centrality divided by 
their out-degree. Then nodes that point to many others pass only a small 
amount of centrality on to each of those others, even if their own centrality is 
high. 


In mathematical terms, this centrality is defined as 

xi = α∑
j

Aij
xj

od( j)
+ β With the caveat of defining the 

out-degree  to assign 1 to 
nodes whose out-degree is 0

od( ⋅ )
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This centrality measure is commonly 
known as PageRank, named after 
Larry Page, co-founder of Google.


Google uses PageRank to estimate 
the importance of web pages, which 
the search engine lists by 
“importance” (centrality). 


The added ingredient of dividing by 
the out-degrees of pages ensures 
that pages that simply point to an 
enormous number of others do not 
pass much centrality on to any of 
them.
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One might wonder if part of Google’s 
“secret sauce” is their multiplier  Katz 
centrality.


Google has been pretty transparent on 
this, stating that its search engine uses 
a value of  equal to 0.85.


It is not clear that there is any rigorous 
theory behind this choice. 


More likely, it is just a shrewd guess 
based on experimentation to find out 
what works.

α

α
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The centrality measures for directed networks seen so far all follow the same 
basic principle: high centrality goes with being pointed by others (with high 
centrality).


In some cases, nodes are highly central when they point to other highly central 
ones.


In this kind of networks there are two types of “important” nodes:


- authorities: nodes that hold useful resources;


- hubs: nodes that are gateways toward the most resourceful authorities.


Authorities may also be a hubs (and vice versa).
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Hyperlink-induced topic search or HITS is a centrality measure that gives 
each node i in a directed network two different centrality scores: the authority 
centrality  and the hub centrality  , defined using the constants  and 
by swapping the indices of the matrix element (since the hub centrality of a 
node i is defined by the nodes it points to)

xi yi α and β

xi = α∑
j

Aij yi yi = β∑
j

Aji xj

Interestingly, hub- and authority-centrality circumvent the problems that 
ordinary eigenvector centrality has with directed networks: in hub-and-authority 
approach nodes not pointed by any others have authority centrality zero but 
they can still have non-zero hub centrality and the nodes that they point to can 
then have non-zero authority centrality by virtue of being pointed.



saverio.giallorenzo@gmail.com

MA Digital Humanities and Digital Knowledge, UniBoWeb Science • Measures and Metrics, Nodes

Centrality • Closeness Centrality

33

Differently from the previous centrality measures, based on nodes’ degree, 
closeness centrality uses the shortest paths in networks, measuring the mean 
distance from a node to other nodes.


Let us first define the mean distance of a node i. 


Suppose  is the shortest distance from node i to node j. Then the mean 
shortest distance from i to every node in the network is


dij

ℓi =
1
n ∑

j

dij



saverio.giallorenzo@gmail.com

MA Digital Humanities and Digital Knowledge, UniBoWeb Science • Measures and Metrics, Nodes

Centrality • Closeness Centrality

34

Thus, the mean distance  is not a centrality measure per-se, since it gives low 
values to more central nodes and high values for less central ones. To be 
used as a centrality, we can use the inverse of  rather than  itself. 


This inverse is called the closeness centrality : 


ℓi

ℓi ℓi

Ci

Ci = ℓ−1
i =

n
∑j dij

For closeness centrality, the smaller  is, the better, i.e.,  takes small values 
for nodes that are separated from others by only a short distance on average — 
the assumption is that small-mean-distance nodes might have more direct 
influence on others or better access. 

ℓi ℓi
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Closeness centrality has a problem with networks with more than 
one component and non-existent paths set to infinite. There, when 
nodes belong in different components  is infinite and  is zero.


To solve this problem, it is possible to average over only those 
nodes in the same component as i (and n indicates the number 
of nodes in the component). 


This gives a finite measure, but one that has its own problems. 
E.g., distances tend to be smaller between nodes in small 
components. Mathematically, those small-component nodes get 
lower values of   and higher closeness centrality than their 
counterparts in larger components. On the contrary, nodes in small 
components are usually assumed to be less well connected than 
those in larger ones and should therefore be given lower centrality.

ℓi Ci

ℓi

CA =
3
2

CB =
4
3
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An alternative solution is to redefine closeness in terms of the harmonic mean 
distance (the reciprocal of the arithmetic mean of the reciprocal) between nodes, 
i.e., the average of the inverse distances:

ℓ′ i =
n − 1

∑j(≠i)
1
dij

C′ i =
1

n − 1 ∑
j(≠i)

1
dij

Where we exclude from the sum the term for j =� i (and thus count  nodes) 
to avoid to get an infinite division.


The measure, when  because i and j are in different components, zeroes 
the term and drops it; moreover it gives more weight to nodes that are close to i 
than to those far away.

n − 1

dij = ∞
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Betweenness centrality, also based on shortest paths, measures the extent to 
which a node lies on paths between other nodes. The assumption here is that 
paths lying on “trafficked” shortest paths have a more central role in the 
network, as gateways favoured by their closeness to (reach) the other nodes.


Mathematically, betweenness centrality of undirected networks can be 
expressed as follows. 


Suppose that we have an undirected network in which 
there is at most one shortest path between any pair of 
nodes and let  be 1 if node i lies on the shortest 
path from the source s to the destination d and 0 if it 
does not or if there is no such path. 


The betweenness centrality  is given by the formula:

ni
sd

xi

xi = ∑
sd

ni
sd

For all shortest paths 
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Since it is possible for two shortest paths between the 
same pair of nodes to overlap, we refine  to be the 
number of shortest paths from s to d that pass through i 
and define   as the total number of shortest paths from s 
to d, obtaining

ni
sd

gsd

xi = ∑
sd

ni
sd

gsd

assuming as convention  = 0 if both  and  are 
zero, the newly-defined value of  corresponds to the average 
rate of the “traffic” that passes through node i.


ni
sd /gsd ni

sd gsd
xi
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The values of betweenness considered so far are raw 
numbers of paths, but it is sometimes convenient to 
normalise betweenness. One natural choice is to normalise 
the path count by dividing it by the total number of (ordered) 
node pairs, which is , so that betweenness becomes the 
fraction (rather than the number) of paths that run through a 
given node:

n2

xi =
1
n2 ∑

sd

ni
sd

gsd

The refined measure, besides normalising betweenness, has 
the additional benefit of limiting the values of centrality 
between 0 and 1.
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Many networks divide naturally into groups or communities:


- networks of people divide into groups of friends, co-workers, or business 
partners; 


- the World Wide Web divides into groups of related web pages; 


- biochemical networks divide into functional modules. 


Besides calculating their centrality, it is possible to apply measures to nodes to 
detect their membership to one or more constituent groups.
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and maximum likelihood methods. In this section we discuss some simpler
concepts of network groups that can be useful for probing and describing the
local structure of networks. The primary constructs we look at are cliques,
k-cores, and k-components.

7.2.1 C������

A clique is a set of nodes within an undirected network such that every member
of the set is connected by an edge to every other. Thus a set of four nodes in a
network would be a clique if (and only if) each of the four is directly connected
by edges to the other three. Note that cliques can overlap, meaning that they
can share one or more of the same nodes.

The occurrence of a clique in an otherwise sparsely connected network is
normally an indication of a highly cohesive subgroup. In a social network, for

A clique of four nodes
within a network.

instance, one might encounter a set of individuals each of whom was acquainted
with each of the others, and such a clique would probably indicate that the

A

B

Two overlapping cliques.
Nodes A and B in this net-
work both belong to two
cliques of four nodes.

individuals in question are closely connected—the members of a family, for
example, or a set of co-workers in an office.

However, it’s also the case that many circles of acquaintances form only
near-cliques, rather than perfect cliques. There may be some members of a
group who are unacquainted, even if most members know one another. The
requirement that every possible edge be present within a clique is a very strin-
gent one and limits the usefulness of the clique concept. There are, however,
some circumstances in which cliques do crop up and play an important role.
An example is the one-mode projection of a bipartite network introduced in
Section 6.6.1. Recall that bipartite networks (also called affiliation networks in
sociology) are commonly used to represent the membership of people or ob-
jects in groups of some kind. The one-mode projection creates a network that
is naturally composed of cliques, one for each group—see Fig. 6.6 on page 117.

7.2.2 C����

For many purposes a clique is too stringent a notion of grouping to be useful
and it is natural to ask how one might define something more flexible. One
possibility is the k-core. By contrast with a clique, where each node is joined
to all the others, a k-core is a connected set of nodes where each is joined to at
least k of the others. Thus, in a 2-core, for instance, every node is joined to atNote that a 1-core is the

same thing as an ordinary
component.

least two others in the set. Figure 7.4 shows the k-cores in a small network.
The k-core is not the only possible relaxation of a clique, but it is a par-

ticularly useful one for the very practical reason that k-cores are easy to find.

178

A clique is a set of nodes within an undirected network 
such that every member of the set is connected by an 
edge to every other. Cliques can overlap, meaning that 
they can share one or more of the same nodes. 


The occurrence of a clique in an otherwise sparsely 
connected network is normally an indication of a highly 
cohesive subgroup — like the members of a family or a 
set of co-workers in an office. 


It is also possible that many circles of acquaintances form 
only near-cliques, rather than perfect cliques. There may 
be some members of a group who are unacquainted, even 
if most members know one another.
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For many purposes, a clique is too stringent a notion 
of grouping to be useful. 


The k-core is a more flexible grouping notion. 


By contrast with a clique, where each node is joined 
to all the others, a k-core is a connected set of 
nodes where each is joined to at least k of the 
others. Thus, in a 2-core, for instance, every node is 
joined to at least two others in the set.


The k-core is not the only possible relaxation of a 
clique, but it is a particularly useful one for the very 
practical reason that k-cores are easy to find. 
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A simple way to find k-cores is to start with a given 
network and remove from it any nodes that have 
degree less than k, along with their attached edges, 
repeating the process as long as there is a drop in 
degree between one passage and the other.


What is left over is, by definition, a k-core or a set of 
k-cores, since each node is connected to at least k 
others. Note that we are not necessarily left with a 
single k-core—there is no guarantee that the network 
will be connected once we are done pruning it, even if 
it was connected to start with. 
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The breakdown of a network into cores for all values 
of k provides an onion-like decomposition into layers 
within layers—1-, 2-, 3-cores, and so forth, 
culminating at the highest value of k for which cores 
exist. 


This decomposition is sometimes used as a measure 
of core–periphery structure in networks: nodes that lie 
within the highest-k cores are “core” nodes within the 
network, while nodes outside those cores are 
“peripheral” nodes. 


In this sense, the cores define a kind of centrality 
measure, and they are sometimes used that way.
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Reminder: a component in an undirected network is a 
(maximal) set of nodes, each with a path to each of the others.


A useful generalisation of this concept is the k-component. A 
k-component (sometimes also called a k-connected 
component) is a set of nodes such that each is reachable 
from each of the others by at least k node-independent 
paths (paths that do not share any node but the source and 
the target ones).


A 1-component is an ordinary component—there is at least 
one path between every pair of nodes—and, like k-cores, k-
components are nested within each other.


In the example on the right, we find one 3-component (A), two 
2-components (B, C) and one 1-component (D).
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K-components might seem similar to k-cores, but there are 
important differences. 


In the example on the right we find a single 2-core 
(represented by the dotted line) yet there are two separate 2-
components in the network because the top-half and bottom-
half of the network are connected by only one independent 
path in the middle, which separates the two 2-components. 


In general, the number of node-independent paths between 
two nodes equals the number of nodes that we would need to 
remove to disconnect them. Indeed, this is an alternative way 
to define a k-component: a subset of a network in which no 
pair of nodes can be disconnected from each other by 
removing less than k other nodes.
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Clique: every member of the set is connected by an edge to every other member.
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k-core: a connected set of nodes where each is joined to at least k of the others
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k-component: a set of nodes where each is reachable from each member by at least k unique paths.
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One disadvantage of k-components is that for k 
≥ 3 they can be non-contiguous (e.g., the graph 
on the right). 


Sometimes, non-contiguous components are 
inappropriate to identify groups of nodes 
(imagine modelling different football teams 
whose grouping/structure is similar but for which 
it does not make sense to “combine” in the same 
group). 


For this reason, researchers introduced alternative grouping definitions, like N-
cliques, N-clans, K-plexes, and K-groups.

M������� ��� �������

such as the Internet, the number of node-independent paths between two
nodes is also the number of independent routes that data might take between
the same two nodes, and the size of the cut set between them is the number of
nodes in the network—typically routers—that would have to fail or otherwise
be knocked out to sever the data connection between the two endpoints. Thus
a pair of nodes connected by two independent paths cannot be disconnected
from one another by the failure of any single router. A pair of nodes connected
by three paths cannot be disconnected by the failure of any two routers. And
so forth. A k-component with k � 2 in a network like the Internet is a subset
of the network that has robust connectivity in this sense. One would hope,
for instance, that most of the network backbone—the system of high volume
world-spanning links that carry long-distance data (see Section 2.1)—is a k-
component with high k, so that it would be difficult for points on the backbone
to lose connection with one another.

Figure 7.7: A non-contiguous
tricomponent. The two high-
lighted nodes in this network
form a tricomponent, even
though they are not directly
connected to each other. The
other three nodes are not in the
tricomponent.

One disadvantage of k-components as a definition of node groups, is that
for k � 3 they can be non-contiguous (see Fig. 7.7). Ordinary components (1-
components) and 2-components are always contiguous, but 3-components
and above may not be. Within the social networks literature, where non-
contiguous components are often considered undesirable, k-components
are sometimes defined slightly differently, to be a set of nodes such that
every pair in the set is connected by at least k node-independent paths that

themselves are contained entirely within the subset. This definition rules out
non-contiguous k-components, but it is also mathematically and computa-
tionally more difficult to work with than the standard definition. For this
reason, and because there are also plenty of cases in which it is appropriate
to count non-contiguous k-components, the standard definition remains the
one most widely used.

There are a number of other definitions of node groups that find occa-
sional use, particularly in the social networks literature, such as k-plexes and
k-clubs. See the book by Wasserman and Faust [462] for a detailed discus-
sion. There are also various definitions that avoid the use of a parameter k.
For instance, Flake et al. [181] proposed a definition of a group as a set of
nodes that each has at least as many connections inside the set as outside.
Radicchi et al. [395] proposed a weaker definition where a group is a set of
nodes such that the total number of connections between nodes inside the set
is greater than the total number to nodes outside it. The use of these measures
is, however, relatively rare and we will not consider them further here.
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N-cliques: generalisation of cliques that 
replace the strong constraint of the 
complete and maximum subgraph with the 
existence of a relationship between all the 
actors through a path of maximum length N.


N-clans: a restriction of N-cliques through 
the constraint that the longest path in the 
group is less than or equal to N. It corrects a 
defect in N-cliques that can form spurious 
groups by including “neighbouring” 
members that are (literally) closer to other 
groups.

1

2 3

5

6

4

1-2: 1

1-4: 2

1-3: 1

1-5: 2

2-5: 2

3-4: 2

1-4: 2

2-4: 1

3-4: 2

1-5: 2

2-5: 2

3-5: 1

4-5: 2 4-5: 2

2-cliques
2-clans

      uses a “spurious” path 
through a non-clique member (6) 
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K-plexes: another generalisation of cliques 
that accepts as a member of the group any 
node that has at least  links with the 
other nodes, where  is the total number of 
nodes that make up the group.


For example, A would be part of a 2-plex 
consisting of nodes B, C and D if it had a 
link with both B and C, but not with D, 
being D in turn linked to both B and C. 


K-plexes generate many more smaller 
groups than the previous methods.

n − k
n

65

3 4

21

1-plexes (deg. case of clique): { 1, 2 , 3 ,4 }

2-plexes: 1-plexes  { 1, 2, 3, 4, 6 }, { 1, 2, 3, 4, 5 }

3-plexes: 2-plexes  { 1, 2, 3, 4, 5, 6 }

∪
∪
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In mathematics a relation  is said to be transitive if  and  together 
imply . In networks, if  is “connected by an edge” and  is transitive, we 
would have that “if a and b are connected and b and c are connected, then a and 
c are connected”.


Perfect transitivity holds in a network when the network is a clique (and its graph 
is complete). Partial transitivity instead can indicate the tendency to extend that 
(missing) relation, e.g., if a and b are friends and b and c are friends, that does not 
guarantee that a and c are friends, however it makes it likely.


Transitivity is a property of triads that characterise different network structural 
configurations: isolation (when the triad is disconnected), dyad (when only two out 
of three nodes are in ), structural hole (when the three nodes are in  except 
one dyad), cluster (when the triad enjoys perfect transitivity). Clusters are also 
called closed triads as they form 2-edge long paths among the members of the 
triad, closed by a third edge.

ℛ a ℛ b b ℛ c
a ℛ c ℛ ℛ

ℛ ℛ
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The clustering coefficient is the fraction of paths of length two in the network that 
are closed. That is, we count all paths of length two, we count how many of them 
are closed, and then we divide the second number by the first to get a clustering 
coefficient C that lies in the range from zero to one:

C =
number of closed paths of length two

number of paths of length two
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The clustering coefficient is the fraction of paths of length two in the network that 
are closed. That is, we count all paths of length two, we count how many of them 
are closed, and then we divide the second number by the first to get a clustering 
coefficient C that lies in the range from zero to one:

C =
number of closed paths of length two

number of paths of length two

55

C = 1 implies perfect transitivity. C = 0 implies no 
closed triads. For reference, e.g., a network of 
who-sends-email-to-whom in a large university 
had C = 0.16. Technological and biological 
networks tend to have lower values, e.g., the 
Internet has a clustering coefficient of ~0.01.

1

2 3
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3x
3x

=
15
19

≈ 0.79
+
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While the clustering coefficient is a property of an entire network, it also useful to 
define a local clustering coefficient  for a single node i:Ci

Ci =
number of pairs of neightbours of i that are connected

number of pairs of neighbours of i

Hence, to calculate  we go through all distinct pairs of nodes that are 
neighbours of i, count the number of such pairs that are connected to each other, 
and divide by the total number of pairs (having  being the degree of the node, 
the total number of pairs corresponds the binomial coefficient ).


The local clustering coefficient represents the average probability that a pair of 
nodes related to it by  are also in  with each other. Since for nodes with 
degree zero or one the number of pairs of neighbours is zero and  would be not 
well defined, by convention  for those cases.

Ci

di
di(di − 1)/2

ℛ ℛ
Ci

Ci = 0
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Local clustering can be used as an indicator of structural holes in 
a network. 


Structural holes are interesting for a number of reasons, 
depending on the context of the research. 


E.g, in a transport/information network structural holes are an 
issue because they represent missing alternative routes in the 
network. Contrarily, if we model the spread of a pandemic, 
structural holes work as barriers to the diffusion of the disease. 
Structural holes can also represent power for a node whose 
neighbours lack connections, as those missing links give control 
over information flow between those neighbours. 


Thus, local clustering can be seen as a type of centrality measure, 
where the smaller the values the more “powerful” the node. 

M������� ��� �������

as if the edges were undirected. It is however possible to generalize transitivity
to take account of directed links. If we have a directed relation between nodes
such as “u likes v” then we can say that a triple of nodes is closed or transitive if
u likes v, v likes w, and also u likes w. One can calculate a clustering coefficient
in the obvious fashion for the directed case, counting all directed paths of

u w

v

A transitive triple of nodes
in a directed network.

length two that are closed and dividing by the total number of directed paths
of length two. To date, however, such measurements have not often appeared
in the literature.

7.3.1 L���� ���������� ��� ����������

The clustering coefficient of the previous section is a property of an entire
network. It quantifies the extent to which pairs of nodes with a common
neighbor are also themselves neighbors, averaged over the whole network. It
is, however, also sometimes useful to define a clustering coefficient for a single
node. For a node i, we can defineIn this book we use the

notation Ci for both the
local clustering coefficient
and the closeness centrality.
Care must be taken not to
confuse the two.

Ci ⇤
(number of pairs of neighbors of i that are connected)

(number of pairs of neighbors of i) . (7.29)

That is, to calculate Ci we go through all distinct pairs of nodes that are neigh-
bors of i, count the number of such pairs that are connected to each other, and
divide by the total number of pairs, which is 1

2 ki(ki � 1), where ki is the degree
of i. Ci is sometimes called the local clustering coefficient and it represents the
average probability that a pair of i’s friends are friends of one another. (For
nodes with degree zero or one the number of pairs of neighbors is zero and
Eq. (7.29) is not well defined. Conventionally in this case we say that Ci ⇤ 0.)

Local clustering is interesting for several reasons. First, in many networks it
is found empirically to have a rough dependence on degree, nodes with higher
degree having a lower local clustering coefficient on average. This point is
discussed in detail in Section 10.6.1.

Second, local clustering can be used as an indicator of so-called “structural
holes” in a network. While it is common in many networks, especially social
networks, for the neighbors of a node to be connected among themselves, it
does happen sometimes that these expected connections between neighbors
are missing. The missing links are called structural holes and were first stud-

Structural holes

When the neighbors of a
node are not connected to
one another we say the net-
work contains “structural
holes.”

ied in this context by Burt [89]. If we are interested in the efficient spread
of information or other traffic around a network then structural holes are a
bad thing—they reduce the number of alternative routes information can take
through the network. On the other hand, structural holes could be a good
thing for the node whose neighbors lack connections, because they give that

186
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Local clustering is (also historically) strictly linked to the 
concept of redundancy, whose definition  of a node i 
corresponds to the average number of connections 
from a neighbour of i to the other neighbours of i. 


For example, in the graph on the right, the central node 
has four neighbours and each of those four could be 
acquainted with any of the three others, but in this case 
none of them is connected to all three. One is 
connected to none of the others, two are connected to 
one other, and the last is connected to two others. The 

redundancy of the central nodes is therefore (0+1+1+2)/
4 = 1


Ri

7.3 | T����������� ��� ��� ���������� �����������

node power over information flow between those neighbors. If two of your
neighbors are not connected directly and their information about one another
comes via their mutual connection with you, then you can control the flow of
that information. The local clustering coefficient measures how influential a
node is in this sense, taking lower values the more structural holes there are in
the surrounding network. Thus, local clustering can be regarded as a type of
centrality measure, albeit one that takes small values for powerful individuals
rather than large ones.

In this sense, local clustering can also be thought of as akin to the between-
ness centrality of Section 7.1.7. Betweenness measures a node’s control over
information flowing between all pairs of nodes in its component. Local clus-
tering is like a local version of betweenness that measures control over flows
between just a node’s immediate neighbors. One measure is not necessar-
ily better than the other. There may be cases in which we want to take all
nodes into account and others where we want to consider neighbors only. It
is worth pointing out, however, that betweenness is much more computation-
ally demanding to calculate than local clustering (see Section 8.5.6), and that
in practice betweenness and local clustering are strongly correlated [89]. As a
result, there may be in many cases little to be gained by performing the more
costly full calculation of betweenness rather than using local clustering, given
that the two contain much the same information.17

Figure 7.8: Redundancy. The neigh-
bors of the central node in this fig-
ure have 0, 1, 1, and 2 connections to
other neighbors, respectively. The re-
dundancy is the mean of these values:
Ri ⇤

1
4 (0 + 1 + 1 + 2) ⇤ 1.

In his original studies of structural holes, Burt [89] did not make
use of the local clustering coefficient,18 instead using another mea-
sure, which he called redundancy. The original definition of redun-
dancy was rather complicated, but Borgatti [75] has shown that it can
be simplified to the following: the redundancy Ri of a node i is the
mean number of connections from a neighbor of i to other neighbors
of i. Consider the example shown in Fig. 7.8 in which the central
node has four neighbors. Each of those four could be acquainted
with any of the three others, but in this case none of them is con-
nected to all three. One is connected to none of the others, two are
connected to one other, and the last is connected to two others. The
redundancy is the average of these numbers Ri ⇤

1
4 (0+1+1+2) ⇤ 1.

17As an example, in Section 14.5.1 we study methods for partitioning networks into clusters or
communities and we will see that effective computer algorithms for this task can be created based
on betweenness measures, but that almost equally effective and much faster algorithms can be
created based on local clustering.

18Actually, the local clustering coefficient hadn’t yet been invented. It was first proposed to this
author’s knowledge by Watts [463] a few years later.

187

The minimum possible value of the redundancy of a node i is zero and the 
maximum is , where  is the degree of the node.di − 1 di
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7.4 R����������
The clustering coefficient of Section 7.3 measures the frequency with which
triangles—loops of length three—appear in a network, but there is no reason
why one should concentrate only on loops of length three and people have
occasionally looked at the frequency of loops of length four or more [61,92,195,
207, 351]. Triangles occupy a special place, however, because in an undirected
simple graph the triangle is the shortest loop we can have (and usually the most
commonly occurring). However, in a directed network this is not the case. In a
directed network, we can have loops of length two—a pair of nodes between
which there are directed edges running in both directions—and it is interesting
to ask about the frequency of occurrence of these loops also.

A loop of length two in a
directed network.

The frequency of loops of length two is measured by the reciprocity, which
tells you how likely it is that a node you point to also points back at you. For
instance, on the World Wide Web if my web page links to your web page, how
likely is it, on average, that yours links back again to mine? In general, it’s found
that in fact you are much more likely to link to me if I link to you. Similarly, in
friendship networks, such as those of Section 4.2, where respondents are asked
to name their friends, it is much more likely that you will name me if I name
you.

If there is a directed edge from node i to node j in a directed network
and there is also an edge from j to i then we say the edge from i to j is
reciprocated. (Obviously the edge from j to i is also reciprocated.) Pairs of edges
like this are also sometimes called co-links, particularly in the context of the
World Wide Web [157]. The reciprocity r is defined as the fraction of edges that
are reciprocated. Noting that the product of adjacency matrix elements AijAji
is 1 if and only if there is an edge from i to j and an edge from j to i and is
zero otherwise, we can sum over all node pairs i , j to get an expression for the
reciprocity:

r ⇤
1
m

’
i j

Ai jAji ⇤
1
m

Tr A2 , (7.32)

where m is, as usual, the total number of (directed) edges in the network.
Consider, for example, this small network of four nodes:

189

r =
1
m ∑

ij

Aij Aji

While the clustering coefficient focuses on triads 
(being the fundamental, shortest loop), depending 
on the context focussing on tetrads, pentads or 
more closed groups can be of interest.


For example, in a directed network we can have 
loops of length two and it is interesting to ask about 
the frequency of occurrence of these loops also. 


The frequency of loops of length two is measured 
by the reciprocity, which estimates how likely it is 
that two nodes point at each other. If there is a 
directed edge from node i to node j in a directed 
network and there is also an edge from j to i, then 
we say the edges are reciprocated. Let m be the 
total number of edges in the network, reciprocity is:
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7.4 R����������
The clustering coefficient of Section 7.3 measures the frequency with which
triangles—loops of length three—appear in a network, but there is no reason
why one should concentrate only on loops of length three and people have
occasionally looked at the frequency of loops of length four or more [61,92,195,
207, 351]. Triangles occupy a special place, however, because in an undirected
simple graph the triangle is the shortest loop we can have (and usually the most
commonly occurring). However, in a directed network this is not the case. In a
directed network, we can have loops of length two—a pair of nodes between
which there are directed edges running in both directions—and it is interesting
to ask about the frequency of occurrence of these loops also.

A loop of length two in a
directed network.

The frequency of loops of length two is measured by the reciprocity, which
tells you how likely it is that a node you point to also points back at you. For
instance, on the World Wide Web if my web page links to your web page, how
likely is it, on average, that yours links back again to mine? In general, it’s found
that in fact you are much more likely to link to me if I link to you. Similarly, in
friendship networks, such as those of Section 4.2, where respondents are asked
to name their friends, it is much more likely that you will name me if I name
you.

If there is a directed edge from node i to node j in a directed network
and there is also an edge from j to i then we say the edge from i to j is
reciprocated. (Obviously the edge from j to i is also reciprocated.) Pairs of edges
like this are also sometimes called co-links, particularly in the context of the
World Wide Web [157]. The reciprocity r is defined as the fraction of edges that
are reciprocated. Noting that the product of adjacency matrix elements AijAji
is 1 if and only if there is an edge from i to j and an edge from j to i and is
zero otherwise, we can sum over all node pairs i , j to get an expression for the
reciprocity:

r ⇤
1
m

’
i j

Ai jAji ⇤
1
m

Tr A2 , (7.32)

where m is, as usual, the total number of (directed) edges in the network.
Consider, for example, this small network of four nodes:

189r =
1
m ∑

ij

Aij Aji

For example, in the graph on the right there are 
seven directed edges and four of them are 
reciprocated, so the reciprocity is . 
That value is about the same seen on the World 
Wide Web, where about 57% of web pages link 
back to a web page that points to it. 


As another example, in a network of who-has-
whom in their email address book, it was found that 
the reciprocity was about , while in a study 
of friendship networks from a large set of US high 
schools estimated a reciprocity between 0.3 to 0.5, 
depending on the school.

r = 4/7 ≃ 0.57

r = 0.23
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the number of 
connections to a node



saverio.giallorenzo@gmail.com

MA Digital Humanities and Digital Knowledge, UniBoWeb Science • Measures and Metrics, Nodes

A Visual Wrap-up

63

the number of connections 
and how important are the 

neighbours of a node
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The extent to which a 
node lies on paths 

between other nodes
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How close a node is to the 
other nodes
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the likelihood of the 
neighbours of a node of 
being neighbours as well
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Networks show patterns and repeated node configurations. The most basic 
repetition is that of nodes that have similar properties. Node similarity can 
answer to questions like “how unique a node is” and “what are the groups of 
similar nodes in the network”.


Similarity can abstract from the network, e.g., match-making services match 
people by similarity using their (self-reported) interests, likes, and dislikes. When 
looking at similarity from a network perspective, we look at the information 
contained in the network structure and use that to measure how “distant” are 
two given nodes in the network.


There are two fundamental measures of network similarity: structural 
equivalence and regular equivalence.



saverio.giallorenzo@gmail.com

MA Digital Humanities and Digital Knowledge, UniBoWeb Science • Measures and Metrics, Nodes

Structural Equivalence

68

7.6 | S���������

ji

(a) Structural equivalence

i j

(b) Regular equivalence

Figure 7.11: Structural equivalence and regular equivalence. (a) Nodes i and j are
structurally equivalent if they share many of the same neighbors. (b) Nodes i and j are
regularly equivalent if their neighbors are themselves equivalent (indicated here by the
different shades of nodes).

rather opaque, but the ideas they represent are simple enough. Two nodes in
a network are structurally equivalent if they share many of the same network
neighbors. In Fig. 7.11a we show a sketch depicting structural equivalence
between two nodes i and j—the two share, in this case, three of the same
neighbors, although both also have other neighbors that are not shared.

Regular equivalence is more subtle. Two regularly equivalent nodes do
not necessarily share the same neighbors, but they have neighbors who are

themselves similar. Two history students at different universities, for example,
may not have any friends in common, but they can still be similar in the sense
that they both know a lot of other history students, history instructors, and so
forth. Similarly, two CEOs at different companies may have no colleagues in
common, but they are similar in the sense that they have professional ties to
their respective CFO, CIO, members of the board, company president, and so
forth. Regular equivalence is illustrated in Fig. 7.11b.

7.6.1 M������� �� ���������� �����������

Perhaps the simplest and most obvious measure of structural equivalence is just
a count of the number of common neighbors two nodes have. In an undirected
network the number ni j of common neighbors of nodes i and j is given by

ni j ⇤
’

k

AikAk j , (7.33)

which is just the i jth element of A2.

195

Structural equivalence is a count of the 
number of common neighbours two nodes 
have. In an undirected network, the 
number  of common neighbours of 
nodes i and j is given by 


nij
nij = ∑

k

Aik Akj
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(a) Structural equivalence

i j

(b) Regular equivalence

Figure 7.11: Structural equivalence and regular equivalence. (a) Nodes i and j are
structurally equivalent if they share many of the same neighbors. (b) Nodes i and j are
regularly equivalent if their neighbors are themselves equivalent (indicated here by the
different shades of nodes).

rather opaque, but the ideas they represent are simple enough. Two nodes in
a network are structurally equivalent if they share many of the same network
neighbors. In Fig. 7.11a we show a sketch depicting structural equivalence
between two nodes i and j—the two share, in this case, three of the same
neighbors, although both also have other neighbors that are not shared.

Regular equivalence is more subtle. Two regularly equivalent nodes do
not necessarily share the same neighbors, but they have neighbors who are

themselves similar. Two history students at different universities, for example,
may not have any friends in common, but they can still be similar in the sense
that they both know a lot of other history students, history instructors, and so
forth. Similarly, two CEOs at different companies may have no colleagues in
common, but they are similar in the sense that they have professional ties to
their respective CFO, CIO, members of the board, company president, and so
forth. Regular equivalence is illustrated in Fig. 7.11b.

7.6.1 M������� �� ���������� �����������

Perhaps the simplest and most obvious measure of structural equivalence is just
a count of the number of common neighbors two nodes have. In an undirected
network the number ni j of common neighbors of nodes i and j is given by

ni j ⇤
’

k

AikAk j , (7.33)

which is just the i jth element of A2.

195

However, focussing on the total number of 
nodes penalises nodes with low degree. 
The cosine similarity is a similarity that 
compounds varying degrees of nodes.


It is based on a proposal by Salton who 
suggested to consider the i-th and j-th 
rows (colums) of the adjacency matrix as 
two vectors and use the cosine of the 
angle  between them as a measure of 
their closeness. Formally:

θ

∑k AikAkj

∑k A2
ik ∑k A2

jk

=
∑k AikAkj

di dj

=
nij

didj

The number of common 
neighbours of the two 
nodes

The geometric mean of 
their degreesFor unweighted 

networks
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(a) Structural equivalence

i j

(b) Regular equivalence

Figure 7.11: Structural equivalence and regular equivalence. (a) Nodes i and j are
structurally equivalent if they share many of the same neighbors. (b) Nodes i and j are
regularly equivalent if their neighbors are themselves equivalent (indicated here by the
different shades of nodes).

rather opaque, but the ideas they represent are simple enough. Two nodes in
a network are structurally equivalent if they share many of the same network
neighbors. In Fig. 7.11a we show a sketch depicting structural equivalence
between two nodes i and j—the two share, in this case, three of the same
neighbors, although both also have other neighbors that are not shared.

Regular equivalence is more subtle. Two regularly equivalent nodes do
not necessarily share the same neighbors, but they have neighbors who are

themselves similar. Two history students at different universities, for example,
may not have any friends in common, but they can still be similar in the sense
that they both know a lot of other history students, history instructors, and so
forth. Similarly, two CEOs at different companies may have no colleagues in
common, but they are similar in the sense that they have professional ties to
their respective CFO, CIO, members of the board, company president, and so
forth. Regular equivalence is illustrated in Fig. 7.11b.

7.6.1 M������� �� ���������� �����������

Perhaps the simplest and most obvious measure of structural equivalence is just
a count of the number of common neighbors two nodes have. In an undirected
network the number ni j of common neighbors of nodes i and j is given by

ni j ⇤
’

k

AikAk j , (7.33)

which is just the i jth element of A2.

195

σij = cos θ =
nij

didj

=
3

4 × 5
= 0.671…

Note that, if the degree of at least one of 
the nodes is 0, the cosine similarity is 
undefined, however the convention in 
those cases is to set it to 0.
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(a) Structural equivalence

i j

(b) Regular equivalence

Figure 7.11: Structural equivalence and regular equivalence. (a) Nodes i and j are
structurally equivalent if they share many of the same neighbors. (b) Nodes i and j are
regularly equivalent if their neighbors are themselves equivalent (indicated here by the
different shades of nodes).

rather opaque, but the ideas they represent are simple enough. Two nodes in
a network are structurally equivalent if they share many of the same network
neighbors. In Fig. 7.11a we show a sketch depicting structural equivalence
between two nodes i and j—the two share, in this case, three of the same
neighbors, although both also have other neighbors that are not shared.

Regular equivalence is more subtle. Two regularly equivalent nodes do
not necessarily share the same neighbors, but they have neighbors who are

themselves similar. Two history students at different universities, for example,
may not have any friends in common, but they can still be similar in the sense
that they both know a lot of other history students, history instructors, and so
forth. Similarly, two CEOs at different companies may have no colleagues in
common, but they are similar in the sense that they have professional ties to
their respective CFO, CIO, members of the board, company president, and so
forth. Regular equivalence is illustrated in Fig. 7.11b.

7.6.1 M������� �� ���������� �����������

Perhaps the simplest and most obvious measure of structural equivalence is just
a count of the number of common neighbors two nodes have. In an undirected
network the number ni j of common neighbors of nodes i and j is given by

ni j ⇤
’

k

AikAk j , (7.33)

which is just the i jth element of A2.

195

There are alternative measures to cosine 
similarity:


For the Jaccard coefficient of two nodes i 
and j corresponds to the number of 
common neighbours  divided by the 
total number of distinct neighbours of both 
nodes.

nij

Jij =
nij

di + dj − nij We remove the nodes in common 
from the sum of the degrees to 
obtain the amount of distinct nodes 
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(a) Structural equivalence

i j

(b) Regular equivalence

Figure 7.11: Structural equivalence and regular equivalence. (a) Nodes i and j are
structurally equivalent if they share many of the same neighbors. (b) Nodes i and j are
regularly equivalent if their neighbors are themselves equivalent (indicated here by the
different shades of nodes).

rather opaque, but the ideas they represent are simple enough. Two nodes in
a network are structurally equivalent if they share many of the same network
neighbors. In Fig. 7.11a we show a sketch depicting structural equivalence
between two nodes i and j—the two share, in this case, three of the same
neighbors, although both also have other neighbors that are not shared.

Regular equivalence is more subtle. Two regularly equivalent nodes do
not necessarily share the same neighbors, but they have neighbors who are

themselves similar. Two history students at different universities, for example,
may not have any friends in common, but they can still be similar in the sense
that they both know a lot of other history students, history instructors, and so
forth. Similarly, two CEOs at different companies may have no colleagues in
common, but they are similar in the sense that they have professional ties to
their respective CFO, CIO, members of the board, company president, and so
forth. Regular equivalence is illustrated in Fig. 7.11b.

7.6.1 M������� �� ���������� �����������

Perhaps the simplest and most obvious measure of structural equivalence is just
a count of the number of common neighbors two nodes have. In an undirected
network the number ni j of common neighbors of nodes i and j is given by

ni j ⇤
’

k

AikAk j , (7.33)

which is just the i jth element of A2.

195

There are alternative measures to cosine 
similarity:


Pearson correlation coefficient expresses 
the degree of linear association between 
two variables. It varies between -1 
(antithetical connections), 0 (no 
correlation), +1 (identity). Pearson is 
usually applied to scalar or ordinal values.


rij =
∑k ((Aik − ⟨Ai⟩)∑k ((Ajk − ⟨Aj⟩)

∑k (Aik − ⟨Ai⟩)2 ∑k (Ajk − ⟨Aj⟩)2

Average of the *-th row
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(a) Structural equivalence

i j

(b) Regular equivalence

Figure 7.11: Structural equivalence and regular equivalence. (a) Nodes i and j are
structurally equivalent if they share many of the same neighbors. (b) Nodes i and j are
regularly equivalent if their neighbors are themselves equivalent (indicated here by the
different shades of nodes).

rather opaque, but the ideas they represent are simple enough. Two nodes in
a network are structurally equivalent if they share many of the same network
neighbors. In Fig. 7.11a we show a sketch depicting structural equivalence
between two nodes i and j—the two share, in this case, three of the same
neighbors, although both also have other neighbors that are not shared.

Regular equivalence is more subtle. Two regularly equivalent nodes do
not necessarily share the same neighbors, but they have neighbors who are

themselves similar. Two history students at different universities, for example,
may not have any friends in common, but they can still be similar in the sense
that they both know a lot of other history students, history instructors, and so
forth. Similarly, two CEOs at different companies may have no colleagues in
common, but they are similar in the sense that they have professional ties to
their respective CFO, CIO, members of the board, company president, and so
forth. Regular equivalence is illustrated in Fig. 7.11b.

7.6.1 M������� �� ���������� �����������

Perhaps the simplest and most obvious measure of structural equivalence is just
a count of the number of common neighbors two nodes have. In an undirected
network the number ni j of common neighbors of nodes i and j is given by

ni j ⇤
’

k

AikAk j , (7.33)

which is just the i jth element of A2.

195

There are alternative measures to cosine 
similarity:


Hamming distance which calculates the 
number of neighbours two nodes do not 
have in common. It can be interpreted also 
as the number of ties a node i must 
change to take the place of a node j - the 
square root of  is called the Euclidean 
distance between i and j.


hij

hij = ∑
k

(Aik − Ajk)2
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(b) Regular equivalence

Figure 7.11: Structural equivalence and regular equivalence. (a) Nodes i and j are
structurally equivalent if they share many of the same neighbors. (b) Nodes i and j are
regularly equivalent if their neighbors are themselves equivalent (indicated here by the
different shades of nodes).

rather opaque, but the ideas they represent are simple enough. Two nodes in
a network are structurally equivalent if they share many of the same network
neighbors. In Fig. 7.11a we show a sketch depicting structural equivalence
between two nodes i and j—the two share, in this case, three of the same
neighbors, although both also have other neighbors that are not shared.

Regular equivalence is more subtle. Two regularly equivalent nodes do
not necessarily share the same neighbors, but they have neighbors who are

themselves similar. Two history students at different universities, for example,
may not have any friends in common, but they can still be similar in the sense
that they both know a lot of other history students, history instructors, and so
forth. Similarly, two CEOs at different companies may have no colleagues in
common, but they are similar in the sense that they have professional ties to
their respective CFO, CIO, members of the board, company president, and so
forth. Regular equivalence is illustrated in Fig. 7.11b.

7.6.1 M������� �� ���������� �����������

Perhaps the simplest and most obvious measure of structural equivalence is just
a count of the number of common neighbors two nodes have. In an undirected
network the number ni j of common neighbors of nodes i and j is given by

ni j ⇤
’

k

AikAk j , (7.33)

which is just the i jth element of A2.

195

Regular equivalence of two 
nodes is the count of 
neighbours that are themselves 
similar. 


E.g., two CEOs at different 
companies may have no 
colleagues in common, but they 
are similar in the sense that they 
have professional ties to their 
respective CFO, CIO, members 
of the board, company 
president, and so forth.
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Figure 7.11: Structural equivalence and regular equivalence. (a) Nodes i and j are
structurally equivalent if they share many of the same neighbors. (b) Nodes i and j are
regularly equivalent if their neighbors are themselves equivalent (indicated here by the
different shades of nodes).

rather opaque, but the ideas they represent are simple enough. Two nodes in
a network are structurally equivalent if they share many of the same network
neighbors. In Fig. 7.11a we show a sketch depicting structural equivalence
between two nodes i and j—the two share, in this case, three of the same
neighbors, although both also have other neighbors that are not shared.

Regular equivalence is more subtle. Two regularly equivalent nodes do
not necessarily share the same neighbors, but they have neighbors who are

themselves similar. Two history students at different universities, for example,
may not have any friends in common, but they can still be similar in the sense
that they both know a lot of other history students, history instructors, and so
forth. Similarly, two CEOs at different companies may have no colleagues in
common, but they are similar in the sense that they have professional ties to
their respective CFO, CIO, members of the board, company president, and so
forth. Regular equivalence is illustrated in Fig. 7.11b.

7.6.1 M������� �� ���������� �����������

Perhaps the simplest and most obvious measure of structural equivalence is just
a count of the number of common neighbors two nodes have. In an undirected
network the number ni j of common neighbors of nodes i and j is given by

ni j ⇤
’

k

AikAk j , (7.33)

which is just the i jth element of A2.

195

The basic idea is to define a 
similarity score  such that i and j 
have high similarity if they have 
neighbours k and l that themselves 
have high similarity. For an 
undirected network we have

σij

σij = α∑
kl

Aik Ajl σkl

With  constant (the inverse of the eigenvalue) and  the leading eigenvector … with 
all the considerations we discussed for centrality, Kats measure, PageRank …

α σ
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White
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Figure 7.12: A friendship network at a US high school. The nodes in this network represent 470 students at a US high
school (ages 14 to 18 years). The nodes are color coded by race as indicated in the key. Data are from the National
Longitudinal Study of Adolescent Health [52, 451].

ties based on all sorts of characteristics, including age, nationality, language,
income, educational level, and others. Almost any social parameter you can
imagine plays into people’s selection of their friends. People have, it appears,
a strong tendency to associate with others whom they perceive as being similar
to themselves in some way. This tendency is called homophily or assortative

mixing.
More rarely, one also encounters disassortative mixing, the tendency for peo-

ple to associate with others who are unlike them. Probably the most widespread
and familiar example of disassortative mixing is mixing by gender in sexual
contact networks. The majority of sexual partnerships are between individuals
of opposite sex, so they represent connections between people who differ in
their gender. Of course, same-sex partnerships do also occur, but they are a
smaller fraction of the ties in the network.

Assortative (or disassortative) mixing is also seen in some non-social net-

202

Related to similarity and equivalence, 
homophily (also called assortative mixing) 
reports the tendency of nodes in the 
network to draw ties with other nodes that 
are similar/equivalent to them.


For example, a large body of literature 
shows how ethnic segregation does not 
strictly relate to an extremist aversion 
against other ethnicities (e.g., 90/10 ratio), 
but it can also emerge from moderate 
preference ratios (e.g., 55/45) of same vs. 
other ethnic groups. 
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A network is assortative if a significant fraction of the edges in the network run 
between nodes of the same type.


To measure the level of assortativity, we can calculate a) the fraction of edges that 
run between nodes of the same type and subtract from that figure b) the fraction of 
such edges we would expect to find if edges were positioned at random without 
regard for node type. Hence, this measure is in a sense quantifying the level of 
“non-randomness” in the placement of edges in the network.


First, we calculate a)

a) =
1
2 ∑

ij

Aij δ gi gj

Kronecker delta, where δkl = {1 if k = l
0 otherwise

The group/class/type of node i;  is an integer 
 where N is the total number of groups

gi
1 … N
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A network is assortative if a significant fraction of the edges in the network run 
between nodes of the same type.


To measure the level of assortativity, we can calculate a) the fraction of edges that 
run between nodes of the same type and subtract from that figure b) the fraction of 
such edges we would expect to find if edges were positioned at random without 
regard for node type. Hence, this measure is in a sense quantifying the level of 
“non-randomness” in the placement of edges in the network.


And then we calculate b)

b) =
1
2 ∑

ij

dj

2m
di δ gi gj

Same measure for the “actual” nodes used in a)

There can be 2m ends of edges in the entire network (with 
m being the number of edges). Given an edge with an end 
at i, the chance that the other end belongs to j is . dj/2m

We repeat that measure for 
all edges ending in i
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A network is assortative if a significant fraction of the edges in the network run 
between nodes of the same type.


To measure the level of assortativity, we can calculate a) the fraction of edges that 
run between nodes of the same type and subtract from that figure b) the fraction of 
such edges we would expect to find if edges were positioned at random without 
regard for node type. Hence, this measure is in a sense quantifying the level of 
“non-randomness” in the placement of edges in the network. 


Putting together a) and b) we have

a) − b) =
1
2 ∑

ij (Aij −
dj di

2m ) δ gi gj
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We can calculate assortative mixing also on 
networks with ordered characteristics, like age or 
income, which supports the calculation of 
approximation of assortativity based on the 
distance between those characteristics. 


If network nodes with similar values of a scalar 
characteristic tend to be connected together 
more likely than those with different values, then 
the network is considered assortatively mixed 
according to that characteristic. 


For example, if people are friends with others 
around the same age as them, then the network is 
assortatively mixed (or stratified) by age.

M������� ��� �������

7.7.2 A���������� ������ �� ������� ���������������

We can also have assortative mixing in a network according to characteristics
like age or income, whose values come in a particular order, so that it is pos-
sible to say not only when two nodes are exactly the same according to the
characteristic but also when they are approximately the same. For instance,
while two people can certainly be of exactly the same age—born on the same
day even—they can also be approximately the same age—born within a couple
of years of one another, say—and people could (and in fact often do) choose
whom they associate with on the basis of such approximate ages. There is no
equivalent approximate similarity for the unordered characteristics of the pre-
vious section: there is no sense in which people from France and Germany, say,
are more nearly of the same nationality than people from France and Spain.30

If network nodes with similar values of a scalar characteristic tend to be
connected together more often than those with different values, then the net-
work is considered assortatively mixed according to that characteristic. If, for
example, people are friends with others around the same age as them, then
the network is assortatively mixed by age. Sometimes you also hear it said that
such a network is stratified by age, which means the same thing—one can think
of age as a one-dimensional scale or axis, with individuals of different ages
forming connected “strata” within the network.

A sketch of a stratified net-
work in which most connec-
tions run between nodes at
or near the same “level”
in the network, with level
along the vertical axis in
this case and denoted by the
shades of the nodes.

Consider Fig. 7.13, which shows friendship data for the same set of US
high school students as Fig. 7.12 but now as a function of age. Each dot in the
figure corresponds to one pair of friends and the position of the dot along the
two axes gives the ages of the friends, with ages measured by school grades.31

As the figure shows, there is substantial assortative mixing by age among the
students: many dots lie within the boxes close to the diagonal line that represent
friendships between students in the same grade. There is also, in this case, a
notable tendency for students to have friends of a wider range of ages as their
age increases so there is a lower density of points in the top right box than in
the bottom left one.

One could make a crude measure of assortative mixing by scalar character-
istics by adapting the ideas of the previous section. One could group the nodes
into bins according to the characteristic of interest (say age) and then treat the

30One could in principle make up some measure of national differences based say on geographic
distance. But if the question we are asked is “Are these two people of the same nationality?” then
under normal circumstances the only answers are “yes” and “no.” There is nothing in between.

31In the US school system there are 12 numbered grades of one year each and children normally
enter the first grade when they are six years old. Thus the ninth grade, for example, corresponds
to students of age 14 and 15.

206

1st year 2nd year 3rd year 4th year 5th year
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To measure assortativity on ordered 
characteristics, we can calculate the covariance 
of the network. Let us have  being the value of 
attribute  for node , we have

xi
x i
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7.7.2 A���������� ������ �� ������� ���������������

We can also have assortative mixing in a network according to characteristics
like age or income, whose values come in a particular order, so that it is pos-
sible to say not only when two nodes are exactly the same according to the
characteristic but also when they are approximately the same. For instance,
while two people can certainly be of exactly the same age—born on the same
day even—they can also be approximately the same age—born within a couple
of years of one another, say—and people could (and in fact often do) choose
whom they associate with on the basis of such approximate ages. There is no
equivalent approximate similarity for the unordered characteristics of the pre-
vious section: there is no sense in which people from France and Germany, say,
are more nearly of the same nationality than people from France and Spain.30

If network nodes with similar values of a scalar characteristic tend to be
connected together more often than those with different values, then the net-
work is considered assortatively mixed according to that characteristic. If, for
example, people are friends with others around the same age as them, then
the network is assortatively mixed by age. Sometimes you also hear it said that
such a network is stratified by age, which means the same thing—one can think
of age as a one-dimensional scale or axis, with individuals of different ages
forming connected “strata” within the network.

A sketch of a stratified net-
work in which most connec-
tions run between nodes at
or near the same “level”
in the network, with level
along the vertical axis in
this case and denoted by the
shades of the nodes.

Consider Fig. 7.13, which shows friendship data for the same set of US
high school students as Fig. 7.12 but now as a function of age. Each dot in the
figure corresponds to one pair of friends and the position of the dot along the
two axes gives the ages of the friends, with ages measured by school grades.31

As the figure shows, there is substantial assortative mixing by age among the
students: many dots lie within the boxes close to the diagonal line that represent
friendships between students in the same grade. There is also, in this case, a
notable tendency for students to have friends of a wider range of ages as their
age increases so there is a lower density of points in the top right box than in
the bottom left one.

One could make a crude measure of assortative mixing by scalar character-
istics by adapting the ideas of the previous section. One could group the nodes
into bins according to the characteristic of interest (say age) and then treat the

30One could in principle make up some measure of national differences based say on geographic
distance. But if the question we are asked is “Are these two people of the same nationality?” then
under normal circumstances the only answers are “yes” and “no.” There is nothing in between.

31In the US school system there are 12 numbered grades of one year each and children normally
enter the first grade when they are six years old. Thus the ninth grade, for example, corresponds
to students of age 14 and 15.
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1st year 2nd year 3rd year 4th year 5th year

μx =
∑ij Aij xi

∑ij Aij
=

1
2m ∑

i

di xi

𝖢𝖮𝖵(xi, xj) =
∑ij Aij(xi − μx)(xj − μx)

∑ij Aij mean of the 
value x
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To measure assortativity on ordered 
characteristics, we can calculate the covariance 
of the network. Let us have  being the value of 
attribute x for node i, we have

xi

M������� ��� �������

7.7.2 A���������� ������ �� ������� ���������������

We can also have assortative mixing in a network according to characteristics
like age or income, whose values come in a particular order, so that it is pos-
sible to say not only when two nodes are exactly the same according to the
characteristic but also when they are approximately the same. For instance,
while two people can certainly be of exactly the same age—born on the same
day even—they can also be approximately the same age—born within a couple
of years of one another, say—and people could (and in fact often do) choose
whom they associate with on the basis of such approximate ages. There is no
equivalent approximate similarity for the unordered characteristics of the pre-
vious section: there is no sense in which people from France and Germany, say,
are more nearly of the same nationality than people from France and Spain.30

If network nodes with similar values of a scalar characteristic tend to be
connected together more often than those with different values, then the net-
work is considered assortatively mixed according to that characteristic. If, for
example, people are friends with others around the same age as them, then
the network is assortatively mixed by age. Sometimes you also hear it said that
such a network is stratified by age, which means the same thing—one can think
of age as a one-dimensional scale or axis, with individuals of different ages
forming connected “strata” within the network.

A sketch of a stratified net-
work in which most connec-
tions run between nodes at
or near the same “level”
in the network, with level
along the vertical axis in
this case and denoted by the
shades of the nodes.

Consider Fig. 7.13, which shows friendship data for the same set of US
high school students as Fig. 7.12 but now as a function of age. Each dot in the
figure corresponds to one pair of friends and the position of the dot along the
two axes gives the ages of the friends, with ages measured by school grades.31

As the figure shows, there is substantial assortative mixing by age among the
students: many dots lie within the boxes close to the diagonal line that represent
friendships between students in the same grade. There is also, in this case, a
notable tendency for students to have friends of a wider range of ages as their
age increases so there is a lower density of points in the top right box than in
the bottom left one.

One could make a crude measure of assortative mixing by scalar character-
istics by adapting the ideas of the previous section. One could group the nodes
into bins according to the characteristic of interest (say age) and then treat the

30One could in principle make up some measure of national differences based say on geographic
distance. But if the question we are asked is “Are these two people of the same nationality?” then
under normal circumstances the only answers are “yes” and “no.” There is nothing in between.

31In the US school system there are 12 numbered grades of one year each and children normally
enter the first grade when they are six years old. Thus the ninth grade, for example, corresponds
to students of age 14 and 15.
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1st year 2nd year 3rd year 4th year 5th year

μx =
1

2m ∑
i

di xi

𝖢𝖮𝖵(xi, xj) =
1

2m ∑
ij (Aij −

di dj

2m ) xi xj
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𝖢𝖮𝖵(xi, xj) =
1

2m ∑
ij (Aij −

di dj

2m ) xi xj

Q =
1

2m ∑
ij (Aij −

dj di

2m ) δ gi gj

Assortativity wrt the 
total number of 
edges is called 
modularity, denoted 

, and it measures 
the extent to which 
similar nodes are 
likely to connect to 
each other.

Q
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It is sometimes convenient to normalize the 
covariance so that it takes the value 1 in a 
network with perfect assortative mixing—one in 
which all edges fall between nodes with precisely 
equal values of . xi
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We can also have assortative mixing in a network according to characteristics
like age or income, whose values come in a particular order, so that it is pos-
sible to say not only when two nodes are exactly the same according to the
characteristic but also when they are approximately the same. For instance,
while two people can certainly be of exactly the same age—born on the same
day even—they can also be approximately the same age—born within a couple
of years of one another, say—and people could (and in fact often do) choose
whom they associate with on the basis of such approximate ages. There is no
equivalent approximate similarity for the unordered characteristics of the pre-
vious section: there is no sense in which people from France and Germany, say,
are more nearly of the same nationality than people from France and Spain.30

If network nodes with similar values of a scalar characteristic tend to be
connected together more often than those with different values, then the net-
work is considered assortatively mixed according to that characteristic. If, for
example, people are friends with others around the same age as them, then
the network is assortatively mixed by age. Sometimes you also hear it said that
such a network is stratified by age, which means the same thing—one can think
of age as a one-dimensional scale or axis, with individuals of different ages
forming connected “strata” within the network.

A sketch of a stratified net-
work in which most connec-
tions run between nodes at
or near the same “level”
in the network, with level
along the vertical axis in
this case and denoted by the
shades of the nodes.

Consider Fig. 7.13, which shows friendship data for the same set of US
high school students as Fig. 7.12 but now as a function of age. Each dot in the
figure corresponds to one pair of friends and the position of the dot along the
two axes gives the ages of the friends, with ages measured by school grades.31

As the figure shows, there is substantial assortative mixing by age among the
students: many dots lie within the boxes close to the diagonal line that represent
friendships between students in the same grade. There is also, in this case, a
notable tendency for students to have friends of a wider range of ages as their
age increases so there is a lower density of points in the top right box than in
the bottom left one.

One could make a crude measure of assortative mixing by scalar character-
istics by adapting the ideas of the previous section. One could group the nodes
into bins according to the characteristic of interest (say age) and then treat the

30One could in principle make up some measure of national differences based say on geographic
distance. But if the question we are asked is “Are these two people of the same nationality?” then
under normal circumstances the only answers are “yes” and “no.” There is nothing in between.

31In the US school system there are 12 numbered grades of one year each and children normally
enter the first grade when they are six years old. Thus the ninth grade, for example, corresponds
to students of age 14 and 15.
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r =
∑ij (Aij −

di dj

2m ) xi xj

∑ij (diδij −
di dj

2m ) xi xj

The obtained measure is called the “assortativity 
coefficient”.



saverio.giallorenzo@gmail.com

MA Digital Humanities and Digital Knowledge, UniBoWeb Science • Measures and Metrics, Nodes

Homophily and Assortative Mixing • by Ordered Characteristics 

85

The assortativity coefficient is an example of a 
Pearson correlation coefficient, having a 
covariance in its numerator and a variance in the 
denominator.


The correlation coefficient varies between a 
maximum of 1 for a perfectly assortative network 
and a minimum of −1 for a perfectly disassortative 
one.  E.g., the correlation coefficient of the 
example of the right takes a value of r=0.616, 
indicating that the friendship network has 
significant assortative mixing by age.
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We can also have assortative mixing in a network according to characteristics
like age or income, whose values come in a particular order, so that it is pos-
sible to say not only when two nodes are exactly the same according to the
characteristic but also when they are approximately the same. For instance,
while two people can certainly be of exactly the same age—born on the same
day even—they can also be approximately the same age—born within a couple
of years of one another, say—and people could (and in fact often do) choose
whom they associate with on the basis of such approximate ages. There is no
equivalent approximate similarity for the unordered characteristics of the pre-
vious section: there is no sense in which people from France and Germany, say,
are more nearly of the same nationality than people from France and Spain.30

If network nodes with similar values of a scalar characteristic tend to be
connected together more often than those with different values, then the net-
work is considered assortatively mixed according to that characteristic. If, for
example, people are friends with others around the same age as them, then
the network is assortatively mixed by age. Sometimes you also hear it said that
such a network is stratified by age, which means the same thing—one can think
of age as a one-dimensional scale or axis, with individuals of different ages
forming connected “strata” within the network.

A sketch of a stratified net-
work in which most connec-
tions run between nodes at
or near the same “level”
in the network, with level
along the vertical axis in
this case and denoted by the
shades of the nodes.

Consider Fig. 7.13, which shows friendship data for the same set of US
high school students as Fig. 7.12 but now as a function of age. Each dot in the
figure corresponds to one pair of friends and the position of the dot along the
two axes gives the ages of the friends, with ages measured by school grades.31

As the figure shows, there is substantial assortative mixing by age among the
students: many dots lie within the boxes close to the diagonal line that represent
friendships between students in the same grade. There is also, in this case, a
notable tendency for students to have friends of a wider range of ages as their
age increases so there is a lower density of points in the top right box than in
the bottom left one.

One could make a crude measure of assortative mixing by scalar character-
istics by adapting the ideas of the previous section. One could group the nodes
into bins according to the characteristic of interest (say age) and then treat the

30One could in principle make up some measure of national differences based say on geographic
distance. But if the question we are asked is “Are these two people of the same nationality?” then
under normal circumstances the only answers are “yes” and “no.” There is nothing in between.

31In the US school system there are 12 numbered grades of one year each and children normally
enter the first grade when they are six years old. Thus the ninth grade, for example, corresponds
to students of age 14 and 15.
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r =
∑ij (Aij −

di dj

2m ) xi xj

∑ij (diδij −
di dj

2m ) xi xj
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(a) (b)

Figure 7.14: Assortative and disassortative networks. These two small networks were computer generated, to illustrate
the phenomenon of assortativity by degree. (a) A network that is assortative by degree, displaying the characteristic
dense core of high-degree nodes surrounded by a periphery of lower-degree ones. (b) A disassortative network,
displaying the star-like structures characteristic of this case. Figure from Newman and Girvan [365]. Copyright 2003
Springer-Verlag Berlin Heidelberg. Reproduced with permission of Springer Nature.

assortative mixing by degree, the high-degree nodes will be preferentially
connected to other high-degree nodes, and the low to low. In a social network,
for example, we have assortative mixing by degree if the gregarious people
are friends with other gregarious people and the hermits with other hermits.
Conversely, we could have disassortative mixing by degree, which would mean
that the gregarious people were hanging out with the hermits and vice versa.

The reason this case is particularly interesting is because, unlike age or in-
come, degree is itself a property of the network structure. Having one structural
property (the degrees) dictate another (the positions of the edges) gives rise toWe encountered core–

periphery structure previ-
ously in our discussion of
k-cores in Section 7.2.2 and
it is discussed further in
Section 14.7.3.

some interesting features in networks. In particular, in an assortative network,
where the high-degree nodes tend to stick together, one expects to get a clump
or core of such high-degree nodes in the network surrounded by a less dense
periphery of nodes with lower degree. This core–periphery structure is a com-
mon feature of many networks, particularly social networks, which are often
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A special case of assortative mixing according to a scalar 
quantity, and one of particular interest, is that of mixing by 
degree. In a network that shows assortative mixing by 
degree, the high-degree nodes will be preferentially 
connected to other high-degree nodes, and the low to low. 


The reason this case is particularly interesting is because, 
unlike age or income, degree is itself a property of the 
network structure. 


In particular, in an assortative network, where the high-
degree nodes tend to stick together, one expects to get a 
clump or core of such high-degree nodes in the network 
surrounded by a less dense periphery of nodes with lower 
degree. This is represented by the network on the right, 
top-half.
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(a) (b)

Figure 7.14: Assortative and disassortative networks. These two small networks were computer generated, to illustrate
the phenomenon of assortativity by degree. (a) A network that is assortative by degree, displaying the characteristic
dense core of high-degree nodes surrounded by a periphery of lower-degree ones. (b) A disassortative network,
displaying the star-like structures characteristic of this case. Figure from Newman and Girvan [365]. Copyright 2003
Springer-Verlag Berlin Heidelberg. Reproduced with permission of Springer Nature.

assortative mixing by degree, the high-degree nodes will be preferentially
connected to other high-degree nodes, and the low to low. In a social network,
for example, we have assortative mixing by degree if the gregarious people
are friends with other gregarious people and the hermits with other hermits.
Conversely, we could have disassortative mixing by degree, which would mean
that the gregarious people were hanging out with the hermits and vice versa.

The reason this case is particularly interesting is because, unlike age or in-
come, degree is itself a property of the network structure. Having one structural
property (the degrees) dictate another (the positions of the edges) gives rise toWe encountered core–

periphery structure previ-
ously in our discussion of
k-cores in Section 7.2.2 and
it is discussed further in
Section 14.7.3.

some interesting features in networks. In particular, in an assortative network,
where the high-degree nodes tend to stick together, one expects to get a clump
or core of such high-degree nodes in the network surrounded by a less dense
periphery of nodes with lower degree. This core–periphery structure is a com-
mon feature of many networks, particularly social networks, which are often
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On the other hand, if a network is disassortatively mixed 
by degree, then high-degree nodes tend to be connected 
to low-degree ones, creating star-like features in the 
network that are often readily visible. This is represented 
by the network bottom-half of the figure on the right. 
Degree-disassortative networks do not usually have a 
core–periphery split but are instead more uniform.


