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Networks and their representation

A network—also called a graph
INn the mathematical literature —
IS a collection of nodes (or
vertices) joined by edges.
Nodes and edges are also
called sites and bonds (e.g., In
physics and biology) or actors
and ties (e.g., in sociology).
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Types of Networks

Generally, the common notation in the mathematical literature for the number of
nodes in a network is n and the number of edges is mx.

The simplest networks have at most a single edge between any pair of nodes.
When there are more than one edge between the same nodes, the set of edges
between two notes are called a multi-edge. Usually, nodes do not have edges

to themselves, but when this happens, those nodes are called self-edges or
self-loops.

Networks that neither have self-edges nor multi-edges are called a simple
network or simple graph.

A network with multi-edges is called a multigraph.
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The Adjacency Matrix

The fundamental mathematical representation of
a network is the adjacency matrix.

Consider an undirected simple network with n nodes, labelled 1...n
—so that labels refer to the nodes unambiguously.

The adjacency matrix A of the network is defined to be the n X n
matrix with elements Aij such that

A — {1 if there is an edge between nodes i and j
L0 otherwise
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The Adjacency Matrix
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The Adjacency Matrix
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The Adjacency Matrix
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Weighted Networks

In some situations it is useful to represent edges as having a
strength, weight, or value, usually a real number, e.qg.,

- edges on the Internet where weights represent the amount of
data flowing along them or their bandwidth;

- In a food web, where predator-prey interactions might have
weights measuring total energy flow between prey and
predator;

- In a social network where connections might have weights
representing frequency of contact between actors.
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Weighted Networks

Such weighted or valued networks can be represented
mathematically by an adjacency matrix with the elements Al-j equal
to the weights of the corresponding connections
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Weighted Networks

Such weighted or valued networks can be represented
mathematically by an adjacency matrix with the elements Al-j equal
to the weights of the corresponding connections
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Types of Networks * Directed Graphs

Directed networks or directed graphs are networks in which
each edge has a direction, pointing from one node to
another—thus called directed edges or sometimes arcs.

Examples of directed graphs are web-pages, where hyperlinks
run in one direction from one web page to another; food webs,
where energy flows from prey to predator; and citation
networks, where citations point from one work to another.
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Types of Networks * Directed Graphs
1

A cycle In a directed network Is a
closed loop of edges with the
arrows on each of the edges pointing
the same way around the loop. A
self-edge—an edge connecting a
node to itself—counts as a cycle.

saverio.giallorenzo @gmail.com 14



Web Science « Mathematics of Networks MA Digital Humanities and Digital Knowledge, UniBo

Types of Networks * Directed Acyclic Graphs

Directed networks that have no cycles (including self-
edges) are called acyclic networks. They are
frequently abbreviated with the acronym DAG.

9
: 8
Y ( If a network is acyclic, it can be drawn with all edges
pointing downward.
6
S The proof that this is true, provides us with a method for
determining whether a given network is acyclic!
y 4 3
2
1
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Types of Networks * Directed Acyclic Graphs

Directed networks that have no cycles (including self-
edges) are called acyclic networks.

Lemma. In a DAG, with n nodes, there exists at least one node with no outgoing
edges. Proof. By contradiction, we assume that there are none of such nodes.
Then, we have the absurdum because we can construct a cycle: we can always

find an outgoing edge from any node and thus, even if we walked n edges, at

the n + 1% step we can only select one of the nodes we already visited,
creating a cycle.

Theorem. |f a network is acyclic, it can be drawn with all edges pointing
downward. Proof. The proof is by induction on the number of nodes. From the
Lemma above, we know we can find at least one of those nodes that have only
iIngoing edges. First, we remove one of those nodes and its ingoing edges from

the network, and draw them. Then, we iteratively apply the previous step n — 1
times, removing one of the outgoing-less nodes and drawing it in the following
way: if in the original network the node had some outgoing edges to some of
the nodes already drawn, we position it on top of those nodes and draw its
outgoing edges, otherwise we draw it on top of the current top level.
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Types of Networks * Directed Acyclic Graphs

Directed networks that have no cycles (including self-
edges) are called acyclic networks.

—

The adjacency matrix

8 A of a downward
labelled DAG (whose

6 element A;; records

the presence of an
edge from j to i) has
all its non-zero
elements above the
diagonal—also called
“upper triangular”.
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Types of Networks - Bi- and multi-modal Graphs

A bimodal network—also called bipartite —is a network with two kinds of
nodes and edges that run only between nodes of different kinds.

Bipartite networks are e.g., used to represent the membership of a set of
people or objects in groups of some kind: people are represented by one set
of nodes, groups by the other, and edges join people to groups in which
they belong. For example, a bipartite network can represent actors and
films, where the edges connect actors to the films in which they appear.
Edges cannot connect actors to other actors or films to other films.
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Types of Networks - Bi- and multi-modal Graphs

The equivalent of the adjacency matrix for an (undirected unweighted)
bipartite graph is a rectangular matrix called the incidence matrix. In the

iIncidence matrix, we count as n the number of nodes in the network and g

the numbers of groups, then the incidence matrix has dimension n X g where
Its elements are described as

3 5 3 4 & B, - { (1) i;til’;eerrwji‘sbeelongs in group i
Al O O 1 O
B11 1 1 1 O
Clo 1 1 0 1
\0 0 1 1 1
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Types of Networks - Bi- and multi-modal Graphs
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Walks, Paths, and Components

2
@

y 2 . 1131, Awalkinanetworkis a sequence of nodes
waik . 1,2,9,1,2 gych that every consecutive pair of nodes in

the sequence is connected by an edge. The
length of a walk in a network is the number
of edges traversed along the walk (not the
number of hodes), counted separately as
‘2 they are traversed.

‘47‘ length : 4
1 3

y \i’ path : 1,2,3 Walks that do not intersect themselves are

@ ® length:?2 called paths.
1 3
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Walks, Paths, and Components - Background

Matrix multiplication is an operation that
produces a matrix from two matrices.

The operation is written AB (shorthand P12 1015
for A - B), where A is the “left” matrix {*birta, by, . 2,2 | D23
and B the right one. To be applicable,

the number of columns of the left matrix
the right matrix—in that case, they are — III=@I I

must be equal to the number of rows of

called “conformable” to multiplication. - --u
-

Let C = AB, then the element C of the =@

product is defined as (;; = Z Aj - By - ---

k=1
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Walks, Paths, and Components - Background

Let C = AB, then the element C of the

product is defined as (;; = Z Ay - Bk]

12 1,3
b12+a12 bzz . 2,2 2,3
where
n

- o == O] |
Zai—am+am+1+am+2+---+an1+a i e III @

I ¥

So, e.g., =@
2

Ci1 = ZAl,k B =A1 Bt A By - ---

k=1
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Walks, Paths, and Components - Background

Matrix multiplication is not commutative, so

AB and BA are not necessarily the same (and
possibly not even multiplication-conformable).

As an example, let us have two matrices L,
representing love relations, and H representing
hate ones. The product LH represents the
“hated among the lovers”, so that the ij™ cell
of LH indicates the lovers of i who are hated
by j. On the other hand, HL represents the
“haters with lovers”, so that the ij™ cell of HL

indicates the haters of 1 that are loved by ]J.
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Walks, Paths, and Components - Background

hated among the lovers

L AlBIclD LH A B|C|D
A10/0/0]|0 Al0]0]O|O over (©
B/1/0/0|0 B O/0|0|O0 who is
hated by
Cl0/0/0/0 C,0/0]0]O0 two nodes
D O|O0O|1]0 D'Iy(AandB
H|A|B|[C|D haters with lovers
Al0|0I0]|O HL A B|C|D
B/O|0O[0|O Alolololo
oToTiTolo s[o0f0lo] o
DIO|1/0|0 |
C|1,0|/0|0| Whob
W = loved (by A) D has 1
D10 0 hater (B)

who Is
loved (by A)
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Walks, Paths, and Components - Background

We can also compute products of matrices with themselves. E.g., if IV is the friendship
matrix, then I is the “friend of friend” relation. When the ljth cell of F'F is greater than
0, it indicates the number of friends of 1 who have j as a friend.

A useful application of matrix products is to formalise social theories, e.g., let ' be the
matrix of friendship and E the matrix of enemies, we can hypothesise that:

o [l the friends of my friends are my friends;
o [F, the friends of my enemies are my enemies;
» FFE, the enemies of my friends are my enemies;

o [EE, the enemies of my enemies are my enemies.

Then, if we have actual surveys of the relations, we can compare those (theoretical)
measures and test our theories.
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Walks, Paths, and Components

In general

N(l’) [ A" ] —

To calculate the number of walks of a given

length r on a network, for either a directed or
an undirected simple network, the element

A;;is 1 if there is an edge from node j to

node 1, and 0 otherwise (the condition for
non-simple networks is slightly different).

Then the product A; A;; is 1 if there is a walk

from j to i via k, and 0 otherwise. In that
case, we know the walk has length 2.

N = ZA A = [A],
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Walks, Paths, and Components

The shortest path between two nodes 1 and J, also called the
geodesic path, is the shortest walk (hence, self-avoiding) that

connects 1 and j. The length of the shortest path (also called their
distance) is the minimum r such that | A’ ]U- > ().

Shortest paths are important in many contexts, e.g., iIn communication
and transportation networks, they affect how rapidly it is possible to get
goods or data from one node to another, e.qg., if, at each “leg”, there is
some overhead (distances to be bridged, data manipulation).

The diameter of a network is the length of the longest among all
existing shortest paths between every pair of nodes in the network. The
diameter of the network is useful, e.g., to understand the
connectedness of networks.
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Walks, Paths, and Components

s :

4 K

A network does not necessarily consist of a
single connected set of nodes, indeed,
frequently networks have separate parts that
are disconnected from one another. Such
parts are called components.

Technically, a component is a subset of the
nodes of a network with the properties:

- (connectedness) there exists at least one

path from each member to each other
member of that subset;

(maximality) no other node in the network
can be added to the subset.
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Walks, Paths, and Components

A network in which all nodes belong to the
same single component is said to be
/ O C . connected. Conversely, a network with
more than one component is disconnected.

The adjacency matrix of a network with
‘\' more than one component can be written
O ¢ o (after proper labelling) in block diagonal
o form, meaning that the non-zero elements of
the matrix are “confined” to square blocks

along the diagonal of the matrix, with all
other elements being zero
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Ways and Modes

The adjacency matrix of a graph is always
square: it has the same number of rows as
columns. It Is also called a “one-mode matrix”,
meaning that the rows and columns both refer
to the same single set of entities.

Matrices have ways and modes: ways are the
dimensions of the matrix—normally two—while
modes are the kinds of entities represented.

A three-way matrix has rows, columns, and
levels, as In a data-cube. For example, suppose
we are retailers and we want to represent what
parts which customer has at each of our stores.

Combining all of these into a single matrix we
get a three-way, three-mode matrix.
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