
SoftwareX 25 (2024) 101605

A
2

O

R
r
D
a

b

c

A

K
R
D
M
D

C

1

s
p
h
a
a

h
R

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

anflood: A mitigation tool based on the principles of data flooding against
ansomware
avide Berardi a, Saverio Giallorenzo a,b,∗, Andrea Melis a, Simone Melloni c, Marco Prandini a

Alma Mater Studiorum – Università di Bologna, Italy
INRIA, France
ARPAE Emilia-Romagna, Italy

R T I C L E I N F O

eywords:
ansomware
ynamic honeypot
oving Target Defence
ata Flooding Against Ransomware

A B S T R A C T

Crypto-ransomware aims at extorting money from users by encrypting their files and asking them to pay for
the decryption key. We present Ranflood; a configurable drop-in solution that contrasts ransomware attacks
with a deluge of decoy files at specific locations (e.g., sensitive folders of the user, the attack site), deceiving
the attacker into encrypting sacrificial files. Ranflood further slows down the attack by contending with the
malware access to IO and computation resources of the targeted machine. The aim is to buy time for the
defence team to take action (e.g., manually shutting down an unresponsive machine). We show how the
extensibility and modularity of Ranflood’s software architecture (1) can accommodate a wide spectrum of
flooding strategies, easing the process of improving its effectiveness also against future ransomware families
and (2) strive to maximise the tool’s efficiency by exploiting the highest level of parallelism afforded by the
attacked machine.

ode metadata

Current code version 0.5.9-beta
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-23-00396
Legal Code License GNU Lesser General Public License v2.1
Code versioning system used git
Software code languages, tools, and services used Java 17, reactivex.rxjava3, jetbrains.xodus, apache.commons-io,

apache.commons-compress
Compilation requirements, operating environments & dependencies Compilers: JDK 17, GraalVM Native Image 21. Operating Systems: Linux, macOs,

Windows.
Permanent link to executables of this version https://github.com/thesave/ranflood/releases/tag/0.5.9-beta
Legal Software License GNU Lesser General Public License v2.1
Computing platforms/Operating Systems Linux, macOs, Windows
Installation requirements & dependencies JVM (in non-natively supported operating systems)

. Motivation and significance

Ransomware is a category of malicious software that extorts re-
ources (usually, money) from users to regain control over their digital
roperty [1]. Ransomware does not come in one form and attackers
ave multiple ways to take users’ resources hostage. The most rampant
nd popular way (so much so that it frequently makes it to general-
udience headlines) is crypto-ransomware, where the resources under

∗ Corresponding author at: Alma Mater Studiorum – Università di Bologna, Italy.
E-mail address: saverio.giallorenzo@gmail.com (Saverio Giallorenzo).

attack are the data of the user and the method to expropriate them is
encryption [2]. Once an attacker has encrypted a victim’s data, they
ask for a ransom to provide the key that the victim can use to decrypt
and regain access to their data. Over the past five years, there has been
a significant increase in the frequency of attacks, many of them with
severe repercussions on people and businesses, such as the NotPetya
attack in 2017, [3], the US Colonial Pipeline case in 2021 [4], and
various episodes involving healthcare [5–7].
vailable online 22 December 2023
352-7110/© 2023 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.softx.2023.101605
eceived 27 June 2023; Received in revised form 29 November 2023; Accepted 3 December 2023

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00396
https://github.com/thesave/ranflood/releases/tag/0.5.9-beta
mailto:saverio.giallorenzo@gmail.com
https://doi.org/10.1016/j.softx.2023.101605
https://doi.org/10.1016/j.softx.2023.101605
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101605&domain=pdf
http://creativecommons.org/licenses/by/4.0/


SoftwareX 25 (2024) 101605Davide Berardi et al.
In this work, we present Ranflood, a software tool to contrast
ransomware attacks, particularly tailored for the crypto-ransomware
kind. Ranflood implements the concepts of Data Flooding Against
Ransomware [8] (DFaR). DFaR evolves from honeypots, a technique
of software security where sacrificial resources are deliberately made
vulnerable to attacks in order to detect and deter intruders. Ranflood
contrasts attacking ransomware by flooding specific locations of the
disk (e.g., the attack location, user folders, etc.) with honeypot decoy
files. Essentially, Ranflood buys time for the user to counteract an
ongoing attack, e.g., to access an unresponsive, attacked server and shut
it down manually. In detail, Ranflood implements a dynamic honeypot
approach, which consists in generating decoy files at runtime-defined
locations and confusing the genuine files of the user with bait ones
that the ransomware is lured into encrypting (making it waste time
on them rather than on the actual files of the user). In particular,
Ranflood is a last-resort solution, useful when more direct actions, like
shutting down the malicious process or the whole machine, are un-
feasible. Summarising, Ranflood develops three main traits to mitigate
ransomware.

Resource Contention Ransomware contrast happens by contending
resources (access to IO, memory usage). The high rate of data
flooding exerted by Ranflood makes it a contender for both CPU,
memory, and disk access against ransomware.

Moving Target Defence By confounding the data of the user with
decoy files, Ranflood performs a moving-target defence, which
makes it harder for ransomware to efficiently perform their
attack on the user’s data since they struggle to discriminate
between the former and the decoys.

Dynamic Honeypot Since Ranflood’s contrast locations are deter-
mined at runtime, its defence surface is dynamic and can adapt
to the attack profiles of different ransomware implementations.

In Section 2, we describe the relevant characteristics of Ranflood,
namely, its three flooding strategies, its software architecture, and
its functionalities. In Section 3, we illustrate the usage of Ranflood
by means of an example. We show different configuration profiles to
contrast the famous WannaCry ransomware. We present benchmarks
of the effectiveness of the tool and the efficiency of the different
configurations. In Sections 4 and 5, we respectively comment on the
impact of Ranflood and summarise its current state and discuss its
evolution. In the spirit of this publication venue, this article focuses on
the practical implementation of the Ranflood tool. We refer the reader
interested in having more details about the concepts and related work,
which are only briefly summarised here, to the article dedicated to
introducing DFaR [8].

Related work. The literature on ransomware contrast is vast. We can
broadly categorise work as addressing the detection, mitigation, and
restoration phases. Many related works focus on the detection phase
and recovery from known widely analysed ransomware. Contrarily,
Ranflood is a general, drop-in solution that focuses on the mitigation
phase of a ransomware attack. Since Ranflood implements a mitigation
and restoration technique against ransomware, for space reasons, we
briefly compare it with alternative techniques from the literature that
implement those phases. Here, we select proposals that, like Ranflood,
are generic (not tailored to any specific ransomware family) and that
implement the mitigation and/or restoration phases: ShieldFS [9], R-
Locker [10], the tool by Lee at al. [11], and Microsoft’s Controlled
Folder Access [12].

ShieldFS relies on the integration between an ad-hoc file system
and a detector (not integral to ShieldFS, which can work with differ-
ent detectors). When the detector recognises a ransomware attack, it
activates a function of the file system that copies the data significant

restoration. Ranflood can also support restoration via its copy-based
strategies (cf. Section 2.1). Contrarily to ShieldFS, Ranflood requires
little preliminary configuration (similar to mainstream drop-in security
tools, like antiviruses); far less involved than installing an ad-hoc file
system.

R-Locker implements a detection and mitigation mechanism, based
on the distribution/spread of honeypot files used for both the detec-
tion and mitigation phases. At the moment, R-Locker is designed for
the Linux system, while Ranflood is natively compiled for Windows,
macOS, and Linux, and can run on any architecture with support for
the Java Virtual Machine.

The tool by Lee et al. implements a Moving Target Defence strategy,
based on changing the type or extension of the file to deceive the
ransomware [13]. Also the flooding action performed by Ranflood
follows a Moving Target Defence strategy, with the addition of resource
contention, which further mitigates the action of the malware.

The principle exploited by Microsoft’s solution is that it relies on
user permissions to stop the action of a possible rogue program, but it
does not prevent it from acting on any other, unprotected location.

We report the key points of the comparison in Table 1.

2. Software description

We present and discuss Ranflood’s flooding strategies (Section 2.1),
software architecture (Section 2.2), functionalities (Section 2.3), and
current limitations (Section 2.4).

2.1. Three flooding strategies

We start by briefly overviewing the three flooding strategies the
Ranflood engine realises, breaking them down into the operations and
traits that characterise them. Broadly, we distinguish between two
kinds of flooding strategies. The first is configuration-less and does
not require any preliminary action to trigger the flooding, represented
by the Random strategy (cf. Section 2.1.1). The second uses copies of
the genuine files of the user to decrease the loss rate of files due to
encryption, but it entails preliminary actions like storing the user’s file
signatures or making archival snapshot copies of the latter—On-The-Fly
(cf. Section 2.1.2) and Shadow (cf. Section 2.1.3) conform to this kind
of strategy.

2.1.1. Random
The first strategy is called Random and it is based on the flooding

of a given location with randomly-generated files.
While one can propose more refined strategies (like the one we dis-

cuss below) which can increase the efficiency of the contrast action of
Ranflood, the Random one has the relevant characteristic of being easy
to deploy and use. Indeed, this strategy includes only one operation,
i.e., the flooding one, and it is also configuration-less (e.g., it does not
require the user to provide dedicated locations for the auxiliary data
needed by copy-based alternatives).

The Random strategy has the following three main peculiarities.
First, each generated file’s content is unique, making it difficult for
ransomware that tries to avoid encrypting decoy files to distinguish
between the proper files of the user and the generated ones. Second,
it produces large amounts of decoy files in a short timeframe. Third, it
generates files using extensions that ransomware usually target [9,14,
15] (e.g., it produces files formatted as and with extensions of common
formats such as ‘‘.pdf’’ and ‘‘.jpg’’).

The current implementation of the Random strategy achieves the
above characteristics by: using a variant of Xorshift [16] to obtain many
random byte sequences quickly (their lengths are random too, within
an interval that the user can configure); matching the format of the
file (declared by its extension) and its binary header; generating files
2

to the user to a location not reachable by the ransomware, for later at random file paths (folder and file name).



SoftwareX 25 (2024) 101605Davide Berardi et al.

2

s
R
a
R
t
t

e
i
i
a

t
t
f
t
s
o
t
a
I
l
n
f
f
t
𝑓
a
d
m

2

f
a
i
o

s
t
s
c

Table 1
Table comparing related work. Each row in the table corresponds to a strategy found in works related
to ours—the last row corresponds to this article, for comparison—reported in the rightmost column. The
other columns show properties of the principle behind each tool: to what phases it applies (detection,
mitigation, restoration) and whether it is a drop-in solution (i.e., that only requires the user to install
some software, as it happens e.g., for antiviruses).

Principle De
te

cti
on

M
iti

ga
tio

n

Re
sto

ra
tio

n

Dr
op

-in
so

lu
tio

n

Re
fe

re
nc

es

Restrict
permissions [12]

Extension
randomisation [11]

Honeypot files [10]

Self-healing
file system [9]

Data flooding a Ranflood

a Copy-based flooding (cf. Section 2.1).

.1.2. On-The-Fly
The second strategy, called On-The-Fly, is copy-based, i.e., we es-

entially replace the generation of synthetic files performed by the
andom strategy with the generation of copies of actual files found
t a flooding location. File replication adds a layer of defence to the
andom strategy, as it helps to increase the likelihood of preserving

he users’ files by generating additional, valid copies that might escape
he ransomware.

In the implementation, when copying files, we avoid replicating
ncrypted ones. Indeed, copying these files is detrimental because
t wastes the time of the flooder on files useless to the user, and
t generates files that the malware would skip, recognising them as
lready encrypted.

The above refinement introduces a new operation that precedes
he flooding one, which we call ‘‘snapshooting’’. With this operation,
he Ranflood engine saves a list of the valid files, later used during
looding for efficient discrimination. In the implementation, we chose
o realise the snapshotting operation for this strategy by saving a digest
ignature (e.g., MD5) of the content of the user files, so that the flooding
perations can use the signature as an integrity verification to skip
he encrypted files. The implementation of the flooding operation is
lso a bit more refined than the copy principle we presented above.
ndeed, a naïve interpretation is to iterate over all files in the flooding
ocation, read the content of each one and write it in a new, randomly
amed/located file. However, this logic leaves the possibility of losing
iles between iterations—e.g., we replicate a user’s file 𝑓 in 𝑓 ′ at the
irst iteration, then the ransomware reaches both files and encrypts
hem, preventing us from both copying and restoring the content of
. To avert this risk, the engine runs a slightly more sophisticated
lternative that caches the content of the files read once from the
isk and then iterates their replication (trading memory occupancy off
itigation efficiency).

.1.3. Shadow
The third strategy, also copy-based, is called Shadow and tries to

urther, increase the efficiency of the On-the-Fly one by preserving
n archival copy the files of the user rather than more lightweight
nformation, such as their fingerprint (hence, additionally trading disk
ccupancy off mitigation efficiency).

Similarly to the On-the-Fly strategy, Shadow has a configuration
tep and two operations (snapshooting and flooding). In the implemen-
ation, we use (tar.gz) archives to try to reduce the space required for
napshots and preserve those archives on the same disk as the original

configurations can use secondary disks, NAS, and the Cloud to further
mitigate the possibility of losing the local backups if targeted by
ransomware.

2.2. Software architecture

Concerning its architecture, Ranflood follows the well-known client-
daemon pattern [17, Chapter 2].

The daemon is an always-active component, and it is used both to
take snapshots of files and to execute flooding commands. We expect
only one daemon to run on a machine, while several clients can connect
to the same daemon. Specifically, the daemon is a process in the
background, not associated with a particular user, and users/programs
interact with it with lightweight, asynchronous clients/interfaces.

Here, we concentrate on the description of the components of the
daemon. We describe the client through the functionalities it provides
to users in Section 2.3. The daemon has two main components. One is
the engine, which realises different flooding strategies and their related
operations—for instance, an operation is the flooding of a folder using
the Random strategy. Since we want the daemon to be able to handle
different operations in parallel, we divide them into tasks, which are
minimal actions within the execution flow of a given operation, e.g., an
action could be copying a specific file in an On-the-Fly flooding opera-
tion. Accordingly, the other main component of the Ranflood daemon
is the task manager, which handles the scheduling of various tasks.
Isolating tasks has the additional benefit of making the implementation
of operations more resilient; if a task fails—e.g., because the folder
where to generate a file does not exist, resulting in an IO error—it does
not affect the operation it belongs to—e.g., the operation continues its
ongoing flooding action.

The engine implements the operations of the flooding strategies
described in Section 2.1, producing their related tasks. The task manager
handles the tasks as generic work that it schedules for execution. Con-
cretely, we implemented the task manager following the Proactor [18]
event-handling pattern. The Proactor decouples the task demultiplex-
ing and the task-handler scheduling logic from the actual behaviour
enacted by the single tasks, asynchronously. This execution method
helps in further exploiting parallelism and minimising the effect of IO
overhead and latency.

We further clarify the architecture of Ranflood by depicting a model
of it in Fig. 1. In the figure, we highlight the (interprocess communi-
cation) interaction between the Client Command-line Interface (Client
CLI) and the Daemon. Besides issuing commands for contrasting ran-
3

opies, both for simplicity and to shorten loading times. Advanced somware, the Client can also set configurations of the Daemon, which



SoftwareX 25 (2024) 101605Davide Berardi et al.

t
d
r
w
O
w
D
o
P

w
o
a
J
‘

2

t
f

c
o
s
t
F
a
(
i
T
a

r
s

Fig. 1. Model of Ranflood’s architecture.

he latter stores in a settings file. The other main components are
edicated to implementing the different flooding strategies, i.e., they
ealise the Ranflood engine. The basic interface for the latter is Flooder,
hich the Random, On-the-Fly, and Shadow flooders implement. The
n-the-Fly and Shadow strategies also have a snapshotting phase,
hich they realise by implementing the Snapshooter interface. The
aemon interacts with these components to obtain tasks that operate
n files, run in parallel by the Task Manager (which implements the
roactor’s logic).

Ranflood—both its client and daemon—is an open-source project.1
ritten in Java. It uses the RxJava.2 library for the basic components
f its task manager and, through the GraalVM.3 compiler, it is available
s native binaries for Windows, macOS, and Linux systems, besides its
ava executable. This article refers to version 0.5.9-beta of Ranflood.
Code metadata’ provides further project metadata.

.3. Software functionalities

We start discussing the functionalities of Ranflood by overviewing
he steps of the main logic implemented by the tool, which is the
looding action against ransomware.

The first step is the triggering of a Ranflood’s operation. Here, we
hoose to adopt an open stance towards the event that can trigger that
peration. Indeed, while the user can trigger actions with the CLI, other
oftware can automatise the triggering, e.g., ransomware detection
ools, via the supported interprocess communication medium/format.
ocusing on flooding, irrespective of the triggering modality, when
flooding operation starts, it floods one or more targeted folders

e.g., where the ransomware is attacking, but also critical locations,
ndependent of where the attack is running, such as the user’s folders).
his happens until the emission of a signal that stops the flooding (we
bstract away the entity triggering this event).

After the mitigation phase above, it is possible to run restoration
outines that try to recover the user’s environment as before the ran-
omware attack. This action mainly regards two aspects: (i) removing

1 https://github.com/Flooding-against-Ransomware/ranflood
2 https://github.com/ReactiveX/RxJava
3

the flooding files and (ii) depending on the flooding technique em-
ployed, (cf. the copy-based ones found in Section 2.1), restoring the
files of the user that might have been encrypted by ransomware.

Let us focus on actions issued by the CLI presented above, as-
suming the Ranflood daemon is running. Concretely, we can mainly
issue commands to the Ranflood daemon with the following three
parameters:

• Action: whether we want to flood or take a snapshot (copy-
based strategies);

• Target Folder: the folder where to perform the action;
• Method: the strategy we consider for the action (Random, On-the-

Fly, Shadow).

Focussing on the flood command, the daemon can perform three
sub-actions:

• ranflood flood list: list all ongoing flooding operations,
identified by a unique id (here, the target folder and method
parameters are immaterial);

• ranflood flood start <method> <targetFolder>: start
a flooding operation (Random, On-the-fly, Shadow) on a specific
folder;

• ranflood flood stop <method> <ids>: stop a list of flood-
ing operations, identified via their ids (since the id identifies an
ongoing operation on a target folder, the latter is irrelevant).

After a ransomware attack, mitigated using copy-based Ranflood
strategies, we can run a restoration phase where we try to recover
the original environment of the user before the attack, both trying to
restore the files of the user lost to encryption and remove the decoy
files generated by Ranflood.

Since this phase is distinct from the mitigation one, we implement
the needed routines within a separate tool which we only overview, to
keep our focus on Ranflood. Future versions of Ranflood could include
the additional functionalities of the restoration tool to cover a wider
range of the ransomware contrast spectrum. Briefly, the restoration tool
compares the files found in the attacked locations with the signatures of
the files of the user (obtained before an attack, similar to the snapshot-
ting operations of the On-the-Fly strategy), either finding the original
copy of the user or replacing the latter with a flooding-generated
replica, if any.

2.4. Limitations on the effectiveness of ranflood against ransomware pro-
cesses

One way to reduce the effectiveness of Ranflood is if the mal-
ware operated at a faster pace than Ranflood. However, we deem
this scenario unrealistic. Intuitively, the available Ranflood’s strate-
gies perform linear tasks (generating/reading and writing bit-by-bit
sequences) and there is no intrinsic computational overhead associated
with the selection of files. Note that we implemented Ranflood so that
users can combine it with sophisticated routines for determining the
flooding locations. These can have different complexity profiles but
are orthogonal to the complexity of the Ranflood functionalities, as
described above. The only additional overhead is hash computation,
performed only once by the On-the-Fly strategy, and its complexity is
lower than that of the encryption operation of the ransomware, which
is done for every encrypted file.

Another possible way to reduce the effectiveness of Ranflood could
result from resource exhaustion, in particular if the disk is full. At disk
exhaustion, we conjecture that the most likely case is that the system
(including Ranflood and the ransomware) is stuck because no process
can write on disk. We deem this case positive since the ransomware
cannot do any more harm. However, there could be more refined
routines that use bit-by-bit file overwriting which could allow both Ran-
4

https://www.graalvm.org/ flood (using the copy-based flooding strategies) and the ransomware to

https://github.com/Flooding-against-Ransomware/ranflood
https://github.com/ReactiveX/RxJava
https://www.graalvm.org/


SoftwareX 25 (2024) 101605Davide Berardi et al.

[
S
E
[
A
A
E
[
a

L

w
c
c
t
n
e

s
t

d

progress, e.g., by overwriting each other’s files. We deem also this case
positive since Ranflood would continue to contrast the ransomware and
buy time for the user. To the best of our knowledge, there exists no
ransomware that employs one such routine, and we did not deem it
useful to implement the corresponding logic for Ranflood in its current
incarnation.

3. Illustrative example

We complete our overview of Ranflood by showing and commenting
on a concrete configuration of the daemon and discussing experimental
results we obtained by using it to contrast the infamous WannaCry
ransomware.

3.1. Daemon configurations

We report in Listing 1 an example configuration of the Ranflood
daemon. The configuration file uses the INI format, where key–value
pairs define properties within a given section, marked with square
brackets.

[RandomFlooder]
MaxFileSize = 768 KB
OnTheFlyFlooder]
ignature_DB = C:\Users\user_folder
xcludeFolderNames = Application Data
ShadowCopyFlooder]
rchiveDatabase = D:\shadow\archives.db
rchiveRoot = D:\shadow\archives
xcludeFolderNames = Application Data
ZMQ_JSON_Server]
ddress = tcp://localhost:7890

isting 1: Illustrative configuration file of the Ranflood daemon.

First, notice that each flooding strategy has a dedicated section,
here we can adjust features such as generated file size, location of

opied files, folder to exclude from the flooding, etc. The idea is to
reate different settings files for different nodes of a given system. In
his way, it is possible to implement different profiles according to the
eeds of system administrators, the operating system, and the execution
nvironment.

The contents of the configuration file reported in Listing 1 corre-
pond to the setup used in the experiments from [8], whose we report
he excerpt regarding WannaCry in the next section.

We briefly describe the properties in Listing 1 and the design
ecisions behind them.

For the Random strategy, the MaxFileSize sets the maximum file
size of each generated file. While Ranflood considers the range [8,4096]
Kb for randomly determining the size of each generated file, depending
on the hardware and operating system, the Mb range might penalise the
efficiency of Ranflood, which would produce a smaller number of larger
files. We empirically observed this phenomenon in our experiments,
which led us to use the 768Kb mark shown in Listing 1 to balance
between the quantity and size of the generated files.

For the On-the-Fly strategy, the SignatureDB sets the folder
where the daemon saves the signatures file snapshots. The key Ex-
cludeFolderNames lists the folders that Ranflood has to skip when
performing On-the-Fly flooding; in Listing 1 we exclude from the
flooding action the ‘‘Application Data’’ folder, which rarely contains
user-sensible data but rather program files that one can restore by
reinstalling the programs.

For the Shadow Copy strategy, ArchiveDatabase sets the loca-
tion of the database that contains the index of snapshots, and
ArchiveRoot defines where to store single archival snapshots
(ExcludeFolderNames follows the same logic as the namesake
property of the On-the-Fly strategy).

In the last section, the parameter address configures the socket

3.2. Ranflood’s contrast effectiveness and efficiency

We conclude this section by reporting empirical results obtained
using Ranflood to contrast real-world ransomware.

These results come from a wider and more detailed analysis for
evaluating the efficacy and efficiency of Ranflood published in [8].
Those experiments include a set of 6 ransomware samples averaged
over 4 runs for each of 72 possible combinations of ransomware,
flooding modality, and triggering delay—all the results are available
at https://doi.org/10.5281/zenodo.6587519. Before delving into the
discussion of the experimental results, we provide the due details of
the testbed used to run the experiments. The testbed consists of four
desktop computers each equipped with an Intel i3-4170 (3.70 GHz)
dual-core, four-threads CPUs, 12 GB of RAM, and a 500 GB HDD.
On these machines, we run ProxMox version 7.0–8 on GNU/Linux.
The operating system for running the tests is Windows version 10
(x64) Stable 1809 provided by Microsoft. Each node runs one virtual
machine with a dual-core, four-thread CPU, 12 GB of RAM, and 40 GB
of disk. To run the tests, we set the Ranflood daemon up using the
configuration reported in Listing 1, apart from the folders’ paths, which
we abbreviated in Listing 1 for presentation purposes.

In Fig. 2, we report the performance of the three flooding strategies,
given a triggering delay of 30 s after we launched the ransomware
WannaCry sample. We fixed an activation delay, which simulates the
triggering from a detection routine, to make our tests more consistent.
Commenting on the figure, we notice that the Random strategy, while
simple, already achieves a 58% recovery rate (i.e., the number of
user files that were saved from the attack). The copy-based strategies
consistently increase over the latter performance. Specifically, the On-
the-Fly strategy reaches a 67% recovery rate while the more expensive
(in terms of snapshot disk occupancy) Shadow strategy achieves 94%—
these last results include both the mitigation action of the flooding and
the effect of the restoration of files through their replicas.

4. Impact

Ranflood is the first open-source implementation of a ransomware
contrast tool based on the Data-Flooding-against-Ransomware
paradigm. The tool equips three different flooding strategies to con-
trast ransomware. Ranflood’s design makes it highly configurable both
regarding how users and other programs can interact with it and for
the definition of node-specific settings.

Ranflood concretely proves the feasibility and effectiveness of the
DFaR contrast approach, paving the way for more refined tools that
could advance the state of the art. Besides these aspects, the mod-
ular architecture of Ranflood makes it a workbench to extend the
existing flooding strategies, to include new ones, and to develop new
functionalities, such as detection and recovery routines.

While we deem the above results satisfactory, Ranflood is an early
prototype. Hence, to make it reach a wide audience, we foresee fu-
ture work focused on performing thorough rigorous validation and
efficiency improvement cycles. Additional limitations of the current
incarnation of Ranflood include the lack of an implemented detection
routine and possible further refinements deriving from edge-case test-
ing (cf. Section 2.4). Future studies can deepen these aspects related to
edge cases and refine the implementation of Ranflood accordingly.

We deem Ranflood a useful tool to help users and system ad-
ministrators in hampering the effects of ransomware attacks. Notably,
Ranflood is a drop-in solution, similar to antivirus software. Hence,
once equipped with easy-to-use graphical interfaces, it would be con-
figured as a tool for the wider, low-technical-skills tier of computer
users. We deem it important also to work towards integrating Ranflood
in existing security suites. The potential wide audience of the tool
and its contrasting action have the additional benefit of making ran-
somware attacks less lucrative and, thus, curtailing their attractiveness
for malicious actors.
5

address where we can reach the Ranflood demon.

https://doi.org/10.5281/zenodo.6587519


SoftwareX 25 (2024) 101605Davide Berardi et al.

f

5

l
m
s
f
o
p
h
R
f
p
a

g
o
c
t
t
m

t
A
R

D

c
i

D

e

A

t
B
(
f

Fig. 2. Performance in terms of recovery-rate percentage—the higher the percentage the fewer files were lost to encryption—of the Random, On-the-Fly, and Shadow Ranflood
looding strategies against WannaCry; Ranflood activation delay of 30 s.

. Conclusion

We focused on crypto-ransomware; the infamous category of ma-
icious software characterised by the extortion of resources (usually,
oney) from users to regain control over their data which the ran-

omware encrypts. To contrast crypto-ransomware, we presented Ran-
lood. We discuss its position among alternatives, the strategies it
ffers to contrast different families of crypto-ransomware, and its im-
lementation, particularly looking at its architecture—how it supports
ighly concurrent contrast operations and how its modularity allows
anflood to host different (future) strategies. We presented the software

unctionalities provided to users and exemplified their usage and shown
reliminary benchmarks with a concrete case, concerning the contrast
gainst the WannaCry ransomware.

Future work on Ranflood includes providing new flooding strate-
ies, e.g., using scattering routines to spread the content of the files
f the user over different decoy files, which, when not encrypted,
an support a distributed kind of restoration routine. Another impor-
ant direction is implementing detection policies that allow Ranflood
o automatically recognise possible threats and trigger its flooding
echanisms.

Research and development of Ranflood is an ongoing collabora-
ion between Alma Mater Studiorum – Università di Bologna and
genzia Regionale Prevenzione Ambiente e Energia (ARPAE) of Emilia-
omagna.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

We included a links to the code and all the data used in the
xperiments.

cknowledgements

We thank Stefano Cattani for promoting and supporting the es-
ablishment of the collaboration between ARPAE and Università di
ologna. This work was partially supported by project SERICS
PE00000014) under the MUR National Recovery and Resilience Plan
unded by the European Union - NextGenerationEU.

References

[1] Liska A, Gallo T. Ransomware: Defending against digital extortion. O’Reilly
Media, Inc.; 2016.

[2] Greengard S. The worsening state of ransomware. Commun ACM 2021;64(4):15–
7.

[3] Perlroth N, Scott M, Frenkel S. Cyberattack hits Ukraine then spreads inter-
nationally. NY Times 2017. https://www.nytimes.com/2017/06/27/technology/
ransomware-hackers.html.

[4] Joe C, Andres GL, Jill RS. Gas Stations Run Dry as Pipeline Races to Recover
From Hacking - Bloomberg. 2021, Bloomberg, https://www.bloomberg.com/
news/articles/2021-05-09/u-s-fuel-sellers-scramble-for-alternatives-to-hacked-
pipeline.

[5] Person, Padraic Halpin CH. Irish Health Service hit by ‘very sophisticated’
ransomware attack. 2021, Reuters, https://www.reuters.com/technology/irish-
health-service-hit-by-ransomware-attack-vaccine-rollout-unaffected-2021-05-
14/.

[6] Abrams L. Ransomware attack hits Italy’s Lazio region, affects COVID-
19 site. 2021, BleepingComputer, https://www.bleepingcomputer.com/news/
security/ransomware-attack-hits-italys-lazio-region-affects-covid-19-site/.

[7] Sheila A. M, Tracy P. M. WannaCry: Are your security tools up to date? Natl Law
Rev 2017. https://www.natlawreview.com/article/wannacry-are-your-security-
tools-to-date.

[8] Berardi D, Giallorenzo S, Melis A, Melloni S, Onori L, Prandini M. Data flooding
against ransomware: Concepts and implementations. Comput Secur 2023;103295.

[9] Continella A, Guagnelli A, Zingaro G, Pasquale GD, Barenghi A, Zanero S,
et al. Shieldfs: a self-healing, ransomware-aware filesystem. In: Schwab S,
Robertson WK, Balzarotti D, editors. Proceedings of the 32nd annual conference
on computer security applications. ACM; 2016, p. 336–47, URL http://dl.acm.
org/citation.cfm?id=2991110.

[10] Gómez-Hernández JA, Álvarez-González L, García-Teodoro P. R-Locker: Thwart-
ing ransomware action through a honeyfile-based approach. Comput Secur
2018;73:389–98.

[11] Lee S, Kim HK, Kim K. Ransomware protection using the moving target defense
perspective. Comput Electr Eng 2019;78:288–99.

[12] Microsoft. Protect important folders with controlled folder access.
2022, https://docs.microsoft.com/en-us/microsoft-365/security/defender-
endpoint/controlled-folders?view=o365-worldwide.

[13] Lee K, Yim K, Seo JT. Ransomware prevention technique using key backup.
Concurr Comput: Pract Exper 2018;30(3):e4337.

[14] Rossow C, Dietrich CJ, Grier C, Kreibich C, Paxson V, Pohlmann N, et al. Prudent
practices for designing malware experiments: Status quo and outlook. In: 2012
IEEE symposium on security and privacy. IEEE; 2012, p. 65–79.

[15] Connolly LY, Wall DS. The rise of crypto-ransomware in a changing cybercrime
landscape: Taxonomising countermeasures. Comput Secur 2019;87:101568.

[16] Marsaglia G. Xorshift RNGs. J Stat Softw 2003;8(14):1–6.
[17] Tanenbaum A. Modern operating systems. Pearson Education, Inc.; 2009.
[18] Pyarali I, Harrison T, Schmidt DC, Jordan TD. Proactor - An object behavioral

pattern for demultiplexing and dispatching handlers for asynchronous events.
Tech. rep., Washington University; 1997.
6

http://refhub.elsevier.com/S2352-7110(23)00301-1/sb1
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb1
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb1
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb2
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb2
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb2
https://www.nytimes.com/2017/06/27/technology/ransomware-hackers.html
https://www.nytimes.com/2017/06/27/technology/ransomware-hackers.html
https://www.nytimes.com/2017/06/27/technology/ransomware-hackers.html
https://www.bloomberg.com/news/articles/2021-05-09/u-s-fuel-sellers-scramble-for-alternatives-to-hacked-pipeline
https://www.bloomberg.com/news/articles/2021-05-09/u-s-fuel-sellers-scramble-for-alternatives-to-hacked-pipeline
https://www.bloomberg.com/news/articles/2021-05-09/u-s-fuel-sellers-scramble-for-alternatives-to-hacked-pipeline
https://www.bloomberg.com/news/articles/2021-05-09/u-s-fuel-sellers-scramble-for-alternatives-to-hacked-pipeline
https://www.bloomberg.com/news/articles/2021-05-09/u-s-fuel-sellers-scramble-for-alternatives-to-hacked-pipeline
https://www.reuters.com/technology/irish-health-service-hit-by-ransomware-attack-vaccine-rollout-unaffected-2021-05-14/
https://www.reuters.com/technology/irish-health-service-hit-by-ransomware-attack-vaccine-rollout-unaffected-2021-05-14/
https://www.reuters.com/technology/irish-health-service-hit-by-ransomware-attack-vaccine-rollout-unaffected-2021-05-14/
https://www.reuters.com/technology/irish-health-service-hit-by-ransomware-attack-vaccine-rollout-unaffected-2021-05-14/
https://www.reuters.com/technology/irish-health-service-hit-by-ransomware-attack-vaccine-rollout-unaffected-2021-05-14/
https://www.bleepingcomputer.com/news/security/ransomware-attack-hits-italys-lazio-region-affects-covid-19-site/
https://www.bleepingcomputer.com/news/security/ransomware-attack-hits-italys-lazio-region-affects-covid-19-site/
https://www.bleepingcomputer.com/news/security/ransomware-attack-hits-italys-lazio-region-affects-covid-19-site/
https://www.natlawreview.com/article/wannacry-are-your-security-tools-to-date
https://www.natlawreview.com/article/wannacry-are-your-security-tools-to-date
https://www.natlawreview.com/article/wannacry-are-your-security-tools-to-date
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb8
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb8
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb8
http://dl.acm.org/citation.cfm?id=2991110
http://dl.acm.org/citation.cfm?id=2991110
http://dl.acm.org/citation.cfm?id=2991110
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb10
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb10
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb10
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb10
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb10
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb11
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb11
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb11
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/controlled-folders?view=o365-worldwide
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/controlled-folders?view=o365-worldwide
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/controlled-folders?view=o365-worldwide
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb15
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb15
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb15
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb16
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb17
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb18
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb18
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb18
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb18
http://refhub.elsevier.com/S2352-7110(23)00301-1/sb18

	Ranflood: A mitigation tool based on the principles of data flooding against ransomware
	Motivation and significance
	Software Description
	Three Flooding Strategies
	Random
	On-The-Fly
	Shadow

	Software architecture
	Software functionalities
	Limitations on the effectiveness of Ranflood against ransomware processes

	Illustrative Example
	Daemon Configurations
	Ranflood's Contrast Effectiveness and Efficiency

	Impact
	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


