Contrasting Crypto and Exfiltration Ransomware
with Shamir’s Secret Sharing Data Flooding

Daniele D’Ugo
Alma Mater Studiorum
Universita di Bologna, Italy

Email: daniele.dugo@studio.unibo.it
ORCID: 0009-0005-2640-0883

Saverio Giallorenzo
Alma Mater Studiorum
Universita di Bologna, Italy
INRIA, France
Email: saverio.giallorenzo@unibo.it

Simone Melloni
ARPAE Emilia-Romagna, Italy
Email: smelloni @arpae.it
ORCID: 0000-0002-9535-8747

ORCID: 0000-0002-3658-6395

Abstract — Ransomware poses a significant threat to both
individuals and organizations, with crypto-ransomware and
exfiltration attacks causing widespread damage, financial loss,
and operational disruption. Ranflood is a ransomware attack
mitigation tool that confuses and overwhelms attackers by flooding
the system with decoy files, thereby slowing down the attack and
providing a critical window for intervention. In this paper, we
extend the coverage provided by Ranflood with a new, advanced
flooding strategy based on Shamir’s Secret Sharing (SSS) to
counteract both crypto- and exfiltration ransomware. Qur SSS-
based strategy confounds ransomware by generating many shards
from each user’s file, which we tune for high resilience when
contrasting crypto-ransomware (so that the user can regain access
to lost data from a few shards) and secrecy against exfiltration (so
that the attacker needs many shards to recover the victim’s data).
We explore the theoretical and practical challenges of applying SSS
in this context, present the design and implementation details of
our flooder, and empirically evaluate and profile its performance.

Index Terms — Ransomware, Shamir’s Secret Sharing, Data
Flooding

I. INTRODUCTION

Ransomware [1], [2] is one of the most pressing cyber-
security threats worldwide. In its most general definition,
ransomware extorts victims through their data.

Crypto-ransomware encrypts the data of the user, who needs
to pay a ransom to gain back access. While individuals represent
a target for this kind of malware — who could agree with paying
the ransom to get back their personal data, like photos and
videos — the main targets of crypto-ransomware attacks are
enterprises and organisations, which, without access to their
data, cannot carry out their business and end up blocking
physical processes and organisations.

Another form of ransomware attack is that of exfiltration
ransomware (which can also go in combination with the crypto
kind, usually leading to cases of “double extortion”). In this
case, the ransomware sends the data of a user to a storage
location under the control of the attacker. The threat regards
the divulgation of sensitive information such as private images,
intellectual property, financial records, and clients/suppliers
data either to the public or to buying competitors.

While technical solutions such as improved backup systems,
network segmentation, and advanced threat detection are

important mitigation techniques against ransomware attacks,
they alone cannot address the full scope of the problem. These
challenges demand new, advanced, and diverse software tools
that (working in unison) can mitigate the problem, either
detecting and contrasting attacks or helping the user in restoring
a compromised system.

Our contribution builds upon the defensive technique of
Data Flooding against Ransomware (DFaR) [3], designed to
counteract ransomware attacks. The basic principle of DFaR
involves overwhelming attackers (ransomware) by flooding the
system under attack with a large volume of decoy files. The
goal is to counteract malware attacks by both confounding
the valuable files of the user with the decoy ones and also
contending 10 resources with the attacker to slow down (or
potentially crash) its encryption routine, buying crucial time
for response measures to kick in — DFaR techniques mainly
represent last-line-of-defence solutions that act when the user
cannot immediately intervene, e.g., on an unresponsive remote
server. The delay provided by DFaR tools offers a valuable
time for security teams to recognise the attack and properly
respond (e.g., via on-site manual interventions).

Ranflood [4] is an open-source project that implements
the DFaR mitigation principles. Ranflood implements three
flooding strategies: Random, which floods the system with
random-content decoy files, and On-the-fly and Shadow, whose
decoy files are copies of existing user’s files — the former uses
the files available during an attack while the latter uses archival
copies. Thanks to Ranflood’s companion tool, FileChecker,
users can restore a flooded system, removing decoy files and
recovering lost data through their flooding copies.

a) Contribution: We introduce a new interpretation of
the DFaR approach in the form of a flooding strategy based
on Shamir’s Secret Sharing [S] (SSS).

Briefly, SSS is a security technique for splitting a secret into
parts such that one can reconstruct the secret by combining
enough of the parts. In our new copy-based flooding strategy,
the secrets are the files of the user, so that Ranflood can
use their parts to flood the system under attack. The flooder
leverages SSS’s ability to parametrise the number of parts
needed for reconstructing the secret to contrast both crypto-
and exfiltration ransomware attacks. In crypto-ransomware

contrast mode, the flooder generates many parts from the same
file to maximise the contention/confounding effect against
ransomware. This mode also requires the smallest number
of parts to reconstruct the secret, boosting the chances of
recovering the latter. In exfiltration contrast mode, the flooder
balances between confusion and secrecy by raising the needed
parts’ threshold, lowering the chances that an attacker who
exfiltrated the parts can use them to access the user files.

In Section II, we present preliminary information on Ran-
flood and introduce the general technique of Shamir’s Secret
Sharing. In Section III, we discuss the theoretical challenges
linked to using SSS as a flooding technique — in particular, we
illustrate the security concerns of using SSS against exfiltration,
formally quantifying them — and present our flooder’s design,
intended to mitigate the analysed threats. Then, we move on
to the relevant implementation details of the flooder, including
both the contrast and restoration phases. Since our solution
has a prominent practical component, we develop it as part
of the Ranflood open-source ransomware contrast tool [6]
and use the implementation to empirically test its usage in
Section IV. This evaluation is useful to understand the factors
that determine the performance of our new strategy and tune
them w.r.t. ransomware attacks. We conclude by positioning
our contribution w.r.t. related work in Section V and drawing
final remarks and future steps in Section VI.

II. BACKGROUND

We now present the tools and concepts behind our work:
Ranflood and FileChecker and Shamir’s Secret Sharing.

A. Ranflood

Ranflood is an open-source drop-in solution built to con-
trast the action of ransomware. Ranflood implements Data
Flooding against Ransomware (DFaR), an approach whereby
anti-ransomware software floods the file system (at targeted
locations) with files, mitigating/contrasting the attack of
ransomware by slowing down its execution in two ways: it
lures malware into reading and encrypting decoy files, and it
competes with the attacker for IO access, hindering its actions
on storage. At the moment, Ranflood supports three flooding
strategies: Random, which uses randomly-generated decoys,
and On-the-fly and Shadow, which duplicate a user’s files.

While DFaR techniques can cover all phases of ransomware
contrast — detection, mitigation, and restoration — in this
work, we focus on a) attack mitigation, consisting in the
flooding itself, and b) post-attack restoration, which essentially
regards recovering lost files through copies generated during the
flooding and removing unnecessary decoy files. For the flooding,
the copy-based strategies require preliminary snapshots such as
checksums (On-the-fly) of the original files or copies thereof
(Shadow) to decide which content to duplicate (e.g., to avoid
creating copies of corrupted files which the ransomware would
skip). Besides directing copy-based flooding, snapshots support
restoration by identifying both corrupted files and duplicates.

Ranflood is implemented in Java, allowing any system
supporting the Java Virtual Machine to run it — the project

offers native binaries for Linux, Windows, and macOS thanks
to the GraalVM compiler.

Architecturally, Ranflood follows the client-daemon pattern,
where an always-on daemon accepts commands from clients.
This architecture is highly modular, so that clients can start,
stop, and monitor flooding sessions and configure them inde-
pendently. At the heart of the daemon, we find the engine and
the task manager.

The engine implements the core functionalities of flooding
and snapshooting and manages the execution on multiple
threads, following the Proactor pattern: any operation of
writing on (or copying) a file from a flooder generates a task,
added to the task manager scheduler, which multiplexes their
execution on different threads to achieve the maximal degree
of concurrency afforded by the host machine.

The FileChecker [3] is a companion tool to Ranflood that
operates in the restoration phase. Essentially, the FileChecker
can generate checksums of the files present in a given location
and use checksums to discriminate between pristine and
corrupted files. The FileChecker supports restoring the system
to its original state, discriminating between safe-to-delete decoy
files and the ones useful to restore lost original files.

B. Shamir’s Secret Sharing

Shamir’s Secret Sharing (SSS) is a technique for dividing
some information, the secret, into n parts — dubbed shards —
so that, given a threshold k < n number of shards, one can
recover the secret. SSS enjoys information-theoretic security,
i.e., an actor who steals fewer than k shards cannot reconstruct
the secret, frustrating their effort.

SSS exploits the uniqueness of the Lagrange interpolating
polynomial such that, given k (distinct) coordinate pairs
ai,as, ..., ak, there is only one polynomial, f(z), of degree
k — 1 passing through them (i.e., having k£ — 2 turning points).
Moreover, once fixed, one can choose other n — k (distinct)
points (with n > k) on the formed curve, axy1, ar+2, .-, An,
such that any subset of k£ out of the n points a,as, ..., an
allows one to obtain the polynomial via interpolation.

Algorithmically, given s € N secret to be split/encrypted,
and n,k € N : k < n, resp. the number of parts and the
threshold to reconstruct s, the steps of SSS involve:

1) generating the k coefficients of the polynomial f of
degree £k — 1 (ag,a1,...,ax—1), setting ag = s and
randomly choosing a;, i € [1,k — 1];

2) calculating the n points p; = (i, f(4)), @ € [1,n].

Note that f passes through the secret — point (0, s) — since
we set the term (ag) to s. Thanks to interpolation, since f has
degree k — 1, we need k out of the n points to retrieve it.

Technically, SSS uses finite fields (like for elliptic curves)
because interpolation requires divisions, which can lead to
under/overflow errors when operating in Q or R, and finite
fields guarantee perfect secrecy — they prevent an attacker from
gaining information about s with fewer than £ shards.

a) Modular Arithmetic and Finite Fields: A finite field,
denoted IF),-, is an algebraic structure where p,r € N, p prime

and r > 0, determine the order (number of elements) ¢ = p”
of the finite field.

For instance, » = 1 defines a well-known finite field whereby
IF,, is the set of residue classes modulo p and:

o integers 0,1,...,p — 1 represent the elements in IF};

« the field supports modular addition and multiplication,
with their respective identity elements 0 and 1;

« each operation has an inverse element for each z € I,
ie,dy,z€lF,: 2 +y=0Ax-z=1; in particular, we
can define division a/b in Fpr as a - b1,

Putting IF), together with the above algorithm, we can have the
elements of IF, represent each coefficient of the polynomial,
and each coordinate as a pair of elements of [F,.

This observation implies that, to use SSS, we need to define
— as public parameter — a finite field whose order ¢ is such that
q > s\ g > n, ie., whereby we can store our secret in integer
form (¢ > s) and create enough distinct shards (¢ > n).

III. A SHAMIR’S SECRET SHARING FLOODING STRATEGY

We now show how we apply SSS to implement flooding
and recovery strategies for Ranflood. First, we present the
theory behind our work, explaining the principles we followed
to define a useful SSS model for our purposes. Then, we
illustrate its implementation.

A. Choosing a Shamir’s Secret Sharing Model

To choose a suitable SSS model for our implementation, we
need to fix some assumptions behind its usage. The foremost
item regards deciding which finite field to use (cf. Section II-B).
Intuitively, one can use a set of remainder classes modulo a
prime p, choosing p as an upper bound for both the size
of the secret (s) and the number of shards one can split it
into (n). However, one such solution is quite naive: it would
only work with files of a fixed dimension/number of shards.
Moreover, if we consider s to be the integer representation
of the sequence of bytes of the file we want to encrypt, we
obtain poorer performance the larger the file since there is a
direct relationship between a field’s order and the complexity of
modulo operations [7]. Considering these elements, we follow
the technique (discussed below) of fixing an appropriately large
g, divide the bytes b that make up a file into [b/q] pieces, and
obtain the shards as aggregates of separate g-sized splits.

Far from being purely theoretical speculations, we find the
effect of these observations in existing and widely used open-
source implementations of SSS, which impose limitations
on the secret size/number of shards given a fixed ¢ of
choice.! On the contrary, projects like Vault by HashiCorp and
codahale/shamir implement arbitrary-length inputs efficiently
by using the finite field Fos.?

Technically, Fos (also known as Galois Field 256 or
GF(256), from the mathematician who first introduced the

'For example, highly-starred GitHub projects like https://github.com/
shea256/secret-sharing, https://github.com/dsprenkels/sss, and https://github.
com/timtiemens/secretshare limit secrets to a fixed number of bytes.

2Resp. at https://github.com/hashicorp/vault and https://github.com/codahale/
shamir.

concept of finite fields), is a finite field of order 256 that allows
one to efficiently implement the common algebraic operations
over the relatively small number of values of the field:

o unary operations of logarithm base 2 and exponentiation
of 2 have 256 possible outputs, which can be pre-
computed and stored in lookup tables — the lookup
table for exponentiation has size 2 - 256 to also avoid
the modulo operation in case of overflow, e.g., we can
efficiently calculate loga(a+0b), with a,b € [0, 256), even
if a + b > 256;

« xor implements addition and subtraction (explained later);

« multiplication takes advantage of the mentioned lookup
tables, such that a - b = 2!092(ab) — 9logz(a)+log2(b).

« division derives from applying multiplication by an inverse
p1 = 2log2(b71) — 225571092(17).

The properties of Fos make it such a good candidate that
it is also used in the internal operations of AES [8], which
efficiently works on single bytes thanks to Fos.

Visualising [Fys is harder than IF, (which we can easily
represent as 0,1,--- ,p — 1), however, we can establish an
isomorphism between Fgs and Fo[z]/p(z), i.e., the quotient of
the ring of polynomials on Fy (3", a;z’, a; € {0,1}) over
an irreducible polynomial, chosen of degree 8. In this way,
we represent an element in Fos as an element of the set of
remainders of Fy[x]/p(z) — each element is an equivalence
class of polynomials with the same remainder when divided by
p(x). Since p(x) has degree 8, there are 2% such equivalence
classes, and we can visualise an element of Fos as a polynomial
of degree 8 with coefficients in Fy, i.e., ZZ:O a;z’.

Hence, we can see an element of Fys as a vector of
coefficients, just like a byte is a vector of bits where a is the
least significant bit. In this way, addition and subtraction work
on polynomials with the supplementary constraint that we must
take the remainder modulo 2, which allows us to execute them
as bit-wise xor operations — xor and modulo addition directly
correspond, while a —b = a + b(mod 2), for a and b in {0, 1}.

The choice of p(x) is an implementation detail, and it is
orthogonal to the structure of the finite field — thus, we call all
fields of this order Fys. The only requirement for p(x) is that
it must be irreducible (i.e., we cannot express it as the product
of two non-constant polynomials with coefficients in F5) and
the algebraic structure is a field (with element-wise inverses).

The last ingredient we need to fix is a generator g, i.e.,
an element of the field whose powers generate all non-zero
elements of the field — for Fys, it means that g',-- -, ¢?°®
generates all 255 non-zero elements of the field — so that we
can populate the lookup tables. Similarly to p(z), the choice
of g is arbitrary.

Following AES [8], we choose to use the polynomial 0z11b
(28 + 2* + 22 + £ + 1) and the generator 003 (z + 1).

1) Security Concerns: Since we foresee the usage of the SSS
flooder for contrasting both crypto-ransomware and exfiltration
ones, we analyse the consequences of using SSS for generating
many shards as a flooding technique. In particular, we focus
on secrecy against exfiltration, i.e., the relationship between

performance, threshold levels (higher thresholds imply more
shards an attacker needs to recover the secret), and duplicate
files (which threaten to lower the technique’s security level).

Finite fields allow SSS to achieve perfect secrecy, i.e., one
cannot obtain information on the secret with fewer than &
shards — technically, given k points there is only one function
(the Lagrange interpolating polynomial) of degree k£ — 1 that
passes through them. Even having k—1 points, the attacker does
not obtain any information on the k-th one, leaving them the
only option of trying to guess it — obtaining for each k-th value
a different interpolating polynomial, making it theoretically
impossible to guess the secret.

However, using the same SSS model repeatedly can weaken
its security guarantees. Indeed, if we have two secrets s; and
so corresponding to the same value (e.g., in our case, different
files with the same content) and we split them using the same
polynomial f, their shards would all lie on f — they could even
be the same. This fact implies that an attacker has more possible
shards, e.g., 2n considering the same n for both secrets, they
could use to retrieve the secret value (s1 = s2), i.e., the union
of s1’s and s2’s shards.

To avoid this problem, one can randomly change the
polynomial for each secret, which raises the question: how likely
is it to obtain the same curve multiple times? The question is
critical because collisions — i.e., reusing the same polynomial —
could inadvertently leak information, especially when the same
content appears across different files.

To quantify this likelihood, we analyse the probability of
generating the same polynomial twice over the finite field Fos.
Formally, we look at the probability of picking a polynomial
f of degree k — 1, equivalent to picking a set of k coefficients
ag, - ,ax—1 € Fos. Thanks to the Lagrange interpolating
polynomial, we can calculate f by picking k£ coordinates
,cr which, following Section II-B, have the form
¢i = (x4,Y;), with y; random element of Fas; corresponding
to picking a specific sequence of k elements of Fys.

Assuming a uniform distribution of the random number
generator used to obtain the elements, we can pick any byte
(i.e., an element of Fys) with probability 1/256. Then, the
probability of picking a specific polynomial f at random is
P(f) = (1/256)*. In general, this formula estimates how hard
guessing f is by considering a part of the k elements fixed,
i.e., given k' shards in fj, with 0 < k¥’ < k we have P(f;/) =
(1/256)*~*". Since P(fy/) grows exponentially relatively to &’
(we consider k fixed since the user sets its value), one can
largely reduce the probability by each unitary decrease of k’.

Summarising, even partial knowledge of %’ coefficients (or,
equivalently, k&’ shards) dramatically reduces the uncertainty of
guessing f, which undermines the secrecy guarantees against
exfiltration attacks provided by SSS-based flooding. One can
increase k to reduce the chance of collisions, but increasing &
translates into performance costs. Thus, we need a practical way
to estimate how large k shall be to obtain good performance
while keeping collision probabilities acceptably low.

A foundational insight for estimating the possibility of colli-
sions comes from the birthday problem [9]. Brink generalised

Cla"'

TABLE I
TABLE RELATING DIFFERENT k VALUES WITH THE NUMBER OF BYTES (AND
MB) NECESSARY TO HAVE AT LEAST A 50% PROBABILITY OF COLLISION
(SAME POLYNOMIAL) — ASSUMING A UNIFORM DISTRIBUTION d(256%) FOR
A BYTE AND d(256%)/10% FOR A MB.

k d(256%) (B) d(256%)/10% (MB)
7 3.16 x 108 3.16 x 102
9 8.09 x 1010 8.09 x 104
11 2.07 x 1013 2.07 x 107

the birthday problem [10] considering a random variable n(d)
uniformly distributed over d values and calculated the number
of extractions one needed to obtain the same value twice with
a probability of at least 50% as

3—2In2 9—4In22 2In22
n(d) = [v2dIn2 + + - -‘
@) [6 72¢/2d1n2 135d

for all d < 10'® (Brink conjectured holding for all d € N). Ap-
plying the formula to d = 256* gives us useful approximations
for choosing appropriate k& values for f, reported in Table I.

The results show that, with k£ = 7, after splitting 316 MB
of data we have a 50% collision probability, which becomes
more and more likely the more files the flooding splits. Using
k = 9 raises the required threshold to 80.911 GB and k = 11
brings it to 20.7 TB.

We weigh in on these statistical results concerning the
configuration of the flooder in Section III-B. Here, we draw
some high-level remarks regarding the usage of SSS in the
context of exfiltration-based attacks, since crypto-ransomware
would in any case need to encrypt the shards to make their
content inaccessible, irrespective of the strength of their secrecy
guarantees. Contrarily, under exfiltration attacks we want strong
secrecy guarantees of SSS so that the attacker needs as many
shards as possible to reconstruct the original file, striving to
minimise the data gathered from the victim. Since Ranflood’s
strategy relies on confounding legit user files with a deluge of
decoy ones and contending resources with the ransomware, we
need to balance fast shard-production performance with secrecy
guarantees. To practically estimate this trade-off, we benchmark
the performance of the implementation in Section IV under
different polynomial configurations.

In general, we see interesting future work in investigating
the feasibility of these attacks to SSS, e.g., assuming that an
attacker retrieved different sets of shards, estimate how hard
it is to detect they are related and use them to perform a
same-polynomial kind of attack (on the same bytes).

B. Implementing an SSS Flooding Strategy

The core elements of a suitable SSS flooder implementation
are: a) a model of Fys (cf. Section III-A), b) efficiency of opera-
tions (e.g., using lookup tables and xor-based arithmetic) on the
model’s elements, and c) functionalities for splitting/merging
a file into/from a set of shards.

Since the open-source Java library codahale/shamir? correctly
and efficiently provides these functionalities, we use it in

TABLE II
SCHEMA OF THE SHARD FILE FORMAT.

Algorithm 1 SSS Data Flooding
input: n, k, target Path, snapshot, exfil

. content size (bytes) while keepFlooding do
fixed header signature (02123456789ABCDEF0) 8 for filePath in GETFILES(targetPath, snapshot) do
n 4 fileBytes < READFILE(filePath)
gene]:ation g shards <+ SPLIT.CONTENT(n7 k, filePath, fileBytes)
original file checksum 30 for shardBytes in shards do
the shard content checksum 20 L WRITEFILE(ShaTdByteS)
length of the original file path 4 if ezfil then .
original file path variable _ DELETEFILE(filePath)
the shard content variable

our implementation. For completeness, we briefly discuss the
(simplified) logic of its split and merge functionalities.

split takes as input a sequence of bytes (the secret) and im-
plements the byte-wise encryption schema from Section III-A.
For each byte b, split generates a random polynomial f
of degree k — 1 that passes through the point (0,b), so that
any k distinct points on it allow one to perform the Lagrange
interpolation and obtain back b. Then, it generates the n shards
for that byte by applying f(z) for 1 < z < n. Finally, it
assembles the obtained byte-wise shards into n byte sequences
so that the first sequence contains all the bytes for z = 1, the
second for x = 2, until the n-th for x = n.

Complementarily, join takes a set o, |o| > k, of sequences
of shard-bytes (from the related shard files) produced by
split and proceeds to byte-wise reconstruct the original file
via the Lagrange interpolation of the bytes at the i position
of the sequences, to obtain the polynomial and find the secret’s
i byte at position 0.

Since the flooding generates new (shard) files, we define
an ad-hoc file format useful to store the shards’ metadata and
support restoration. We schematise the file format in Table II
and discuss it below. While we treat this metadata as clear
text, one can embed it in shards using standard encryption to
further complicate pursuing reconstruction attacks.

The first 8 bytes of the file encode the format’s signature.
Then, we find the SSS parameters n and k, followed by an
8-byte number called “generation” which carries information
on the processing of the original file; in a nutshell, we use
the generation metadata to distinguish between shards of the
same content but belonging to different split sessions. The
mechanism of generations allows, in the restoration phase, to
correctly associate shards not only pertaining to the same file
but also having been generated with the same polynomial —
only assembling the shards pertaining to the same generation
allow the correct identification of the original secret. Next, we
have the original file checksum (used to check its status during
restoration, if reachable), the shard checksum (to verify the
shard content), the original file path (for retrieving the file) —
and the path length, since it is variable — and the shard content
(as generated with the split routine).

C. Overview of the Implementation

From an implementation standpoint, the intervention to
integrate an SSS-based strategy in Ranflood requires the

implementation of a dedicated flooder. However, following
the implementation of the On-the-fly flooder [3], we integrate
the usage of a snapshooter, which runs before the flooding
phase (e.g., when users create new files or save their work)
to create a list of the valid file checksums. During flooding,
the list allows the flooder to copy only pristine files and avoid
duplicating corrupted ones. We reuse the existing On-the-fly
snapshooter since it meets our needs.

Attack victims can use the FileChecker to restore their
files after an attack. Notably, since we save the path and
checksum of the valid files in the shards (cf. Table II), we
increase the resiliency of the FileChecker restoration routine
by complementing the checksum list of valid files with the
metadata found in the shards — which constitute a sort of
distributed version of the list of valid files.

We present the main aspects of the implementation of the
SSS flooder in Section III-D. Since one can use shards to
restore a user’s files, we describe in Section III-E how we
extend the FileChecker to support this functionality.

D. SSS in Ranflood: Mitigation

The design of the SSS Ranflood flooder follows several traits
of the On-the-fly one (including its snapshooter).

We start discussing the pseudocode in Algorithm 1, which
reports a simplified, sequential form of the logic of the SSS
flooder — the actual implementation launches tasks run in
parallel and coordinated by Runflood’s proactor. The flooder
requires the provision of a snapshot to discriminate between
corrupted and valid files.

In Algorithm 1, the flooder takes as inputs the number of
shards per file to produce n, the threshold of shards necessary
to recover the secret’s content k (restricted within the allowed
limits, i.e., 2 < k < n < 255), the flooding’s target Path, and
the snapshot — we discuss the exfil parameter later. Then, for
all valid files in the target Path (including the ones found in
subpaths) the flooder reads the content (fileBytes) of the
file and generates the shards, calling the SPLITCONTENT
procedure. That procedure generates the content of each
shard file in the expected format (cf. Table II), managing
the mechanism of generations to discriminate among shards
of the same file created at different times and storing the
metadata (file checksum and path, shard checksum) along with
the binary content of the shard generated following the logic in
Sections II-B, III-A and III-B (using the split function). For
each generated shard, the flooder writes its content on disk.

After having generated the shards, and before passing to the
next file, if the exfil parameter is set to true — i.e., the user
called the flooder as a countermeasure against an exfiltration
attack — the flooder deletes the original file, which the user
can later rebuild in the restoration phase. Note that enabling
the deletion of files in Algorithm 1 would prevent further
flooding from happening once the files in the targetPath
have terminated — the while loop surrounding the flooder’s
logic. In the actual implementation, losing user files does not
prevent the flooder from generating new shards. Indeed, the
flooder saves the valid copies of the user’s files in memory
and cyclically processes them as if read from disk.

a) A Note on Caching Files and Shards: The implementa-
tion of Ranflood’s On-the-fly strategy [3] caches user files after
their first read, to reduce both I/O read overheads and the risk
of data loss due to ransomware encryption. The same reasons
justify refining SSS’s flooding implementation by caching user
files after their first read. Following this line of reasoning,
one could consider also caching the shards themselves to skip
the split phase — which has high computational complexity,
cf. Section IV-A — and write them on disk multiple times.
However, this optimisation would be both impractical and
detrimental to the effectiveness of contrasting exfiltration
attacks. Memory-wise, if caching a file takes space equal to its
disk usage, caching n shards of that file would take n times that
amount. Security-wise, when considering exfiltration attacks,
one shall avoid reusing (cached) shards because copies of the
same shard would reduce the secrecy of shard encryption (cf.
Section III-A1).

E. SSS in FileChecker: Restoration

We implement the restoration phase by extending the
FileChecker to perform the rebuilding of the file shards.

The shards generated by the SSS flooder include the
checksum of their original file (cf. Table I). Hence, our
extension gathers the shards that belong to the same file
(e.g., checksum-wise), checks their validity, and uses them
to retrieve the original content and restore it — if the original
file is missing and the reconstructed content corresponds to
the original’s checksum. The procedure uses, in particular, the
join function described in Section III-B to perform the byte-
wise reconstruction of the content from the shards (only if
there are at least k valid gathered shards).

IV. EVALUATION

Since the performance of our flooder depends on different
parameters (n, k, etc.) we start our evaluation, in Section IV-A,
by analysing how these parameters influence the complexity
of the tasks handled by the flooder. This analysis allows us
to define informed values for these parameters, which we
benchmark in Section IV-B.

A. Computational Complexity Analysis

To analyse the complexity of our flooder’s logic, we abstract
away from IO access (both the ransomware and flooder access
the files) and focus on the parts related to the SSS technique.

Algorithm 2 Polynomial generation

function GENERATE(k, secret)
f < byte[k +1] > k+I-array to get a k-degree polynomial
repeat
| populateWithRandomBytes(f)
until f[k] #0 > the coefficient of x* must be non-zero
f[0] < secret
return f

The split functionality (cf. Section III-B) features a loop
on each byte of the secret, where we call a procedure that
GENERATES a random polynomial of degree k£ — 1 (reported
in Algorithm 2), and an inner loop on n to retrieve the bytes
of each shard by applying Horner’s method [11] to evaluate
the polynomial at the given position.

In Algorithm 2, we obtain the polynomial of degree k by
populating a k+ 1-size array of bytes that stores the coefficients
of the terms. We generate the coefficients using the function
populateWith Random Bytes, which fills all the elements of
the array with random bytes. Since we want to obtain a k-degree
polynomial, we re-apply the function (within the repeat-until
loop) as long as the coefficient of the leading term is non-
zero, i.e., we make sure we have a polynomial of degree k.
Finally, we set the constant coefficient of the polynomial to
secret — the value of the polynomial at the intersection with
the y-axis as per SSS. Using mainstream implementations® the
complexity of the populateWithRandom Bytes function is
linear in the size of array f (where the complexity of random
byte generation is constant time) and we essentially run one
time the repeat-until loop because, given that the function
uses a uniform random distribution, we have 1/256 possibilities
that the byte of the leading term is zero. Hence, Algorithm 2
has complexity O(k).

Applying Horner’s method on Fys makes the complexity of
the calculation linear in the degree of the polynomial, since
additions and multiplications are constant-time, hence, the
complexity of evaluating the polynomial on n values is O(nk).

Then, given b number of bytes of the secret, the complexity
of the split procedure is O(b(k + kn)) ~ O(bkn), linearly
depending on the file size, the threshold, and the number of
shards (2 < k& < n). Since the size of files is an external
parameter which we do not control, we focus our analysis
on k and n. As presented in Section IV-B, we empirically
test different combinations of £ and n that guarantee good
performance while keeping the product as small as possible.

B. Performance of the Split Routine

We put into practice what we learned through computational
analysis and investigate these results through experiments.

We run our benchmarks on an AMD Ryzen 7 1700 (3GHz)
8-core, 16-thread CPU, 16GB DDR4 3200MHz RAM, NVMe
M.2 (writing speed of S000MB/s), Debian 12 64bit, GNU/Linux
6.6.13, and OpenJDK 21.0.3 (3GB of maximum heap).

3https://docs.oracle.com/javase/8/docs/api/java/util/Random.html#
nextBytes-byte:A-

n k split (ms/KB) n k | split (ms/KB)
255 2 1.666 50 2 0.334
255 10 8.551 100 | 2 0.57
255 50 61.171 200 2 1.069
255 | 100 124.589 200 3 1.65
255 | 255 328.976 250 | 10 8.074

2 2 0.119 50 50 12.098

10 2 0.164 10 10 0.547

©n -

E 300 s

3 ///

'j‘g’ 200 s =
e?g 100 s =t
[-olN e

0 50 100 150 200 250 300
Actual time values

Fig. 1. Recorded split times (ms/K B) with varying n and k (top), linear
regression plot (bottom).

We report in Fig. 1 the speed of the split procedure (in
ms/KB) at varying (valid) combinations of n and &, on inputs
counting 1000 bytes, averaged over 1000 tests each.

We shed further light on the relationship between n and &
in determining split’s performance by conducting a linear
regression analysis on the data from Fig. 1, reported at its
bottom. Visually, the alignment fits most data points, confirmed
by an R? value of 0.981. The resulting regression coefficients
are 0.048 for n and 1.262 k, indicating that the latter exerts
the strongest influence on the speed of split.

Intuitively, we conjecture that k has a stronger impact than n
due to operations in the GENERATE procedure (cf. Algorithm 2)
where we allocate a k-size byte array for the polynomial and
perform on it the related operations for its population.

Summarising, one shall avoid increasing both n and k,
since similar values impact quadratically on performance, in
particular, k has the strongest impact. Looking at the application
scenarios, when contrasting crypto-ransomware, we can afford
low k values and, thus, relatively large n ones; in exfiltration
attack scenarios, we want a high threshold for recovering
the original file content, and we need to carefully balance &
and n to trade speed off of secrecy strength. Quantitatively,
using small n values leads to detrimental performance losses,
presumably due to some overhead (e.g., n = 10 and k = 2
requires 0.05 ms/KB more than n = 2 and k& = 2). In practice,
n > 10 and k£ < 10 seem a good compromise between secrecy
strength and performance.

C. Performance of the SSS Flooder

We now empirically evaluate the performance of the SSS
flooder, looking at the speed it affords when creating the
shards. In the previous section, we focussed on the frequency
of completing a single splitting. Here, we focus on the average
number of bytes (the shards) written, no matter the frequency,
equally rewarding larger parameters values which require longer
split execution times, but, at the same time, produce more files.

Note that, differently from Fig. 1, we now consider MB/s
(equivalent to KB/ms) instead of ms/KB, to highlight byte
production rather than single-execution duration.

We report the results of our experiments in Fig. 2. Each plot
shows on the x-axis varying values of either n (two bottommost)
or k (two topmost) for a resp. k£ or n fixed, while we have
on the y-axis the splitting speed. The plots include the sample
points with their relative split speed in MB/s (i.e., the reciprocal
of the data in Fig. 1).

Looking at the plots, when we fix n, we obtain a stronger
speed reduction the higher the k. When we fix k, we notice a
hyperbolic-like trend where higher values of n only slightly
increase (if not slightly decrease) the splitting speed. We explain
this behaviour from the observations made in Section I'V-B, i.e.,
that the split speed (ms/KB) is a quadratic function (having
complexity O(nk)) and since in benchmarking the flooder we
track the reciprocal of the split speed multiplied by n (the
number of files we produce), we observe a behaviour that
approximates a hyperbolic function.

In general, we notice that, with fixed k, increasing n results
in more bytes written over time — although we find a “peak” at
200 for k£ = 2 and 100 for k£ = 10. A possible explanation is
the aforementioned overhead, which is balanced out by specific
n values (possibly also due to hardware idiosyncrasies).

We can use these results to tune the SSS flooder for peak
performance. In particular, we recall that n is mainly related
to the flooding (how many shards we generate from a file),
with k/n indicating the redundancy of a file’s shards. Hence,
against crypto-ransomware, low k values increase redundancy
and restoration chances while, against exfiltration, one must
minimise the attacker’s ability to reassemble the victim’s secrets
using high £ values.

From the data, we consider 200 a good value for n, picking
k = 2, when contrasting crypto-ransomware. When contrasting
exfiltration, we find n = 150 as peak performance for the
fairly large value of k£ = 10. However, one can obtain better
performance with good secrecy levels by ranging k between
5 and 8 (cf. Fig. 2). Given these results, we set the default
parameters for contrasting crypto-ransomware to n = 200 and
k = 2, reaching a splitting speed of 187.1 MB/s, whilst we
set the parameters for contrasting exfiltration to n = 150 and
k = 6, reaching a splitting speed of 53.76 MB/s.

V. RELATED WORK

We position our contribution within the existing literature on
ransomware mitigation and Shamir’s Secret Sharing (SSS) ap-
plications. Ali et al. [12] present the most closely related work
through their Decentralised Ransomware Recovery Network
(DRRN), which distributes encrypted sensitive files across net-
worked edge nodes using SSS principles to enable data recovery
without paying ransoms. While both approaches employ SSS
to counter crypto- and exfiltration ransomware attacks through
data shards, our proposal fundamentally offers a dynamic, active
defence system integrated within Ranflood that generates data
shards during an attack, contrasting with DRRN’s requirement
for pre-attack deployment as a static storage solution. Beyond

n=150

5 n=255
) 30
60 A41‘63\ .11\69
251
55 “u
0.3584, 20 bt
50 <
3 45 e, 215 &
54 0304, = \
40 < 10 ‘\‘
(S \
. 0.2527< _ \
35 e 2 o~
0.2223 0.0163™™~~~g________
30 = 08 o ones e
02 1 O VAV V) 0.0039 0 03
5 6 7 8 9 10 10 50 100 150 200 255
200 kl:(Z k:h)
___________ o, 30 o
175 _pemmenT 0.9335. . 03 0.2 0.15
71544 s
150 . . * AR
N 2,094 0.6002 69
/ 26 /
I [4
125 / 0’85
2 / 294 i
£ 100 g 119
75 ," 2 ,'I
s]
501.6.0078 204
95t 1814
[) ()
4034 6 172
210 50 100 200 255 1020304050 100 150

n

n

Fig. 2. Splitting speed of the SSS flooder. From left to right, varying k with n = 150, varying k& with n = 255, varying n with fixed k£ = 2, and varying n

with fixed k£ = 10.

ransomware mitigation, researchers have applied SSS to various
security challenges. Cristobal et al. [13] deployed SSS within
peer-to-peer systems to combat pollution and free-riding attacks,
wherein trusted nodes distribute secret key shards that malicious
peers struggle to collect to reconstruct shared content. Goubin
and Martinelli [14], alongside Coron et al. [15], use SSS as
a countermeasure against side-channel attacks on AES by
partitioning sensitive variables and performing cryptographic
operations on the resulting shards, thereby preventing attack-
ers from extracting information without observing multiple
intermediate values. Lipton et al. [16] enhance virus detection
schemes by concealing secret keys within memory as shards,
enabling systems to detect malware injection through failed
key reconstruction attempts. Examining Ranflood’s positioning
amongst general ransomware mitigation solutions, we observe
distinct advantages over alternatives such as ShieldFS [17], R-
Locker [18], Lee et al.’s tool [19], and Microsoft’s Controlled
Folder Access [20]. ShieldFS integrates a specialised file

system with ransomware detection capabilities that copies

critical data to secure locations upon attack detection, whereas

Ranflood achieves similar restoration capabilities through

copy-based strategies (enhanced by our SSS-based flooding

approach) with minimal plug-in setup. R-Locker employs static
honeypot files for detection and mitigation while Ranflood
deploys decoy files dynamically. Lee et al.’s moving-target
defence strategy deceives ransomware by altering file types
and extensions; similarly Ranflood incorporates a moving-

target strategy by confounding the user’s files with dynamically
created decoys — alongside a resource contention mechanism.
Microsoft’s solution restricts ransomware through location-
specific permissions but can leave unchecked areas vulnerable.

VI. DISCUSSION AND CONCLUSION

Shamir, in the seminal paper on his secret sharing tech-
nique [5] notes “[i]n other applications the trade-off is not
between secrecy and reliability, but between safety and conve-
nience of use”. We see an application of Shamir’s observation
in our work by noticing that it is not about the “secrecy” of
hiding one’s secret nor about the contrast between reliability
and secrecy; it is rather about the trade-off (mathematically
represented by the two parameters n and k) that allows one to
find the right compromise between ease of access (but also of
attack) and secrecy (and risk of losing access).

More practically, Shamir’s consideration applies to our
flooding tool by presenting a compromise between making
a file easily recoverable (low k) and hardly attackable (high
k), requiring a balancing between redundancy and difficulty
of retrieval: the former is better suited for contrasting crypto-
ransomware, making it possible to restore a file even if one lost
many of its shards; the latter fits the exfiltration case, where
we do not want the attacker to obtain the user’s data.

Looking at future work, a practical aspect we abstracted away
in this proposal regards the names and formats of the generated
shard. Indeed, ransomware usually follow some criteria [2] to

decide which files to encrypt, e.g., depending on their location
(user’s folders) and extension (documents, pictures). Existing
Ranflood strategies already implement these factors [3], e.g.,
producing random files that resemble valid documents, pictures,
and audio files. By including in the shard generation such
patterns, we could increase the likelihood of luring/swaying
crypto-/exfiltration ransomware away from the user’s files.

Another future direction regards exploiting higher powers of
2 as order ¢ = p", instead of » = 8. Values multiple of 8 (i.e.,
a byte) could grant performance boosts, better exploiting the
64-bit operations of today’s hardware by choosing fields of a
higher order. Besides hardware optimisation, higher field orders
would reduce the raw number of operations performed (e.g.,
r = 16 implies dividing the original files into pairs of bytes
instead of individual ones, performing half the operations with
the finite field, possibly halving execution times). However,
this solution would require more memory (e.g., to populate the
look-up tables for the logarithm) — e.g., using r = 32 (32-bit
integer) would require 17 GB.

A third interesting path is that of focussing on contrasting
crypto-ransomware with techniques adjacent to SSS: erasure
codes [21] — particularly Reed-Solomon ones [22]. Using these
techniques, we would trade secrecy off of both computational
efficiency and higher recovery rates. In this case, the shards
could further help in fending off partial-encryption ransomware
attacks such as the LockBit family [23], by increasing the
resiliency of files against these types of attacks.

ACKNOWLEDGEMENT

Research partly supported by project PNRR CN HPC -
SPOKE 9 - Innovation Grant LEONARDO - TASI - RTMER
funded by the NextGenerationEU European initiative through
the MUR, Italy (CUP: J33C22001170001). We thank Matteo
Cicognani for supporting the collaboration between ARPAE
and Universita di Bologna.

REFERENCES
[1] R. Richardson and M. North, “Ransomware: Evolu-
tion, mitigation and prevention,” International = Manage-
ment Review, vol. 13, no. 1, pp. 10-21,101, 2017.
[Online]. Available: https://www.proquest.com/scholarly-journals/

ransomware-evolution-mitigation-prevention/docview/1881414570/se-2

[2] H. Oz, A. Aris, A. Levi, and A. S. Uluagac, “A survey on

ransomware: Evolution, taxonomy, and defense solutions,” ACM Comput.

Surv., vol. 54, no. 11s, pp. 238:1-238:37, 2022. [Online]. Available:

https://doi.org/10.1145/3514229

D. Berardi, S. Giallorenzo, A. Melis, S. Melloni, L. Onori, and M. Pran-

dini, “Data flooding against ransomware: Concepts and implementations,”

Computers & Security, p. 103295, 2023.

[4] D. Berardi, S. Giallorenzo, A. Melis, S. Melloni, and M. Prandini,
“Ranflood: A mitigation tool based on the principles of data
flooding against ransomware,” SoftwareX, vol. 25, p. 101605, 2024.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
$2352711023003011

[5] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp.
612-613, 1979.

[6] R. Team, “Ranflood github repository,” https://github.com/
Flooding-against-Ransomware/ranflood, 2025, [Accessed Aug. 2025].

[7]1 D. V. Chudnovsky and G. V. Chudnovsky, “Algebraic complexities and
algebraic curves over finite fields,” J. Complex., vol. 4, no. 4, pp. 285—
316, 1988. [Online]. Available: https://doi.org/10.1016/0885-064X(88)
90012-X

[3

[t}

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20

[21]

[22]

(23]

N. L. of Standards, T. (NIST), M. J. Dworkin, E. Barker, J. Nechvatal,
J. Foti, L. E. Bassham, E. Roback, and J. D. Jr., “Advanced encryption
standard (aes),” 11 2001.

E. H. Mckinney, “Generalized birthday problem,” The American Mathe-
matical Monthly, vol. 73, no. 4, pp. 385-387, 1966.

D. Brink, “A (probably) exact solution to the birthday problem,” The
Ramanujan Journal, vol. 28, pp. 223-238, 2012.

W. G. Horner, “A new method of solving numerical equations of
all orders, by continuous approximation. [abstract],” Abstracts of
the Papers Printed in the Philosophical Transactions of the Royal
Society of London, vol. 2, pp. 117-117, 1815. [Online]. Available:
http://www.jstor.org/stable/109939

S. Ali, J. Wang, V. C. M. Leung, and A. Ali, “Decentralized
ransomware recovery network: Enhancing resilience and security
through secret sharing schemes,” in Proceedings of the 9th International
Conference on Internet of Things, Big Data and Security, [oTBDS 2024,
Angers, France, April 28-30, 2024, A. Kobusinska, A. Jacobsson, and
V. Chang, Eds. SCITEPRESS, 2024, pp. 294-301. [Online]. Available:
https://doi.org/10.5220/0012713500003705

C. Medina-Lépez, V. Gonzélez-Ruiz, and L. G. Casado, “On mitigating
pollution and free-riding attacks by shamir’s secret sharing in fully con-
nected p2p systems,” in 2017 13th International Wireless Communications
and Mobile Computing Conference (IWCMC), 2017, pp. 711-716.

L. Goubin and A. Martinelli, “Protecting AES with shamir’s secret
sharing scheme,” in Cryptographic Hardware and Embedded Systems -
CHES 2011 - 13th International Workshop, Nara, Japan, September 28 -
October 1, 2011. Proceedings, ser. Lecture Notes in Computer Science,
B. Preneel and T. Takagi, Eds., vol. 6917. Springer, 2011, pp. 79-94.
[Online]. Available: https://doi.org/10.1007/978-3-642-23951-9_6

J. Coron, E. Prouff, and T. Roche, “On the use of shamir’s secret
sharing against side-channel analysis,” in Smart Card Research and
Advanced Applications - 11th International Conference, CARDIS
2012, Graz, Austria, November 28-30, 2012, Revised Selected
Papers, ser. Lecture Notes in Computer Science, S. Mangard,
Ed., vol. 7771. Springer, 2012, pp. 77-90. [Online]. Available:
https://doi.org/10.1007/978-3-642-37288-9_6

R. J. Lipton, R. Ostrovsky, and V. Zikas, “Provably secure virus detection:
Using the observer effect against malware,” in 43rd International
Colloquium on Automata, Languages, and Programming, ICALP
2016, July 11-15, 2016, Rome, Italy, ser. LIPIcs, 1. Chatzigiannakis,
M. Mitzenmacher, Y. Rabani, and D. Sangiorgi, Eds., vol. 55. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2016, pp. 32:1-32:14.
[Online]. Available: https://doi.org/10.4230/LIPIcs.ICALP.2016.32

A. Continella, A. Guagnelli, G. Zingaro, G. D. Pasquale, A. Barenghi,
S. Zanero, and F. Maggi, “Shieldfs: a self-healing, ransomware-aware
filesystem,” in Proceedings of the 32nd Annual Conference on
Computer Security Applications, ACSAC 2016, Los Angeles, CA,
USA, December 5-9, 2016, S. Schwab, W. K. Robertson, and
D. Balzarotti, Eds. ACM, 2016, pp. 336-347. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2991110

J. A. Gémez-Hernandez, L. Alvarez—Gonzélez, and P. Garcia-Teodoro,
“R-locker: Thwarting ransomware action through a honeyfile-based
approach,” Comput. Secur., vol. 73, pp. 389-398, 2018. [Online].
Available: https://doi.org/10.1016/j.cose.2017.11.019

S. Lee, H. K. Kim, and K. Kim, “Ransomware protection
using the moving target defense perspective,” Comput. Electr.
Eng., vol. 78, pp. 288-299, 2019. [Online]. Available: https:

//doi.org/10.1016/j.compeleceng.2019.07.014

Microsoft. (2024) Protect important folders with controlled folder
access. https://docs.microsoft.com/en-us/microsoft-365/security/
defender-endpoint/controlled-folders?view=0365-worldwide. Accessed
Sept. 2024.

L. Rizzo, “Effective erasure codes for reliable computer communication
protocols,” Comput. Commun. Rev., vol. 27, no. 2, pp. 24-36, 1997.
[Online]. Available: https://doi.org/10.1145/263876.263881

I. S. Reed and G. Solomon, “Polynomial codes over certain
finite fields,” Journal of the Society for Industrial and Applied
Mathematics, vol. 8, no. 2, pp. 300-304, 1960. [Online]. Available:
https://doi.org/10.1137/0108018

Trend Micro Research, “Ransomware Spotlight: LockBit | Trend
Micro (US),” https://web.archive.org/web/20240823210045/https:
/Iwww.trendmicro.com/vinfo/us/security/news/ransomware- spotlight/
ransomware-spotlight-lockbit, 2024, accessed Sept. 2024].

