
Reliable and Robust Watermarking for Data
Flooding against Ransomware Random Techniques

Saverio Giallorenzo∗†, Simone Melloni‡, Pietro Sami∗
∗Università di Bologna, Bologna, Italy †Olas Team, INRIA, Sophia Antipolis, France ‡ARPAE Emilia-Romagna, Italy

Abstract—Data Flooding Against Ransomware (DFaR) tech-
niques combat ransomware through decoy files that can reveal a
ransomware’s activity and reduce the effectiveness and efficiency
of attacks by confounding legitimate user files and competing
for IO resource access of the attacked host. While effective,
existing DFaR random strategies (which flood a user system
with realistic yet random-content decoy files) face challenges
during restoration, due to the necessity of pre-attack file lists to
discriminate between proper and decoy files (the latter should be
removed to restore the system to its pre-attack state). To tackle this
issue, we present a watermarking-based approach that embeds
imperceptible watermarks in random-content decoy files. Our
technique preserves the indistinguishability of decoys from user
files to attackers, while providing users with a reliable mechanism
to differentiate between authentic and decoy content, obviating the
need for pre-attack file lists. We present experimental evaluations
that demonstrate that our watermarking technique a) imposes
minimal-to-medium computational overhead (depending on user-
configurable parameters) compared to existing random-content
flooding methods (i.e., it is efficient when contrasting ransomware
and restoring a user’s system) and b) it provides strong resistance
against adversarial inference attacks.

Index Terms—Ransomware defence, Data flooding, Watermark-
ing, Honeypots

I. INTRODUCTION

Ransomware attacks have emerged as one of the most
pressing cybersecurity threats of the contemporary digital
landscape, representing a critical area of active research within
the information security community [1]. The proliferation of
sophisticated ransomware variants [2] and the emergence of
Ransomware as a Service [3] have demonstrated an alarming
capacity to disrupt critical infrastructure, compromise health-
care systems, and inflict substantial economic damage across
both public and private sectors [4], [5]. Recent high-profile
incidents targeting hospitals, municipal services, and major
corporations have underscored the urgent need for innovative
defensive strategies that can effectively counter these evolving
threats [6]. In this work, we focus on the category of crypto
ransomware, which encrypt a victims files, asking for a ransom
to obtain the decryption key.

Recent years have witnessed advances in combating ran-
somware through state-of-the-art detection techniques including
honeypots, network traffic analysis, and machine learning-
based approaches, while prevention approaches focus on access
control, data and key backup systems, and hardware-based
solutions [1], [7], [8]. Data Flooding Against Ransomware [9]
(DFaR) is a promising complement to these solutions.

Briefly, DFaR introduces a dynamic honeypot approach
that provides comprehensive protection against ransomware
through detection, mitigation, and restoration mechanisms.
The technique operates by creating floods of decoy files that
serve as honeypots to detect malicious activity. However,
the main action of DFaR solutions regards slowing down
ransomware operations through resource contention and moving
target defence. The approach emphasises decoy deployment in
sensitive locations where it can maximise its defensive impact.

DFaR implementations, such as the open-source Ranflood
tool [10], employ various flooding strategies to generate decoy
files. In particular, there are strategies that generate numerous
files with random content but appropriate headers corresponding
to common file extensions, aiming to make these random-
content decoys indistinguishable from legitimate user files.
However, random-content decoy generation faces significant
challenges during the restoration phase. Indeed, to restore the
system, one needs to distinguish between genuine user files
and generated decoy ones. To discriminate between the two
kinds of files, existing implementations rely on file lists; for
instance, the approach implemented in Ranflood [10] is to
generate a user-files list. In general, one can populate a user-
files list either at scheduled times (e.g., daily, as one would
do with regular backups) or before contrasting an attack (i.e.,
before the DFaR strategy starts flooding the system under
attack) or, complementarily, a DFaR tool can save a decoy-
files list that records all decoys it generated during flooding.
To restore the system, if we have the user-files list, we can
delete all files absent therein; vice versa, with the decoy-files
list we can directly delete all files in the list. In both cases,
losing the list would compromise the restoration of the system.
Moreover, depending on when one generated the user-files
list, the restoration could delete user files that are pristine (not
encrypted by ransomware) but absent from the list (e.g., files
created after the generation of the list). In general, relying on
these lists introduces complexity (e.g., of saving the list in
remote locations not reachable by ransomware) and potential
points of failure of the random-content flooding category.

Contribution: In this paper, we present a novel so-
lution that substantially improves the quality of the cate-
gory of DFaR’s random flooding strategies by introducing
a watermarking-based technique for discriminating between
user files and generated random-content decoys. Essentially,
we propose to embed imperceptible watermarks within the
randomly generated decoy files, enabling reliable identifica-

tion and removal during system restoration, dispensing the
problematic usage of lists, while maintaining the deceptive
properties essential for effective ransomware mitigation – so
that an attacker would hardly discriminate between user and
watermarked decoy files. Instead of having to deal with
cumbersome file lists and different versions thereof, the only
element that the user needs to preserve (specifically, from
attacks) is a small piece of data, easy to keep safe, called the
flood key, needed to watermark and identify the decoy files.

Structure of the Paper: We provide necessary background
knowledge about DFaR and file watermarking techniques in
Section II. Then, we present the theoretical foundations behind
our watermarking approach for random-generated decoys
in Section III. We immediately apply our formulation, in
Section IV, by presenting a prototypical implementation and
experimental benchmarks to evaluate the quality of the proposed
solution. Specifically, we measure two critical performance di-
mensions: overhead, i.e., the technique’s throughput compared
against vanilla random decoy generation methods (that would
rely on pre-existing file lists for restoration) and robustness,
i.e., the watermarking strength against adversarial attempts to
discriminate between watermarked and non-watermarked files
(if the technique were not robust, then ransomware could detect
the decoys and skip them; weakening the confusion element of
the DFaR approach). In particular, given the parametric nature
of our watermarking technique, we employ dual annealing
optimisation to identify optimal parameter values that boost the
watermarking’s security guarantees. The experimental results
demonstrate that our watermarking approach can afford high
performance, since it imposes minimal overhead compared to
vanilla random file generation. At the same time, we achieve
high reliability in discriminating between proper and decoy
files for legitimate users (useful for system restoration) and
high robustness against inference-based discrimination attacks.
In practical terms, the experimental evidence indicates that,
using our technique, legitimate users can both efficiently defend
(during an attack) and restore (after an attack) their systems,
while ransomware would encounter significant challenges in
distinguishing between authentic and decoy files, thereby
enhancing the defensive efficacy of the random flooding
category. We conclude by positioning our contribution within
the literature in Section V and drawing closing remarks and
discussing future work in Section VI.

II. BACKGROUND

We introduce the ingredients on which we build our contri-
bution: Data Flooding against Ransomware and Watermarking.

A. Data Flooding against Ransomware

DFaR is a recent technique [9] that offers robust protection
against ransomware, ranging over detection, mitigation, and
restoration phases. The core idea of this technique is a dynamic
honeypot approach, which consists of creating decoy files
(honeypots) to detect and mitigate ransomware activities. A
honeypot is usually a static dummy element (e.g., file) deployed
as an easy-to-access computer resource. The DFaR approach

sees the concept of honeypot under a dynamic lens: it proposes
the generation of “floods” of honeypot files at specific locations.
In doing so, DFaR achieves resource contention with the
ransomware, slowing down the attacker by contending with
it access to resources (CPU, disk, etc.), and implementing
a moving target defence, confounding user files with decoys
the ransomware wastes time on (increasing the probability of
preserving the user’s data).

Conceptually, DFaR defines defence against ransomware
using data flooding, but it does not specify the logic for
generating the flooding files. For instance, in the seminal work
that introduced DFaR [9], Berardi et al. present two categories
of flooding strategies, one based on the generation of random-
content files, and one based on copies of existing user files.

In this work, we concentrate on the random-content category
of strategies. From Berardi et al.’s definition, a random-content
flooding implementation should meet two conditions when
generating decoy files: a) they should use the most common
file extensions (e.g., pdf, jpeg, etc.) that are likely targeted by
ransomware; b) they should be difficult to discriminate from
the files of the user, e.g., contain different byte sequences and
match file headers with the related extension.

Regarding restoration, one can recover a system from
random-content decoys by removing the files generated during
flooding. To implement this phase, Berardi et al. [9] use user-
files lists so that one preserves only those files in the intersection
between the ones in the list and those present on disk.

B. Watermarking

Quoting Mohanty et al. [11] “Watermarking is the process
that embeds data called a watermark, tag, or label into a
multimedia object such that the watermark can be detected or
extracted later to make an assertion about the object”.

Traditional use cases for digital watermarking regards protec-
tion of copyright in multimedia products, owner identification
(the closest case to how we use watermarking in this work),
and content authentication copy control [12].

Technically, we refer to multimedia objects as works. We
call a cover work a work which hides the watermark. To
simplify our presentation, in this proposal, we mainly describe
watermarking as applied in the image domain. Nonetheless,
the presented techniques are trivially generalisable, as we do,
to binaries, oblivious to the actual file content.

Before delving into the technical details, we present the
components and nomenclature used henceforth.

The components of a watermarking scheme include: the
watermark, which is the message to be embedded, a key, used
to embed and detect the watermark (usually kept secret), a
watermark embedder that implements a watermark insertion
algorithm, called an encoder, and a watermark detector, which
includes an extractor and a comparator, used respectively for
the extraction and verification of the embedded watermark.

Nomenclature-wise, the effectiveness of a watermarking sys-
tem is the probability of legitimately detecting the watermarking
after embedding, while fidelity is the perceptual similarity
between the non-watermarked and watermarked versions of a

work. The data payload is the amount of information that can
be carried in a watermark. We have informed detection when
the detection requires access to the original, non-watermarked
work, while blind detection happens when the detector needs no
information related to the original. The false positive rate is the
frequency of watermark detections in non-watermarked content,
while robustness and security are respectively the ability of the
watermark to survive normal processing of content and to resist
hostile attacks – in our case, the attack regards unauthorised
detection. Moreover, the cost of watermarking corresponds to
the computational cost of embedding and detection.

The watermark embedder performs the embedding process,
encoding a message m, so that it matches the cover work
domain, using a watermark key k. Essentially, the embedder
uses the watermark encoder to embed the message within
the cover work. Typically, the key generates a pattern wr of
the same size of the cover work. For instance, in the case
of images, this process could involve generating a matrix of
pixels randomly based on the watermark key. In the final step
of the embedding process, the watermark is added to the cover
work, resulting in the watermarked work ww.

The watermark detector performs the detection process, using
the watermark key to determine whether a watermark is present
and, if it is, extracting the message.

Geometric Models of Watermarking: From a geometric
standpoint, we can view a watermarking system as a high-
dimensional space, called a media space, in which each point
corresponds to one work [12, chapter 3.4].

For example, 256-pixel square (28 × 28) black-and-white
images entail a 28×2-dimension (65,536) media space (one for
each pixel, either white or black), while for a 5-second mono
audio clip, sampled at 44,100Hz, we have a 220,500-dimension
space (one for each sample).

Analysing a watermarking system through its media space
helps, in particular, to visualise how watermark recognition
works. The detection process relies on calculating the corre-
lation value between the watermarked work and the secret
pattern generated by the key.

Assume that we want to embed a message m in an image i
with a key k. In the media space, a region called distribution
of non-watermarked works includes i. After the embedding
process, the cover work is in a different region of the media
space. To guarantee fidelity, we should have the cover work
located in a region of acceptable fidelity, i.e., the portion of
space of works perceptually similar to the original one.

The detection region represents the set of all works in the
media space where a detector can extract the message m,
using key k, hence detecting the work as watermarked. The
detection region is often defined by a threshold τ on a measure
of similarity between the detector’s input (a work, possibly
watermarked) and a pattern that encodes m. We refer to this
measure of similarity as a detection measure.

Given the n-dimensional vector c that represents a work,
the measure for τ using linear correlation is equal to the
product of their Euclidean lengths and the cosine of the angle
between them, divided by n, i.e., (c · wr)/n. Because the

Euclidean length of wr is constant, the measure implies finding
the orthogonal projection of c onto the vector wr. The set of
all points whose value is greater than τ is on one side of a
plane perpendicular to wr, which is the detection region.

One can use other measures of correlation. In this proposal,
besides linear correlation, we use normalised correlation.
Different measures generate different space partitions, which,
practically, present advantages and disadvantages according to
the different application contexts. Part of our contribution is
evaluating which technique suits our use case the best.

Transform Domain: Of course, one can perform embed-
ding and detection in different domains than the spatial one. For
example, we can transform an image from the spatial domain
(the pixel values) to the frequency domain, e.g., using the
Discrete Cosine Transform (DCT) [13]. Among the reasons to
use frequency-domain watermarking, there is achieving greater
robustness against several kinds of data manipulations and to
produce higher-fidelity cover work [14], [15].

Moving from the spatial to the frequency domain follows the
formula [14], [16] F (u, v) = C · f(x, y) · CT , where F (u, v)
is the frequency domain transformation of the input work. To
simplify the explanation of the DCT transformation formula,
we consider the input work to be a 2D square image of size
n × n. Then, we have an n2-dimensional square matrix C
multiplied by the input work f(x, y) as an n2-dimensional
square image in the spatial domain – where the pixel values
of the points (x, y) ∈ n2 – and the transpose of C, CT . C is
an n2-dimensional square transform matrix calculated as in
Eq. (1) that contains the basis functions.

C =



√
1
n [1 1 . . . 1]√
2
n [cos

(
π
2n

)
cos

(
3π
2n

)
. . . cos

(
(2n−1)π

2n

)
]√

2
n [cos

(
π
2n

)
cos

(
6π
2n

)
. . . cos

(
(2n−1)π

2n

)
]

...
...

...
. . .

...√
2
n [cos

(
(n−1)π

2n

)
cos

(
(n−1)3π

2n

)
. . . cos

(
(n−1)(2n−1)π

2n

)
]


(1)

The power of this matrix formulation lies in its exploitation
of the separability property of 2D transforms. Rather than
computing a computationally expensive 2D transform directly,
the operation C · f(x, y) first applies a 1D transform to each
row of the image, and then the subsequent multiplication
by CT applies the 1D transform to each column of the
intermediate result, reducing the computational complexity of
the operation. Each element F (u, v) in the resulting frequency
domain represents how much the spatial signal correlates with
a specific 2D sinusoidal pattern characterised by horizontal u
and vertical v frequencies.

III. WATERMARKING FOR RANDOM FLOODING

Thanks to watermarking, we can improve random-based
flooding by dispensing with file lists for the restoration phase.
More specifically, with a suitable and properly configured
watermarking system, if a detector with the (secret) key can
detect the watermark, we know the file is a decoy, and we
can safely remove it at restoration. On the other hand, the
system should practically give no advantages to the attacker
(the ransomware), both in terms of performance overhead

(which could degrade the contention effect of flooding) and
target confusion (which would allow the ransomware to
discriminate between proper and decoy files and diminish
the confounding effect of honeypot files). More formally,
the detector should correctly discriminate between files with
and without watermarking, to ensure soundness, i.e., all files
that the detector identifies as watermarked are decoys, and
completeness, i.e., the detector identifies all watermarked files,
which guarantee at least the same restoration properties as
provided by using file lists – “at least” because file lists can
get outdated, marking user files not present in the list as decoys,
which cannot happen with watermarking.

A. Watermarked Random-content Flooding

The intervention we propose involves two parts; one corre-
sponding to the watermark embedding process, performed in
the mitigation phase (when contrasting a ransomware attack),
and the other corresponding to the watermark detection process,
carried out in the restoration phase (after an attack, removing
the generated decoy files).

To detail the logic of the embedding and detection processes,
we must define the properties of the desired watermarking
system, considering the traits mentioned in Section II-B.

• Embedding effectiveness: The detector shall recognise all
the files produced during flooding (completeness).

• Fidelity: we generate random-content files, so fidelity is
immaterial (the decoys for flooding are cover works).

• Data payload: we are not concerned about the amount of
information we have to embed since we just need to know
if a file is watermarked (we do not extract the watermark).

• Detector type: as a consequence of the “fidelity” item, we
use a blind detector (we aim to detect cover works).

• Robustness: the attacker (ransomware) could tamper with
the decoy files, encrypting them – as intended by the
confounding DFaR defence approach. Robustness against
this type of modifications is immaterial since we can
identify encrypted files by ransomware, which we can
remove at restoration if considered useless/unrecoverable.

• Security: ransomware that would try to evade the flooding
defence could attempt an unauthorised detection attack
on the watermarked decoys (if the attacker can detect
the watermark, it can skip the decoys and concentrate on
the user files). Hence, we need a watermarking system
that makes it expensive to perform unauthorised detection
attacks – so the ransomware wastes time on watermark
detection or encrypting decoys.

Considering the defined properties, we can now proceed to
characterise the desired watermarking system.

B. Flooding and Embedding

The flooder performs the embedding process. Practically, the
user generates a secret flood key kf , used for the watermark
file embeddings. More specifically, kf comprises two subkeys:
kw, called the watermark key, used to generate the watermark
pattern, and kb, called the blocks key, used when performing

watermarking based on multi-block embedding – we integrate
a spread-spectrum multi-block watermarking to further increase
our proposal’s security, as discussed later.

For simplicity, we assume that the user keeps kf secret
and provides it for initialising the configuration of a DFaR
tool that implements the random-content watermarking system
discussed henceforth, storing the secret in an encrypted en-
clave. More sophisticated implementations can use asymmetric
watermarking to increase security and simplify the process of
key management (cf. Section VI).

Technically, kw determines the random pattern added to the
cover work (the decoy files) as the seed of a pseudo random
number generator that creates a square matrix of 8-bit integer
values, called the watermark. To generate the “original” content
for the decoy files, one can use the same approach described
by Berardi et al. [9, Algorithm 1], as we do in Algorithm 1,
which shows a pseudocode description of the general logic of
the watermarking random flooding we present.

The flooder in Algorithm 1 takes as inputs three parameters:
the target path of flooding, kf , and par, a dictionary of
parameters that configure the watermarking logic, such as the
watermark size. The algorithm starts, at line 1, by generating a
watermark pattern wt as an 8-bit integer-valued square matrix
of the size indicated in par, using key kw (part of kf) as seed.

At line 2, we use a while loop controlled by an external
variable (keepFlooding) to simplify the logic of flooding control,
where we generate one file per iteration; actual implementations
are more refined and use multiplexing techniques to coordinate
the parallel generation of decoy files [9], [10].

To generate a decoy file, first, we have to determine its
(random) size. In this implementation, we adapt an algorithm
that works on 2D matrices with a fixed dimension – the
columns, but the row-wise logic is complementary. The reason
for fixing one dimension of the matrix is to know when to
“wrap” the sequence of bytes that make up a file’s content into
a matrix form amenable to watermarking (both embedding and
detection). Since we fix the number of columns that make up the
file layout, determining its size means deciding how many rows
it spans. We make this choice at line 3, where we determine
the number of rows by taking a random integer between the
size of the watermark (the file must be at least as large as
the watermark pattern, to effectively apply the latter) and the
parameter for maximum decoy file size. The product of the
number of rows and the fixed column size determines the size
of the file, corresponding to the number of bytes of an empty
byte array we populate with random data. To achieve this point,
at lines 5–14, we reuse the logic presented by Berardi et al. [9],
based on xorshift [17], to quickly fill the file with random data.
We finally apply the watermarking on the random-content file
at line 15, using the function represented in Algorithm 2 –
commented below. Once we obtain the watermarked content,
we write it into a file, at line 16 – where function rndFilePath
generates a file object that assigns a name and an extension
to the decoy file and prefixes the bytes in cnt with the header
related to the extension (e.g., it adds a PDF format header if

Algorithm 1 Random Data Flooding with Watermarking
Require: path, kf , par

1: wt← generateWatermark(par.wtmarkSize, kf .kw)
2: while (keepFlooding) do
3: rows←randomInt(par.wtmarkSize,par.maxFileSize)
4: cnt ← newByteArray(rows*par.matrixColumnSize)
5: seed ← random64Seed()
6: for i← 0 to capacity(cnt)/64 do
7: seed← seed⊕ (seed≪ 13)
8: seed← seed⊕ (seed≫ 7)
9: seed← seed⊕ (seed≪ 17)

10: append(cnt, seed)
11: if capacity(cnt) > 0 then
12: r ← newByteArray(capacity(cnt))
13: r ← fillWithRandomBytes(r)
14: append(cnt, r)
15: cnt ← watermark(cnt, wt, par, kf .kb)
16: writeFile(rndFilePath(path), cnt)

the filename extension is “.pdf”).
To simplify our explanation, we divide the watermarking

process, presented in Algorithm 2, from the embedding process,
illustrated in Algorithm 3. Specifically, we implement two
embedding processes in Algorithm 3 and two watermarking
modalities in Algorithm 2. Starting from Algorithm 2, a
watermarking modality entails the usage of a pseudorandom
spreading sequence, generated from the block key kb, to select
which file blocks carry watermark information, similarly to
spread spectrum methods [15]. Intuitively, using embedding
based on spread-spectrum sequencing, we add a level of security
to the proposed watermarking technique, since the attacker
would also need to know which blocks it should analyse
(the watermarked ones) and which to ignore (the others). The
other modality classically applies the watermarking on the file
following conventional sequential block processing. Selecting
this last modality – by setting the useBlocks parameter to false
– directly calls the embed function, presented in Algorithm 3.
Using block-based spreading watermarking, we first divide
both the file content and the watermark pattern into blocks1.
Since the file content is at least as large as the watermark (as
per the definition of Algorithm 1), we have at most as many
blocks as those of the watermark to process. Hence, we apply
the embedding ranging over all the blocks of the watermark.
At line 5 of Algorithm 2, we initialise a pseudorandom number
generator using the block key kb to determine on which block
of the file content we apply that watermark block. We find this
logic at lines 6–8, where, given the i-th watermark block, we
determine the value of an index j, corresponding to the next
integer provided by the pseudorandom number generator, and
use j to target a block of the content that we watermark with
the i-th watermark block (using the function in Algorithm 3).

1One could parametrise the size of the blocks but, as discussed in
Section III-D, keeping the block size small increases the watermarking security.
Thus, in this instance, we fix the block size to 8× 8.

Algorithm 2 Watermarking Process

Require: cnt, wt, par, kb
1: if not par.useBlocks then
2: return embed(cnt, wt, par)
3: cntBlks← divideInBlocks(cnt)
4: wtBlks← divideInBlocks(wt)
5: irng ← rng.seed(kb)
6: for i ∈ wtBlks do
7: j ← irng.randInt(0, len(cntBlks))
8: cntBlks[j]← embed(cntBlks[j], wtBlks[i], par)
9: return cntBlks

Algorithm 3 Embedding Process

Require: cnt, wt, par
1: if par.useDCT then
2: c←DCT(cnt) + par.wtIntesity·DCT(wt)
3: return IDCT(c)
4: return cnt+ par.wtIntesity · wt

The last piece of the flooder’s logic regards the actual embed-
ding process, illustrated in Algorithm 3, which either performs a
classical spatial-domain embedding, obtained through additive
superposition, where it scales the watermark matrix wt by
the intensity parameter par.wtIntensity ∈ [0, 1] and adds
the result directly to the original content matrix cnt. The
intensity parameter controls the watermark strength through
a scaling factor that determines the trade-off between imper-
ceptibility and robustness. Alternatively, if the configuration
parameter useDCT is set to true, we embed the watermarking
using the frequency domain, through the Discrete Cosine
Transform (DCT). The algorithm first transforms both the
original content matrix cnt and the watermark matrix wt into
the frequency domain using DCT, then performs the additive
embedding by scaling the watermark’s DCT coefficients with
par.wtIntensity and adding them to the content’s frequency
coefficients. After combining the transformed signals, we
calculate its inverse DCT (IDCT) to convert the watermarked
frequency coefficients back to the spatial domain, producing
the final watermarked content. Note that, when the useBlocks
option is set to false, if the wt and cnt matrices differ in size
– i.e., the watermark pattern could be smaller than the file
content – the watermarking operations zero-pad wt to match
cnt’s dimensions.

C. Restoration and Detection

The restoration phase entails the detection process, i.e., the
identification and removal of the watermarked random-content
decoys. Also in this case, the user has to provide the flood
key kf to determine the watermark – and the block sequence,
in case of spread-spectrum embedding – used to compare the
content of the analysed files. Algorithm 4 illustrates the logic of
the whole restoration process. We specify a path that contains
the files under analysis, the flood key kf , and the parameters
used for the flooding. Since the detection logic hinges on

Algorithm 4 Restoration (Detection) Process

Require: path, fk, par, threshold, corrType
1: wt← generateWatermark(par.wtmarkSize, fk.fw)
2: for file in path do
3: f ←readFile(file)
4: f ←removeHeader(f)
5: cnt← newByteArray(getSize(f))
6: cnt← f
7: corrV al← calcCorr(cnt, wt, kf .kb, par, corrType)
8: if corrV al > threshold then
9: removeFile(file)

calculating the correlation between the watermark generated
from the watermark key (kw) and the content of the file, we
provide to the algorithm a threshold that sets the boundary for
meaningful correlation (i.e., when a file’s content correlation
indicates it is a decoy watermarked by our system). The
algorithm supports different correlation algorithms, specified
using the corrType parameter. Similarly to Algorithm 1, the
first instruction of Algorithm 4 generates the watermark wt,
used, in this case, to calculate the correlation with each file’s
content. Then, for each file found within the provided path,
we read its content (line 3), remove the header (at line 4; added
using rndFilePath at line 15 of Algorithm 1), and generate a
new byte array to store the content of the file (lines 5 and 6).
The calcCorr function computes the correlation value between
the file’s content cnt and the watermark wt; if the correlation
value (corrV al) is above the set threshold (line 8) we have
detected a removable (line 9) decoy file.

For brevity, we omit to present the pseudocode of the
calcCorr function, since its logic is close to the one of
Algorithm 2, with the major difference that calcCorr calculates
a correlation value instead of calling the embed function, at
lines 2 and 8. Essentially, if the useBlocks parameter is false,
we calculate the correlation between cnt and wt using the
correlation measure indicated by the corrType variable – in
this work, we only implement linear and normalised correlation,
but one can easily include alternatives by extending the calcCorr
function. This piece of logic is similar to the one at lines 1–2
of Algorithm 2. Correspondingly, if useBlocks is true, we
have a procedure similar to the one found at lines 3–9 of
Algorithm 2. Namely, we divide in blocks both cnt and wt,
we use the block key kb to determine the block sequencing
and proceed to calculate the correlation between each wt’s and
cnt’s corresponding blocks. The other meaningful modification
of the code at lines 3–9 of Algorithm 2 is that, at line 8, we
accumulate the correlation values into a variable, so that we
return (at line 9) the average of all block-wise correlations.

For reference, we summarise the traits of the two types of
correlation measures we consider. Linear correlation consists
in calculating the average product of two vectors, in our case,
the two matrices A and B of size m× n. Formally, we define
the linear correlation Zlc(A,B) of matrices A and B as

Zlc(A,B) =
1

mn

∑
i

∑
j

A[i, j] ·B[i, j]

In media space, comparing Zlc against a threshold leads to a
detection region with planar boundary. As highlighted by Cox
et al. [12], a problem with linear correlation is that the detection
values are highly dependent on the magnitudes of the compared
vectors. Indeed, since the correlation measure depends on the
absolute values rather than the relationship patterns between the
elements, it can produce misleading results when comparing
substantially different intensities and, e.g., the measure might
report a low threshold for works that are structurally similar
but have different overall magnitudes.

One can tackle the problems of linear correlation by
normalising the matrices. Formally, we define the normalised
correlation Znc(A,B) of matrices A and B (as presented
above) by introducing a normalisation operator •̃ such that
Ã = A/|A|, where we apply |A|, norm of A, to all elements of
the matrix

Znc(A,B) =
∑
i

∑
j

Ã[i, j] · B̃[i, j]

In practice, normalised correlation mitigates the problems
of linear correlation by removing the dependency on absolute
magnitudes and focusing purely on the structural patterns and
relationships between elements. Instead of directly multiplying
raw values together (which inflates results for high-magnitude
data and deflates them at the low-end of the spectrum),
normalised correlation discounts the magnitudes of the input
values by scaling them within a standard range (e.g., [-1,1]),
i.e., the correlation measures how similarly the values vary
relative to their own scales rather than their raw products.

D. Threat Model and Security Analysis

Now that we defined our watermarking approach, we can
specify the threat model we consider and analyse its security.

We assume that an attacker cannot access the flood key
kf – and, thus, the subkeys kw and kb. In a possible attack
scenario, ransomware would encrypt files, but it could also
try to detect the watermark, which would allow it to skip the
encryption of random-content decoy files, partially undermining
the effectiveness of the flooding strategy. Technically, we define
this type of attack an unauthorised detection, i.e., an attacker
that can detect the watermarked files without the watermark
key – and, in case of block-wise watermarking, the block key.

An attacker could attempt unauthorised detection through:
• Brute force: the attacker could try to detect the watermark

by trying all possible flood keys. This path hardly seems
feasible, since we assume the usage of 64-bit keys for both
the watermark and block key, thus, the attacker would
have to guess both keys in a 2128 space.

• Cover work as watermark: the attacker could use a
known decoy (cover work) to detect the watermark.
If our watermarking system is not robust, an attacker
could use a watermarked file as a reference, which

could provide a correlation value sufficiently different
from generic user files to make detection feasible. For
example, if the embedder produced all decoy files of
the same size, each decoy would have similarities with
the others, due to embedding the watermark in the
same way. Also for this reason, our embedding process
generates files of different sizes. Moreover, using the
spread-spectrum random block embedding technique, we
further complicate the usage of cover work as watermark,
since the watermarked blocks confound with the non-
watermarked ones in patterns specific to each file (namely,
their size, cf. line 7 of Algorithm 2) and the attacker
would struggle to consistently compare cover works.

• Rebuild the watermark: an attacker could try to rebuild
the watermark. Let us consider the harder case of decoys
watermarked using the spread-spectrum block embedding.
To implement this attack, the attacker should take two
watermarked files (hence, it would need to find two files
that are actually decoys) f1 and f2 and divide them into
blocks. Then, for each block of f1, the attacker would
calculate the correlation with each block of f2. The blocks
with the highest correlation values are likely to contain
the watermark. Hence, the attacker can try to rebuild the
watermark by taking the blocks with the highest correlation
values. For each other file, the attacker can try to detect
the watermark by comparing each block found in e.g., f1,
with the blocks of that file.
Mitigating this kind of attack mainly entails the adjustment
of the embedding parameters to harden watermarking
security. Specifically, one can use strong pseudo-random
number generation algorithms [18] for generating the
watermark and the block sequencing. Moreover, gener-
ating larger files (in particular, than the watermark size)
increases the search surface for the attacker’s analysis,
which one can further complicate by adopting small block
sizes (e.g., we set it to 8× 8), to decrease the strength of
correlation values.

IV. IMPLEMENTATION AND EVALUATION

Given the definitions in Section III, we implement a
prototype version of the flooding/watermarking and restora-
tion/detection algorithms. Besides serving as a reference
implementation of our proposal, we use it to evaluate the
effectiveness of the designed system. The implementation
is written in Python, mainly for speed of development and
availability of libraries like OpenCV for DCT. Production-
grade implementations would use compiled binaries and native
executables, as the DFaR Ranflood tool does [10]. Moreover,
we implement a prototypical opponent attempting to perform
unauthorised detection attacks (cf. Section III-D).

A. Evaluation: Watermarking Security and Overhead

We use our prototype implementation to test our proposal.
We instantiate the embedder, detector, and attacker components
with the same parameters – such as usage of random blocks,

watermark size, and matrix format column size. While pro-
viding the same parameters to the embedder and the detector
is expected, we underline that supplying them to the attacker
implies considering an advanced opponent, able to exfiltrate
and use the configuration parameters to drastically increase the
efficiency of its attack – e.g., to perform an effective correlation
attack, the attacker must know how to format the files in the
correct matrix layout, i.e., the matrix format column size. An
attacker ignorant of these parameters would face a harder task,
since its search space would be far larger, resulting in low
attack efficiency. As per threat model (cf. Section III-D), the
attacker does not have access to the flood key (kf and the
watermark kw and block kb subkeys).

In the following, we start by benchmarking and exploring
the configuration space of our proposal, in particular, through
the usage of optimisation heuristics (dual annealing) to find an
optimal set of configuration parameters that enjoys both sound-
ness and completeness (cf. the first paragraph of Section III)
and high security against unauthorised detection attacks.

Testing Protocol: To reliability test our proposal, we
first need to specify a reference dataset of “user files”. For
reproducibility, we use 100 images randomly selected from the
CIFAR-100 dataset. To verify that these images serve as valid
proxies for real user files in our watermarking evaluation, we
compare their correlation and that of 100 randomly selected
files from a real user’s work profile (containing documents,
pictures, and videos) against watermarked decoy files generated
by our flooder system. Hence, we generate a watermark pattern
wt, generate with it 100 watermarked decoy files and measure
the pair-wise linear correlation (the most “lenient” of the two
measures we consider in this work, i.e., the one more likely
to give false positives) between wt, the generated decoys, the
user files, and the selected images.

The idea is to verify that we can safely use the reference
images in place of the user files because they have similar (low)
correlation values with wt w.r.t. the decoy files. As expected,
shown in Fig. 1a, both CIFAR-100 images and real user files
exhibit similarly low correlation values (approaching 0) when
compared to the watermarked decoys, while the decoys show
high correlation with wt (0.7-0.8). This result demonstrates
that CIFAR-100 images are suitable proxies for real-world user
files in our watermarking detection scenario, since both exhibit
the expected low correlation with watermarked content that
our system relies on for detection.

Next, we need to define measures to quantify the effec-
tiveness of the attacker in discriminating between user files
and decoys. These measures are the correlation between two
watermarked (decoy) files and the correlation between a
watermarked file and a user file. An attacker, using these
measures, could identify the files that exhibit the highest
correlation value within a batch of files and then use it in
the later stages of the attack to discriminate between decoys
and proper user files.

Exploring Watermarking Configurations: In Figs. 1c to 1f,
we show several tests using different values of watermark inten-

0 20 40 60 80 100
Index

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Co
rre

la
tio

n
Correlation with real files
Correlation with imgs from CIFAR-100
Correlation with watermarked files

(a) Correlation with CIFAR-100 and Real Files.

Corr. between watermark and watermarked files
Corr. between watermark and random content
Corr. between watermark and real files
Corr. between watermarked file and watermarked files (attacker)
Corr. between watermarked file and real files (attacker)

(b) Legend for Figs. 1c to 1f.

0 20 40 60 80 100
Image Index (i-th Image)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Co
rre

la
tio

n
Va

lu
e

Normalized Correlation

(c) Watermark intensity: 0.9, embedding type: SDE.

0 20 40 60 80 100
Image Index (i-th Image)

0.60

0.65

0.70

0.75

0.80

0.85

Co
rre

la
tio

n
Va

lu
e

Normalized Correlation

(d) Watermark intensity: 0.1, embedding type: SDE.

0 20 40 60 80 100
Image Index (i-th Image)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Co
rre

la
tio

n
Va

lu
e

Normalized Correlation

(e) Watermark intensity: 0.1, embedding type: DCT.

0 20 40 60 80 100
Image Index (i-th Image)

0.00

0.02

0.04

0.06

0.08

0.10
Co

rre
la

tio
n

Va
lu

e
Normalized Correlation

(f) Watermark intensity: 0.1, embedding type: DCT, random blocks.

0 20 40 60 80 100
Image Index (i-th Image)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Co
rre

la
tio

n
Va

lu
e

Normalized Correlation

(g) Optimal configuration, as per Table II.

Random Flooding

Simple Watermark

Frequency Domain

Random Blocks
0

50

100

150

200

Ti
m

e
(s

ec
on

ds
)

35.71 36.61 37.56

86.40

0.90 1.39

53.39

2.92 4.28

220.07
Watermark Embedding/Detection Performance for 100 Files

Flooder (no watermark)
Flooder (embedder)
Detector
Attacker (inference)

(h) Performance comparisons: flooder/embedder, detector, attacker.

sity and embedding type. These intermediate insights are useful
to explain the resulting best configuration parameters from
running a dual annealing optimisation heuristic, commented
afterwards. In all these tests, we adopt a watermark size of
512 and a matrix column size of 1024.

Figs. 1c to 1f show the results as line charts, where the x-axis
represents a file (by its index) and the y-axis represents the
correlation value; in this case, we use the stricter normalised
correlation to minimise false positives. As visualised in Fig. 1b,
in the charts, the blue line with circles plots the correlation

between the watermark pattern wt and files that have been
watermarked with it (watermarked decoys), the orange line
with x’s tracks the correlation between wt and files with
random content (used as control to represent possible encrypted
files by ransomware), the green line with triangles shows the
correlation between wt and user files (CIFAR-100), the red line
with squares indicates the correlation between a file and the
other ones (calculated by the attacker), all watermarked using
wt, and the purple line with circles represents the correlation
between the watermarked file and user files (calculated by

the attacker). Intuitively, the best configuration maximises the
distance between the blue line (legitimate decoy detections)
and the other lines, while the latter are close to 0, to thwart
unauthorised detection attacks.

Concretely, the opponent’s attack generates 10 watermark
candidates and selects a separate batch of 10 files suspected to
contain watermarks. For each candidate watermark, the attacker
calculates its correlation coefficient with every file in the batch,
then computes the average correlation across all 10 files. Then,
it repeats this process for each of the 10 candidates, creating
a profile that reveals which candidate most closely matches
the underlying watermarking scheme. The used watermark is
most likely the one with the highest average correlation.

We start by analysing the results, shown in Fig. 1c, from
a configuration that we expect to be weak, using the spatial
domain embedding (SDE), strong watermark intensity (0.9), and
no random blocks. As expected, legitimate detection works well,
thanks to a compact average correlation of 0.99768. However,
also the correlation calculated by the attacker is high – average
0.99735 – leading to an efficient unauthorised detection attack.

One could argue that the strongest factor that determines the
weak security of this configuration is the high intensity level we
set for the watermark. However, as shown in Fig. 1d, changing
the watermark intensity to 0.1 seems to have little effect on
decreasing the correlation value obtained by the attacker: the
average of legitimate detection is ca. 0.79 while that of the
attacker is just slightly lower, ca. 0.78.

For this reason, we move from the spatial domain to the
frequency one, using DCT embedding. In Fig. 1e, we have the
same parameters of the above configuration with the exception
of using frequency-domain embedding. In this case, legitimate
detection has an average correlation of ca. 0.11, while the aver-
age correlation calculated by the attacker is ca. 0.012. Notably,
while both correlation values substantially dropped w.r.t. the
previous experiments, the values for legitimate detection are an
order of magnitude greater than those of the attacker (and even
lower for the user files), indicative of two facts: first, we can
safely define a threshold that discriminates between user and
decoy files, and second, using DCT substantially hinders the
ability of an attacker in discriminating between watermarked
and non-watermarked files. However, despite the encouraging
result, the distance between the attacker’s correlation (the red
line) and the other measures (the purple, orange, and green
lines in Fig. 1f) provides some attack surface to infer a slight
statistical difference between the user and decoy files.

As the last step of our investigation, we extend the above
configuration with the usage of random blocks embedding,
showing the results in Fig. 1f. Using this feature achieves
more satisfactory results in terms of correlation strength for
legitimate detection, while all other signals register as “noise”,
with an order of magnitude lower values than the former.

Optimising Watermarking Configuration Parameters:
While our “manual” exploration of the security levels, granted
by the tested parameter values, provides insight to establish a set
of guidelines for watermarking configuration, we complement

Parameter Values
Embedding type SDE, DCT
Use random blocks True, False
Watermark intensity 0.1–0.9
Watermark size 128, 256, 512
Matrix format column size 512, 1024, 2048
Block size 8, 16, 32

TABLE I: Watermarking configurable parameters and values.

this investigation by applying an automatic method to more
exhaustively analyse this search space.

Concretely, we model the problem of finding configuration
values that maximise soundness, completeness, and security of
watermarking flooding as an objective function. In particular,
we want to minimise the difference between the values of
a) correlation between a watermarked file and the other
watermarked ones and b) correlation between a watermarked
file and the user files, to minimise the likelihood that an attacker
would be able to distinguish between the two kinds of files. At
the same time, we want to maximise the difference (distance)
between the values of a) correlation between the watermark
and the watermarked files and b) correlation between the
watermark and random content/user files, to ensure soundness
and completeness.

We report in Table I the variables available to the optimisa-
tion function, with their possible values – we discretise some
continuous variables, such as the watermark and block sizes,
to restrict the search space.

To implement the optimisation model, we use Scipy’s [19]
optimize module, a Python library that provides several
functions for minimising/maximising objective functions. In
particular, we use a simulated annealing [20] algorithm, called
dual annealing, implemented therein [21]. The choice for using
dual annealing is that this stochastic optimisation method can
handle bounded mixed continuous (e.g., watermark intensity)
and discrete (e.g., usage of random blocks) variables.

Since we have contrasting optimisation directions – minimise
the chance of successful unauthorised attack and maximise
the probability of correct legitimate detection – we have to
encode one part as a complement of its definition. Indeed, since
dual annealing (as most optimisation algorithms do) assumes
the maximisation/minimisation of a single objective function,
one cannot directly optimise goals with contrasting directions
simultaneously. Instead, we must reformulate one objective as
the mathematical complement of the other. Specifically, we
choose to minimise the objective function, so that we can
directly encode the minimisation of successful unauthorised
attacks. Thus, instead of maximising legitimate detection
probability, we need to reformulate that part of the function as
the minimisation of the probability of failed legitimate detection
(which is the complement of the detection probability). Also in
this case, we use normalised correlation as correlation measure,
which ensures more stable results and allows us to compare
these results to the ones discussed earlier (and visualised in
Figs. 1c to 1f).

Formally, we define the optimisation function fo as

Parameter Values
Embedding type DCT
Use random blocks True
Watermark intensity 0.3
Watermark size 256
Matrix format column size 1024
Block size 8

TABLE II: Optimised parameters found via dual annealing.

fo = |Za,w −Za,f |︸ ︷︷ ︸
min. detect. attack

− |Zw,w −Zw,r| − |Zw,w −Zw,f︸ ︷︷ ︸
maximise legitimate detection

|

where Za,w is the correlation between a watermarked file
and the other watermarked ones and Za,f is the correlation
between a watermarked file and the user files, of which we
consider the difference under absolute value to minimise
any correlation distance that could help an attacker identify
watermarked content, regardless of whether the correlation is
positive or negative. Then, we encode the maximisation part as
an element deduced from the above value. We break down the
maximisation element into two subparts. The first indicates the
maximisation of the distance between Zw,w, the correlation
between the watermark and the file decoy files, and Zw,r, the
correlation between the watermark and random-content files.
The second expresses the maximisation of the distance between
Zw,w and Zw,f , the correlation between the watermark and
the user files – by maximising these differences, we strive
to maximise the discrimination between decoy files and real
ones done by the detector. We take the absolute values of also
these parts since we care about having a clear, measurable gap
between the considered kinds of files and not for the specific
direction of that gap – and, mathematically, the absolute value
prevents the optimisation from getting confused by sign changes
during the search process, i.e., without the absolute value the
algorithm might find solutions where correlations flip signs,
leading to unstable or suboptimal watermark parameters.

We report the optimised configuration parameters in Table II.
The optimisation confirms the insights we gathered in our
previous exploration. Namely, the usage of the frequency
domain (DCT) and of spread-spectrum block sequencing.
Interestingly, the optimisation procedure finds optimal results
by generating both mid-sized watermark patterns (265) and files
(with a matrix format column size of 1024), while keeping
the block size small (8) – confirming the intuitions about
watermark and file-content and block sizes in Sections III-B
and III-D. Moreover, also intensity tends to stay on the lower-
end spectrum (0.3), limiting the probability that the attacker
would “sense” the watermark signal among the files.

To complete this part of our evaluation, we represent, in
Fig. 1g, the chart obtained using the optimal configuration we
found. Notably, this configuration further increases the gap
between legitimate detection correlation (e.g., moving from
ca. 0.09-0.11 of Figs. 1e and 1f to ca. 0.35) and compresses
the correlation values for the other measures (around 0).

B. Watermarking Flooding Performance: Attack and Defence

We conclude our evaluation by looking at the performance
of our proposal, in terms of the time required to embed and
detect the watermark of 100 files. We compute these tests
on a Debian 12 (bookworm) machine equipped with an Intel
i3-8100 (3.6GHz) and 16GB of RAM.

Besides achieving our second benchmarking objective, i.e.,
measuring the overhead of the proposed system w.r.t. the
existing alternative (that has to rely on cumbersome file lists),
we also test the performance of an attacker that tries to run an
inference unauthorised detection attack, declined over the main
watermarking configurations we described: spatial-domain,
frequency-domain, and spread-spectrum block sequencing
frequency-domain watermarking. Since, in these tests, we are
not concerned about the watermarking properties (correctness,
soundness, and security) we fix the watermark size and the
matrix format column size to 1024 (bigger sizes entail longer
computations) to fairly compare with the existing DFaR random
flooding methods. For each test, we generate/analyse 100 files
and report the average, in Fig. 1h. Besides the performance of
the flooder/embedder, we benchmark the performance of the
detector through normalised correlation.

To benchmark the overhead between the existing ran-
dom flooding methods and our proposal, we measure the
performance of generating non-watermarked random decoy
files – as done following the random flooding algorithm by
Berardi et al. [9], which generally corresponds to skipping the
watermarking passages in Algorithm 1. The time required to
perform a 100-decoy file flooding in this way is 35.71 seconds.2

We show this piece of data in the left-most histogram, called
“Random Flooding” of Fig. 1h, under the “Embedder” column.
The “Detector” and “Attacker” ones are immaterial for this
test, since we are not using watermarking.

Next, we benchmark the performance of spatial-domain
watermarking (called “Simple Watermarking” in Fig. 1h). As
one can expect, the additional watermarking computations add
a small overhead of ca. 1 second to the performance average of
the flooder/embedder. Since this is the first time we benchmark
the performance of the detector, we just report the (small) time
of 0.90 seconds for analysing the generated files. Similarly, we
have the first, baseline value for the attacker that (irrespective
of the result, which we detailed and commented on in the first
part of our evaluation) takes 2.92.

Moving to the frequency domain increases a bit the com-
plexity of all computations – remember that we consider an
advanced attacker that knows about configuration parameters
and, thus, attempts an inference attack on the frequency domain.
As reported under the “Frequency Domain” columns in Fig. 1h,
also in this case we have a ca. 1-second increase for both
the flooder/embedder (37.55 seconds) and the Detector (1.38
seconds) while the time spent by the attacker increases by
ca. 46% (4.27 seconds).

2As discussed in Section VI, we present these benchmarks to compare the
performance of random flooding with/out watermarking. Native, compiled
implementations provide faster performance, as shown by Berardi et al. [9].

Adding random block sequencing to the mix (which arguably
provides the highest level of soundness, completeness, and secu-
rity) substantially increases all run times. The flooder/embedder
and detector respectively record a ca. 230% (86.39 seconds)
and ca. 3800% (53.39 seconds) increase. While important,
these run times are heavily outweighed by the attacker’s one,
which records a ca. 5140% increase (220.07 seconds) due to
the fact that it has to calculate the correlation for each block
of any given file – and not just the watermark block-wise ones,
as the flooder and embedder do.

V. RELATED WORK

Ransomware defences have evolved across multiple
paradigms, among which honeypot-based deception, backup
and restoration, access control, file integrity monitoring. In what
follows, we contextualise our contribution within these lines
of research, emphasizing the novelty of watermarking-based
Data Flooding against Ransomware (DFaR).

Despite the broad application of digital watermarking in
copyright protection and data provenance, its use in ran-
somware defence is largely unexplored. Indeed, many works
use honeypots to detect ransomware [22] – considering that
the usage of honeypots is traditionally related to detection of
fraudulent access – but only Berardi et al. [9] have employed
(dynamic) honeypots to contrast ransomware attacks and restore
the victim’s system. Given the uniqueness and recency of
the proposed technique, it is reasonable to have no direct
alternatives to compare our work against. To the best of our
knowledge, our method is the first to employ watermarking
to enhance contrast and restoration in ransomware scenarios,
allowing decoy files to be unambiguously identified post-attack
without reliance on pre-generated file lists.

Broadening our scope, we find honeypot-based methods that
provide detection of malicious activity. Early implementations
such as Moore’s [22] use static honey-files/folders to bait
ransomware. More sophisticated systems, like R-Locker [23],
use FIFO-accessed decoy files to detect a ransomware attack
and trigger countermeasures. While effective in alerting users,
these techniques generally use static or location-specific traps.
On the contrary, the DFaR approach generalises the honeypot
approach by dynamically flooding the system with decoys – in
our case, with random-content ones that are indistinguishable
from user files, watermarked to support post-attack restoration.

Traditional ransomware defences include data replication to
off-site/cloud locations [24], [25] or the escrow of encryption
keys [26]. Hardware-based techniques have also emerged, lever-
aging firmware characteristics to restore overwritten data [27],
[28]. While these methods are effective, they depend heavily
on infrastructure and availability. Our watermarking-based
DFaR technique offers a lightweight, infrastructure-independent
alternative, enabling on-disk recovery without requiring access
to cloud services or hardware-level rollback.

Another line of defence focuses on preventing unauthorised
file modifications via access control. For instance, McIntosh
et al. [29] propose staged, policy-driven access control frame-
works. While preventive, these approaches often require deep

system integration and are vulnerable to privilege escalation.
Our technique works orthogonally: it does not aim to block
writes but ensures that even if writes occur, they likely affect
decoys, not genuine user data.

Integrity monitoring solutions maintain hashes of critical files
to detect changes. Approaches such as that of Kharraz et al. [30]
monitor filesystem activity to detect early signs of ransomware.
While effective for alerting, such systems do not offer recovery
capabilities. Our watermarking system complements integrity
monitors by embedding signals directly in decoys, enabling
both detection and clean-up in a compromised system.

VI. CONCLUSION

In this work, we proposed a novel enhancement to Data
Flooding Against Ransomware techniques by embedding
imperceptible watermarks into random-content decoy files. Our
approach enables reliable restoration without depending on frag-
ile pre-attack file lists, improving both usability and resilience.
Through rigorous experimental evaluation, we demonstrated
that a) the proposed watermarking system achieves high
detection accuracy with minimal false positives and negatives,
b) offers robust resistance to inference-based attacks, even
under advanced threat models, c) maintains good performance
compared to standard flooding strategies, introducing limited
computational overhead.

In particular, empirical evidence demonstrates that our
system can provide high reliability and security using frequency-
domain embedding and spread-spectrum block watermarking.

Looking at future work, an immediate step forward from this
work is to integrate other watermarking techniques, studying
their security and performance profiles, which might lead to
supporting multiple watermarking configurations, e.g., given
the nature of user files (e.g., of certain formats, that tend to
be small/big) and the environmental context (e.g., cloud, edge,
and internet-of-things applications).

In this work, for simplicity, we describe the usage of symmet-
ric keys for embedding and detecting watermarking, suggesting
the storage of the keys within an encrypted enclave. A method
to avoid relying on enclaves is the usage of asymmetric
watermarking. Indeed, more sophisticated implementations of
our proposal can rely on asymmetric keys schemes where the
embedder uses the public key to watermark the decoys and
the detector uses the private key to identify the watermarked
files. In this refined implementation, the user only provides
the public key to the flooding tool, without worrying about
keeping it secret, since it is useless to an attacker that wants
to detect the watermarking. As usual with asymmetric key
schemes, keeping secret the private key is simple, since the
user can safely store it in a location detached from the attacked
system (e.g., a digital safe/wallet) for later usage, post-attack.

A third future direction involves applying our watermarking-
based approach to address exfiltration ransomware attacks.
In such attacks, adversaries exfiltrate sensitive data to exert
further pressure on victims. One can use watermarked decoys
to also pollute exfiltrated data with traceable content. Indeed,
by embedding watermarks into decoy files, defenders can afford

forensic tracking of stolen files – e.g., when they appear on
leak sites or black markets – by assigning unique watermark
signatures that can link exfiltrated files back to a specific
machine or user profile. Moreover, watermarked decoys could
also serve as digital tripwires for detecting and attributing leaks,
helping to identify the source of attacks.

An interesting insight we noticed during our experiments
is the correlation values calculated between user files and
random files. Indeed, while the average correlation between
the user files is relatively low and negative, the correlation
of the decoy files (without watermarking) tends to be a little
higher and positive. Although this fact cannot directly lead an
attacker to recognising random-content decoy files, to ensure
higher levels of decoy deception, one could try to study the
patterns that characterise the different file formats, in an effort
to mimic them when producing random-content decoys related
to a specific format – we recall that, in Algorithm 1, we prefix
the content of a decoy file with a header corresponding to the
file extension assigned to it, so, e.g., mimicking a PDF-like
byte pattern distribution for decoy files with a PDF extension
would further increase the perceived authenticity of decoy files.

ACKNOWLEDGEMENT

Research partly supported by project PNRR CN HPC -
SPOKE 9 - Innovation Grant LEONARDO - TASI - RTMER
funded by the NextGenerationEU European initiative through
the MUR, Italy (CUP: J33C22001170001). We thank Matteo
Cicognani for supporting the collaboration between ARPAE
and Università di Bologna.

REFERENCES

[1] H. Oz, A. Aris, A. Levi, and A. S. Uluagac, “A survey on ransomware:
Evolution, taxonomy, and defense solutions,” ACM Comput. Surv., vol. 54,
Sept. 2022.

[2] C. Beaman, A. Barkworth, T. D. Akande, S. Hakak, and M. K. Khan,
“Ransomware: Recent advances, analysis, challenges and future research
directions,” Computers & security, vol. 111, p. 102490, 2021.

[3] N. Keijzer, “The new generation of ransomware: an in depth study of
ransomware-as-a-service,” Master’s thesis, University of Twente, 2020.

[4] N. Perlroth, M. Scott, and S. Frenkel, “Cyberattack hits ukraine then
spreads internationally,” Jun 2017.

[5] A. Griffin, “’petya’ cyber attack: Chernobyl’s radiation monitor-
ing system hit by worldwide hack.” https://techbeacon.com/security/
ransomware-rise-evolution-cyberattack, 2017.

[6] P. H. Meland, Y. F. F. Bayoumy, and G. Sindre, “The ransomware-as-a-
service economy within the darknet,” Comput. Secur., vol. 92, p. 101762,
2020.

[7] B. A. S. Al-rimy, M. A. Maarof, and S. Z. M. Shaid, “Ransomware
threat success factors, taxonomy, and countermeasures: A survey and
research directions,” Computers & Security, vol. 74, pp. 144–166, 2018.

[8] T. McIntosh, A. S. M. Kayes, Y.-P. P. Chen, A. Ng, and P. Watters,
“Ransomware mitigation in the modern era: A comprehensive review,
research challenges, and future directions,” ACM Comput. Surv., vol. 54,
Oct. 2021.

[9] D. Berardi, S. Giallorenzo, A. Melis, S. Melloni, L. Onori, and M. Pran-
dini, “Data flooding against ransomware: Concepts and implementations,”
Computers & Security, vol. 131, p. 103295, 2023.

[10] D. Berardi, S. Giallorenzo, A. Melis, S. Melloni, and M. Prandini,
“Ranflood: A mitigation tool based on the principles of data flooding
against ransomware,” SoftwareX, vol. 25, p. 101605, 2024.

[11] S. P. Mohanty, “Digital watermarking: A tutorial
review,” URL: http://www. csee. usf. edu/˜ smo-
hanty/research/Reports/WMSurvey1999Mohanty. pdf, 1999.

[12] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital
Watermarking and Steganography. Morgan Kaufmann, 2007.

[13] V. Britanak, P. C. Yip, and K. R. Rao, Discrete cosine and sine transforms:
general properties, fast algorithms and integer approximations. Elsevier,
2010.

[14] H. Li and X. Guo, “Embedding and extracting digital watermark based
on dct algorithm,” Journal of Computer and Communications, vol. 6,
no. 11, pp. 287–298, 2018.

[15] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure spread
spectrum watermarking for multimedia,” IEEE transactions on image
processing, vol. 6, no. 12, pp. 1673–1687, 1997.

[16] O. S. C. Vision, “Dct.” https://docs.opencv.org/4.x/d2/de8/group core
array.html#ga85aad4d668c01fbd64825f589e3696d4.

[17] G. Marsaglia, “Xorshift rngs,” Journal of Statistical software, vol. 8,
pp. 1–6, 2003.

[18] R. McEvoy, J. Curran, P. Cotter, and C. Murphy, “Fortuna: cryptographi-
cally secure pseudo-random number generation in software and hardware,”
in 2006 IET Irish Signals and Systems Conference, pp. 457–462, IET,
2006.

[19] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa,
P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17,
pp. 261–272, 2020.

[20] C. Tsallis and D. A. Stariolo, “Generalized simulated annealing,” Physica
A: Statistical Mechanics and its Applications, vol. 233, no. 1-2, pp. 395–
406, 1996.

[21] T. S. community, “dual annealing.” https://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.dual annealing.html#id5.

[22] C. Moore, “Detecting ransomware with honeypot techniques,” in Cyber-
security and Cyberforensics Conference, CCC 2016, Amman, Jordan,
August 2-4, 2016, pp. 77–81, IEEE, 2016.

[23] J. A. Gómez-Hernández, L. Álvarez-González, and P. Garcı́a-Teodoro, “R-
locker: Thwarting ransomware action through a honeyfile-based approach,”
Comput. Secur., vol. 73, pp. 389–398, 2018.

[24] J. Yun, J. Hur, Y. Shin, and D. Koo, “Cldsafe: An efficient file backup
system in cloud storage against ransomware,” IEICE Trans. Inf. Syst.,
vol. 100-D, no. 9, pp. 2228–2231, 2017.

[25] D. R. Matos, M. L. Pardal, G. Carle, and M. Correia, “Rockfs: Cloud-
backed file system resilience to client-side attacks,” in Proceedings of the
19th International Middleware Conference, Middleware 2018, Rennes,
France, December 10-14, 2018 (P. Ferreira and L. Shrira, eds.), pp. 107–
119, ACM, 2018.

[26] E. Kolodenker, W. Koch, G. Stringhini, and M. Egele, “Paybreak: Defense
against cryptographic ransomware,” in Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, AsiaCCS
2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017 (R. Karri,
O. Sinanoglu, A. Sadeghi, and X. Yi, eds.), pp. 599–611, ACM, 2017.

[27] J. Huang, J. Xu, X. Xing, P. Liu, and M. K. Qureshi, “Flashguard:
Leveraging intrinsic flash properties to defend against encryption
ransomware,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017 (B. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, eds.), pp. 2231–2244, ACM, 2017.

[28] S. Baek, Y. Jung, A. Mohaisen, S. Lee, and D. Nyang, “Ssd-insider:
Internal defense of solid-state drive against ransomware with perfect
data recovery,” in 38th IEEE International Conference on Distributed
Computing Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018,
pp. 875–884, IEEE Computer Society, 2018.

[29] T. R. McIntosh, A. S. M. Kayes, Y. P. Chen, A. Ng, and P. A. Watters,
“Applying staged event-driven access control to combat ransomware,”
Comput. Secur., vol. 128, p. 103160, 2023.

[30] A. Kharraz, S. Arshad, C. Mulliner, W. K. Robertson, and E. Kirda,
“UNVEIL: A large-scale, automated approach to detecting ransomware,”
in 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016 (T. Holz and S. Savage, eds.), pp. 757–772,
USENIX Association, 2016.

