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A network—also called a graph 
in the mathematical literature—
is a collection of nodes (or 
vertices) joined by edges. 
Nodes and edges are also 
called sites and bonds (e.g., in 
physics and biology) or actors 
and ties (e.g., in sociology). 
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Generally, the common notation in the mathematical literature for the number of 
nodes in a network is  and the number of edges is . 


The simplest networks have at most a single edge between any pair of nodes. 
When there are more than one edge between the same nodes, the set of edges 
between two notes are called a multi-edge. Usually, nodes do not have edges 
to themselves, but when this happens, those nodes are called self-edges or 
self-loops.


Networks that neither have self-edges nor multi-edges are called a simple 
network or simple graph. 


A network with multi-edges is called a multigraph.

n m
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The fundamental mathematical representation of 
a network is the adjacency matrix.

Consider an undirected simple network with  nodes, labelled 
—so that labels refer to the nodes unambiguously.


The adjacency matrix  of the network is defined to be the  
matrix with elements       such that 

n 1…n

A n × n
Aij

Aij = {1 if there is an edge between nodes i and j
0 otherwise
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Figure 6.1: Two small networks. (a) A simple graph, i.e., one having no multiedges or
self-edges. (b) A network with both multiedges and self-edges.

Fig. 6.1a. It does not matter which node gets which label, only that each label
is unique, so that we can use the labels to refer to the nodes unambiguously.

The adjacency matrix A of the network is now defined to be the n⇥n matrix
with elements Aij such that

Aij ⇤

⇢
1 if there is an edge between nodes i and j,
0 otherwise. (6.1)

For example, the adjacency matrix of the network in Fig. 6.1a is

A ⇤

©≠≠≠≠≠≠≠
´

0 1 0 0 1 0
1 0 1 1 0 0
0 1 0 1 1 1
0 1 1 0 0 0
1 0 1 0 0 0
0 0 1 0 0 0

™ÆÆÆÆÆÆÆ
¨

. (6.2)

Two points to note about the adjacency matrix are, first, that for a network
such as this with no self-edges the diagonal matrix elements are all zero, and,
second, that the matrix is symmetric, since if there is an edge between i and j
then there is necessarily an edge between j and i.

It is also possible to represent multiedges and self-edges using an adjacency
matrix. A multiedge is represented by setting the corresponding matrix ele-
ment Aij equal to the multiplicity of the edge. For example, a double edge
between nodes i and j is represented by Aij ⇤ Aji ⇤ 2.

Self-edges are a little more complicated. A single self-edge from node i to
itself is represented by setting the corresponding diagonal element Aii of the
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matrix equal to 2. Why 2 and not 1? Essentially, it is because a self-edge from
i to i has two ends, both of which are connected to node i. As we will see,
many mathematical results concerning the adjacency matrix work out more
neatly if the matrix is defined this way, and thus it has become the accepted
definition.2 Another way to think about it is that non-self-edges appear twice
in the adjacency matrix—an edge from i to j means that both Aij and Aji are 1.
To count edges equally, self-edges should also appear twice, and since there
is only one diagonal matrix element Aii , we need to record both appearances
there.

To give an example, the adjacency matrix for the multigraph in Fig. 6.1b is

A ⇤

©≠≠≠≠≠≠≠
´

0 1 0 0 3 0
1 2 2 1 0 0
0 2 0 1 1 1
0 1 1 0 0 0
3 0 1 0 0 0
0 0 1 0 0 2

™ÆÆÆÆÆÆÆ
¨

. (6.3)

One can also have multiple self-edges (or “multi-self-edges” perhaps). Such
edges are represented by setting the corresponding diagonal element of the
adjacency matrix equal to twice the multiplicity of the edge: Aii ⇤ 4 for a
double self-edge, 6 for a triple, and so forth.

6.3 W������� ��������
Many of the networks we will study have edges that represent simple binary
connections between nodes. Either they are there or they are not. In some
situations, however, it is useful to represent edges as having a strength, weight,
or value to them, usually a real number. Thus edges on the Internet might
have weights representing the amount of data flowing along them or their
bandwidth. In a food web, predator–prey interactions might have weights
measuring total energy flow between prey and predator. In a social network
connections might have weights representing frequency of contact between
actors. Such weighted or valued networks can be represented mathematically
by an adjacency matrix with the elements Aij equal to the weights of the

2As discussed in Section 6.4, directed networks are different. In directed networks, self-edges
are represented by a 1 in the corresponding diagonal element of the adjacency matrix.
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Why 2 and not 1? 

(hint: degenerate case of symmetry on the diagonal)
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In some situations it is useful to represent edges as having a 
strength, weight, or value, usually a real number, e.g., 


- edges on the Internet where weights represent the amount of 
data flowing along them or their bandwidth;


- in a food web, where predator–prey interactions might have 
weights measuring total energy flow between prey and 
predator;


- in a social network where connections might have weights 
representing frequency of contact between actors. 
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Such weighted or valued networks can be represented 
mathematically by an adjacency matrix with the elements        equal 
to the weights of the corresponding connections

Aij

6.3 | W������� ��������

corresponding connections. Thus, the adjacency matrix

A ⇤
©≠
´

0 2 1
2 0 0.5
1 0.5 0

™Æ
¨

(6.4)

represents a weighted network in which the connection between nodes 1 and 2
is twice as strong as that between 1 and 3, which in turn is twice as strong as
that between 2 and 3.

Values on edges can also sometimes represent lengths of some kind. On a
road or airline network, for instance, edge values could represent the number
of kilometers or miles the edges cover, or they could represent travel time along
the edges, which can be regarded as a kind of length—one denominated in units
of time rather than distance. Edge lengths are, in a sense, the inverse of edge
weights, since two nodes that are strongly connected can be regarded as “close”
to one another and two that are weakly connected can be regarded as far apart.
Thus one could perhaps convert lengths into weights by taking reciprocals
and then use those values as elements of the adjacency matrix, although this
should be regarded as only a rough translation; in most cases there is no formal
mathematical relationship between edge weights and lengths.

We have now seen two different types of network where the adjacency ma-
trix can have off-diagonal elements with values other than 0 and 1: networks
with weighted edges and networks with multiedges. Indeed, if the weights in
a weighted network are all integers it is possible to create a network with multi-
edges that has the exact same adjacency matrix, by choosing the multiplicities
of the multiedges equal to the corresponding weights. This connection comes
in handy sometimes. In some circumstances it is easier to reason about the be-
havior of a multigraph than a weighted network, or vice versa, and switching
between the two can be a useful aid to analysis [355].

The weights in a weighted network are usually positive numbers, but there Networks with both posi-
tive and negative edges are
discussed further in Sec-
tion 7.5 when we consider
the concept of structural
balance.

is no reason in theory why they could not be negative. Social networks of
relations between people, for example, are sometimes constructed in which
positive edge weights denote friendship or other cordial relationships and
negative ones represent animosity.

And if edges can have weights on them, it is not a huge leap to consider
weights on nodes too, or more exotic types of values on either edges or nodes,
such as vectors or categorical variables like colors. Many such variations have
been considered in the networks literature and we will discuss some of them
later in the book. There is one other case of variables on edges, however, that
is so central to the study of networks that we discuss it right away.
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Directed networks or directed graphs are networks in which 
each edge has a direction, pointing from one node to 
another—thus called directed edges or sometimes arcs.


Examples of directed graphs are web-pages, where hyperlinks 
run in one direction from one web page to another; food webs, 
where energy flows from prey to predator; and citation 
networks, where citations point from one work to another. 
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6.4 D������� ��������
A directed network or directed graph, also called a digraph for short, is a network in
which each edge has a direction, pointing from one node to another. Such edges
are themselves called directed edges, or sometimes arcs, and can be represented
graphically by, for instance, lines with arrows on them as in Fig. 6.2.

2

5 6

3 4

1

Figure 6.2: A directed network. A
small directed network with arrows in-
dicating the directions of the edges.

We have encountered a number of examples of directed networks
in previous chapters, including the World Wide Web, in which hy-
perlinks run in one direction from one web page to another; food
webs, in which energy flows from prey to predator; and citation
networks, in which citations point from one paper to another.

The adjacency matrix of a directed network has matrix elements

Aij ⇤

⇢
1 if there is an edge from j to i,
0 otherwise. (6.5)

Note the direction of the edge here—it runs from the second index
to the first. This is slightly counterintuitive, but it turns out to be
convenient mathematically and it is the convention we adopt in this
book.3

As an example, the adjacency matrix of the small network in
Fig. 6.2 is

A ⇤

©≠≠≠≠≠≠≠
´

0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 1
0 1 0 0 0 0

™ÆÆÆÆÆÆÆ
¨

. (6.6)

Note that this matrix is not symmetric. In general the adjacency matrix of a
directed network is asymmetric, since the existence of an edge from i to j does
not necessarily imply that there is also an edge from j to i.

Like their undirected counterparts, directed networks can have multiedges
and self-edges, which are represented in the adjacency matrix by elements
with values greater than 1 and by non-zero diagonal elements, respectively.
An important distinction, however, is that self-edges in a directed network are
represented by setting the corresponding diagonal element to 1, not 2 as in the

3Though common, this convention is not universal. One does sometimes see the opposite
notation adopted, so one must be clear when reading (or writing) about directed networks which
notation is in use.
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An important distinction, however, is that self-edges in a directed network are
represented by setting the corresponding diagonal element to 1, not 2 as in the

3Though common, this convention is not universal. One does sometimes see the opposite
notation adopted, so one must be clear when reading (or writing) about directed networks which
notation is in use.
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6.4 D������� ��������
A directed network or directed graph, also called a digraph for short, is a network in
which each edge has a direction, pointing from one node to another. Such edges
are themselves called directed edges, or sometimes arcs, and can be represented
graphically by, for instance, lines with arrows on them as in Fig. 6.2.
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Figure 6.2: A directed network. A
small directed network with arrows in-
dicating the directions of the edges.

We have encountered a number of examples of directed networks
in previous chapters, including the World Wide Web, in which hy-
perlinks run in one direction from one web page to another; food
webs, in which energy flows from prey to predator; and citation
networks, in which citations point from one paper to another.

The adjacency matrix of a directed network has matrix elements

Aij ⇤

⇢
1 if there is an edge from j to i,
0 otherwise. (6.5)

Note the direction of the edge here—it runs from the second index
to the first. This is slightly counterintuitive, but it turns out to be
convenient mathematically and it is the convention we adopt in this
book.3

As an example, the adjacency matrix of the small network in
Fig. 6.2 is

A ⇤

©≠≠≠≠≠≠≠
´

0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 1
0 1 0 0 0 0

™ÆÆÆÆÆÆÆ
¨

. (6.6)

Note that this matrix is not symmetric. In general the adjacency matrix of a
directed network is asymmetric, since the existence of an edge from i to j does
not necessarily imply that there is also an edge from j to i.

Like their undirected counterparts, directed networks can have multiedges
and self-edges, which are represented in the adjacency matrix by elements
with values greater than 1 and by non-zero diagonal elements, respectively.
An important distinction, however, is that self-edges in a directed network are
represented by setting the corresponding diagonal element to 1, not 2 as in the

3Though common, this convention is not universal. One does sometimes see the opposite
notation adopted, so one must be clear when reading (or writing) about directed networks which
notation is in use.
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Note that this matrix is not symmetric. In general the adjacency matrix of a
directed network is asymmetric, since the existence of an edge from i to j does
not necessarily imply that there is also an edge from j to i.

Like their undirected counterparts, directed networks can have multiedges
and self-edges, which are represented in the adjacency matrix by elements
with values greater than 1 and by non-zero diagonal elements, respectively.
An important distinction, however, is that self-edges in a directed network are
represented by setting the corresponding diagonal element to 1, not 2 as in the

3Though common, this convention is not universal. One does sometimes see the opposite
notation adopted, so one must be clear when reading (or writing) about directed networks which
notation is in use.
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A cycle in a directed network is a 
closed loop of edges with the 
arrows on each of the edges pointing 
the same way around the loop. A 
self-edge—an edge connecting a 
node to itself—counts as a cycle. 
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Directed networks that have no cycles (including self-
edges) are called acyclic networks. They are 
frequently abbreviated with the acronym DAG.
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Figure 6.3: A directed acyclic network. In this
network the nodes are laid out in such a way that all
edges point downward. Networks that can be laid
out in this way are called acyclic, since they possess
no closed cycles of edges. A real-life example of an
acyclic network is a network of citations between
papers, in which the vertical axis would represent
date of publication, running up the figure, and all
citations would necessarily point from later papers
to earlier ones.

undirected case. With this choice, formulas and results involving the adjacency
matrix work out most neatly.

6.4.1 A������ ��������

A cycle in a directed network is a closed loop of edges with the arrows on each
of the edges pointing the same way around the loop. Networks like the World
Wide Web have many such cycles in them. Some directed networks, however,
have no cycles and these are called acyclic networks.4,5 A self-edge—an edge
connecting a node to itself—counts as a cycle, so acyclic networks also have no
self-edges.

A cycle in a directed net-
work.

A classic example of a directed acyclic network is a citation network of
papers, as discussed in Section 3.2. When writing a paper you can only cite
another paper if it has already been written, which means that all edges in a
citation network point backwards in time, from later papers to earlier ones.
Graphically we can depict such a network as in Fig. 6.3, with the nodes time-
ordered—running from bottom to top of the picture in this case—so that all the
edges point downward in the picture.6 There can be no closed cycles in such a
network because any cycle would have to go down the picture and then come
back up again to get back to where it started and there are no upward pointing
edges with which to achieve this.

4In the mathematical literature one often sees the abbreviation DAG, which is short for directed

acyclic graph.
5Ones with cycles are called cyclic, although one doesn’t often come across this usage, since

directed networks are usually assumed to be cyclic unless otherwise stated.
6As discussed in Section 3.2, there are in real citation networks rare instances in which two

papers both cite each other, forming a cycle of length two in the network, for instance if an author
publishes two related papers in the same issue of a journal. Real citation networks are, thus, only
approximately acyclic.

111

If a network is acyclic, it can be drawn with all edges 
pointing downward. 


The proof that this is true, provides us with a method for 
determining whether a given network is acyclic!
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network the nodes are laid out in such a way that all
edges point downward. Networks that can be laid
out in this way are called acyclic, since they possess
no closed cycles of edges. A real-life example of an
acyclic network is a network of citations between
papers, in which the vertical axis would represent
date of publication, running up the figure, and all
citations would necessarily point from later papers
to earlier ones.
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A cycle in a directed network is a closed loop of edges with the arrows on each
of the edges pointing the same way around the loop. Networks like the World
Wide Web have many such cycles in them. Some directed networks, however,
have no cycles and these are called acyclic networks.4,5 A self-edge—an edge
connecting a node to itself—counts as a cycle, so acyclic networks also have no
self-edges.
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A classic example of a directed acyclic network is a citation network of
papers, as discussed in Section 3.2. When writing a paper you can only cite
another paper if it has already been written, which means that all edges in a
citation network point backwards in time, from later papers to earlier ones.
Graphically we can depict such a network as in Fig. 6.3, with the nodes time-
ordered—running from bottom to top of the picture in this case—so that all the
edges point downward in the picture.6 There can be no closed cycles in such a
network because any cycle would have to go down the picture and then come
back up again to get back to where it started and there are no upward pointing
edges with which to achieve this.

4In the mathematical literature one often sees the abbreviation DAG, which is short for directed

acyclic graph.
5Ones with cycles are called cyclic, although one doesn’t often come across this usage, since

directed networks are usually assumed to be cyclic unless otherwise stated.
6As discussed in Section 3.2, there are in real citation networks rare instances in which two

papers both cite each other, forming a cycle of length two in the network, for instance if an author
publishes two related papers in the same issue of a journal. Real citation networks are, thus, only
approximately acyclic.
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Lemma. In a DAG, with  nodes, there exists at least one node with no outgoing 
edges. Proof. By contradiction, we assume that there are none of such nodes. 
Then, we have the absurdum because we can construct a cycle: we can always 
find an outgoing edge from any node and thus, even if we walked  edges, at 
the  step we can only select one of the nodes we already visited, 
creating a cycle.


Theorem. If a network is acyclic, it can be drawn with all edges pointing 
downward. Proof. The proof is by induction on the number of nodes. From the 
Lemma above, we know we can find at least one of those nodes that have only 
ingoing edges. First, we remove one of those nodes and its ingoing edges from 
the network, and draw them. Then, we iteratively apply the previous step 
times, removing one of the outgoing-less nodes and drawing it in the following 
way: if in the original network the node had some outgoing edges to some of 
the nodes already drawn, we position it on top of those nodes and draw its 
outgoing edges, otherwise we draw it on top of the current top level.
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Figure 6.3: A directed acyclic network. In this
network the nodes are laid out in such a way that all
edges point downward. Networks that can be laid
out in this way are called acyclic, since they possess
no closed cycles of edges. A real-life example of an
acyclic network is a network of citations between
papers, in which the vertical axis would represent
date of publication, running up the figure, and all
citations would necessarily point from later papers
to earlier ones.

undirected case. With this choice, formulas and results involving the adjacency
matrix work out most neatly.
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A cycle in a directed network is a closed loop of edges with the arrows on each
of the edges pointing the same way around the loop. Networks like the World
Wide Web have many such cycles in them. Some directed networks, however,
have no cycles and these are called acyclic networks.4,5 A self-edge—an edge
connecting a node to itself—counts as a cycle, so acyclic networks also have no
self-edges.

A cycle in a directed net-
work.

A classic example of a directed acyclic network is a citation network of
papers, as discussed in Section 3.2. When writing a paper you can only cite
another paper if it has already been written, which means that all edges in a
citation network point backwards in time, from later papers to earlier ones.
Graphically we can depict such a network as in Fig. 6.3, with the nodes time-
ordered—running from bottom to top of the picture in this case—so that all the
edges point downward in the picture.6 There can be no closed cycles in such a
network because any cycle would have to go down the picture and then come
back up again to get back to where it started and there are no upward pointing
edges with which to achieve this.

4In the mathematical literature one often sees the abbreviation DAG, which is short for directed

acyclic graph.
5Ones with cycles are called cyclic, although one doesn’t often come across this usage, since

directed networks are usually assumed to be cyclic unless otherwise stated.
6As discussed in Section 3.2, there are in real citation networks rare instances in which two

papers both cite each other, forming a cycle of length two in the network, for instance if an author
publishes two related papers in the same issue of a journal. Real citation networks are, thus, only
approximately acyclic.
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The adjacency matrix 
 of a downward 

labelled DAG (whose 
element   records 
the presence of an 
edge from j to i) has 
all its non-zero 
elements above the 
diagonal—also called 
“upper triangular”.


A

Aij
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(which usually means minimizing the number of times that edges cross).
The process is useful for another reason too: it will break down if the

network contains cycles, and therefore it gives us a way to test whether a given
network is acyclic. If a network contains a cycle, then none of the nodes in that
cycle will ever be removed during our process: none of them will be without
outgoing edges until at least one of the others in the cycle is removed, and hence
none of them can ever be removed. Thus, if the network contains a cycle, there
must come a point in our process where there are still nodes left in the network
but all of them have outgoing edges. So a simple algorithm for determining
whether a network is acyclic is:

1. Find a node with no outgoing edges.
2. If no such node exists, the network is cyclic. Otherwise, if such a node

does exist, remove it and all its ingoing edges from the network.
3. If all nodes have been removed, the network is acyclic. Otherwise, go back

to step 1.
The adjacency matrix of an acyclic directed network has interesting proper-

ties. Suppose we number the nodes of an acyclic network as described earlier,
so that all edges point from higher numbered nodes to lower numbered ones.
Then the adjacency matrix A (whose element Aij records the presence of an
edge from j to i) has all its non-zero elements above the diagonal—it is upper
triangular. For instance, the adjacency matrix of the network shown in Fig. 6.3 is

A ⇤

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0 0 1 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨

. (6.7)

Note that the diagonal elements of the adjacency matrix are necessarily zero,
since an acyclic network is not allowed to have self-edges. Triangular matrices
with zeros on the diagonal are called strictly triangular.

If the nodes of an acyclic network are not numbered in the correct order as
described earlier, then the adjacency matrix will not be triangular. (Imagine
swapping rows and columns of the matrix above, for instance.) For every acyclic
directed network, however, there exists at least one labeling of the nodes such
that the adjacency matrix will be strictly upper triangular (and the algorithm
described above can be used to find it).
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A bimodal network—also called bipartite—is a network with two kinds of 
nodes and edges that run only between nodes of different kinds. 


Bipartite networks are e.g., used to represent the membership of a set of 
people or objects in groups of some kind: people are represented by one set 
of nodes, groups by the other, and edges join people to groups in which 
they belong. For example, a bipartite network can represent actors and 
films, where the edges connect actors to the films in which they appear. 
Edges cannot connect actors to other actors or films to other films.
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The equivalent of the adjacency matrix for an (undirected unweighted) 
bipartite graph is a rectangular matrix called the incidence matrix. In the 
incidence matrix, we count as  the number of nodes in the network and  
the numbers of groups, then the incidence matrix has dimension  where 
its elements are described as

n g
n × g

M���������� �� ��������

Figure 6.5: A small bipartite network.
The open and closed circles represent
two types of nodes and edges run only
between nodes of different types. It
is common to draw bipartite networks
with the two sets of nodes arranged
in lines, as here, to make the bipartite
structure clearer. See Fig. 4.2 on page 50
for another example.

Bipartite networks do also occur occasionally in contexts other
than membership of groups. For instance, there have been studies
in the public health literature of networks of sexual contact—who
sleeps with whom [271, 305, 392, 417]. If one were to construct such
a network for a heterosexual population then the network would be
bipartite, the two kinds of nodes corresponding to men and women
and the edges corresponding to sexual contacts. (A network repre-
senting gay men or women on the other hand, or straight and gay
combined, would probably not be bipartite.)

One occasionally also comes across bipartite networks that are
directed. For example, the metabolic networks discussed in Sec-
tion 5.1.1 can be represented as directed bipartite networks—see
Fig. 5.1a. Weighted bipartite networks are also possible in principle,
although no examples will come up in this book.

6.6.1 T�� ��������� ������ ��� ������� �����������

The equivalent of the adjacency matrix for an (undirected unweighted) bipartite
network is a rectangular matrix called the incidence matrix. If n is the number
of items or people in the network and 1 is the number of groups, then the
incidence matrix B is a 1 ⇥ n matrix having elements Bij such that

Bij ⇤

⇢
1 if item j belongs to group i,
0 otherwise. (6.8)

For instance, the 4 ⇥ 5 incidence matrix of the network shown in Fig. 6.4b is

B ⇤

©≠≠≠
´

1 0 0 1 0
1 1 1 1 0
0 1 1 0 1
0 0 1 1 1

™ÆÆÆ
¨
. (6.9)

Although a bipartite network may give the most complete representation
of a particular system it is not always the most convenient. In some cases we
would prefer to work with a network with only one type of node—a network
of people alone, for instance, without the group nodes. One way to create such
a network is to get rid of the group nodes and directly join together any two
people who belong to the same group, creating a so-called one-mode projection

of the two-mode bipartite form.
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than membership of groups. For instance, there have been studies
in the public health literature of networks of sexual contact—who
sleeps with whom [271, 305, 392, 417]. If one were to construct such
a network for a heterosexual population then the network would be
bipartite, the two kinds of nodes corresponding to men and women
and the edges corresponding to sexual contacts. (A network repre-
senting gay men or women on the other hand, or straight and gay
combined, would probably not be bipartite.)

One occasionally also comes across bipartite networks that are
directed. For example, the metabolic networks discussed in Sec-
tion 5.1.1 can be represented as directed bipartite networks—see
Fig. 5.1a. Weighted bipartite networks are also possible in principle,
although no examples will come up in this book.
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The equivalent of the adjacency matrix for an (undirected unweighted) bipartite
network is a rectangular matrix called the incidence matrix. If n is the number
of items or people in the network and 1 is the number of groups, then the
incidence matrix B is a 1 ⇥ n matrix having elements Bij such that

Bij ⇤

⇢
1 if item j belongs to group i,
0 otherwise. (6.8)

For instance, the 4 ⇥ 5 incidence matrix of the network shown in Fig. 6.4b is

B ⇤

©≠≠≠
´

1 0 0 1 0
1 1 1 1 0
0 1 1 0 1
0 0 1 1 1

™ÆÆÆ
¨
. (6.9)

Although a bipartite network may give the most complete representation
of a particular system it is not always the most convenient. In some cases we
would prefer to work with a network with only one type of node—a network
of people alone, for instance, without the group nodes. One way to create such
a network is to get rid of the group nodes and directly join together any two
people who belong to the same group, creating a so-called one-mode projection

of the two-mode bipartite form.
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A walk in a network is a sequence of nodes 
such that every consecutive pair of nodes in 
the sequence is connected by an edge. The 
length of a walk in a network is the number 
of edges traversed along the walk (not the 
number of nodes), counted separately as 
they are traversed.


Walks that do not intersect themselves are 
called paths.

1

2

3

a b path : 1,2,3
length : 2

1

2

3

a b walk : 1,2,3,1,2
length : 4c



saverio.giallorenzo@gmail.com

MA Digital Humanities and Digital Knowledge, UniBoWeb Science • Mathematics of Networks

Walks, Paths, and Components • Background

22

Matrix multiplication is an operation that 
produces a matrix from two matrices. 
The operation is written  (shorthand 
for ), where  is the “left” matrix 
and  the right one. To be applicable, 
the number of columns of the left matrix 
must be equal to the number of rows of 
the right matrix—in that case, they are 
called “conformable” to multiplication.


Let , then the element  of the 

product is defined as 

AB
A ⋅ B A
B

C = AB Cij

Cij =
n

∑
k=1

Aik ⋅ Bkj

a1,1 ⋅ b1,2 + a1,2 ⋅ b2,2
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Let , then the element  of the 

product is defined as 


where 




So, e.g., 

C = AB Cij

Cij =
n

∑
k=1

Aik ⋅ Bkj

n

∑
i=m

ai = am + am+1 + am+2 + ⋯ + an1
+ an

C1,1 =
2

∑
k=1

A1,k ⋅ Bk,1 = A1,1 ⋅ B1,1 + A1,2 ⋅ B2,1

a1,1 ⋅ b1,2 + a1,2 ⋅ b2,2
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Matrix multiplication is not commutative, so 
 and  are not necessarily the same (and 

possibly not even multiplication-conformable).


As an example, let us have two matrices , 
representing love relations, and  representing 
hate ones. The product  represents the 
“hated among the lovers”, so that the  cell 
of  indicates the lovers of  who are hated 
by . On the other hand,  represents the 
“haters with lovers”, so that the  cell of  
indicates the haters of  that are loved by .

AB BA

L
H

LH
ijth

LH i
j HL

ijth HL
i j

A B

C D
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A B

C D

L A B C D
A 0 0 0 0
B 1 0 0 0
C 0 0 0 0
D 0 0 1 0

H A B C D
A 0 0 0 0
B 0 0 0 0
C 1 1 0 0
D 0 1 0 0

LH A B C D
A 0 0 0 0
B 0 0 0 0
C 0 0 0 0
D 1 1 0 0

HL A B C D
A 0 0 0 0
B 0 0 0 0
C 1 0 0 0
D 1 0 0 0

D has 1 
lover (C) 
who is 

hated by 
two nodes 
(A and B)

C has 1 
hater (B) 
who is 

loved (by A) D has 1 
hater (B) 
who is 

loved (by A)

hated among the lovers

haters with lovers
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We can also compute products of matrices with themselves. E.g., if  is the friendship 
matrix, then  is the “friend of friend” relation. When the  cell of  is greater than 
0, it indicates the number of friends of  who have  as a friend.


A useful application of matrix products is to formalise social theories, e.g., let  be the 
matrix of friendship and  the matrix of enemies, we can hypothesise that:


• , the friends of my friends are my friends;


• , the friends of my enemies are my enemies;


• , the enemies of my friends are my enemies; 


• , the enemies of my enemies are my enemies.

Then, if we have actual surveys of the relations, we can compare those (theoretical) 
measures and test our theories.

F
FF ijth FF

i j
F

E
FF
EF
FE
EE
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To calculate the number of walks of a given 
length  on a network, for either a directed or 
an undirected simple network, the element 

 is 1 if there is an edge from node  to 
node , and 0 otherwise (the condition for 
non-simple networks is slightly different). 
Then the product  is 1 if there is a walk 
from  to  via , and 0 otherwise. In that 
case, we know the walk has length 2.


r

Aij j
i

AikAkj
j i k

6.11 | W���� ��� �����

6.11 W���� ��� �����
A walk in a network is any sequence of nodes such that every consecutive pair
of nodes in the sequence is connected by an edge. In other words it is any route
that runs from node to node along the edges. Walks can be defined for both
directed and undirected networks. In a directed network, each edge traversed
by a walk must be traversed in the direction of that edge. In an undirected
network edges can be traversed in either direction.

In general a walk can intersect itself, revisiting a node it has visited before
A walk of length three in an
undirected network.

or running along an edge or set of edges more than once. Walks that do not
intersect themselves are called paths or self-avoiding walks, and are important in
many areas of network theory. Shortest paths and independent paths are two
special cases of self-avoiding walks that we will study later.

The length of a walk in a network is the number of edges traversed along
the walk (not the number of nodes). A given edge can be traversed more than
once, and if so it is counted separately each time it is traversed. In layman’s
terms the length of a walk is the number of “hops” the walk makes from node
to adjacent node.

It is straightforward to calculate the number of walks of a given length r on
a network. For either a directed or an undirected simple network the element
Aij is 1 if there is an edge from node j to node i, and 0 otherwise. (We will
consider only simple networks for now, although the developments generalize
easily to non-simple networks.) Then the product AikAk j is 1 if there is a walk
of length 2 from j to i via k, and 0 otherwise. And the total number N (2)

i j of
walks of length two from j to i, via any node, is

N (2)
i j ⇤

n’
k⇤1

AikAk j ⇤
⇥
A2⇤

i j , (6.22)

where [. . .]i j denotes the i jth element of the matrix.
Similarly the product AikAklAl j is 1 if there is a walk of length three from j

to i via l and k, and 0 otherwise, and hence the total number of walks of length
three is

N (3)
i j ⇤

n’
k ,l⇤1

AikAklAl j ⇤
⇥
A3⇤

i j . (6.23)
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N(2)
ij =

n

∑
k=1

AikAkj = [A2]ij
N(r)

ij = [ Ar ]ij

In general 
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The shortest path between two nodes  and , also called the 
geodesic path, is the shortest walk (hence, self-avoiding) that 
connects  and . The length of the shortest path (also called their 
distance) is the minimum  such that .


Shortest paths are important in many contexts, e.g., in communication  
and transportation networks, they affect how rapidly it is possible to get 
goods or data from one node to another, e.g., if, at each “leg”, there is 
some overhead (distances to be bridged, data manipulation).


The diameter of a network is the length of the longest among all 
existing shortest paths between every pair of nodes in the network. The 
diameter of the network is useful, e.g., to understand the 
connectedness of networks.

i j

i j
r [ Ar ]ij > 0
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A network does not necessarily consist of a 
single connected set of nodes, indeed, 
frequently networks have separate parts that 
are disconnected from one another. Such 
parts are called components. 

Technically, a component is a subset of the 
nodes of a network with the properties: 

- (connectedness) there exists at least one 
path from each member to each other 
member of that subset; 

- (maximality) no other node in the network 
can be added to the subset.

M���������� �� ��������

another. For example, the network shown in Fig. 6.13 is divided into two parts,
the one on the left having three nodes, the one on the right having four. Such
parts are called components. There is by definition no path between any pair of
nodes in different components. In Fig. 6.13, for instance, there is no path from
the node labeled A to the node labeled B.

A

B

Figure 6.13: A network with two com-
ponents. There is no path between
nodes like A and B that lie in different
components.

Technically, a component is a subset of the nodes of a network
such that there exists at least one path from each member of that sub-
set to each other member, and such that no other node in the network
can be added to the subset while preserving this property. (Subsets
like this, to which no other node can be added while preserving a
given property, are called maximal subsets.) A singleton node that is
connected to no others is considered to be a component of size one,
and every node belongs to exactly one component. A network in
which all nodes belong to the same single component is said to be
connected. Conversely, a network with more than one component is
disconnected.

The adjacency matrix of a network with more than one component can be
written in block diagonal form, meaning that the non-zero elements of the
matrix are confined to square blocks along the diagonal of the matrix, with all
other elements being zero:

A ⇤

©≠≠≠≠≠≠≠≠
´

0 · · ·

0 · · ·
...

...
. . .

™ÆÆÆÆÆÆÆÆ
¨

. (6.26)

Note, however, that the node labels must be chosen correctly to give this form.
The appearance of blocks in the adjacency matrix relies on the nodes of each
component being given sequential labels so that they are grouped together
along the axes of the matrix. If the nodes are not grouped in this way the
matrix will not be block diagonal and it may be difficult to tell that the network
has separate components. There do, however, exist computer algorithms, such
as the breadth-first search algorithm described in Section 8.5, that can take a
network with arbitrary node labels and quickly determine its components.

6.12.1 C��������� �� �������� ��������

For directed networks the definition of components is more complicated. The
situation is worth looking at in some detail, because it assumes some practi-
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Figure 6.14: Components in a directed
network. This network has two weakly
connected components of four nodes
each, and five strongly connected com-
ponents (shaded).

cal importance in networks like the World Wide Web. Consider the directed
network shown in Fig. 6.14. If we ignore the directed nature of the edges,
considering them instead to be undirected, then the network has two compo-
nents of four nodes each. In the jargon of graph theory these are called weakly

connected components. Two nodes are in the same weakly connected component
if they are connected by one or more paths through the network, where paths
are allowed to go either way along any edge.

In many practical situations, however, this is not what we care about. For
example, the edges in the World Wide Web are directed hyperlinks that allow
web users to surf from one page to another, but only in one direction. This
means it is possible to reach one web page from another only if there is a
directed path between them, i.e., a path in which we follow edges only in
the forward direction. It would be useful to define components for directed
networks based on such directed paths, but this raises some problems. It is

A B

There is a directed path
from A to B in this network,
but none from B to A.

possible for there to be a directed path from node A to node B but no path back
from B to A. Should we then consider A and B to be connected? Are they in
the same component or not?

There are various answers one could give to these questions. One possibility
is that we define A and B to be connected if and only if there exists a directed
path both from A to B and from B to A. In that case, A and B are said to be
strongly connected. We can define components for a directed network using
this definition of connection and these are called strongly connected components.
Technically, a strongly connected component is a maximal subset of nodes such
that there is a directed path in both directions between every pair in the subset.
The strongly connected components in the network of Fig. 6.14 are indicated
by the shaded regions.

Strongly connected components can consist of just a single node (there
are three such components in Fig. 6.14) and every node belongs to exactly
one strongly connected component. Note also that every strongly connected
component with more than one node must contain at least one cycle. Indeed
every node in such a component must belong to at least one cycle, since there
is by definition a directed path from that node to every other in the component
and a directed path back again, and the two paths together make a cycle. (A
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A network in which all nodes belong to the 
same single component is said to be 
connected. Conversely, a network with 
more than one component is disconnected. 


The adjacency matrix of a network with 
more than one component can be written 
(after proper labelling) in block diagonal 
form, meaning that the non-zero elements of 
the matrix are “confined” to square blocks 
along the diagonal of the matrix, with all 
other elements being zero
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another. For example, the network shown in Fig. 6.13 is divided into two parts,
the one on the left having three nodes, the one on the right having four. Such
parts are called components. There is by definition no path between any pair of
nodes in different components. In Fig. 6.13, for instance, there is no path from
the node labeled A to the node labeled B.

A

B

Figure 6.13: A network with two com-
ponents. There is no path between
nodes like A and B that lie in different
components.

Technically, a component is a subset of the nodes of a network
such that there exists at least one path from each member of that sub-
set to each other member, and such that no other node in the network
can be added to the subset while preserving this property. (Subsets
like this, to which no other node can be added while preserving a
given property, are called maximal subsets.) A singleton node that is
connected to no others is considered to be a component of size one,
and every node belongs to exactly one component. A network in
which all nodes belong to the same single component is said to be
connected. Conversely, a network with more than one component is
disconnected.

The adjacency matrix of a network with more than one component can be
written in block diagonal form, meaning that the non-zero elements of the
matrix are confined to square blocks along the diagonal of the matrix, with all
other elements being zero:

A ⇤
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´

0 · · ·

0 · · ·
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™ÆÆÆÆÆÆÆÆ
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Note, however, that the node labels must be chosen correctly to give this form.
The appearance of blocks in the adjacency matrix relies on the nodes of each
component being given sequential labels so that they are grouped together
along the axes of the matrix. If the nodes are not grouped in this way the
matrix will not be block diagonal and it may be difficult to tell that the network
has separate components. There do, however, exist computer algorithms, such
as the breadth-first search algorithm described in Section 8.5, that can take a
network with arbitrary node labels and quickly determine its components.

6.12.1 C��������� �� �������� ��������

For directed networks the definition of components is more complicated. The
situation is worth looking at in some detail, because it assumes some practi-
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Technically, a component is a subset of the nodes of a network
such that there exists at least one path from each member of that sub-
set to each other member, and such that no other node in the network
can be added to the subset while preserving this property. (Subsets
like this, to which no other node can be added while preserving a
given property, are called maximal subsets.) A singleton node that is
connected to no others is considered to be a component of size one,
and every node belongs to exactly one component. A network in
which all nodes belong to the same single component is said to be
connected. Conversely, a network with more than one component is
disconnected.

The adjacency matrix of a network with more than one component can be
written in block diagonal form, meaning that the non-zero elements of the
matrix are confined to square blocks along the diagonal of the matrix, with all
other elements being zero:
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Note, however, that the node labels must be chosen correctly to give this form.
The appearance of blocks in the adjacency matrix relies on the nodes of each
component being given sequential labels so that they are grouped together
along the axes of the matrix. If the nodes are not grouped in this way the
matrix will not be block diagonal and it may be difficult to tell that the network
has separate components. There do, however, exist computer algorithms, such
as the breadth-first search algorithm described in Section 8.5, that can take a
network with arbitrary node labels and quickly determine its components.
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Technically, a component is a subset of the nodes of a network
such that there exists at least one path from each member of that sub-
set to each other member, and such that no other node in the network
can be added to the subset while preserving this property. (Subsets
like this, to which no other node can be added while preserving a
given property, are called maximal subsets.) A singleton node that is
connected to no others is considered to be a component of size one,
and every node belongs to exactly one component. A network in
which all nodes belong to the same single component is said to be
connected. Conversely, a network with more than one component is
disconnected.

The adjacency matrix of a network with more than one component can be
written in block diagonal form, meaning that the non-zero elements of the
matrix are confined to square blocks along the diagonal of the matrix, with all
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Note, however, that the node labels must be chosen correctly to give this form.
The appearance of blocks in the adjacency matrix relies on the nodes of each
component being given sequential labels so that they are grouped together
along the axes of the matrix. If the nodes are not grouped in this way the
matrix will not be block diagonal and it may be difficult to tell that the network
has separate components. There do, however, exist computer algorithms, such
as the breadth-first search algorithm described in Section 8.5, that can take a
network with arbitrary node labels and quickly determine its components.
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The adjacency matrix of a graph is always 
square: it has the same number of rows as 
columns. It is also called a “one-mode matrix”, 
meaning that the rows and columns both refer 
to the same single set of entities.


Matrices have ways and modes: ways are the 
dimensions of the matrix—normally two—while 
modes are the kinds of entities represented. 


A three-way matrix has rows, columns, and 
levels, as in a data-cube. For example, suppose 
we are retailers and we want to represent what 
parts which customer has at each of our stores. 


Combining all of these into a single matrix we 
get a three-way, three-mode matrix.


