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Abstract. Serverless computing is a Cloud development paradigm where
developers write and compose stateless functions, abstracting from their
deployment and scaling. In this paper, we address the problem of function-
execution scheduling, i.e., how to schedule the execution of Serverless
functions to optimise their performance against some user-defined goals.
We introduce a declarative language of Allocation Priority Policies (APP)
to specify policies that inform the scheduling of function execution. We
present a prototypical implementation of APP as an extension of Apache
OpenWhisk and we validate it by i) implementing a use case combining
IoT, Edge, and Cloud Computing and ii) by comparing its performance
to an alternative implementation that uses vanilla OpenWhisk.
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1 Introduction

Serverless computing [1], also known as Functions-as-a-Service, is a new devel-
opment paradigm where programmers write and compose stateless functions,
leaving to Serverless infrastructure providers the duty to manage their deploy-
ment and scaling. Hence, although a bit of a misnomer—as servers are of course
involved—the “less” in Serverless refers to the removal of some server-related
concerns, namely, their maintenance, scaling, and expenses deriving from their
sub-optimal management (e.g., idle servers). Serverless computing was first pro-
posed as a deployment modality for Cloud architectures [1] that pushed to the
extreme the per-usage model of Cloud Computing, letting users pay only for the
computing resources used at each function invocation. However, recent industrial
and academic proposals, such as platforms to support Serverless development
in Edge [2] and Internet-of-Things [3] scenarios, confirm the rising interest of
neighbouring communities to adopt the Serverless paradigm.

While Serverless providers have become more and more common [4,5,6,7,8,9,10]
the technology is still in its infancy and there is much work to do to overcome
the many limitations [9,11,12,1] that hinder its wide adoption. One of the main
challenges to address is how should Serverless providers schedule the functions on
the available computation nodes. To visualise the problem, consider for example
Fig. 1 depicting the availability of two Workers—the computation nodes where
functions can execute. One Worker is in Italy (Site 1) and the other in Greece
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3 The APP Language

Current serverless platforms, like OpenWhisk, come equipped with hard-coded
load balancing policies. In this section, we present the Allocation Priority Policies

(APP) language, intended as a language to specify customised load balancing
policies and overcome the inflexibility of the hard-coded load balancing ones. The
idea is that both developers and providers can write, besides the functions to be
executed by the platform, a policy that instructs the platform what workers each
function should be preferably executed on. Function-specific configurations are
optional and without them the system can follow a default strategy.

As an extension of the example depicted in Fig. 1, consider some functions
that need to access a database. To reduce latency (as per data locality principle),
the best option would be to run those functions on the same pool of machines
that run the database. If that option is not valid, then running those functions
on workers in the proximity (e.g., in the same network domain) is preferable than
using workers located further away (e.g., in other networks). We comment below
an initial APP script that specifies the scheduling policies only for those workers
belonging to the pool of machines running the database.

couchdb_query:
- workers:

- DB_worker1
- DB_worker2

strategy: random
invalidate: �

capacity used: 50%
followup: fail

At the first line, we define the policy tag, which
is couchdb_query. As explained below, tags are used
to link policies to functions. Then, the keyword
workers indicates a list of worker labels, which iden-
tify the workers in the proximity of the database,
i.e., DB_worker1 and DB_worker2. As explained be-
low, labels are used to identify workers. Finally,
we define three parameters: the strategy used by
the scheduler to choose among the listed worker
labels, the policy that invalidates the selection of

a worker label, and the followup policy in case all workers are invalidated. In
the example, we select one of the two labels randomly, we invalidate their usage
if the workers corresponding to the chosen label are used at more than the 50% of
their capacity (capacity used) and, in case all workers are invalidated (followup),
we let the request for function execution fail.

The APP syntax and semantics We report the syntax of APP in Fig. 2. The basic
entities considered in the APP language are a) scheduling policies, identified by
a policy tag identifier to which users can associate their functions—the policy-
function association is a one-to-many relation—and b) workers, identified by
a worker label—where a label identifies a collection of computation nodes. An
APP script is a YAML [18] file specifying a sequence of policies. Given a tag,
the corresponding policy includes a list of workers blocks, possibly closed with
a followup strategy. A workers block includes three parameters: a collection of
worker labels, a possible scheduling strategy, and an invalidate condition. A
followup strategy can be either a default policy or the notification of failure.

We discuss the APP semantics, and the possible parameters, by commenting
on a more elaborate script extending the previous one, shown in Fig. 3. The

DB_worker1

DB_worker2

Scheduler
CouchDB instance
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In the use case, three di↵erent function deployments need to co-exist in the
same infrastructure, marked as E , S , and B . Function E (edge) manages
the IoT Devices at Site 1 and it can only execute on the edge Worker at the
same location, which has access to those devices. Function S (small) is a light-
weight computation that accesses the Private Data storage at Site 1, within the
company VPN. Function B (big) performs heavy-load queries on the Public
Data storage in the Public Cloud. As mentioned, here data locality plays an
important part in determining the performance of Serverless function execution:

– the Worker at Site 1 can execute all functions. It is the only worker that
can execute E and it is the worker with the fastest access to the co-located

Private Data for S . It can execute B undergoing some latency due to the
physical distance with the Public Data storage;

– the Worker at Site 2 can execute functions S and B , undergoing some
latency on both functions due to its distance from both data storages;

– the Worker at the Public Cloud can execute B , enjoying the fastest access
to the related Public Data source.

Finally, besides data locality, the scheduler should also take into account how
heavily the functions impact on the load of each Worker, considering that the
Worker in the Public Cloud is as powerful as the one at Site 2, followed by the
Worker at Site 1, which is a low-power edge device.

Experimental Results We compare the di↵erences on the architecture and per-
formance of the use case above as implemented using our APP-based OpenWhisk
prototype against a näıve implementation using the vanilla OpenWhisk.

Specifically, we implement the use case using a Kubernetes cluster composed
of a low-power device—with an Intel Core i7-4510U CPU with 8GB of RAM—in
Italy for Site 1, a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Okeanos Cloud (https://okeanos.grnet.gr) located in Greece
for Site 2, and a Virtual Machine—comparable to an Amazon EC2 a1.large
instance—from the Public Cloud of Microsoft Azure located in Northern Europe.

Following the requirements of the use case, we define the APP deployment
plan for the use case as follows (we put the three tags in column for compactness):

Function_E:
- workers:

- worker_site1
followup: fail

Function_S:
- workers:

- worker_site2
- worker_site1
strategy: random

followup: fail

Function_B:
- workers:

- worker_public_cloud
- worker_site2
- worker_site1

strategy: best_first
followup: fail

Commenting the code above, we have function E represented by Function_E,
where the only invoker available is the one at Site 1 (worker_site1). Since we do
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Fig. 4. Use case architecture representation.

4 Implementation in Apache OpenWhisk

We have implemented a serverless platform in which load balancing policies
can be customised using the APP language. This implementation (available at
https://github.com/giusdp/openwhisk) was obtained by modifying the OpenWhisk
code base. Namely, we have replaced the load balancer module in the OpenWhisk
controller, with a new one that reads an APP script, parses it, and follows the
specified load balancing policies when OpenWhisk invokers should be selected2.

To test our implementation, we used the Serverless use case depicted in Fig. 4
encompassing three Serverless domains: i) a private cloud with a low-power
edge-device Worker at a first location, called Site 1; ii) a private cloud with the
Worker at Site 1 and a mid-tier server Worker at a second location, called Site
2; iii) a hybrid cloud with the two Workers at Site 1 and Site 2 and a third
mid-tier server from a Public Cloud. Site 1 and Site 2 are respectively located
in Italy and Greece while the Public Cloud is located in northern Europe.

Site 1 is the main branch of a company and it runs both a data storage of
Private Data and the IoT Devices used in their local line of production. Site
1 also hosts the scheduler of functions, called the Load Balancer. The Worker
at Site 1 can access all resources within its site. Site 2 hosts a Worker which,
belonging to the company virtual private network (VPN), can access the Private
Data at Site 1. The company also controls a Worker in a Public Cloud and a
data storage with Public Data accessible by all Workers.

2 In this paper we chose to associate one worker label with one invoker. Future devel-
opments can use labels to identify pools of resources, following, e.g., recent proposals
to change OpenWhisk invokers with Cluster Managers https://bit.ly/3cxYnTB).
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Site 1 Site 2 Public Cloud Average (ms) 95% Average (ms)

E 1000 0 0 1096.53 1019.03

S 466 534 0 149.18 90.86

B 0 90 910 105.18 64.62

Table 1. 1000 invocation for each function in the APP-based OpenWhisk deployment.

Site 1 Site 2 Public Cloud Average (ms) 95% Average (ms)

E 1000 0 0 1159.90 1025.52

S 19 981 0 385.30 302.08

B 185 815 0 265.69 215.793

Table 2. 1000 invocations for each function in the vanilla OpenWhisk deployment.

fastest 95th percentile (APP ca. 0.6% faster than vanilla) come from the heavier
resource consumption of the vanilla deployment.

As expected, the impact of data locality and the performance increase provided
by the data-locality-aware policies in APP become visible for S and B . In

the case of S , the Load Balancer of the vanilla deployment elected Site 2 as
the location of the main invoker (passing to it 98.1% of the invocations). We
remind that S accesses a Private Data storage located at Site 1. The impact

of data locality is visible on the execution of S in the vanilla deployment, being
88.35% slower than the APP-based deployment on average and 107.5% slower
for the fastest 95th percentile. On the contrary, the APP-based scheduler evenly
divided the invocations between Site 1 (46.6%) and Site 2 (53.4%) with a slight
preference for the latter, thanks to its greater availability of resources. In the
case of B , the Load Balancer of the vanilla deployment elected again Site 2 as
the location of the main invoker (passing to it 81.5% of all the invocations) and
Site 1 as the second-best (passing the remaining 18.5%). Although available to

handle computations, the invoker in the Public Cloud is never used. Since B
accesses a Public Data storage located in the Public Cloud, also in this case the
e↵ect of data locality is strikingly visible, marking a heavy toll on the execution
of B in the vanilla deployment, which is 86.5% slower than the APP-based
deployment on average and 107.8% slower for the fastest 95th percentile. The
APP-based scheduler, following the preference on the Public Cloud, sends the
majority of invocations to the Public Cloud (91%) while the invocations that
exceed the resource limits of the Worker in the Public Cloud are routed to Site
2 (9%), as defined by the Function_E policy.

As a concluding remark over our experiment, we note that these results do
not prove that the vanilla implementation of OpenWhisk is generally worse
(performance-wise) than the APP-based one. Indeed, what emerged from the
experiment is the expected result that, without proper information and software
infrastructure to guide the scheduling of functions with respect to some opti-
misation policies, the Load Balancer of OpenWhisk can perform a suboptimal

OW1

OW2

OW3



OLAS Meeting 2025

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Cost-aware APP

9

Leveraging Static Analysis for Cost-aware Serverless Scheduling Policies 5

names are represented by h, g, · · · . The syntax of miniSL
is as follows (we use over-lines to denote sequences, e.g.,
p1, p2 could be an instance of p):

F ::= (p) => { S }
S ::= e | call h(E) S | if (G) { S } else { S } |

for (i in range(0,E)){ S }
G ::= E | call h(E)
E ::= n | i | p | E ] E | !E
] ::= + | - | * | / | > | < |

>= | == | <= | && | ||

A function F associates to a sequence of parameters p a
statement S executed at every occurrence of the triggering
event. Statements include the empty statement e (which is
always omitted when the statement is not empty); calls to
external services by means of the call keyword; the condi-
tional and iteration statements. The guard of a conditional
statement could be either a boolean expression or a call to an
external service which, in this case, is expected to return a
boolean value. The language supports standard expressions
in which it is possible to use integer numbers and counters.
Notice that, in our simple language, the iteration statement
considers an iteration variable ranging from 0 to the value of
an expression E evaluated when the first iteration starts.

In the rest of the article, we assume all programs to be
well-formed so that all names are correctly used (e.g., coun-
ters are declared before they are used). For each expression
used in the range of an iteration construct, we assume that
its evaluation generates an integer, and for each service in-
vocation call h(E), we assume that h is a correct service
name and E is a sequence of expressions generating correct
values to be passed to that service. Calls to services include
serverless invocations, which possibly execute on a different
worker of the caller.

We illustrate miniSL by means of three examples. As a
first example, consider the code in Listing 1 representing the
call of a function that selects a functionality based on the
characteristic of the invoker.
1 ( isPremiumUser , par ) => {
2 if( isPremiumUser ) {
3 call PremiumService( par )
4 } else {
5 call BasicService( par )
6 }
7 }

Listing 1: Function with a conditional statement guarded by
an expression.

This code may invoke either a PremiumService or a Basic-
Service depending on whether it has been triggered by a
premium user or not. The parameter isPremiumUser is a
value indicating whether the user is a premium member
(when the value is true) or not (when the value is false).
The other invocation parameter par must be forwarded to the
invoked service. For the purposes of this article, this example

is relevant because if we want to reduce the latency of this
function, the best node to schedule it could be the one that
reduces the latency of the invocation of either the service
PremiumService or the service BasicService, depending
on whether isPremiumUser is true or false, respectively.

Consider now the following function, where differently
from the previous version, it is necessary to call an external
service to decide whether we are serving a premium or a
basic user.

1 ( username , par ) => {
2 if( call IsPremiumUser(username) ) {
3 call PremiumService( par )
4 } else {
5 call BasicService( par )
6 }
7 }

Listing 2: Function with a conditional statement guarded by
an invocation to external service.

In this case, the first parameter carries an attribute of the
user (its name) but it does not indicate (with a boolean
value) whether it is a premium user or not. Instead, the
necessary boolean value is returned by the external service
IsPremiumUser that checks the username and returns true
only if that username corresponds to that of a premium user.
Within this setting is difficult to predict the best worker
to execute such a function, because the branch that will
be selected is not known at function scheduling time. If
the user triggering the event is a premium member, the
expected execution time of the function is the sum of the
latencies of the service invocations of IsPremiumUser and
PremiumService while, if the user is not a premium member,
the expected execution time is the sum of the latencies of the
services IsPremiumUser and BasicService. As an (over-
)approximation of the expected delay, we could consider
the worst execution time, i.e., the sum of the latency of the
service IsPremiumUser plus the maximum between the la-
tencies of the services PremiumService and BasicService.
At scheduling time, we could select the best worker as the
one giving the best guarantees in the worst case, e.g., the one
with the best over-approximation.

Consider now a function triggering a sequence of map-
reduce jobs.

1 ( jobs , m, r ) => {
2 for(i in range(0, m)) {
3 call Map(jobs , i)
4 for(j in range(0, r)) {
5 call Reduce(jobs , i, j)
6 }
7 }
8 }

Listing 3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce
jobs. The number of jobs is indicated by the parameter m. The

De Palma, G., Giallorenzo, S., Laneve, C., Mauro, J., Trentin, M., & Zavattaro, G. (2024). Leveraging static 
analysis for cost-aware serverless scheduling policies. Int. J. Softw. Tools Technol. Transf., 26(6), 781–796.
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policy tag 2 Identifiers [ {default} worker label 2 Identifiers
n 2 N

app ::= tag

tag ::= policy tag : - block followup?

block ::= workers: [ * | - wrk: worker label ]
(strategy: [ random | platform | best first

| min latency ])?
(invalidate: [ capacity used : n%

| max concurrent invocations: n
| overload
| max latency: n
])?

followup ::= followup: [ default | fail ]

Fig. 4: The APP syntax and, in red, the cAPP extension.

defines what to do when no blocks of the policy managed
to allocate the function. When set to fail, the scheduling
of the function fails; when set to default, the scheduling
continues by following the (special) default policy.

The strategy parameter supports the following values:
platform that applies the default selection strategy of the
serverless platform; random that allocates functions stochas-
tically among the workers of the block following a uniform
distribution; best-first that allocates functions on workers
based on their top-down order of appearance in the block.
The options for the invalidate parameter are: overload
that invalidates a worker based on the default invalidation
control of the platform; capacity used that invalidates a
worker if it uses more than a given percentage threshold of
memory; max concurrent invocations that invalidates a
worker if a given number of function invocations are already
currently executed on the worker.

We close this section by extending the example presented
in Figure 1 to illustrate APP, reported below.

db_query:
- workers:

- wrk: W1
- wrk: W2
strategy: best first
invalidate: capacity used: 50%

followup: fail

Recalling the example, we consider some functions that
need to access a database. To reduce latency (as per data
locality principle), we want to run those functions on the
workers within the same zone of the database (W1). If that
option is not valid, then we run the functions on workers
located further away (W2).

In the code, at the first line, we define the policy tag,
which is db query. The functions accessing the database
have the same tag (not shown in the example) so we link

them to this policy. Then, the keyword workers indicates a
list of worker labels, which identify the worker in the prox-
imity of the database, W1, and the farther one, W2. Finally,
we define three parameters: the strategy used by the sched-
uler to choose among the listed worker labels, the policy
that invalidates the selection of a worker label, and the
followup policy in case all workers are invalidated. In
the example, given the best first strategy, we first pre-
fer W1 and then W2, and we invalidate the scheduling on
each of them if the worker corresponding to the chosen la-
bel has capacity used at more than 50%. Since there are no
subsequent blocks, in case all workers of the blocks are in-
validated, we proceed with the followup instruction, which
specifies to fail the request for function execution.

The interested reader can find more examples and tutori-
als on APP in publications by De Palma et al. [13, 14, 17].

5.2 Cost-aware policies with cAPP

To support the scheduling of functions based on costs we
propose two extensions to APP. The first one is a new selec-
tion strategy named min latency. Such a strategy selects,
among some available workers, the one which minimises a
given cost expression. The second one is a new invalidation
condition named max latency. This condition invalidates a
worker in case the corresponding cost expression is greater
than a given threshold.

We dub cAPP the cost-aware extension of APP and illus-
trate its main features by showing examples of cAPP scripts
that target the functions in Listings 1–3.

- premUser:
- workers:

- wrk: W1
- wrk: W2

strategy: min latency

Listing 4: cAPP script for Listings 1 and 2.

Listing 4 defines a cAPP tagged premUser that we will
associate to both the functions at Listing 1 and 2. In this
script, we specify to follow the logic min latency to select
among the two workers, W1 and W2 listed in the workers
clause, and prioritises the one for which the solution of the
cost expression is minimal.

To better illustrate the phases of the min latency strat-
egy, we depict in Figure 5 the flow, from the deployment
of the cAPP script to the scheduling of the functions in List-
ings 1 and 2. When the cAPP script is created, the associ-
ation between the functions code and their cAPP script is
specified by tagging the two functions with the comment
// tag:premUser. In this phase, assuming the scheduling
policy of the cAPP script requires the computation of the
functions cost (because the strategy is min latency), the

MiniSL + cAPP
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// tag: premUser
( isPremiumUser , par ) => {

...
}

f1 from Listing 1
// tag: premUser
( username , par ) => {

...
}

f2 from Listing 2 - premUser:
- workers:

- wrk: W1
- wrk: W2

strategy: min_latency

cAPP script

main(u,P,B) = if 2(u,P,B) [ ]
if 2(u,P,B) = P [ u = 1 ]
if 2(u,P,B) = B [ u = 0 ]

main(K,P,B) = K +max(P,B)[ ]

Inference of Cost Programs
(cf. Section 3)

Request for f1

W in ( W1, W2 )
where W.latency( PremiumService )
is minimal

Request for f2

W in ( W1, W2 )
where W.latency( IsPremiumUser )
+ max( W.latency( PremiumService ),

W.latency( BasicService ) )
is minimal

Cost Program Solver
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Figure 3: Flow followed, from deployment to scheduling, of the functions at Listings 1 and 2.

where we tag the function (//tag:mapReduce) and we proceed to compute its cost program, obtaining
the associated cost expression. Then, when we receive a request for that function, we trigger the execution
of the cAPP policy, which selects one of the two workers W1 or W2 at random and checks their validity
following the logic shown at the bottom of Figure 4, i.e., we solve the cost program and then compute the
corresponding cost expression by replacing the parameters m and r with the latency to contact the Map
and Reduce services from the selected worker, and possibly invalidate it if the computed value is greater
than 300.

5 Conclusion

We have presented a proposal for an extension of the APP language, called cAPP, to make function
scheduling cost-aware. Concretely, the extension adds new syntactic fragments to APP so that programmers
can govern the scheduling of functions towards those execution nodes that minimise their calculated
latency (e.g., increasing serverless function performance) and avoids running functions on nodes whose
execution time would exceed a maximal response time defined by the user (e.g., enforcing quality-of-
service constraints). The main technical insights behind the extension include the usage of inference rules
to extract cost equations from the source code of the deployed functions and exploiting dedicated solvers
to compute the cost of executing a function, given its code and input parameters.

Growing our proposal into a usable APP extension is manyfold. Steps in that direction include the
definition of a target language used to write serverless functions close to the minimal language from
Section 2 and the implementation of the inference system (cf. Section 3) to extract the cost equations
relative to a given function. Another step regards the implementation of a runtime for cAPP able to
orchestrate both the above-mentioned tool to extract cost equations at function deployment and the solvers
that compute the cost expression at scheduling time. Besides computing costs, the runtime shall also
interact with the workers available in the platform to collect the measures that characterise the costs
sustained by the workers (e.g., the latency endured by a worker when contacting a given service). Proving
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where we tag the function (//tag:mapReduce) and we proceed to compute its cost program, obtaining
the associated cost expression. Then, when we receive a request for that function, we trigger the execution
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We have presented a proposal for an extension of the APP language, called cAPP, to make function
scheduling cost-aware. Concretely, the extension adds new syntactic fragments to APP so that programmers
can govern the scheduling of functions towards those execution nodes that minimise their calculated
latency (e.g., increasing serverless function performance) and avoids running functions on nodes whose
execution time would exceed a maximal response time defined by the user (e.g., enforcing quality-of-
service constraints). The main technical insights behind the extension include the usage of inference rules
to extract cost equations from the source code of the deployed functions and exploiting dedicated solvers
to compute the cost of executing a function, given its code and input parameters.

Growing our proposal into a usable APP extension is manyfold. Steps in that direction include the
definition of a target language used to write serverless functions close to the minimal language from
Section 2 and the implementation of the inference system (cf. Section 3) to extract the cost equations
relative to a given function. Another step regards the implementation of a runtime for cAPP able to
orchestrate both the above-mentioned tool to extract cost equations at function deployment and the solvers
that compute the cost expression at scheduling time. Besides computing costs, the runtime shall also
interact with the workers available in the platform to collect the measures that characterise the costs
sustained by the workers (e.g., the latency endured by a worker when contacting a given service). Proving

4 Serverless Scheduling Policies based on Cost Analysis

1 // tag: premUser
2 ( username , par ) => {
3 if( call IsPremiumUser( username ) ) {
4 call PremiumService( par )
5 } else {
6 call BasicService( par )
7 }
8 }

Listing 2: Function with a conditional statement guarded by an invocation to external service.

Notice that, in this case, the first parameter carries an attribute of the user (its name) but it does
not indicate (with a boolean value) whether it is a premium user or not. Instead, the necessary boolean
value is returned by the external service IsPremiumUser that checks the username and returns true only
if that username corresponds to that of a premium user. In this case, it is difficult to predict the best
worker to execute such a function, because the branch that will be selected is not known at function
scheduling time. If the user triggering the event is a premium member, the expected execution time of the
function is the sum of the latencies of the service invocations of IsPremiumUser and PremiumService
while, if the user is not a premium member, the expected execution time is the sum of the latencies of
the services IsPremiumUser and BasicService. As an (over-)approximation of the expected delay, we
could consider the worst execution time, i.e., the sum of the latency of the service IsPremiumUser plus
the maximum between the latencies of the services PremiumService and BasicService. At scheduling
time, we could select the best worker as the one giving the best guarantees in the worst case, e.g., the one
with the best over-approximation.

Consider now a function triggering a sequence of map-reduce jobs.

1 // tag: mapReduce
2 ( jobs , m, r ) => {
3 for(i in range(0, m)) {
4 call Map(jobs , i)
5 for(j in range(0, r)) {
6 call Reduce(jobs , i, j)
7 }
8 }
9 }

Listing 3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce jobs. The number of jobs is indicated by
the parameter m. The “map” phase, which generates m “reduce” subtasks, is implemented by an external
service Map that receives the jobs and the specific index i of the job to be mapped. The “reduce” subtasks
are implemented by an external service Reduce that receives the jobs, the specific index i of the job
under execution, and the specific index j of the “reduce” subtask to be executed — for every i, there are r
such subtasks. In this case, the expected latency of the entire function is given by the sum of m times the
latency of the service Map and of m ⇥ r times the latency of the service Reduce. Given that such latency
could be high, a user could be interested to run the function on a worker, only if the expected overall
latency is below a given threshold.

Request for A(1,v)

Request for B(u_name,v)

Request for lambda1(1,v)

Request for lambda2(u_name,v)
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p, p0. We also consider a countable set of counters, ranged over by i, j, used as indexes in iteration
statements. Integer numbers are represented by n; service names are represented by h, g, · · · . The syntax
of miniSL is as follows (we use over-lines to denote sequences, e.g., p1, p2 could be an instance of p):

F ::= (p) => { S }
S ::= e | call h(E) S | if (G) { S } else { S } | for (i in range(0,E)){ S }
G ::= E | call h(E)
E ::= n | i | p | E ] E
] ::= + | - | > | == | >= | && | * | /

A function F associates to a sequence of parameters p a statement S which is executed at every
occurrence of the triggering event. Statements include the empty statement e (which is always omitted
when the statement is not empty); calls to external services by means of the call keyword; the conditional
and iteration statements. The guard of a conditional statement could be either a boolean expression or
a call to an external service which, in this case, is expected to return a boolean value. The language
supports standard expressions in which it is possible to use integer numbers and counters. Notice that, in
our simple language, the iteration statement considers an iteration variable ranging from 0 to the value of
an expression E evaluated when the first iteration starts.

In the rest of the paper, we assume all programs to be well-formed so that all names are correctly used,
i.e., counters are declared before they are used and when we use p, such p is an invocation parameter.
Similarly, for each expression used in the range of an iteration construct, we assume that its evaluation
generates an integer, and for each service invocation call h(E), we assume that h is a correct service
name and E is a sequence of expressions generating correct values to be passed to that service. Calls to
services include serverless invocations, which possibly execute on a different worker of the caller.

We illustrate miniSL by means of three examples. As a first example, consider the code in Listing 1
representing the call of a function that selects a functionality based on the characteristic of the invoker.

1 // name: lambda1.miniSL
2 // tag: premUser
3 ( isPremiumUser , par ) => {
4 if( isPremiumUser ) {
5 call PremiumService( par )
6 } else {
7 call BasicService( par )
8 }
9 }

Listing 1: Function with a conditional statement guarded by an expression.

This code may invoke either a PremiumService or a BasicService depending on whether it has been
triggered by a premium user or not. The parameter isPremiumUser is a value indicating whether the
user is a premium member (when the value is true) or not (when the value is false). The other invocation
parameter par must be forwarded to the invoked service. For the purposes of this paper, this example is
relevant because if we want to reduce the latency of this function, the best node to schedule it could be
the one that reduces the latency of the invocation of either the service PremiumService or the service
BasicService, depending on whether isPremiumUser is true or false, respectively.

Consider now the following function where differently from the previous version, it is necessary to
call an external service to decide whether we are serving a premium or a basic user.

4 Serverless Scheduling Policies based on Cost Analysis

1 // name: lambda2.miniSL
2 // tag: premUser
3 ( username , par ) => {
4 if( call IsPremiumUser(username)){
5 call PremiumService( par )
6 } else {
7 call BasicService( par )
8 }
9 }

Listing 2: Function with a conditional statement guarded by an invocation to external service.

Notice that, in this case, the first parameter carries an attribute of the user (its name) but it does
not indicate (with a boolean value) whether it is a premium user or not. Instead, the necessary boolean
value is returned by the external service IsPremiumUser that checks the username and returns true only
if that username corresponds to that of a premium user. In this case, it is difficult to predict the best
worker to execute such a function, because the branch that will be selected is not known at function
scheduling time. If the user triggering the event is a premium member, the expected execution time of the
function is the sum of the latencies of the service invocations of IsPremiumUser and PremiumService
while, if the user is not a premium member, the expected execution time is the sum of the latencies of
the services IsPremiumUser and BasicService. As an (over-)approximation of the expected delay, we
could consider the worst execution time, i.e., the sum of the latency of the service IsPremiumUser plus
the maximum between the latencies of the services PremiumService and BasicService. At scheduling
time, we could select the best worker as the one giving the best guarantees in the worst case, e.g., the one
with the best over-approximation.

Consider now a function triggering a sequence of map-reduce jobs.

1 // tag: mapReduce
2 ( jobs , m, r ) => {
3 for(i in range(0, m)) {
4 call Map(jobs , i)
5 for(j in range(0, r)) {
6 call Reduce(jobs , i, j)
7 }
8 }
9 }

Listing 3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce jobs. The number of jobs is indicated by
the parameter m. The “map” phase, which generates m “reduce” subtasks, is implemented by an external
service Map that receives the jobs and the specific index i of the job to be mapped. The “reduce” subtasks
are implemented by an external service Reduce that receives the jobs, the specific index i of the job
under execution, and the specific index j of the “reduce” subtask to be executed — for every i, there are r
such subtasks. In this case, the expected latency of the entire function is given by the sum of m times the
latency of the service Map and of m ⇥ r times the latency of the service Reduce. Given that such latency
could be high, a user could be interested to run the function on a worker, only if the expected overall
latency is below a given threshold.
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[EPS]

G ` e : 0 ; /0 ; /0

[CALL]

G (h) = e G ` S : e0 ; C ; Q

G ` call h(E) S : e+e0 ; C ; Q

[IF-EXP]

G ` E : j G ` S : e0 ; C ; Q G ` S0 : e00 ; C0 ; Q0 if ` fresh

w = var(j,e0,e00)[ var(C,C0) Q00 =


if `(w) = e0 +C [ j ]
if `(w) = e00 +C0 [¬j]

�

G ` if (E) { S } else { S0 } : 0 ; if `(w) ; Q, Q0,Q00

[IF-CALL]

G (h) = e G ` S : e0 ; C ; Q G ` S0 : e00 ; C0 ; Q0

G ` if (call h(E)) { S } else { S0 } : e+max(e0,e00) ; C+C0 ; Q, Q0

[FOR]

G ` E : e G + i : Int ` S : e0 ; C ; Q w = (var(e,e0)[ var(C))\ i

for` fresh Q0 =


for`(i,w) = e0 +C+ for`(i+1,w) [ e � i ]
for`(i, w) = 0 [ i � e+1 ]

�

G ` for (i in range(0,E)){ S } : 0 ; for`(0, w) ; Q, Q0

[PRG]

G ` S : e ; C ; Q w = var(p,e)[ var(C)
main fresh Q0 = main(w) = e+C [ ]

G ` (p) => { S } : Q0, Q

Fig. 3: The rules for deriving cost expressions

– let ¬j (the negation of a Presburger guard j) be the list
of Presburger guards

¬(e � e0) = e0 � e+1
¬(e = e0) = e � e0 +1 ; e0 � e+1
¬(e^e0) = ¬e ; ¬e0

where ; is the list concatenation operator (the list repre-
sents a disjunction of Presburger guards),

– let ¬j = j1 ; · · · ; jm , where ji are Presburger guards,
then

⇣
f (x) = e+Âi20..n fi(ei)

⌘
[¬j ]

def
=

n
f (x) = e+Âi20..n fi(ei) [j j ] | j 2 1..m

o
.

We now comment on the inference rules reported in Fig-
ure 3.2

Rule [CALL] manages invocation of services: the cost of
call h(E) S is the cost of S plus the cost for accessing the
service h.

Rule [IF-EXP] defines the cost of conditionals when the
guard is a Presburger arithmetic expression that can be eval-
uated at function scheduling time. We use a corresponding
cost function, if `, whose name is fresh,3 to indicate that the
cost of the entire conditional statement is either the cost of
the then-branch or the else-branch, depending on whether
the guard is true or false. As discussed above, the use of the
guard ¬j generates a list of equations.

Rule [IF-CALL] defines an upper bound of the cost of
conditionals when the guard is an invocation to a service. At
scheduling time it is not possible to determine whether the

2 We omit rules for expressions E since they are straightforward: they
simply return E if E is in Presburger arithmetics. We notice that no rule
is defined if E is not in Presburger arithmetics. In fact, in these cases, it
is not possible to defrive cost equations.

3 We assume that conditionals have pairwise different line-codes and
` represents the line-code of the if in the source code.

guard is true or false – c.f. the second example in Section 3.
Therefore the cost of a conditional is the maximum between
the cost e0 + C of the then-branch and the one e00 + C0 of
the else-branch, plus the cost e to access to the service in
the guard. However, considering that the expression max(e+
C,e0 + C0) is not a valid right-hand side for the equations
in our cost programs, we take as over-approximation the
expression max(e,e0)+C+C0.

As regards iterations, according to [FOR], its cost is the
invocation of the corresponding function, for`, whose name is
fresh (we assume that iterations have pairwise different line-
codes). The rule adds the counter i to G (please recall that
G + i : Int entails that i /2 dom(G )). In particular, the counter
i is the first formal parameter of for`; the other parameters
are all the variables in e, in notation var(e) plus those in
the invocations C (minus the i). There are two equations for
every iteration: one is the case when i is out-of-range, hence
the cost is 0, the other is when it is in range and the cost is
the one of the body plus the cost of the recursive invocation
of for` with i increased by 1.

The cost of a miniSL program is defined by [PRG]. This
rule defines an equation for the function main and puts this
equation as the first one in the list of equations 4. Once
inferred, we can feed this program to off-the-shelf tools, such
as [3,14], which will compute the cost of the the first function
of the list, i.e. the main function.

As an example, we apply the rules of Figure 3 to the
codes in Listings 1, 2 and 3. Let G (isPremiumUser) = u,
G (par) = v, G (PremiumService) = P and G (BasicService) =
B. For Listing 1 we obtain the cost program

main(u,v,P,B) = if 2(u,P,B) [ ]
if 2(u,P,B) = P [ u = 1 ]
if 2(u,P,B) = B [ u = 0 ]

4 Given that miniSL functions are anonymous, we use the default
name main for the corresponding cost function.
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For Listing 2, let G (username) = u, G (par) = v,
G (IsPremiumUser) = K, G (PremiumService) = P and
G (BasicService) = B. Then the rules of Figure 3 return
the single equation

main(u,v,K,P,B) = K +max(P,B) [ ]

For 3, when G (jobs) = J. G (m) = m, G (r) = r, G (Map) =
M and G (Reduce) = R, the cost program is

main(J,m,r,M,R) = for2(0,m,r,M,R) [ ]
for2(i,m,r,M,R) = M + for4(0,r,R)+

for2(i+1,m,r,M,R) [ m � i ]
for2(i,m,r,M,R) = 0 [ i � m+1 ]

for4( j,r,R) = R+ for4( j +1,r,R) [ r � j ]
for4( j,r,R) = 0 [ j � r +1 ]

The foregoing cost programs can be fed to automatic solvers
such as Pubs [3] and CoFloCo [14]. The evaluation of the
cost program for Listing 1 returns max(P,B) because u is
unknown. On the contrary, if u is known, it is possible to
obtain a more precise evaluation from the solver: if u = 1
it is possible to ask the solver to consider main(1,P,B) and
the solution will be P, while if u = 0 it is possible to ask
the solver to consider main(0,P,B) and the solution will be
B. The evaluation of main(K,P,B) for Listing 2 gives the
expression K + max(P,B), which is exactly what is written
in the equation. This is reasonable because, statically, we
are not aware of the value returned by the invocation of
IsPremiumService. Last, the evaluation of the cost program
for Listing 3 returns the expression m⇥ (M + r ⇥R).

5 From APP to cAPP

As discussed in the Introduction, we propose the new lan-
guage cAPP, for expressing cost-aware function scheduling
policies, by extending the already available language APP.
We start by briefly introducing the APP syntax and constructs,
reported in Figure 4, as found in its first incarnation by De
Palma et al. [13] and then discussing the new constructs we
introduce to handle cost-aware scheduling policies.

5.1 The APP Language

APP scripts are collections of tagged scheduling policies. The
main, mandatory component of any policy (identified by a
policy tag) are the workers therein, i.e., a collection of labels
that identify on which workers the scheduler can allocate the
functions. The assumption is that the environment running
the APP script establishes a 1-to-1 association so that each
worker has a unique, identifying label. A policy associates to
every function a list of one or more blocks, each including

policy tag 2 Identifiers [ {default} worker label 2 Identifiers
n 2 N

app ::= tag

tag ::= policy tag : - block followup?

block ::= workers: [ * | - wrk: worker label ]
(strategy: [ random | platform | best first

| min latency ])?
(invalidate: [ capacity used : n%

| max concurrent invocations: n
| overload
| max latency: n
])?

followup ::= followup: [ default | fail ]

Fig. 4: The APP syntax and, in red, the cAPP extension.

– the worker clause stating on which workers the function
can be scheduled;

– the strategy, an optional parameter that defines the
scheduling followed to select one of the workers of the
block;

– the invalidate condition, optional as well, which deter-
mines when a worker cannot host a function.

When a selected worker is invalid, the scheduler tries to apply
the selection strategy and allocate the function on the rest of
the available workers in the block. If none of the workers of
a block is available, the scheduling moves to the next block.
The last clause, followup, encompasses a whole policy and
defines what to do when no blocks of the policy managed
to allocate the function. When set to fail, the scheduling
of the function fails; when set to default, the scheduling
continues by following the (special) default policy.

The strategy parameter supports the following values:
platform that applies the default selection strategy of the
serverless platform; random that allocates functions stochas-
tically among the workers of the block following a uniform
distribution; best-first that allocates functions on workers
based on their top-down order of appearance in the block.
The options for the invalidate parameter are: overload
that invalidates a worker based on the default invalidation
control of the platform; capacity used that invalidates a
worker if it uses more than a given percentage threshold of
memory; max concurrent invocations that invalidates a
worker if a given number of function invocations are already
currently executed on the worker.

We close this section by extending the example presented
in Figure 1 to illustrate APP, reported below.

db_query:
- workers:

- wrk: W1
- wrk: W2
strategy: best first
invalidate: capacity used: 50%

Fig. 5: Flow followed, from deployment to scheduling, of the functions at Listings 1 and 2.

code of the functions is used to infer the corresponding cost
program. When the functions are invoked, i.e., at schedul-
ing time, we can compute the solution of the cost program,
given the knowledge of the invocation parameters. The knowl-
edge of the invocation parameters allows for a more precise
analysis. For instance, for the function in Listings 1, called
lambda1, it is possible to invoke the cost analyser with either
main(1,v,P,B) or main(0,v,P,B) where P represent the cost
of PremiumService, B the cost of BasicService and the
first parameter is the value of the isPremiumUser parameter.

If the invocation is lambda1(1,v) (first horizontal line in
In Figure 5) then the cost program (represented by the inter-
section point on the left) and the corresponding cAPP policy
to implement the expected scheduling policy are retrieved. At
this point, a cost analyser is used to solve the cost programs
(depicted by the gear). In this case, since the cost expression
is P, which is PremiumService, the scheduling amounts to
(i) estimating the latencies to access to PremiumService
from the considered workers and (ii) choosing the worker
that minimises the foregoing latency. This computation is
highlighted in the rightmost grey window corresponding to
the request lambda1(1,v).

When the request is lambda2(u name,v), the correspond-
ing cost function is main(u name,v,K,P,B), where K is the
cost of the service IsPremiumUser. In this case, the cost
expression is K +max(P,B) Since lambda2.miniSL has the
same tag as lambda1.miniSL, the selected cAPP script is
the same. Therefore the scheduling amounts to minimize
the latencies from the workers W1 and W2 to the services
IsPremiumUser, PremiumService and BasicService ac-

cording to the expression K +max(P,B). This is highlighted
in the rightmost grey window corresponding to the request
lambda2(u name,v).

The controller needs also to be aware of the possibility
of invalidating a worker when the latency to access a service
exceeds a certain threshold. In particular, when max latency
is used in the invalidate clause, workers are not selected if
the computed latency is above the given value. To illustrate
this item, let us consider the cAPP code for the map-reduce
function in Listing 5.

- mapReduce :
- workers:

- wrk: W1
- wrk: W2

strategy: random
invalidate:

max latency: 300

Listing 5: cAPP script for Listing 3.

As visualised in Figure 6, starting from the (top-most)
deployment phase box where we tag the function (//tag:
mapReduce), the cost program is computed, obtaining the
associated cost expression. Then, when a request for the func-
tion is received, the execution of the cAPP policy is triggered,
which selects one of the two workers W1 or W2 at random
and checks their validity following the logic shown at the
bottom of Figure 6, i.e., the cost program is solved and the
parameters m and r are replaced with the latency to contact
the Map and Reduce services from the selected worker, and
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// tag: premUser
( isPremiumUser , par ) => {

...
}

f1 from Listing 1
// tag: premUser
( username , par ) => {

...
}

f2 from Listing 2 - premUser:
- workers:

- wrk: W1
- wrk: W2

strategy: min_latency

cAPP script

main(u,P,B) = if 2(u,P,B) [ ]
if 2(u,P,B) = P [ u = 1 ]
if 2(u,P,B) = B [ u = 0 ]

main(K,P,B) = K +max(P,B)[ ]

Inference of Cost Programs
(cf. Section 3)

Request for f1

W in ( W1, W2 )
where W.latency( PremiumService )
is minimal

Request for f2

W in ( W1, W2 )
where W.latency( IsPremiumUser )
+ max( W.latency( PremiumService ),

W.latency( BasicService ) )
is minimal

Cost Program Solver
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Figure 3: Flow followed, from deployment to scheduling, of the functions at Listings 1 and 2.

where we tag the function (//tag:mapReduce) and we proceed to compute its cost program, obtaining
the associated cost expression. Then, when we receive a request for that function, we trigger the execution
of the cAPP policy, which selects one of the two workers W1 or W2 at random and checks their validity
following the logic shown at the bottom of Figure 4, i.e., we solve the cost program and then compute the
corresponding cost expression by replacing the parameters m and r with the latency to contact the Map
and Reduce services from the selected worker, and possibly invalidate it if the computed value is greater
than 300.

5 Conclusion

We have presented a proposal for an extension of the APP language, called cAPP, to make function
scheduling cost-aware. Concretely, the extension adds new syntactic fragments to APP so that programmers
can govern the scheduling of functions towards those execution nodes that minimise their calculated
latency (e.g., increasing serverless function performance) and avoids running functions on nodes whose
execution time would exceed a maximal response time defined by the user (e.g., enforcing quality-of-
service constraints). The main technical insights behind the extension include the usage of inference rules
to extract cost equations from the source code of the deployed functions and exploiting dedicated solvers
to compute the cost of executing a function, given its code and input parameters.

Growing our proposal into a usable APP extension is manyfold. Steps in that direction include the
definition of a target language used to write serverless functions close to the minimal language from
Section 2 and the implementation of the inference system (cf. Section 3) to extract the cost equations
relative to a given function. Another step regards the implementation of a runtime for cAPP able to
orchestrate both the above-mentioned tool to extract cost equations at function deployment and the solvers
that compute the cost expression at scheduling time. Besides computing costs, the runtime shall also
interact with the workers available in the platform to collect the measures that characterise the costs
sustained by the workers (e.g., the latency endured by a worker when contacting a given service). Proving
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the associated cost expression. Then, when we receive a request for that function, we trigger the execution
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following the logic shown at the bottom of Figure 4, i.e., we solve the cost program and then compute the
corresponding cost expression by replacing the parameters m and r with the latency to contact the Map
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than 300.

5 Conclusion

We have presented a proposal for an extension of the APP language, called cAPP, to make function
scheduling cost-aware. Concretely, the extension adds new syntactic fragments to APP so that programmers
can govern the scheduling of functions towards those execution nodes that minimise their calculated
latency (e.g., increasing serverless function performance) and avoids running functions on nodes whose
execution time would exceed a maximal response time defined by the user (e.g., enforcing quality-of-
service constraints). The main technical insights behind the extension include the usage of inference rules
to extract cost equations from the source code of the deployed functions and exploiting dedicated solvers
to compute the cost of executing a function, given its code and input parameters.

Growing our proposal into a usable APP extension is manyfold. Steps in that direction include the
definition of a target language used to write serverless functions close to the minimal language from
Section 2 and the implementation of the inference system (cf. Section 3) to extract the cost equations
relative to a given function. Another step regards the implementation of a runtime for cAPP able to
orchestrate both the above-mentioned tool to extract cost equations at function deployment and the solvers
that compute the cost expression at scheduling time. Besides computing costs, the runtime shall also
interact with the workers available in the platform to collect the measures that characterise the costs
sustained by the workers (e.g., the latency endured by a worker when contacting a given service). Proving
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1 // tag: premUser
2 ( username , par ) => {
3 if( call IsPremiumUser( username ) ) {
4 call PremiumService( par )
5 } else {
6 call BasicService( par )
7 }
8 }

Listing 2: Function with a conditional statement guarded by an invocation to external service.

Notice that, in this case, the first parameter carries an attribute of the user (its name) but it does
not indicate (with a boolean value) whether it is a premium user or not. Instead, the necessary boolean
value is returned by the external service IsPremiumUser that checks the username and returns true only
if that username corresponds to that of a premium user. In this case, it is difficult to predict the best
worker to execute such a function, because the branch that will be selected is not known at function
scheduling time. If the user triggering the event is a premium member, the expected execution time of the
function is the sum of the latencies of the service invocations of IsPremiumUser and PremiumService
while, if the user is not a premium member, the expected execution time is the sum of the latencies of
the services IsPremiumUser and BasicService. As an (over-)approximation of the expected delay, we
could consider the worst execution time, i.e., the sum of the latency of the service IsPremiumUser plus
the maximum between the latencies of the services PremiumService and BasicService. At scheduling
time, we could select the best worker as the one giving the best guarantees in the worst case, e.g., the one
with the best over-approximation.

Consider now a function triggering a sequence of map-reduce jobs.

1 // tag: mapReduce
2 ( jobs , m, r ) => {
3 for(i in range(0, m)) {
4 call Map(jobs , i)
5 for(j in range(0, r)) {
6 call Reduce(jobs , i, j)
7 }
8 }
9 }

Listing 3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce jobs. The number of jobs is indicated by
the parameter m. The “map” phase, which generates m “reduce” subtasks, is implemented by an external
service Map that receives the jobs and the specific index i of the job to be mapped. The “reduce” subtasks
are implemented by an external service Reduce that receives the jobs, the specific index i of the job
under execution, and the specific index j of the “reduce” subtask to be executed — for every i, there are r
such subtasks. In this case, the expected latency of the entire function is given by the sum of m times the
latency of the service Map and of m ⇥ r times the latency of the service Reduce. Given that such latency
could be high, a user could be interested to run the function on a worker, only if the expected overall
latency is below a given threshold.

Request for A(1,v)

Request for B(u_name,v)

Request for lambda1(1,v)

Request for lambda2(u_name,v)
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p, p0. We also consider a countable set of counters, ranged over by i, j, used as indexes in iteration
statements. Integer numbers are represented by n; service names are represented by h, g, · · · . The syntax
of miniSL is as follows (we use over-lines to denote sequences, e.g., p1, p2 could be an instance of p):

F ::= (p) => { S }
S ::= e | call h(E) S | if (G) { S } else { S } | for (i in range(0,E)){ S }
G ::= E | call h(E)
E ::= n | i | p | E ] E
] ::= + | - | > | == | >= | && | * | /

A function F associates to a sequence of parameters p a statement S which is executed at every
occurrence of the triggering event. Statements include the empty statement e (which is always omitted
when the statement is not empty); calls to external services by means of the call keyword; the conditional
and iteration statements. The guard of a conditional statement could be either a boolean expression or
a call to an external service which, in this case, is expected to return a boolean value. The language
supports standard expressions in which it is possible to use integer numbers and counters. Notice that, in
our simple language, the iteration statement considers an iteration variable ranging from 0 to the value of
an expression E evaluated when the first iteration starts.

In the rest of the paper, we assume all programs to be well-formed so that all names are correctly used,
i.e., counters are declared before they are used and when we use p, such p is an invocation parameter.
Similarly, for each expression used in the range of an iteration construct, we assume that its evaluation
generates an integer, and for each service invocation call h(E), we assume that h is a correct service
name and E is a sequence of expressions generating correct values to be passed to that service. Calls to
services include serverless invocations, which possibly execute on a different worker of the caller.

We illustrate miniSL by means of three examples. As a first example, consider the code in Listing 1
representing the call of a function that selects a functionality based on the characteristic of the invoker.

1 // name: lambda1.miniSL
2 // tag: premUser
3 ( isPremiumUser , par ) => {
4 if( isPremiumUser ) {
5 call PremiumService( par )
6 } else {
7 call BasicService( par )
8 }
9 }

Listing 1: Function with a conditional statement guarded by an expression.

This code may invoke either a PremiumService or a BasicService depending on whether it has been
triggered by a premium user or not. The parameter isPremiumUser is a value indicating whether the
user is a premium member (when the value is true) or not (when the value is false). The other invocation
parameter par must be forwarded to the invoked service. For the purposes of this paper, this example is
relevant because if we want to reduce the latency of this function, the best node to schedule it could be
the one that reduces the latency of the invocation of either the service PremiumService or the service
BasicService, depending on whether isPremiumUser is true or false, respectively.

Consider now the following function where differently from the previous version, it is necessary to
call an external service to decide whether we are serving a premium or a basic user.

4 Serverless Scheduling Policies based on Cost Analysis

1 // name: lambda2.miniSL
2 // tag: premUser
3 ( username , par ) => {
4 if( call IsPremiumUser(username)){
5 call PremiumService( par )
6 } else {
7 call BasicService( par )
8 }
9 }

Listing 2: Function with a conditional statement guarded by an invocation to external service.

Notice that, in this case, the first parameter carries an attribute of the user (its name) but it does
not indicate (with a boolean value) whether it is a premium user or not. Instead, the necessary boolean
value is returned by the external service IsPremiumUser that checks the username and returns true only
if that username corresponds to that of a premium user. In this case, it is difficult to predict the best
worker to execute such a function, because the branch that will be selected is not known at function
scheduling time. If the user triggering the event is a premium member, the expected execution time of the
function is the sum of the latencies of the service invocations of IsPremiumUser and PremiumService
while, if the user is not a premium member, the expected execution time is the sum of the latencies of
the services IsPremiumUser and BasicService. As an (over-)approximation of the expected delay, we
could consider the worst execution time, i.e., the sum of the latency of the service IsPremiumUser plus
the maximum between the latencies of the services PremiumService and BasicService. At scheduling
time, we could select the best worker as the one giving the best guarantees in the worst case, e.g., the one
with the best over-approximation.

Consider now a function triggering a sequence of map-reduce jobs.

1 // tag: mapReduce
2 ( jobs , m, r ) => {
3 for(i in range(0, m)) {
4 call Map(jobs , i)
5 for(j in range(0, r)) {
6 call Reduce(jobs , i, j)
7 }
8 }
9 }

Listing 3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce jobs. The number of jobs is indicated by
the parameter m. The “map” phase, which generates m “reduce” subtasks, is implemented by an external
service Map that receives the jobs and the specific index i of the job to be mapped. The “reduce” subtasks
are implemented by an external service Reduce that receives the jobs, the specific index i of the job
under execution, and the specific index j of the “reduce” subtask to be executed — for every i, there are r
such subtasks. In this case, the expected latency of the entire function is given by the sum of m times the
latency of the service Map and of m ⇥ r times the latency of the service Reduce. Given that such latency
could be high, a user could be interested to run the function on a worker, only if the expected overall
latency is below a given threshold.
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[EPS]

G ` e : 0 ; /0 ; /0

[CALL]

G (h) = e G ` S : e0 ; C ; Q

G ` call h(E) S : e+e0 ; C ; Q

[IF-EXP]

G ` E : j G ` S : e0 ; C ; Q G ` S0 : e00 ; C0 ; Q0 if ` fresh

w = var(j,e0,e00)[ var(C,C0) Q00 =


if `(w) = e0 +C [ j ]
if `(w) = e00 +C0 [¬j]

�

G ` if (E) { S } else { S0 } : 0 ; if `(w) ; Q, Q0,Q00

[IF-CALL]

G (h) = e G ` S : e0 ; C ; Q G ` S0 : e00 ; C0 ; Q0

G ` if (call h(E)) { S } else { S0 } : e+max(e0,e00) ; C+C0 ; Q, Q0

[FOR]

G ` E : e G + i : Int ` S : e0 ; C ; Q w = (var(e,e0)[ var(C))\ i

for` fresh Q0 =


for`(i,w) = e0 +C+ for`(i+1,w) [ e � i ]
for`(i, w) = 0 [ i � e+1 ]

�

G ` for (i in range(0,E)){ S } : 0 ; for`(0, w) ; Q, Q0

[PRG]

G ` S : e ; C ; Q w = var(p,e)[ var(C)
main fresh Q0 = main(w) = e+C [ ]

G ` (p) => { S } : Q0, Q

Fig. 3: The rules for deriving cost expressions

– let ¬j (the negation of a Presburger guard j) be the list
of Presburger guards

¬(e � e0) = e0 � e+1
¬(e = e0) = e � e0 +1 ; e0 � e+1
¬(e^e0) = ¬e ; ¬e0

where ; is the list concatenation operator (the list repre-
sents a disjunction of Presburger guards),

– let ¬j = j1 ; · · · ; jm , where ji are Presburger guards,
then

⇣
f (x) = e+Âi20..n fi(ei)

⌘
[¬j ]

def
=

n
f (x) = e+Âi20..n fi(ei) [j j ] | j 2 1..m

o
.

We now comment on the inference rules reported in Fig-
ure 3.2

Rule [CALL] manages invocation of services: the cost of
call h(E) S is the cost of S plus the cost for accessing the
service h.

Rule [IF-EXP] defines the cost of conditionals when the
guard is a Presburger arithmetic expression that can be eval-
uated at function scheduling time. We use a corresponding
cost function, if `, whose name is fresh,3 to indicate that the
cost of the entire conditional statement is either the cost of
the then-branch or the else-branch, depending on whether
the guard is true or false. As discussed above, the use of the
guard ¬j generates a list of equations.

Rule [IF-CALL] defines an upper bound of the cost of
conditionals when the guard is an invocation to a service. At
scheduling time it is not possible to determine whether the

2 We omit rules for expressions E since they are straightforward: they
simply return E if E is in Presburger arithmetics. We notice that no rule
is defined if E is not in Presburger arithmetics. In fact, in these cases, it
is not possible to defrive cost equations.

3 We assume that conditionals have pairwise different line-codes and
` represents the line-code of the if in the source code.

guard is true or false – c.f. the second example in Section 3.
Therefore the cost of a conditional is the maximum between
the cost e0 + C of the then-branch and the one e00 + C0 of
the else-branch, plus the cost e to access to the service in
the guard. However, considering that the expression max(e+
C,e0 + C0) is not a valid right-hand side for the equations
in our cost programs, we take as over-approximation the
expression max(e,e0)+C+C0.

As regards iterations, according to [FOR], its cost is the
invocation of the corresponding function, for`, whose name is
fresh (we assume that iterations have pairwise different line-
codes). The rule adds the counter i to G (please recall that
G + i : Int entails that i /2 dom(G )). In particular, the counter
i is the first formal parameter of for`; the other parameters
are all the variables in e, in notation var(e) plus those in
the invocations C (minus the i). There are two equations for
every iteration: one is the case when i is out-of-range, hence
the cost is 0, the other is when it is in range and the cost is
the one of the body plus the cost of the recursive invocation
of for` with i increased by 1.

The cost of a miniSL program is defined by [PRG]. This
rule defines an equation for the function main and puts this
equation as the first one in the list of equations 4. Once
inferred, we can feed this program to off-the-shelf tools, such
as [3,14], which will compute the cost of the the first function
of the list, i.e. the main function.

As an example, we apply the rules of Figure 3 to the
codes in Listings 1, 2 and 3. Let G (isPremiumUser) = u,
G (par) = v, G (PremiumService) = P and G (BasicService) =
B. For Listing 1 we obtain the cost program

main(u,v,P,B) = if 2(u,P,B) [ ]
if 2(u,P,B) = P [ u = 1 ]
if 2(u,P,B) = B [ u = 0 ]

4 Given that miniSL functions are anonymous, we use the default
name main for the corresponding cost function.
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For Listing 2, let G (username) = u, G (par) = v,
G (IsPremiumUser) = K, G (PremiumService) = P and
G (BasicService) = B. Then the rules of Figure 3 return
the single equation

main(u,v,K,P,B) = K +max(P,B) [ ]

For 3, when G (jobs) = J. G (m) = m, G (r) = r, G (Map) =
M and G (Reduce) = R, the cost program is

main(J,m,r,M,R) = for2(0,m,r,M,R) [ ]
for2(i,m,r,M,R) = M + for4(0,r,R)+

for2(i+1,m,r,M,R) [ m � i ]
for2(i,m,r,M,R) = 0 [ i � m+1 ]

for4( j,r,R) = R+ for4( j +1,r,R) [ r � j ]
for4( j,r,R) = 0 [ j � r +1 ]

The foregoing cost programs can be fed to automatic solvers
such as Pubs [3] and CoFloCo [14]. The evaluation of the
cost program for Listing 1 returns max(P,B) because u is
unknown. On the contrary, if u is known, it is possible to
obtain a more precise evaluation from the solver: if u = 1
it is possible to ask the solver to consider main(1,P,B) and
the solution will be P, while if u = 0 it is possible to ask
the solver to consider main(0,P,B) and the solution will be
B. The evaluation of main(K,P,B) for Listing 2 gives the
expression K + max(P,B), which is exactly what is written
in the equation. This is reasonable because, statically, we
are not aware of the value returned by the invocation of
IsPremiumService. Last, the evaluation of the cost program
for Listing 3 returns the expression m⇥ (M + r ⇥R).

5 From APP to cAPP

As discussed in the Introduction, we propose the new lan-
guage cAPP, for expressing cost-aware function scheduling
policies, by extending the already available language APP.
We start by briefly introducing the APP syntax and constructs,
reported in Figure 4, as found in its first incarnation by De
Palma et al. [13] and then discussing the new constructs we
introduce to handle cost-aware scheduling policies.

5.1 The APP Language

APP scripts are collections of tagged scheduling policies. The
main, mandatory component of any policy (identified by a
policy tag) are the workers therein, i.e., a collection of labels
that identify on which workers the scheduler can allocate the
functions. The assumption is that the environment running
the APP script establishes a 1-to-1 association so that each
worker has a unique, identifying label. A policy associates to
every function a list of one or more blocks, each including

policy tag 2 Identifiers [ {default} worker label 2 Identifiers
n 2 N

app ::= tag

tag ::= policy tag : - block followup?

block ::= workers: [ * | - wrk: worker label ]
(strategy: [ random | platform | best first

| min latency ])?
(invalidate: [ capacity used : n%

| max concurrent invocations: n
| overload
| max latency: n
])?

followup ::= followup: [ default | fail ]

Fig. 4: The APP syntax and, in red, the cAPP extension.

– the worker clause stating on which workers the function
can be scheduled;

– the strategy, an optional parameter that defines the
scheduling followed to select one of the workers of the
block;

– the invalidate condition, optional as well, which deter-
mines when a worker cannot host a function.

When a selected worker is invalid, the scheduler tries to apply
the selection strategy and allocate the function on the rest of
the available workers in the block. If none of the workers of
a block is available, the scheduling moves to the next block.
The last clause, followup, encompasses a whole policy and
defines what to do when no blocks of the policy managed
to allocate the function. When set to fail, the scheduling
of the function fails; when set to default, the scheduling
continues by following the (special) default policy.

The strategy parameter supports the following values:
platform that applies the default selection strategy of the
serverless platform; random that allocates functions stochas-
tically among the workers of the block following a uniform
distribution; best-first that allocates functions on workers
based on their top-down order of appearance in the block.
The options for the invalidate parameter are: overload
that invalidates a worker based on the default invalidation
control of the platform; capacity used that invalidates a
worker if it uses more than a given percentage threshold of
memory; max concurrent invocations that invalidates a
worker if a given number of function invocations are already
currently executed on the worker.

We close this section by extending the example presented
in Figure 1 to illustrate APP, reported below.

db_query:
- workers:

- wrk: W1
- wrk: W2
strategy: best first
invalidate: capacity used: 50%

Fig. 5: Flow followed, from deployment to scheduling, of the functions at Listings 1 and 2.

code of the functions is used to infer the corresponding cost
program. When the functions are invoked, i.e., at schedul-
ing time, we can compute the solution of the cost program,
given the knowledge of the invocation parameters. The knowl-
edge of the invocation parameters allows for a more precise
analysis. For instance, for the function in Listings 1, called
lambda1, it is possible to invoke the cost analyser with either
main(1,v,P,B) or main(0,v,P,B) where P represent the cost
of PremiumService, B the cost of BasicService and the
first parameter is the value of the isPremiumUser parameter.

If the invocation is lambda1(1,v) (first horizontal line in
In Figure 5) then the cost program (represented by the inter-
section point on the left) and the corresponding cAPP policy
to implement the expected scheduling policy are retrieved. At
this point, a cost analyser is used to solve the cost programs
(depicted by the gear). In this case, since the cost expression
is P, which is PremiumService, the scheduling amounts to
(i) estimating the latencies to access to PremiumService
from the considered workers and (ii) choosing the worker
that minimises the foregoing latency. This computation is
highlighted in the rightmost grey window corresponding to
the request lambda1(1,v).

When the request is lambda2(u name,v), the correspond-
ing cost function is main(u name,v,K,P,B), where K is the
cost of the service IsPremiumUser. In this case, the cost
expression is K +max(P,B) Since lambda2.miniSL has the
same tag as lambda1.miniSL, the selected cAPP script is
the same. Therefore the scheduling amounts to minimize
the latencies from the workers W1 and W2 to the services
IsPremiumUser, PremiumService and BasicService ac-

cording to the expression K +max(P,B). This is highlighted
in the rightmost grey window corresponding to the request
lambda2(u name,v).

The controller needs also to be aware of the possibility
of invalidating a worker when the latency to access a service
exceeds a certain threshold. In particular, when max latency
is used in the invalidate clause, workers are not selected if
the computed latency is above the given value. To illustrate
this item, let us consider the cAPP code for the map-reduce
function in Listing 5.

- mapReduce :
- workers:

- wrk: W1
- wrk: W2

strategy: random
invalidate:

max latency: 300

Listing 5: cAPP script for Listing 3.

As visualised in Figure 6, starting from the (top-most)
deployment phase box where we tag the function (//tag:
mapReduce), the cost program is computed, obtaining the
associated cost expression. Then, when a request for the func-
tion is received, the execution of the cAPP policy is triggered,
which selects one of the two workers W1 or W2 at random
and checks their validity following the logic shown at the
bottom of Figure 6, i.e., the cost program is solved and the
parameters m and r are replaced with the latency to contact
the Map and Reduce services from the selected worker, and
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// tag: premUser
( isPremiumUser , par ) => {

...
}

f1 from Listing 1
// tag: premUser
( username , par ) => {

...
}

f2 from Listing 2 - premUser:
- workers:

- wrk: W1
- wrk: W2

strategy: min_latency

cAPP script

main(u,P,B) = if 2(u,P,B) [ ]
if 2(u,P,B) = P [ u = 1 ]
if 2(u,P,B) = B [ u = 0 ]

main(K,P,B) = K +max(P,B)[ ]

Inference of Cost Programs
(cf. Section 3)

Request for f1

W in ( W1, W2 )
where W.latency( PremiumService )
is minimal

Request for f2

W in ( W1, W2 )
where W.latency( IsPremiumUser )
+ max( W.latency( PremiumService ),

W.latency( BasicService ) )
is minimal

Cost Program Solver
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Figure 3: Flow followed, from deployment to scheduling, of the functions at Listings 1 and 2.

where we tag the function (//tag:mapReduce) and we proceed to compute its cost program, obtaining
the associated cost expression. Then, when we receive a request for that function, we trigger the execution
of the cAPP policy, which selects one of the two workers W1 or W2 at random and checks their validity
following the logic shown at the bottom of Figure 4, i.e., we solve the cost program and then compute the
corresponding cost expression by replacing the parameters m and r with the latency to contact the Map
and Reduce services from the selected worker, and possibly invalidate it if the computed value is greater
than 300.

5 Conclusion

We have presented a proposal for an extension of the APP language, called cAPP, to make function
scheduling cost-aware. Concretely, the extension adds new syntactic fragments to APP so that programmers
can govern the scheduling of functions towards those execution nodes that minimise their calculated
latency (e.g., increasing serverless function performance) and avoids running functions on nodes whose
execution time would exceed a maximal response time defined by the user (e.g., enforcing quality-of-
service constraints). The main technical insights behind the extension include the usage of inference rules
to extract cost equations from the source code of the deployed functions and exploiting dedicated solvers
to compute the cost of executing a function, given its code and input parameters.

Growing our proposal into a usable APP extension is manyfold. Steps in that direction include the
definition of a target language used to write serverless functions close to the minimal language from
Section 2 and the implementation of the inference system (cf. Section 3) to extract the cost equations
relative to a given function. Another step regards the implementation of a runtime for cAPP able to
orchestrate both the above-mentioned tool to extract cost equations at function deployment and the solvers
that compute the cost expression at scheduling time. Besides computing costs, the runtime shall also
interact with the workers available in the platform to collect the measures that characterise the costs
sustained by the workers (e.g., the latency endured by a worker when contacting a given service). Proving
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where we tag the function (//tag:mapReduce) and we proceed to compute its cost program, obtaining
the associated cost expression. Then, when we receive a request for that function, we trigger the execution
of the cAPP policy, which selects one of the two workers W1 or W2 at random and checks their validity
following the logic shown at the bottom of Figure 4, i.e., we solve the cost program and then compute the
corresponding cost expression by replacing the parameters m and r with the latency to contact the Map
and Reduce services from the selected worker, and possibly invalidate it if the computed value is greater
than 300.

5 Conclusion

We have presented a proposal for an extension of the APP language, called cAPP, to make function
scheduling cost-aware. Concretely, the extension adds new syntactic fragments to APP so that programmers
can govern the scheduling of functions towards those execution nodes that minimise their calculated
latency (e.g., increasing serverless function performance) and avoids running functions on nodes whose
execution time would exceed a maximal response time defined by the user (e.g., enforcing quality-of-
service constraints). The main technical insights behind the extension include the usage of inference rules
to extract cost equations from the source code of the deployed functions and exploiting dedicated solvers
to compute the cost of executing a function, given its code and input parameters.

Growing our proposal into a usable APP extension is manyfold. Steps in that direction include the
definition of a target language used to write serverless functions close to the minimal language from
Section 2 and the implementation of the inference system (cf. Section 3) to extract the cost equations
relative to a given function. Another step regards the implementation of a runtime for cAPP able to
orchestrate both the above-mentioned tool to extract cost equations at function deployment and the solvers
that compute the cost expression at scheduling time. Besides computing costs, the runtime shall also
interact with the workers available in the platform to collect the measures that characterise the costs
sustained by the workers (e.g., the latency endured by a worker when contacting a given service). Proving

4 Serverless Scheduling Policies based on Cost Analysis

1 // tag: premUser
2 ( username , par ) => {
3 if( call IsPremiumUser( username ) ) {
4 call PremiumService( par )
5 } else {
6 call BasicService( par )
7 }
8 }

Listing 2: Function with a conditional statement guarded by an invocation to external service.

Notice that, in this case, the first parameter carries an attribute of the user (its name) but it does
not indicate (with a boolean value) whether it is a premium user or not. Instead, the necessary boolean
value is returned by the external service IsPremiumUser that checks the username and returns true only
if that username corresponds to that of a premium user. In this case, it is difficult to predict the best
worker to execute such a function, because the branch that will be selected is not known at function
scheduling time. If the user triggering the event is a premium member, the expected execution time of the
function is the sum of the latencies of the service invocations of IsPremiumUser and PremiumService
while, if the user is not a premium member, the expected execution time is the sum of the latencies of
the services IsPremiumUser and BasicService. As an (over-)approximation of the expected delay, we
could consider the worst execution time, i.e., the sum of the latency of the service IsPremiumUser plus
the maximum between the latencies of the services PremiumService and BasicService. At scheduling
time, we could select the best worker as the one giving the best guarantees in the worst case, e.g., the one
with the best over-approximation.

Consider now a function triggering a sequence of map-reduce jobs.

1 // tag: mapReduce
2 ( jobs , m, r ) => {
3 for(i in range(0, m)) {
4 call Map(jobs , i)
5 for(j in range(0, r)) {
6 call Reduce(jobs , i, j)
7 }
8 }
9 }

Listing 3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce jobs. The number of jobs is indicated by
the parameter m. The “map” phase, which generates m “reduce” subtasks, is implemented by an external
service Map that receives the jobs and the specific index i of the job to be mapped. The “reduce” subtasks
are implemented by an external service Reduce that receives the jobs, the specific index i of the job
under execution, and the specific index j of the “reduce” subtask to be executed — for every i, there are r
such subtasks. In this case, the expected latency of the entire function is given by the sum of m times the
latency of the service Map and of m ⇥ r times the latency of the service Reduce. Given that such latency
could be high, a user could be interested to run the function on a worker, only if the expected overall
latency is below a given threshold.

Request for A(1,v)

Request for B(u_name,v)

Request for lambda1(1,v)

Request for lambda2(u_name,v)

G. De Palma et al. 3

p, p0. We also consider a countable set of counters, ranged over by i, j, used as indexes in iteration
statements. Integer numbers are represented by n; service names are represented by h, g, · · · . The syntax
of miniSL is as follows (we use over-lines to denote sequences, e.g., p1, p2 could be an instance of p):

F ::= (p) => { S }
S ::= e | call h(E) S | if (G) { S } else { S } | for (i in range(0,E)){ S }
G ::= E | call h(E)
E ::= n | i | p | E ] E
] ::= + | - | > | == | >= | && | * | /

A function F associates to a sequence of parameters p a statement S which is executed at every
occurrence of the triggering event. Statements include the empty statement e (which is always omitted
when the statement is not empty); calls to external services by means of the call keyword; the conditional
and iteration statements. The guard of a conditional statement could be either a boolean expression or
a call to an external service which, in this case, is expected to return a boolean value. The language
supports standard expressions in which it is possible to use integer numbers and counters. Notice that, in
our simple language, the iteration statement considers an iteration variable ranging from 0 to the value of
an expression E evaluated when the first iteration starts.

In the rest of the paper, we assume all programs to be well-formed so that all names are correctly used,
i.e., counters are declared before they are used and when we use p, such p is an invocation parameter.
Similarly, for each expression used in the range of an iteration construct, we assume that its evaluation
generates an integer, and for each service invocation call h(E), we assume that h is a correct service
name and E is a sequence of expressions generating correct values to be passed to that service. Calls to
services include serverless invocations, which possibly execute on a different worker of the caller.

We illustrate miniSL by means of three examples. As a first example, consider the code in Listing 1
representing the call of a function that selects a functionality based on the characteristic of the invoker.

1 // name: lambda1.miniSL
2 // tag: premUser
3 ( isPremiumUser , par ) => {
4 if( isPremiumUser ) {
5 call PremiumService( par )
6 } else {
7 call BasicService( par )
8 }
9 }

Listing 1: Function with a conditional statement guarded by an expression.

This code may invoke either a PremiumService or a BasicService depending on whether it has been
triggered by a premium user or not. The parameter isPremiumUser is a value indicating whether the
user is a premium member (when the value is true) or not (when the value is false). The other invocation
parameter par must be forwarded to the invoked service. For the purposes of this paper, this example is
relevant because if we want to reduce the latency of this function, the best node to schedule it could be
the one that reduces the latency of the invocation of either the service PremiumService or the service
BasicService, depending on whether isPremiumUser is true or false, respectively.

Consider now the following function where differently from the previous version, it is necessary to
call an external service to decide whether we are serving a premium or a basic user.

4 Serverless Scheduling Policies based on Cost Analysis

1 // name: lambda2.miniSL
2 // tag: premUser
3 ( username , par ) => {
4 if( call IsPremiumUser(username)){
5 call PremiumService( par )
6 } else {
7 call BasicService( par )
8 }
9 }

Listing 2: Function with a conditional statement guarded by an invocation to external service.

Notice that, in this case, the first parameter carries an attribute of the user (its name) but it does
not indicate (with a boolean value) whether it is a premium user or not. Instead, the necessary boolean
value is returned by the external service IsPremiumUser that checks the username and returns true only
if that username corresponds to that of a premium user. In this case, it is difficult to predict the best
worker to execute such a function, because the branch that will be selected is not known at function
scheduling time. If the user triggering the event is a premium member, the expected execution time of the
function is the sum of the latencies of the service invocations of IsPremiumUser and PremiumService
while, if the user is not a premium member, the expected execution time is the sum of the latencies of
the services IsPremiumUser and BasicService. As an (over-)approximation of the expected delay, we
could consider the worst execution time, i.e., the sum of the latency of the service IsPremiumUser plus
the maximum between the latencies of the services PremiumService and BasicService. At scheduling
time, we could select the best worker as the one giving the best guarantees in the worst case, e.g., the one
with the best over-approximation.

Consider now a function triggering a sequence of map-reduce jobs.

1 // tag: mapReduce
2 ( jobs , m, r ) => {
3 for(i in range(0, m)) {
4 call Map(jobs , i)
5 for(j in range(0, r)) {
6 call Reduce(jobs , i, j)
7 }
8 }
9 }

Listing 3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce jobs. The number of jobs is indicated by
the parameter m. The “map” phase, which generates m “reduce” subtasks, is implemented by an external
service Map that receives the jobs and the specific index i of the job to be mapped. The “reduce” subtasks
are implemented by an external service Reduce that receives the jobs, the specific index i of the job
under execution, and the specific index j of the “reduce” subtask to be executed — for every i, there are r
such subtasks. In this case, the expected latency of the entire function is given by the sum of m times the
latency of the service Map and of m ⇥ r times the latency of the service Reduce. Given that such latency
could be high, a user could be interested to run the function on a worker, only if the expected overall
latency is below a given threshold.
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[EPS]

G ` e : 0 ; /0 ; /0

[CALL]

G (h) = e G ` S : e0 ; C ; Q

G ` call h(E) S : e+e0 ; C ; Q

[IF-EXP]

G ` E : j G ` S : e0 ; C ; Q G ` S0 : e00 ; C0 ; Q0 if ` fresh

w = var(j,e0,e00)[ var(C,C0) Q00 =


if `(w) = e0 +C [ j ]
if `(w) = e00 +C0 [¬j]

�

G ` if (E) { S } else { S0 } : 0 ; if `(w) ; Q, Q0,Q00

[IF-CALL]

G (h) = e G ` S : e0 ; C ; Q G ` S0 : e00 ; C0 ; Q0

G ` if (call h(E)) { S } else { S0 } : e+max(e0,e00) ; C+C0 ; Q, Q0

[FOR]

G ` E : e G + i : Int ` S : e0 ; C ; Q w = (var(e,e0)[ var(C))\ i

for` fresh Q0 =


for`(i,w) = e0 +C+ for`(i+1,w) [ e � i ]
for`(i, w) = 0 [ i � e+1 ]

�

G ` for (i in range(0,E)){ S } : 0 ; for`(0, w) ; Q, Q0

[PRG]

G ` S : e ; C ; Q w = var(p,e)[ var(C)
main fresh Q0 = main(w) = e+C [ ]

G ` (p) => { S } : Q0, Q

Fig. 3: The rules for deriving cost expressions

– let ¬j (the negation of a Presburger guard j) be the list
of Presburger guards

¬(e � e0) = e0 � e+1
¬(e = e0) = e � e0 +1 ; e0 � e+1
¬(e^e0) = ¬e ; ¬e0

where ; is the list concatenation operator (the list repre-
sents a disjunction of Presburger guards),

– let ¬j = j1 ; · · · ; jm , where ji are Presburger guards,
then

⇣
f (x) = e+Âi20..n fi(ei)

⌘
[¬j ]

def
=

n
f (x) = e+Âi20..n fi(ei) [j j ] | j 2 1..m

o
.

We now comment on the inference rules reported in Fig-
ure 3.2

Rule [CALL] manages invocation of services: the cost of
call h(E) S is the cost of S plus the cost for accessing the
service h.

Rule [IF-EXP] defines the cost of conditionals when the
guard is a Presburger arithmetic expression that can be eval-
uated at function scheduling time. We use a corresponding
cost function, if `, whose name is fresh,3 to indicate that the
cost of the entire conditional statement is either the cost of
the then-branch or the else-branch, depending on whether
the guard is true or false. As discussed above, the use of the
guard ¬j generates a list of equations.

Rule [IF-CALL] defines an upper bound of the cost of
conditionals when the guard is an invocation to a service. At
scheduling time it is not possible to determine whether the

2 We omit rules for expressions E since they are straightforward: they
simply return E if E is in Presburger arithmetics. We notice that no rule
is defined if E is not in Presburger arithmetics. In fact, in these cases, it
is not possible to defrive cost equations.

3 We assume that conditionals have pairwise different line-codes and
` represents the line-code of the if in the source code.

guard is true or false – c.f. the second example in Section 3.
Therefore the cost of a conditional is the maximum between
the cost e0 + C of the then-branch and the one e00 + C0 of
the else-branch, plus the cost e to access to the service in
the guard. However, considering that the expression max(e+
C,e0 + C0) is not a valid right-hand side for the equations
in our cost programs, we take as over-approximation the
expression max(e,e0)+C+C0.

As regards iterations, according to [FOR], its cost is the
invocation of the corresponding function, for`, whose name is
fresh (we assume that iterations have pairwise different line-
codes). The rule adds the counter i to G (please recall that
G + i : Int entails that i /2 dom(G )). In particular, the counter
i is the first formal parameter of for`; the other parameters
are all the variables in e, in notation var(e) plus those in
the invocations C (minus the i). There are two equations for
every iteration: one is the case when i is out-of-range, hence
the cost is 0, the other is when it is in range and the cost is
the one of the body plus the cost of the recursive invocation
of for` with i increased by 1.

The cost of a miniSL program is defined by [PRG]. This
rule defines an equation for the function main and puts this
equation as the first one in the list of equations 4. Once
inferred, we can feed this program to off-the-shelf tools, such
as [3,14], which will compute the cost of the the first function
of the list, i.e. the main function.

As an example, we apply the rules of Figure 3 to the
codes in Listings 1, 2 and 3. Let G (isPremiumUser) = u,
G (par) = v, G (PremiumService) = P and G (BasicService) =
B. For Listing 1 we obtain the cost program

main(u,v,P,B) = if 2(u,P,B) [ ]
if 2(u,P,B) = P [ u = 1 ]
if 2(u,P,B) = B [ u = 0 ]

4 Given that miniSL functions are anonymous, we use the default
name main for the corresponding cost function.
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For Listing 2, let G (username) = u, G (par) = v,
G (IsPremiumUser) = K, G (PremiumService) = P and
G (BasicService) = B. Then the rules of Figure 3 return
the single equation

main(u,v,K,P,B) = K +max(P,B) [ ]

For 3, when G (jobs) = J. G (m) = m, G (r) = r, G (Map) =
M and G (Reduce) = R, the cost program is

main(J,m,r,M,R) = for2(0,m,r,M,R) [ ]
for2(i,m,r,M,R) = M + for4(0,r,R)+

for2(i+1,m,r,M,R) [ m � i ]
for2(i,m,r,M,R) = 0 [ i � m+1 ]

for4( j,r,R) = R+ for4( j +1,r,R) [ r � j ]
for4( j,r,R) = 0 [ j � r +1 ]

The foregoing cost programs can be fed to automatic solvers
such as Pubs [3] and CoFloCo [14]. The evaluation of the
cost program for Listing 1 returns max(P,B) because u is
unknown. On the contrary, if u is known, it is possible to
obtain a more precise evaluation from the solver: if u = 1
it is possible to ask the solver to consider main(1,P,B) and
the solution will be P, while if u = 0 it is possible to ask
the solver to consider main(0,P,B) and the solution will be
B. The evaluation of main(K,P,B) for Listing 2 gives the
expression K + max(P,B), which is exactly what is written
in the equation. This is reasonable because, statically, we
are not aware of the value returned by the invocation of
IsPremiumService. Last, the evaluation of the cost program
for Listing 3 returns the expression m⇥ (M + r ⇥R).

5 From APP to cAPP

As discussed in the Introduction, we propose the new lan-
guage cAPP, for expressing cost-aware function scheduling
policies, by extending the already available language APP.
We start by briefly introducing the APP syntax and constructs,
reported in Figure 4, as found in its first incarnation by De
Palma et al. [13] and then discussing the new constructs we
introduce to handle cost-aware scheduling policies.

5.1 The APP Language

APP scripts are collections of tagged scheduling policies. The
main, mandatory component of any policy (identified by a
policy tag) are the workers therein, i.e., a collection of labels
that identify on which workers the scheduler can allocate the
functions. The assumption is that the environment running
the APP script establishes a 1-to-1 association so that each
worker has a unique, identifying label. A policy associates to
every function a list of one or more blocks, each including

policy tag 2 Identifiers [ {default} worker label 2 Identifiers
n 2 N

app ::= tag

tag ::= policy tag : - block followup?

block ::= workers: [ * | - wrk: worker label ]
(strategy: [ random | platform | best first

| min latency ])?
(invalidate: [ capacity used : n%

| max concurrent invocations: n
| overload
| max latency: n
])?

followup ::= followup: [ default | fail ]

Fig. 4: The APP syntax and, in red, the cAPP extension.

– the worker clause stating on which workers the function
can be scheduled;

– the strategy, an optional parameter that defines the
scheduling followed to select one of the workers of the
block;

– the invalidate condition, optional as well, which deter-
mines when a worker cannot host a function.

When a selected worker is invalid, the scheduler tries to apply
the selection strategy and allocate the function on the rest of
the available workers in the block. If none of the workers of
a block is available, the scheduling moves to the next block.
The last clause, followup, encompasses a whole policy and
defines what to do when no blocks of the policy managed
to allocate the function. When set to fail, the scheduling
of the function fails; when set to default, the scheduling
continues by following the (special) default policy.

The strategy parameter supports the following values:
platform that applies the default selection strategy of the
serverless platform; random that allocates functions stochas-
tically among the workers of the block following a uniform
distribution; best-first that allocates functions on workers
based on their top-down order of appearance in the block.
The options for the invalidate parameter are: overload
that invalidates a worker based on the default invalidation
control of the platform; capacity used that invalidates a
worker if it uses more than a given percentage threshold of
memory; max concurrent invocations that invalidates a
worker if a given number of function invocations are already
currently executed on the worker.

We close this section by extending the example presented
in Figure 1 to illustrate APP, reported below.

db_query:
- workers:

- wrk: W1
- wrk: W2
strategy: best first
invalidate: capacity used: 50%

Fig. 5: Flow followed, from deployment to scheduling, of the functions at Listings 1 and 2.

code of the functions is used to infer the corresponding cost
program. When the functions are invoked, i.e., at schedul-
ing time, we can compute the solution of the cost program,
given the knowledge of the invocation parameters. The knowl-
edge of the invocation parameters allows for a more precise
analysis. For instance, for the function in Listings 1, called
lambda1, it is possible to invoke the cost analyser with either
main(1,v,P,B) or main(0,v,P,B) where P represent the cost
of PremiumService, B the cost of BasicService and the
first parameter is the value of the isPremiumUser parameter.

If the invocation is lambda1(1,v) (first horizontal line in
In Figure 5) then the cost program (represented by the inter-
section point on the left) and the corresponding cAPP policy
to implement the expected scheduling policy are retrieved. At
this point, a cost analyser is used to solve the cost programs
(depicted by the gear). In this case, since the cost expression
is P, which is PremiumService, the scheduling amounts to
(i) estimating the latencies to access to PremiumService
from the considered workers and (ii) choosing the worker
that minimises the foregoing latency. This computation is
highlighted in the rightmost grey window corresponding to
the request lambda1(1,v).

When the request is lambda2(u name,v), the correspond-
ing cost function is main(u name,v,K,P,B), where K is the
cost of the service IsPremiumUser. In this case, the cost
expression is K +max(P,B) Since lambda2.miniSL has the
same tag as lambda1.miniSL, the selected cAPP script is
the same. Therefore the scheduling amounts to minimize
the latencies from the workers W1 and W2 to the services
IsPremiumUser, PremiumService and BasicService ac-

cording to the expression K +max(P,B). This is highlighted
in the rightmost grey window corresponding to the request
lambda2(u name,v).

The controller needs also to be aware of the possibility
of invalidating a worker when the latency to access a service
exceeds a certain threshold. In particular, when max latency
is used in the invalidate clause, workers are not selected if
the computed latency is above the given value. To illustrate
this item, let us consider the cAPP code for the map-reduce
function in Listing 5.

- mapReduce :
- workers:

- wrk: W1
- wrk: W2

strategy: random
invalidate:

max latency: 300

Listing 5: cAPP script for Listing 3.

As visualised in Figure 6, starting from the (top-most)
deployment phase box where we tag the function (//tag:
mapReduce), the cost program is computed, obtaining the
associated cost expression. Then, when a request for the func-
tion is received, the execution of the cAPP policy is triggered,
which selects one of the two workers W1 or W2 at random
and checks their validity following the logic shown at the
bottom of Figure 6, i.e., the cost program is solved and the
parameters m and r are replaced with the latency to contact
the Map and Reduce services from the selected worker, and

De Palma, G., Giallorenzo, S., Laneve, C., Mauro, J., Trentin, M., & Zavattaro, G. (2024). Leveraging static 
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// tag: premUser
( isPremiumUser , par ) => {

...
}

f1 from Listing 1
// tag: premUser
( username , par ) => {

...
}

f2 from Listing 2 - premUser:
- workers:

- wrk: W1
- wrk: W2

strategy: min_latency

cAPP script

main(u,P,B) = if 2(u,P,B) [ ]
if 2(u,P,B) = P [ u = 1 ]
if 2(u,P,B) = B [ u = 0 ]

main(K,P,B) = K +max(P,B)[ ]

Inference of Cost Programs
(cf. Section 3)

Request for f1

W in ( W1, W2 )
where W.latency( PremiumService )
is minimal

Request for f2

W in ( W1, W2 )
where W.latency( IsPremiumUser )
+ max( W.latency( PremiumService ),

W.latency( BasicService ) )
is minimal
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Figure 3: Flow followed, from deployment to scheduling, of the functions at Listings 1 and 2.

where we tag the function (//tag:mapReduce) and we proceed to compute its cost program, obtaining
the associated cost expression. Then, when we receive a request for that function, we trigger the execution
of the cAPP policy, which selects one of the two workers W1 or W2 at random and checks their validity
following the logic shown at the bottom of Figure 4, i.e., we solve the cost program and then compute the
corresponding cost expression by replacing the parameters m and r with the latency to contact the Map
and Reduce services from the selected worker, and possibly invalidate it if the computed value is greater
than 300.

5 Conclusion

We have presented a proposal for an extension of the APP language, called cAPP, to make function
scheduling cost-aware. Concretely, the extension adds new syntactic fragments to APP so that programmers
can govern the scheduling of functions towards those execution nodes that minimise their calculated
latency (e.g., increasing serverless function performance) and avoids running functions on nodes whose
execution time would exceed a maximal response time defined by the user (e.g., enforcing quality-of-
service constraints). The main technical insights behind the extension include the usage of inference rules
to extract cost equations from the source code of the deployed functions and exploiting dedicated solvers
to compute the cost of executing a function, given its code and input parameters.

Growing our proposal into a usable APP extension is manyfold. Steps in that direction include the
definition of a target language used to write serverless functions close to the minimal language from
Section 2 and the implementation of the inference system (cf. Section 3) to extract the cost equations
relative to a given function. Another step regards the implementation of a runtime for cAPP able to
orchestrate both the above-mentioned tool to extract cost equations at function deployment and the solvers
that compute the cost expression at scheduling time. Besides computing costs, the runtime shall also
interact with the workers available in the platform to collect the measures that characterise the costs
sustained by the workers (e.g., the latency endured by a worker when contacting a given service). Proving
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Growing our proposal into a usable APP extension is manyfold. Steps in that direction include the
definition of a target language used to write serverless functions close to the minimal language from
Section 2 and the implementation of the inference system (cf. Section 3) to extract the cost equations
relative to a given function. Another step regards the implementation of a runtime for cAPP able to
orchestrate both the above-mentioned tool to extract cost equations at function deployment and the solvers
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sustained by the workers (e.g., the latency endured by a worker when contacting a given service). Proving
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1 // tag: premUser
2 ( username , par ) => {
3 if( call IsPremiumUser( username ) ) {
4 call PremiumService( par )
5 } else {
6 call BasicService( par )
7 }
8 }

Listing 2: Function with a conditional statement guarded by an invocation to external service.

Notice that, in this case, the first parameter carries an attribute of the user (its name) but it does
not indicate (with a boolean value) whether it is a premium user or not. Instead, the necessary boolean
value is returned by the external service IsPremiumUser that checks the username and returns true only
if that username corresponds to that of a premium user. In this case, it is difficult to predict the best
worker to execute such a function, because the branch that will be selected is not known at function
scheduling time. If the user triggering the event is a premium member, the expected execution time of the
function is the sum of the latencies of the service invocations of IsPremiumUser and PremiumService
while, if the user is not a premium member, the expected execution time is the sum of the latencies of
the services IsPremiumUser and BasicService. As an (over-)approximation of the expected delay, we
could consider the worst execution time, i.e., the sum of the latency of the service IsPremiumUser plus
the maximum between the latencies of the services PremiumService and BasicService. At scheduling
time, we could select the best worker as the one giving the best guarantees in the worst case, e.g., the one
with the best over-approximation.

Consider now a function triggering a sequence of map-reduce jobs.

1 // tag: mapReduce
2 ( jobs , m, r ) => {
3 for(i in range(0, m)) {
4 call Map(jobs , i)
5 for(j in range(0, r)) {
6 call Reduce(jobs , i, j)
7 }
8 }
9 }

Listing 3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce jobs. The number of jobs is indicated by
the parameter m. The “map” phase, which generates m “reduce” subtasks, is implemented by an external
service Map that receives the jobs and the specific index i of the job to be mapped. The “reduce” subtasks
are implemented by an external service Reduce that receives the jobs, the specific index i of the job
under execution, and the specific index j of the “reduce” subtask to be executed — for every i, there are r
such subtasks. In this case, the expected latency of the entire function is given by the sum of m times the
latency of the service Map and of m ⇥ r times the latency of the service Reduce. Given that such latency
could be high, a user could be interested to run the function on a worker, only if the expected overall
latency is below a given threshold.

Request for A(1,v)

Request for B(u_name,v)

Request for lambda1(1,v)

Request for lambda2(u_name,v)
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p, p0. We also consider a countable set of counters, ranged over by i, j, used as indexes in iteration
statements. Integer numbers are represented by n; service names are represented by h, g, · · · . The syntax
of miniSL is as follows (we use over-lines to denote sequences, e.g., p1, p2 could be an instance of p):

F ::= (p) => { S }
S ::= e | call h(E) S | if (G) { S } else { S } | for (i in range(0,E)){ S }
G ::= E | call h(E)
E ::= n | i | p | E ] E
] ::= + | - | > | == | >= | && | * | /

A function F associates to a sequence of parameters p a statement S which is executed at every
occurrence of the triggering event. Statements include the empty statement e (which is always omitted
when the statement is not empty); calls to external services by means of the call keyword; the conditional
and iteration statements. The guard of a conditional statement could be either a boolean expression or
a call to an external service which, in this case, is expected to return a boolean value. The language
supports standard expressions in which it is possible to use integer numbers and counters. Notice that, in
our simple language, the iteration statement considers an iteration variable ranging from 0 to the value of
an expression E evaluated when the first iteration starts.

In the rest of the paper, we assume all programs to be well-formed so that all names are correctly used,
i.e., counters are declared before they are used and when we use p, such p is an invocation parameter.
Similarly, for each expression used in the range of an iteration construct, we assume that its evaluation
generates an integer, and for each service invocation call h(E), we assume that h is a correct service
name and E is a sequence of expressions generating correct values to be passed to that service. Calls to
services include serverless invocations, which possibly execute on a different worker of the caller.

We illustrate miniSL by means of three examples. As a first example, consider the code in Listing 1
representing the call of a function that selects a functionality based on the characteristic of the invoker.

1 // name: lambda1.miniSL
2 // tag: premUser
3 ( isPremiumUser , par ) => {
4 if( isPremiumUser ) {
5 call PremiumService( par )
6 } else {
7 call BasicService( par )
8 }
9 }

Listing 1: Function with a conditional statement guarded by an expression.

This code may invoke either a PremiumService or a BasicService depending on whether it has been
triggered by a premium user or not. The parameter isPremiumUser is a value indicating whether the
user is a premium member (when the value is true) or not (when the value is false). The other invocation
parameter par must be forwarded to the invoked service. For the purposes of this paper, this example is
relevant because if we want to reduce the latency of this function, the best node to schedule it could be
the one that reduces the latency of the invocation of either the service PremiumService or the service
BasicService, depending on whether isPremiumUser is true or false, respectively.

Consider now the following function where differently from the previous version, it is necessary to
call an external service to decide whether we are serving a premium or a basic user.

4 Serverless Scheduling Policies based on Cost Analysis

1 // name: lambda2.miniSL
2 // tag: premUser
3 ( username , par ) => {
4 if( call IsPremiumUser(username)){
5 call PremiumService( par )
6 } else {
7 call BasicService( par )
8 }
9 }

Listing 2: Function with a conditional statement guarded by an invocation to external service.

Notice that, in this case, the first parameter carries an attribute of the user (its name) but it does
not indicate (with a boolean value) whether it is a premium user or not. Instead, the necessary boolean
value is returned by the external service IsPremiumUser that checks the username and returns true only
if that username corresponds to that of a premium user. In this case, it is difficult to predict the best
worker to execute such a function, because the branch that will be selected is not known at function
scheduling time. If the user triggering the event is a premium member, the expected execution time of the
function is the sum of the latencies of the service invocations of IsPremiumUser and PremiumService
while, if the user is not a premium member, the expected execution time is the sum of the latencies of
the services IsPremiumUser and BasicService. As an (over-)approximation of the expected delay, we
could consider the worst execution time, i.e., the sum of the latency of the service IsPremiumUser plus
the maximum between the latencies of the services PremiumService and BasicService. At scheduling
time, we could select the best worker as the one giving the best guarantees in the worst case, e.g., the one
with the best over-approximation.

Consider now a function triggering a sequence of map-reduce jobs.

1 // tag: mapReduce
2 ( jobs , m, r ) => {
3 for(i in range(0, m)) {
4 call Map(jobs , i)
5 for(j in range(0, r)) {
6 call Reduce(jobs , i, j)
7 }
8 }
9 }

Listing 3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce jobs. The number of jobs is indicated by
the parameter m. The “map” phase, which generates m “reduce” subtasks, is implemented by an external
service Map that receives the jobs and the specific index i of the job to be mapped. The “reduce” subtasks
are implemented by an external service Reduce that receives the jobs, the specific index i of the job
under execution, and the specific index j of the “reduce” subtask to be executed — for every i, there are r
such subtasks. In this case, the expected latency of the entire function is given by the sum of m times the
latency of the service Map and of m ⇥ r times the latency of the service Reduce. Given that such latency
could be high, a user could be interested to run the function on a worker, only if the expected overall
latency is below a given threshold.
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[EPS]

G ` e : 0 ; /0 ; /0

[CALL]

G (h) = e G ` S : e0 ; C ; Q

G ` call h(E) S : e+e0 ; C ; Q

[IF-EXP]

G ` E : j G ` S : e0 ; C ; Q G ` S0 : e00 ; C0 ; Q0 if ` fresh

w = var(j,e0,e00)[ var(C,C0) Q00 =


if `(w) = e0 +C [ j ]
if `(w) = e00 +C0 [¬j]

�

G ` if (E) { S } else { S0 } : 0 ; if `(w) ; Q, Q0,Q00

[IF-CALL]

G (h) = e G ` S : e0 ; C ; Q G ` S0 : e00 ; C0 ; Q0

G ` if (call h(E)) { S } else { S0 } : e+max(e0,e00) ; C+C0 ; Q, Q0

[FOR]

G ` E : e G + i : Int ` S : e0 ; C ; Q w = (var(e,e0)[ var(C))\ i

for` fresh Q0 =


for`(i,w) = e0 +C+ for`(i+1,w) [ e � i ]
for`(i, w) = 0 [ i � e+1 ]

�

G ` for (i in range(0,E)){ S } : 0 ; for`(0, w) ; Q, Q0

[PRG]

G ` S : e ; C ; Q w = var(p,e)[ var(C)
main fresh Q0 = main(w) = e+C [ ]

G ` (p) => { S } : Q0, Q

Fig. 3: The rules for deriving cost expressions

– let ¬j (the negation of a Presburger guard j) be the list
of Presburger guards

¬(e � e0) = e0 � e+1
¬(e = e0) = e � e0 +1 ; e0 � e+1
¬(e^e0) = ¬e ; ¬e0

where ; is the list concatenation operator (the list repre-
sents a disjunction of Presburger guards),

– let ¬j = j1 ; · · · ; jm , where ji are Presburger guards,
then

⇣
f (x) = e+Âi20..n fi(ei)

⌘
[¬j ]

def
=

n
f (x) = e+Âi20..n fi(ei) [j j ] | j 2 1..m

o
.

We now comment on the inference rules reported in Fig-
ure 3.2

Rule [CALL] manages invocation of services: the cost of
call h(E) S is the cost of S plus the cost for accessing the
service h.

Rule [IF-EXP] defines the cost of conditionals when the
guard is a Presburger arithmetic expression that can be eval-
uated at function scheduling time. We use a corresponding
cost function, if `, whose name is fresh,3 to indicate that the
cost of the entire conditional statement is either the cost of
the then-branch or the else-branch, depending on whether
the guard is true or false. As discussed above, the use of the
guard ¬j generates a list of equations.

Rule [IF-CALL] defines an upper bound of the cost of
conditionals when the guard is an invocation to a service. At
scheduling time it is not possible to determine whether the

2 We omit rules for expressions E since they are straightforward: they
simply return E if E is in Presburger arithmetics. We notice that no rule
is defined if E is not in Presburger arithmetics. In fact, in these cases, it
is not possible to defrive cost equations.

3 We assume that conditionals have pairwise different line-codes and
` represents the line-code of the if in the source code.

guard is true or false – c.f. the second example in Section 3.
Therefore the cost of a conditional is the maximum between
the cost e0 + C of the then-branch and the one e00 + C0 of
the else-branch, plus the cost e to access to the service in
the guard. However, considering that the expression max(e+
C,e0 + C0) is not a valid right-hand side for the equations
in our cost programs, we take as over-approximation the
expression max(e,e0)+C+C0.

As regards iterations, according to [FOR], its cost is the
invocation of the corresponding function, for`, whose name is
fresh (we assume that iterations have pairwise different line-
codes). The rule adds the counter i to G (please recall that
G + i : Int entails that i /2 dom(G )). In particular, the counter
i is the first formal parameter of for`; the other parameters
are all the variables in e, in notation var(e) plus those in
the invocations C (minus the i). There are two equations for
every iteration: one is the case when i is out-of-range, hence
the cost is 0, the other is when it is in range and the cost is
the one of the body plus the cost of the recursive invocation
of for` with i increased by 1.

The cost of a miniSL program is defined by [PRG]. This
rule defines an equation for the function main and puts this
equation as the first one in the list of equations 4. Once
inferred, we can feed this program to off-the-shelf tools, such
as [3,14], which will compute the cost of the the first function
of the list, i.e. the main function.

As an example, we apply the rules of Figure 3 to the
codes in Listings 1, 2 and 3. Let G (isPremiumUser) = u,
G (par) = v, G (PremiumService) = P and G (BasicService) =
B. For Listing 1 we obtain the cost program

main(u,v,P,B) = if 2(u,P,B) [ ]
if 2(u,P,B) = P [ u = 1 ]
if 2(u,P,B) = B [ u = 0 ]

4 Given that miniSL functions are anonymous, we use the default
name main for the corresponding cost function.
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For Listing 2, let G (username) = u, G (par) = v,
G (IsPremiumUser) = K, G (PremiumService) = P and
G (BasicService) = B. Then the rules of Figure 3 return
the single equation

main(u,v,K,P,B) = K +max(P,B) [ ]

For 3, when G (jobs) = J. G (m) = m, G (r) = r, G (Map) =
M and G (Reduce) = R, the cost program is

main(J,m,r,M,R) = for2(0,m,r,M,R) [ ]
for2(i,m,r,M,R) = M + for4(0,r,R)+

for2(i+1,m,r,M,R) [ m � i ]
for2(i,m,r,M,R) = 0 [ i � m+1 ]

for4( j,r,R) = R+ for4( j +1,r,R) [ r � j ]
for4( j,r,R) = 0 [ j � r +1 ]

The foregoing cost programs can be fed to automatic solvers
such as Pubs [3] and CoFloCo [14]. The evaluation of the
cost program for Listing 1 returns max(P,B) because u is
unknown. On the contrary, if u is known, it is possible to
obtain a more precise evaluation from the solver: if u = 1
it is possible to ask the solver to consider main(1,P,B) and
the solution will be P, while if u = 0 it is possible to ask
the solver to consider main(0,P,B) and the solution will be
B. The evaluation of main(K,P,B) for Listing 2 gives the
expression K + max(P,B), which is exactly what is written
in the equation. This is reasonable because, statically, we
are not aware of the value returned by the invocation of
IsPremiumService. Last, the evaluation of the cost program
for Listing 3 returns the expression m⇥ (M + r ⇥R).

5 From APP to cAPP

As discussed in the Introduction, we propose the new lan-
guage cAPP, for expressing cost-aware function scheduling
policies, by extending the already available language APP.
We start by briefly introducing the APP syntax and constructs,
reported in Figure 4, as found in its first incarnation by De
Palma et al. [13] and then discussing the new constructs we
introduce to handle cost-aware scheduling policies.

5.1 The APP Language

APP scripts are collections of tagged scheduling policies. The
main, mandatory component of any policy (identified by a
policy tag) are the workers therein, i.e., a collection of labels
that identify on which workers the scheduler can allocate the
functions. The assumption is that the environment running
the APP script establishes a 1-to-1 association so that each
worker has a unique, identifying label. A policy associates to
every function a list of one or more blocks, each including

policy tag 2 Identifiers [ {default} worker label 2 Identifiers
n 2 N

app ::= tag

tag ::= policy tag : - block followup?

block ::= workers: [ * | - wrk: worker label ]
(strategy: [ random | platform | best first

| min latency ])?
(invalidate: [ capacity used : n%

| max concurrent invocations: n
| overload
| max latency: n
])?

followup ::= followup: [ default | fail ]

Fig. 4: The APP syntax and, in red, the cAPP extension.

– the worker clause stating on which workers the function
can be scheduled;

– the strategy, an optional parameter that defines the
scheduling followed to select one of the workers of the
block;

– the invalidate condition, optional as well, which deter-
mines when a worker cannot host a function.

When a selected worker is invalid, the scheduler tries to apply
the selection strategy and allocate the function on the rest of
the available workers in the block. If none of the workers of
a block is available, the scheduling moves to the next block.
The last clause, followup, encompasses a whole policy and
defines what to do when no blocks of the policy managed
to allocate the function. When set to fail, the scheduling
of the function fails; when set to default, the scheduling
continues by following the (special) default policy.

The strategy parameter supports the following values:
platform that applies the default selection strategy of the
serverless platform; random that allocates functions stochas-
tically among the workers of the block following a uniform
distribution; best-first that allocates functions on workers
based on their top-down order of appearance in the block.
The options for the invalidate parameter are: overload
that invalidates a worker based on the default invalidation
control of the platform; capacity used that invalidates a
worker if it uses more than a given percentage threshold of
memory; max concurrent invocations that invalidates a
worker if a given number of function invocations are already
currently executed on the worker.

We close this section by extending the example presented
in Figure 1 to illustrate APP, reported below.

db_query:
- workers:

- wrk: W1
- wrk: W2
strategy: best first
invalidate: capacity used: 50%

Fig. 5: Flow followed, from deployment to scheduling, of the functions at Listings 1 and 2.

code of the functions is used to infer the corresponding cost
program. When the functions are invoked, i.e., at schedul-
ing time, we can compute the solution of the cost program,
given the knowledge of the invocation parameters. The knowl-
edge of the invocation parameters allows for a more precise
analysis. For instance, for the function in Listings 1, called
lambda1, it is possible to invoke the cost analyser with either
main(1,v,P,B) or main(0,v,P,B) where P represent the cost
of PremiumService, B the cost of BasicService and the
first parameter is the value of the isPremiumUser parameter.

If the invocation is lambda1(1,v) (first horizontal line in
In Figure 5) then the cost program (represented by the inter-
section point on the left) and the corresponding cAPP policy
to implement the expected scheduling policy are retrieved. At
this point, a cost analyser is used to solve the cost programs
(depicted by the gear). In this case, since the cost expression
is P, which is PremiumService, the scheduling amounts to
(i) estimating the latencies to access to PremiumService
from the considered workers and (ii) choosing the worker
that minimises the foregoing latency. This computation is
highlighted in the rightmost grey window corresponding to
the request lambda1(1,v).

When the request is lambda2(u name,v), the correspond-
ing cost function is main(u name,v,K,P,B), where K is the
cost of the service IsPremiumUser. In this case, the cost
expression is K +max(P,B) Since lambda2.miniSL has the
same tag as lambda1.miniSL, the selected cAPP script is
the same. Therefore the scheduling amounts to minimize
the latencies from the workers W1 and W2 to the services
IsPremiumUser, PremiumService and BasicService ac-

cording to the expression K +max(P,B). This is highlighted
in the rightmost grey window corresponding to the request
lambda2(u name,v).

The controller needs also to be aware of the possibility
of invalidating a worker when the latency to access a service
exceeds a certain threshold. In particular, when max latency
is used in the invalidate clause, workers are not selected if
the computed latency is above the given value. To illustrate
this item, let us consider the cAPP code for the map-reduce
function in Listing 5.

- mapReduce :
- workers:

- wrk: W1
- wrk: W2

strategy: random
invalidate:

max latency: 300

Listing 5: cAPP script for Listing 3.

As visualised in Figure 6, starting from the (top-most)
deployment phase box where we tag the function (//tag:
mapReduce), the cost program is computed, obtaining the
associated cost expression. Then, when a request for the func-
tion is received, the execution of the cAPP policy is triggered,
which selects one of the two workers W1 or W2 at random
and checks their validity following the logic shown at the
bottom of Figure 6, i.e., the cost program is solved and the
parameters m and r are replaced with the latency to contact
the Map and Reduce services from the selected worker, and

Also, max_latency: n 
for invalidate
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FIGURE 1. FunLess’ Architecture and function lifecycle schema.

• edge-only : only edge devices, one hosts the
core/controller of the platform and one acts as a
worker, without Kubernetes;

• cloud-bare-edge: the core/controller of the plat-
form is in a cloud node and the two edge devices
act as workers, without Kubernetes;

• cloud-edge: same as cloud-bare-edge, with Ku-
bernetes;

• cloud-only : only cloud nodes, one hosts the
core/controller and three act as workers, with
Kubernetes.

Benchmarks For all configurations, we collect the
latencies of all platforms using the same set of bench-
marks, drawn from the Serverless Benchmark Suite
(SeBS) [12], including an additional compute-intensive
benchmark (matrix multiplication), inspired by Gack-
statter et al. [9]. We measure memory footprints via
a simple “hello world” function (described later).

The functions (1–3 from SeBS) are written in Go
and JavaScript (JS) since these are the only officially
supported languages by all the platforms, and include:

1) sleep (JS), waits 3 seconds and returns a fixed
response (“Slept for 3 seconds”). This bench-
mark tests a platform’s capability of handling
multiple functions running for several seconds
and its requests queuing-management process.

2) network-benchmark (Go), sends 16 HTTP re-
quests with a timestamp and uploads this infor-
mation to a cloud bucket. This test tracks how
long each HTTP request takes to complete.

3) server-reply (Go), sends a message to a server
and waits for a reply, measuring the performance
of the network stack and the latency of the plat-
form w.r.t. the functions complete execution.

4) matrixMult (JS), multiplies two 102 square matri-
ces and returns its result. It measures the perfor-
mance of handling compute-intensive functions.

For each platform, we define and build the functions
following the approach suggested by their respective
documentation. For FunLess, we compile JS using a
customised javy10 variant and Go using TinyGo11. Both
compilers create a binary with a language-specific
wrapper that performs input and output parsing at
function invocation, simplifying the interaction with the
Worker component (for JS, via javy’s customisation).

We invoke the functions in parallel using JMeter12,
measuring the latency between request delivery to
the platform and the reception of the response—for
network-benchmark we perform sequential invocations
to avoid issues from parallel bucket accesses.

Given the stable pattern of sleep, we use 4 parallel
threads each sending 25 sequential requests (100
in total). For server-reply and matrixMult, we run 4
parallel threads, each sending 200 sequential requests
(800 in total). For network-benchmark, we issue 50
sequential requests, each sending 16 HTTPS requests
(800 in total). We repeat each benchmark 5 times.

We also track the memory usage on the edge
devices by invoking a simple function. Namely, we
write a “hello world” JS function, dubbed hellojs, which
parses the input parameters and returns a string. We
invoke the function continuously with 4 parallel threads
for 5 minutes (i.e., each thread issues the next request
after it receives the response from the previous one),

10https://github.com/bytecodealliance/javy/.
11https://tinygo.org/.
12https://jmeter.apache.org/.
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FIGURE 2. Plots a , c , e , g show the cumulative distribution of the latencies under the cloud-edge configuration of resp. the
sleep, network-benchmark, server-reply and matrixMult benchmarks; b , d , f , and h show the resp. performance under
the cloud-only configuration—plots i and j show the matrixMult benchmarks but using a Rust variant of the function for
FunLess (not used for comparison). Plot k shows the memory consumption of the hellojs benchmark on a Raspberry Pi 3B+.

one component (the core/controller) of the platform, we
comment on this plot line at the end of the section to
avoid mixing its description with the ones comparing
FunLess against the alternatives.

From the results, Fission requires the highest
amount of memory—a consequence of the container
pool used by the platform to reduce cold starts. While
FunLess-k8s is the second-highest for memory occu-
pancy (due to the stacking of the BEAM, Docker, and
Kubernetes runtimes), FunLess-bare-edge requires
the least amount of memory out of all the platforms
(on average ca. 438 MB). Intuitively, this configuration
can reach such a low memory footprint because it
omits the overhead due to containers and container
orchestration. While FunLess allows one to deploy
the platform without the support of containers and
container orchestrators, all the considered alternatives
heavily rely on the latter, making it unfeasible to avoid
their usage and prevent the overhead they generate.
On the contrary, the deployment flexibility afforded by
FunLess allows one to have a functioning Worker run-
ning with minimal overhead (e.g., that of the underlying

operating system).

Looking at the plot line of FunLess’ Core compo-
nent, labelled FunLess-edge-only (core node) in k ,
the Core uses around 620 MB, including the operat-
ing system, the database (Postgres), the monitoring
service (Prometheus) and Docker, for an additional
memory overhead of ca. 450MB. One could further
reduce FunLess’ memory footprint by deploying the
whole stack without Docker, but the platform makes
it feasible to afford containers for the edge setting.

We close our comparison by contrasting the size of
the function artefacts of the four benchmarks under the
considered alternatives. Specifically, for both KNative
and OpenFaaS we measure the size of the container-
ised functions they use for function deployment, which
respectively average to 47.94MB (26.84 stdev) and
20.63MB (11.41 stdev). Since Fission injects functions
into “environment” containers for their execution at
runtime, we do not have function artefacts, and we
take the size of these containers as a lower bound,

6 Publication Title Month 2024
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Figure 2: An example of the proposed overlay network.

the network.345

3.1. Rationale behind our two-layer approach346

The reasoning behind our two-layer approach comes from the fact that347

we want to separate the scheduling concerns from the operations for network348

connectivity, which are automatic and invisible to the users.349

The gossiping layer builds directly on the physical plane, to assemble a350

view of all the drones, performing distributed monitoring of their status.351

Given the low level of abstraction of this protocol and its relative inde-352

pendence w.r.t. the task of scheduling functions, we avoid to logically add353

scheduling requests to the information travelling at this level.354

In the design of the scheduling layer, we capture the fact that different355

functions can require different amounts and kinds of resources, depending on356

the nature of the task they need to accomplish. This characteristic is a strong357

departing point between classical serverless computing and our proposal.358

Indeed, most serverless platforms define an arbitrary, hard-coded logic for the359

scheduling of functions, assuming that all the nodes that make up the cluster360

12
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Hierarchical Scheduling
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Figure 3: Example of hierarchical scheduling, scheduling layer.

of available targets for the execution of functions are functionally equal. We361

argue that, in ad-hoc networks, this assumption is unrealistic, since elements362

such as the position of the drone and the hardware it carries (e.g., some363

functions might require a GPU while others might need camera access, etc.)364

can determine the successful execution of a function. Therefore, we associate365

each function with a specific policy that informs the Base Station and the366

intervening drones on the requirements of the function under scheduling.367

3.2. Hierarchical vs Progressive Scheduling368

While associating a function with its scheduling policy helps users target369

the correct drones for executing the functions, lowering errors and increasing370

efficiency, we notice that, depending on the state of the network, the sys-371

tem can decide on which drone(s) to place a function in two main ways: a372

hierarchical and a progressive one.373

In the first case, hierarchical, one can assume that the network topol-374

ogy is relatively stable — e.g., drones move slowly w.r.t. the propagation of375

messages — so that the Base Station has up-to-date information about the376

status of the drones to specify which drone(s) shall run the function under377

scheduling, leaving to the other nodes that connect the target drone to the378

Base Station (if any) the task of (efficiently) delivering this request. We rep-379

resent this case in Figure 3. In the figure, we use the notation (f, a,D) to380

indicate a message for scheduling function f on drone D, following the pol-381

icy a. Notice that the request sent by the platform’s user, which reaches the382

Base Station (from the left, in Figure 3) does not indicate a target. Indeed,383

13
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Progressive Scheduling
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Figure 4: Example of progressive scheduling, scheduling layer.

while the user ignores the composition and configuration of the network of384

drones, it defines properties in the companion policy useful to identify valid385

executors of the function. As part of the hierarchical scheduling, it is the386

Base Station that decides on which drone to schedule the function. More387

precisely, while the typical use case for function execution is individual (one388

function, one execution node), in ad-hoc networks the users can require the389

execution of the same function on multiple drones, like, as presented in our390

case study from Section 1, when scheduling a function that needs to check391

for fires on all the areas covered by the drones of the network. As discussed392

in Section 3.3, the language for policies that we provide to users allows them393

to express the possibility of targeting multiple drones.394

For simplicity, above and in the reminder of the section, we preserve the395

same notation f for functions in messages. However, we assume that the396

messages between the Base Station and the drones not only carry the code397

of the function as sent by the user but also a function instance identifier fid398

defined by the Base Station to keep track of the function’s lifecycle.399

In the second case, progressive, one can assume that the network is highly400

dynamic, so that the Base Station cannot construct a reliable representation401

of the status of the network based on the gossiping information. Since the402

Base Station cannot reliably identify the targets to execute the function, it403

uses the information it has to “push” the request in a direction that likely404

includes a target able to run the function. Hence, the Base Station does not405

indicate which drone shall run the function and rather forwards the request406

to the drones it can directly contact that lay in the target direction. In turn,407

14
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Offloading
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Figure 5: Example of function execution offloading, scheduling layer.

Function Execution Offloading. Another important trait of our proposal is511

that users can indicate whether a drone can offload the execution of a function512

to some computation node outside the drone network. When a user specifies513

that the target drone can offload function execution, they can define a piece514

of data that might be on the drone and that the function requires for its515

execution — this behaviour is typical of workflows where chains of functions516

manipulate the data found in some repository, which, in this context, is the517

local cache of drones. Thus, if the drone decides to offload the execution518

of a function, e.g., due to limited execution capacity, it retrieves the data519

indicated by the user (e.g., querying its local key-value data storage) and520

sends an “offload” message to the Base Station that carries both the code of521

the function and the data it needs to run on.522

As an example, depicted in Figure 5, consider function f , which needs523

to run within a certain location to gather some sensory data, like humidity524

and light irradiation. In the figure, using hierarchical scheduling, the Base525

Station determines that D is the target drone, issuing the placement of that526

function with the message (f, a,D). However, when the message reaches527

D, the drone realises it cannot run the function, e.g., because its current528

workload level does not afford it. Since the scheduling policy a specifies that529

D can offload the execution of this function, D sends back to the Base Station530

a message (f, a, �)3, where � carries the possible data found on D useful to531

3
From brevity, we assume that drones identifiers D1, ..., Dn and data, as contained

in �, belong to distinct domains, so that the drones and Base Station can distinguish

the nature of the message they receive. In implementations, there is no need for such

18
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Figure 1: Depiction of the Fire Detection and Response case study main phases: a) Fire

Detection, b) Survivor Location, and c) Real-Time Emergency Response Coordination.

Keywords: Unmanned Aerial Vehicles (UAVs), Serverless Computing,
Distributed Function-as-a-Service (FaaS) Scheduling, FaaS Scheduling
Language, Overlay Networks

1. Introduction1

The proliferation of unmanned aerial vehicles (UAVs), or drones, in civil-2

ian and commercial applications has sparked significant interest in developing3

efficient communication and computation frameworks for such decentralised,4

ad-hoc wireless networks, where each node participates in routing by for-5

warding data for others [1]. As these networks become increasingly com-6

plex, traditional computing architectures struggle to meet the demanding7

requirements of real-time data processing, dynamic resource allocation, and8

mission-critical operations [2].9

Case Study and Motivating Example. We illustrate an example of such highly10

dynamic systems with a running case study, modelling a multiphase Fire11

Detection and Response scenario. We represent the phases in Figure 1, and12

comment on them below.13

As part of its responsibilities, the agency managing a natural area actively14

monitors various potential threats to the environment. Among these, fire15

2
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AHAPP

Listing 1: ScanFireAlert policy.

targets: all
attributes:
device: { camera, gpu }

Listing 2: AnalysePeopleScan policy.

targets: all
affinity: { ScanPeople }
offload: ScanPeopleData

Listing 3: ScanPeople policy.

targets: all
attributes:
position: { range: 100,
lat: X, lon: Y, alt: Z }

device: {
camera
gpu
rotors: { lock: true }

}

refine the deployment of their functions by specifying the prioritisation logic725

the scheduler should follow when choosing among equally valid targets. In726

this way, users can orient the deployment of their functions according to cus-727

tom rules, e.g., by prioritising low-load or high-energy devices or minimising728

latency through geographically-aware scheduling.729

The values for this option are position (closer), loadavg (lower) and730

available (higher) energy, memory, and storage. When defining the strategy,731

the user provides an exclusion order for ranking the possible candidates. The732

option also has as its trailing, default value the parameter random. Hence, if733

the user omits the definition of the strategy option, the scheduler randomly734

chooses among the possible candidates, otherwise it first filters out the can-735

didates considering the options in the list in order of appearance and then736

chooses randomly among the remaining candidates, if any.737

4.2. Modelling the Case Study with AHAPP738

To illustrate the usage of AHAPP, we model the case study presented739

in Section 1 as a serverless architecture of four functions and their related740

AHAPP policies. For clarity, in the description below, we call the functions741

by their associated tag. In the policies, we omit to specify the at_least_one742

and almost_all options, which would require us to further characterise the743

usage and topological context of the ad-hoc network. Thus, for brevity, we744

omit their definition, which makes the policies use their respective default745

values.746

We call the first function ScanFireAlert. This function runs on all drones747

and processes real-time sensor data for fire aerial surveillance. To this aim,748

26
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AHAPP

Listing 4: TrackSurvivor policy.

targets: one
attributes:
position: { range: 25,
lat: X, lon: Y, alt: Z }

device: {
camera: { lock: true }
gpu: { lock: true }
rotors: { lock: true }

}
strategy: [ energy, position ]

analyses on the data produced by ScanPeople, stored in the local cache of787

the drone. Since this piece of data is fundamental for its execution, but the788

function can otherwise run on the Edge-Cloud, we set the policy to allow the789

offload of the function using the data stored, by ScanPeople, under the key790

ScanPeopleData in the local cache of the drone.791

The last function, called TrackSurvivor, maintains continuous monitor-792

ing of confirmed survivors. It processes real-time GPS coordinates and video793

feeds to track survivor movements and status. The function generates a794

stream of data that include precise location updates, visual confirmation795

data, and dynamic access route calculations for rescue teams [28]. Since,796

now, we have precise information about the survivors, we issue the individ-797

ual (one) execution of a TrackSurvivor function instance for each group of798

survivors in a given location. The tracking routine requires the exclusive799

access to the drone’s rotors and camera to follow the survivors and of the800

drone’s gpu for the efficient processing of data for streaming. Since more801

than one drone can be valid for the execution of the function, we specify802

the strategy for choosing among multiple alternatives, i.e., first, we favour803

the drones with the highest energy level (since the function needs to con-804

tinuously track the survivors for as long as possible), second, we favour the805

drones closer to the required position (within the 25m range, imposed by806

the policy) — as per definition (cf. Section 4.1) if these two selection steps807

fail to weed down the options to one drone, we default to randomly select one808

of the alternatives.809
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Fig. 1. Examples of a FaaS infrastructure (left) and an aAPP script (right).

and discuss the increment of expressiveness w.r.t. APP. In
Sec. IV, we concretise our proposal by presenting a proto-
type implementation of an aAPP-based serverless platform,
namely, an extension of Apache OpenWhisk able to enforce
aAPP-defined FaaS (anti-)affinity scheduling constraints. In
Sec. V, we experimentally show that the usage of (anti-)affinity
constraints are beneficial by considering an implementation of
the affinity-aware scenario introduced in Sec. II. In Sec. VI, we
compare the performance of our aAPP-based prototype and
vanilla OpenWhisk with 7 benchmarks to show that aAPP
imposes negligible overhead. We discuss related work and
draw concluding remarks in Sec. VII.

II. EXAMPLE OF AN AFFINITY-AWARE FAAS SCENARIO

We have a divide-et-impera data-crunching serverless ap-
plication implemented through two companion functions. The
first, invoked by the users, is called divide. Its task is to split
some data into chunks, store them in a database, and invoke
instances of the second function. The second function, invoked
by the divide for each stored chunk, is called impera. Its task
is to retrieve and process a chunk of data from the database.

We run the above functions on the FaaS infrastructure
depicted on the left of Fig. 1. The infrastructure includes
two zones (e.g., separate regions of a cloud provider) and it
has a Gateway that decides on which worker to allocate the
execution of the functions. The infrastructure also includes
three workers: w1 and w2 in Zone1 and w3 in Zone2. Each
zone hosts an instance of an eventually-consistent distributed
database [24], used by the functions running in that zone—
eventually-consistent systems are typical for (FaaS) scenarios
like ours, where one favours throughput and availability w.r.t.
e.g., overall data consistency [25].

In Fig. 1, we represent function allocation requests with
labelled document icons sent to the Gateway. Note that the
users (the laptop icons in Fig. 1) launch the divide function
(e.g., d3) while the running divide (e.g., d2 requesting i2 and
i02) invoke the impera functions.

Our FaaS infrastructure executes other functions besides the
one above. In Fig. 1, we represent these requests with the
labels h1, h2, and h3 which are compute-intensive functions—

called heavy—that use a high amount of computational re-
sources of the worker running them.

Given this context, an initial example of an affinity-aware
scheduling policy is to avoid the co-occurrence of the divide
and impera functions with the heavy ones. In this way, we can
improve the performance of divide and impera by avoiding re-
source contention with the heavy functions. Another improve-
ment regards the interaction with the database. The eventually-
consistent behaviour of the database entails possible delays
to synchronise the instances. Waiting for synchronisation is
necessary only when the functions accessing the database
connect to different database instances. Moreover, to further
reduce delay, we can exploit the principle of session locality
and let functions running on the same worker share the same
connection with the database. This affinity-aware scheduling
policy places impera functions only on workers that already
host divide functions and avoid the overhead of re-establishing
new connections.

These constraints can be encoded in aAPP as shown in the
script in Fig. 1. In the code, we find three top-level items: d, i,
and h, which are tags that identify policies, each describing the
scheduling logic of a set of related functions. In the example,
the tag d describes the logic for the divide functions while i
and h target respectively the impera and heavy ones. The line
workers: * found under all tags indicates that their related
functions can use any of the available workers. From the
top, under tag d, we use the affinity clause, introduced
by aAPP, to specify that d-tagged functions should not be
scheduled on a worker that currently hosts heavy functions (!
h). Specifically, this is an example of anti-affinity, where we
prevent the allocation of the tagged functions (e.g., d) on a
worker that already hosts any anti-affine function (e.g., tagged
h). Tag i declares the same anti-affinity for heavy functions,
but it also indicates that i-tagged functions are affine with d-
tagged ones. Affinity means that we can schedule a function
on a candidate worker only if it currently hosts the former’s
affine functions. In the example, we use affinity to have impera
functions run in the same worker of divide functions. Finally,
we use tag h to complement the anti-affinity relation expressed
in the previous tags, i.e., the heavy functions are anti-affine

De Palma, G., Giallorenzo, S., Mauro, J., Trentin, M., & Zavattaro, G. (2025). Affinity-aware Serverless Function Scheduling. 
22nd IEEE International Conference on Software Architecture, ICSA 2025, Odense, Denmark, March 31-April 4, 2025. IEEE.
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Configuration Mean Latency (ms) Median Latency (ms) 95th Tail Latency (ms)
aAPP 1547 883 3041
anti-affinity-only aAPP 2337 (+40%) 2381 (+91%) 3476 (+13%)
APP 8118 (+135%) 2648 (+99%) 60157 (+180%)
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Fig. 6. Top, table reporting the mean, median, and 95th tail latencies of the divide functions under aAPP, anti-affinity-only aAPP, and APP (percentages
represent variation w.r.t. aAPP). Bottom, the sorted scatter plot of the latencies incrementally sorted.

Role vCPU RAM Location
Control Plane 2 2 GB Europe

OW Core 2 2 GB Europe
OW Worker 2 2 GB Europe
OW Worker 2 2 GB Europe
OW Worker 2 2 GB North America
OW Worker 2 2 GB North America
OW Worker 1 1 GB Europe
OW Worker 1 1 GB North America

MongoDB Replica 1 1 GB Europe
MongoDB Replica 1 1 GB North America

Fig. 7. Nodes used for the experimental evaluation.

To further analyse the differences between the performance
of the three policies, at the bottom of Fig. 6, we report the
sorted scatter plot of the latencies of the divide functions from
the shortest to the longest (x-axis). We focus on this measure
because it offers a comprehensive overview of the performance
of the architecture. In particular, this measure includes the
latencies of the related impera functions, whose run times
concretely impact the request-response delay experienced by
the users interacting with the system.

The first striking observation we gather is that there is a gap
(there are almost no instances) in the distribution of the aAPP
data points between the 1000ms and the 2400ms mark. We
conjecture that this behaviour derives from having OpenWhisk
core components installed in one region, which exert some

overhead on the workers of the other region when they interact
with the platform (e.g., to fetch functions and receive/send
requests/notifications). We see similar intervals, although less
apparent, for APP and anti-affinity-only-aAPP.

In the 200–1000ms interval, aAPP provides consistent,
fast performance, while APP and anti-affinity-only aAPP
show only a few well-performing cases—the rest of the data
points at the corresponding performance bracket are shifted
to the right, revealing comparatively slower results. We can
characterise the “fast” invocations as those where the divide
and its two impera functions appear on a “free” node, i.e.,
without the heavy function, in Europe. Specifically, when using
APP, each invocation has a 2/6 probability of appearing on a
free node in Europe, i.e., the probability of fast invocations
is (2/6)3 ⇡ 3.7%, with anti-affinity-only aAPP the figure
increases to (1/2)3 = 12.5% (each invocation has a 1/2 chance
of appearing on a European free node) and with aAPP the
probability raises to 50% since all three functions go on the
same node (either in the US or in the EU).

Overall, already introducing anti-affinities improves perfor-
mance (mean, median, tail latency improve resp. of 110%,
10%, and 178%), which shows the impact of sharing a worker
with heavy functions—APP shows a long tail of invocations
after the ca. 3000ms mark in Fig. 6. Looking at worst cases,
using aAPP does not result in a considerable performance
increase. This is visible from the plot by noticing how the
tail high-percentage instances of anti-affinity-only aAPP and
aAPP almost overlap, resulting in a small (+13%) improve-
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Function-as-a-Service Allocation Policies Made Formal 7

Workers Layer

[Wfirst ]
strategy(w, s) = w w 6= ? valid(f, w, i, C)

f, w, s, i, C . w
[Wend ]

strategy(w, s) = ?
f, w, s, i, C .?

[Wnext ]
strategy(w, s) = w w 6= ? ¬valid(f, w, i, C) f, w \ w, s, i, C . w0

f, w, s, i, C . w0

Blocks Layer

[Bone ]
w0 = w \ dom(C) f, w0, s, i, C . w

f,C, (w, s, i) ! w
[Bstar ]

f, dom(C), s, i, C . w

f,C, (*, s, i) ! w

[Bfirst ]
f, C, b1 ! w w 6= ?
f, C, b1 :: · · · :: bn ! w

[Bnext ]
f, C, b1 ! ? f, C, b2 :: · · · :: bn ! w

f,C, b1 :: b2 :: · · · :: bn ! w

Configuration Layer

[Cstart ]
reg(f) = (n, t) p(t) = b f, C, b ! w w 6= ? C(w) = (�, n0,m)

C
(start,f,w)
=======) C[w 7! (� [ {f}, n0 + n,m)]

[Cfail ]
reg(f) = (·, t) p(t) = b f, C, b ! ?

C
(fail,f)
=====) C

[Cdone ]
w 2 dom(C) f 2 � reg(f) = (n, ·) C(w) = (�, n0,m)

C
(done,f,w)
=======) C[w 7! (� \ {f}, n0 � n,m)]

strategy relation and valid predicate

strategy(w, s) =

8
><

>:

w if s = any ^ w 2 {w}
w if s = best first ^ w = w :: w0

? otherwise

valid(f, w, i1 :: · · · :: in, C) = valid(f, w, i1, C) ^ · · · ^ valid(f, w, in, C)

valid(f, w, i, C) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

true if i = capacity used n%

^ reg(f) = (nf , ·) ^ C(w) = (·, ncur, nmax)

^ min(n, 100) � 100 ⇤ (ncur + nf )/nmax

true if i = max concurrent invocations n

^ valid(f, w, capacity used 100%, C)

^ C(w) = (�, ·, ·) ^ n � |�|+ 1

false otherwise

Fig. 4. strategy and valid functions.

allocated on them. To obtain C1 we start from C0 and allocate f on w1. C2 is a
reduction from C1, where we schedule another time f ; since w1 is full (it cannot
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worker; if none are valid, the scheduling of the
function fails, without trying other policies.

3 Operational Semantics of APP

Now that we informally introduced APP and its behaviour, we proceed to formalise
it. We define the behaviour of APP scripts as a labelled transition system
(LTS) operational semantics. In the definition of the LTS, we use these domains,
structures, and functions:

f 2 F w 2 W ⇢ Identifiers

t 2 T ⇢ Identifiers C 2 C , W ! Multiset(F)⇥ N⇥ N
reg 2 F ! N⇥ T p 2 P , T ! List(B)

[[·]] : app ! P b 2 B , (List(W) [ *)⇥ s opt⇥ List(i opt)

We useW , ranged over by w, to denote the set of workers, while F , ranged over
by f , denotes the set of functions. We use C, ranged over by C, to denote the set
of platform configurations. A configuration associates each of its workers (in W)
with a triple relating the multiset of functions (Multiset(F)) currently allocated
on that worker, the amount of resources (in N) used by such functions, and the
maximal amount of resources (also in N) available to that worker. Functions are
tagged to associate them with a scheduling policy. We use T , ranged over by t, to
denote the set of tags and define reg (short for registry) as a map that associates
each function with its tag and its occupancy, i.e., the amount of resources needed
to host it. N represent the natural numbers—even considering fractional resources,
we deem naturals fine-grained enough for our purpose since we can always convert
these to N with a constant multiplying factor. We use app to denote the set of
APP scripts that follow the grammar presented in Fig. 1.

From YAML to APP Semantics’ Structures In our formal model of APP,
we need to represent scripts as mathematical objects. Formally, we define a
straightforward encoding [[·]] that, given a script in app (which always terminates
with the default-tagged policy as previously described), returns a policy function
p (ranging over the set P) with all followups unfolded—where default always
fails. The encoding, reported in Fig. 3, inductively walks through the syntax of
the APP script and translates each fragment into the corresponding mathematical
object in P. The only notable bits of the encoding regard the inclusion of the
standard options for the missing parameters—for strategy we set it to any and for
invalidate we set it to the maximal capacity of the worker, i.e., capacity used

100%—and the static resolution of the followup parameter, where we concatenate
the list of blocks of the tag with the blocks of the default one, in case the
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f, C, b1 :: · · · :: bn ! w
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f,C, b1 :: b2 :: · · · :: bn ! w

Configuration Layer

[Cstart ]
reg(f) = (n, t) p(t) = b f, C, b ! w w 6= ? C(w) = (�, n0,m)

C
(start,f,w)
=======) C[w 7! (� [ {f}, n0 + n,m)]

[Cfail ]
reg(f) = (·, t) p(t) = b f, C, b ! ?

C
(fail,f)
=====) C

[Cdone ]
w 2 dom(C) f 2 � reg(f) = (n, ·) C(w) = (�, n0,m)

C
(done,f,w)
=======) C[w 7! (� \ {f}, n0 � n,m)]

strategy relation and valid predicate

strategy(w, s) =

8
><

>:

w if s = any ^ w 2 {w}
w if s = best first ^ w = w :: w0

? otherwise

valid(f, w, i1 :: · · · :: in, C) = valid(f, w, i1, C) ^ · · · ^ valid(f, w, in, C)

valid(f, w, i, C) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

true if i = capacity used n%

^ reg(f) = (nf , ·) ^ C(w) = (·, ncur, nmax)

^ min(n, 100) � 100 ⇤ (ncur + nf )/nmax

true if i = max concurrent invocations n

^ valid(f, w, capacity used 100%, C)

^ C(w) = (�, ·, ·) ^ n � |�|+ 1

false otherwise

Fig. 4. strategy and valid functions.

allocated on them. To obtain C1 we start from C0 and allocate f on w1. C2 is a
reduction from C1, where we schedule another time f ; since w1 is full (it cannot
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worker; if none are valid, the scheduling of the
function fails, without trying other policies.

3 Operational Semantics of APP

Now that we informally introduced APP and its behaviour, we proceed to formalise
it. We define the behaviour of APP scripts as a labelled transition system
(LTS) operational semantics. In the definition of the LTS, we use these domains,
structures, and functions:

f 2 F w 2 W ⇢ Identifiers

t 2 T ⇢ Identifiers C 2 C , W ! Multiset(F)⇥ N⇥ N
reg 2 F ! N⇥ T p 2 P , T ! List(B)

[[·]] : app ! P b 2 B , (List(W) [ *)⇥ s opt⇥ List(i opt)

We useW , ranged over by w, to denote the set of workers, while F , ranged over
by f , denotes the set of functions. We use C, ranged over by C, to denote the set
of platform configurations. A configuration associates each of its workers (in W)
with a triple relating the multiset of functions (Multiset(F)) currently allocated
on that worker, the amount of resources (in N) used by such functions, and the
maximal amount of resources (also in N) available to that worker. Functions are
tagged to associate them with a scheduling policy. We use T , ranged over by t, to
denote the set of tags and define reg (short for registry) as a map that associates
each function with its tag and its occupancy, i.e., the amount of resources needed
to host it. N represent the natural numbers—even considering fractional resources,
we deem naturals fine-grained enough for our purpose since we can always convert
these to N with a constant multiplying factor. We use app to denote the set of
APP scripts that follow the grammar presented in Fig. 1.

From YAML to APP Semantics’ Structures In our formal model of APP,
we need to represent scripts as mathematical objects. Formally, we define a
straightforward encoding [[·]] that, given a script in app (which always terminates
with the default-tagged policy as previously described), returns a policy function
p (ranging over the set P) with all followups unfolded—where default always
fails. The encoding, reported in Fig. 3, inductively walks through the syntax of
the APP script and translates each fragment into the corresponding mathematical
object in P. The only notable bits of the encoding regard the inclusion of the
standard options for the missing parameters—for strategy we set it to any and for
invalidate we set it to the maximal capacity of the worker, i.e., capacity used

100%—and the static resolution of the followup parameter, where we concatenate
the list of blocks of the tag with the blocks of the default one, in case the
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Function-as-a-Service Allocation Policies Made Formal 7

Workers Layer

[Wfirst ]
strategy(w, s) = w w 6= ? valid(f, w, i, C)

f, w, s, i, C . w
[Wend ]

strategy(w, s) = ?
f, w, s, i, C .?

[Wnext ]
strategy(w, s) = w w 6= ? ¬valid(f, w, i, C) f, w \ w, s, i, C . w0

f, w, s, i, C . w0

Blocks Layer

[Bone ]
w0 = w \ dom(C) f, w0, s, i, C . w

f,C, (w, s, i) ! w
[Bstar ]

f, dom(C), s, i, C . w

f,C, (*, s, i) ! w

[Bfirst ]
f, C, b1 ! w w 6= ?
f, C, b1 :: · · · :: bn ! w

[Bnext ]
f, C, b1 ! ? f, C, b2 :: · · · :: bn ! w

f,C, b1 :: b2 :: · · · :: bn ! w

Configuration Layer

[Cstart ]
reg(f) = (n, t) p(t) = b f, C, b ! w w 6= ? C(w) = (�, n0,m)

C
(start,f,w)
=======) C[w 7! (� [ {f}, n0 + n,m)]

[Cfail ]
reg(f) = (·, t) p(t) = b f, C, b ! ?

C
(fail,f)
=====) C

[Cdone ]
w 2 dom(C) f 2 � reg(f) = (n, ·) C(w) = (�, n0,m)

C
(done,f,w)
=======) C[w 7! (� \ {f}, n0 � n,m)]

strategy relation and valid predicate

strategy(w, s) =

8
><

>:

w if s = any ^ w 2 {w}
w if s = best first ^ w = w :: w0

? otherwise

valid(f, w, i1 :: · · · :: in, C) = valid(f, w, i1, C) ^ · · · ^ valid(f, w, in, C)

valid(f, w, i, C) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

true if i = capacity used n%

^ reg(f) = (nf , ·) ^ C(w) = (·, ncur, nmax)

^ min(n, 100) � 100 ⇤ (ncur + nf )/nmax

true if i = max concurrent invocations n

^ valid(f, w, capacity used 100%, C)

^ C(w) = (�, ·, ·) ^ n � |�|+ 1

false otherwise

Fig. 4. strategy and valid functions.

allocated on them. To obtain C1 we start from C0 and allocate f on w1. C2 is a
reduction from C1, where we schedule another time f ; since w1 is full (it cannot
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C
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=====) C
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w 2 dom(C) f 2 � reg(f) = (n, ·) C(w) = (�, n0,m)

C
(done,f,w)
=======) C[w 7! (� \ {f}, n0 � n,m)]

strategy relation and valid predicate

strategy(w, s) =

8
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>:

w if s = any ^ w 2 {w}
w if s = best first ^ w = w :: w0

? otherwise

valid(f, w, i1 :: · · · :: in, C) = valid(f, w, i1, C) ^ · · · ^ valid(f, w, in, C)

valid(f, w, i, C) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

true if i = capacity used n%

^ reg(f) = (nf , ·) ^ C(w) = (·, ncur, nmax)

^ min(n, 100) � 100 ⇤ (ncur + nf )/nmax

true if i = max concurrent invocations n
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allocated on them. To obtain C1 we start from C0 and allocate f on w1. C2 is a
reduction from C1, where we schedule another time f ; since w1 is full (it cannot
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worker; if none are valid, the scheduling of the
function fails, without trying other policies.

3 Operational Semantics of APP

Now that we informally introduced APP and its behaviour, we proceed to formalise
it. We define the behaviour of APP scripts as a labelled transition system
(LTS) operational semantics. In the definition of the LTS, we use these domains,
structures, and functions:

f 2 F w 2 W ⇢ Identifiers

t 2 T ⇢ Identifiers C 2 C , W ! Multiset(F)⇥ N⇥ N
reg 2 F ! N⇥ T p 2 P , T ! List(B)

[[·]] : app ! P b 2 B , (List(W) [ *)⇥ s opt⇥ List(i opt)

We useW , ranged over by w, to denote the set of workers, while F , ranged over
by f , denotes the set of functions. We use C, ranged over by C, to denote the set
of platform configurations. A configuration associates each of its workers (in W)
with a triple relating the multiset of functions (Multiset(F)) currently allocated
on that worker, the amount of resources (in N) used by such functions, and the
maximal amount of resources (also in N) available to that worker. Functions are
tagged to associate them with a scheduling policy. We use T , ranged over by t, to
denote the set of tags and define reg (short for registry) as a map that associates
each function with its tag and its occupancy, i.e., the amount of resources needed
to host it. N represent the natural numbers—even considering fractional resources,
we deem naturals fine-grained enough for our purpose since we can always convert
these to N with a constant multiplying factor. We use app to denote the set of
APP scripts that follow the grammar presented in Fig. 1.

From YAML to APP Semantics’ Structures In our formal model of APP,
we need to represent scripts as mathematical objects. Formally, we define a
straightforward encoding [[·]] that, given a script in app (which always terminates
with the default-tagged policy as previously described), returns a policy function
p (ranging over the set P) with all followups unfolded—where default always
fails. The encoding, reported in Fig. 3, inductively walks through the syntax of
the APP script and translates each fragment into the corresponding mathematical
object in P. The only notable bits of the encoding regard the inclusion of the
standard options for the missing parameters—for strategy we set it to any and for
invalidate we set it to the maximal capacity of the worker, i.e., capacity used

100%—and the static resolution of the followup parameter, where we concatenate
the list of blocks of the tag with the blocks of the default one, in case the
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FIGURE 2. Plots a , c , e , g show the cumulative distribution of the latencies under the cloud-edge configuration of resp. the
sleep, network-benchmark, server-reply and matrixMult benchmarks; b , d , f , and h show the resp. performance under
the cloud-only configuration—plots i and j show the matrixMult benchmarks but using a Rust variant of the function for
FunLess (not used for comparison). Plot k shows the memory consumption of the hellojs benchmark on a Raspberry Pi 3B+.

one component (the core/controller) of the platform, we
comment on this plot line at the end of the section to
avoid mixing its description with the ones comparing
FunLess against the alternatives.

From the results, Fission requires the highest
amount of memory—a consequence of the container
pool used by the platform to reduce cold starts. While
FunLess-k8s is the second-highest for memory occu-
pancy (due to the stacking of the BEAM, Docker, and
Kubernetes runtimes), FunLess-bare-edge requires
the least amount of memory out of all the platforms
(on average ca. 438 MB). Intuitively, this configuration
can reach such a low memory footprint because it
omits the overhead due to containers and container
orchestration. While FunLess allows one to deploy
the platform without the support of containers and
container orchestrators, all the considered alternatives
heavily rely on the latter, making it unfeasible to avoid
their usage and prevent the overhead they generate.
On the contrary, the deployment flexibility afforded by
FunLess allows one to have a functioning Worker run-
ning with minimal overhead (e.g., that of the underlying

operating system).

Looking at the plot line of FunLess’ Core compo-
nent, labelled FunLess-edge-only (core node) in k ,
the Core uses around 620 MB, including the operat-
ing system, the database (Postgres), the monitoring
service (Prometheus) and Docker, for an additional
memory overhead of ca. 450MB. One could further
reduce FunLess’ memory footprint by deploying the
whole stack without Docker, but the platform makes
it feasible to afford containers for the edge setting.

We close our comparison by contrasting the size of
the function artefacts of the four benchmarks under the
considered alternatives. Specifically, for both KNative
and OpenFaaS we measure the size of the container-
ised functions they use for function deployment, which
respectively average to 47.94MB (26.84 stdev) and
20.63MB (11.41 stdev). Since Fission injects functions
into “environment” containers for their execution at
runtime, we do not have function artefacts, and we
take the size of these containers as a lower bound,
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FIGURE 2. Plots a , c , e , g show the cumulative distribution of the latencies under the cloud-edge configuration of resp. the
sleep, network-benchmark, server-reply and matrixMult benchmarks; b , d , f , and h show the resp. performance under
the cloud-only configuration—plots i and j show the matrixMult benchmarks but using a Rust variant of the function for
FunLess (not used for comparison). Plot k shows the memory consumption of the hellojs benchmark on a Raspberry Pi 3B+.

one component (the core/controller) of the platform, we
comment on this plot line at the end of the section to
avoid mixing its description with the ones comparing
FunLess against the alternatives.

From the results, Fission requires the highest
amount of memory—a consequence of the container
pool used by the platform to reduce cold starts. While
FunLess-k8s is the second-highest for memory occu-
pancy (due to the stacking of the BEAM, Docker, and
Kubernetes runtimes), FunLess-bare-edge requires
the least amount of memory out of all the platforms
(on average ca. 438 MB). Intuitively, this configuration
can reach such a low memory footprint because it
omits the overhead due to containers and container
orchestration. While FunLess allows one to deploy
the platform without the support of containers and
container orchestrators, all the considered alternatives
heavily rely on the latter, making it unfeasible to avoid
their usage and prevent the overhead they generate.
On the contrary, the deployment flexibility afforded by
FunLess allows one to have a functioning Worker run-
ning with minimal overhead (e.g., that of the underlying

operating system).

Looking at the plot line of FunLess’ Core compo-
nent, labelled FunLess-edge-only (core node) in k ,
the Core uses around 620 MB, including the operat-
ing system, the database (Postgres), the monitoring
service (Prometheus) and Docker, for an additional
memory overhead of ca. 450MB. One could further
reduce FunLess’ memory footprint by deploying the
whole stack without Docker, but the platform makes
it feasible to afford containers for the edge setting.

We close our comparison by contrasting the size of
the function artefacts of the four benchmarks under the
considered alternatives. Specifically, for both KNative
and OpenFaaS we measure the size of the container-
ised functions they use for function deployment, which
respectively average to 47.94MB (26.84 stdev) and
20.63MB (11.41 stdev). Since Fission injects functions
into “environment” containers for their execution at
runtime, we do not have function artefacts, and we
take the size of these containers as a lower bound,
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FIGURE 2. Plots a , c , e , g show the cumulative distribution of the latencies under the cloud-edge configuration of resp. the
sleep, network-benchmark, server-reply and matrixMult benchmarks; b , d , f , and h show the resp. performance under
the cloud-only configuration—plots i and j show the matrixMult benchmarks but using a Rust variant of the function for
FunLess (not used for comparison). Plot k shows the memory consumption of the hellojs benchmark on a Raspberry Pi 3B+.

one component (the core/controller) of the platform, we
comment on this plot line at the end of the section to
avoid mixing its description with the ones comparing
FunLess against the alternatives.

From the results, Fission requires the highest
amount of memory—a consequence of the container
pool used by the platform to reduce cold starts. While
FunLess-k8s is the second-highest for memory occu-
pancy (due to the stacking of the BEAM, Docker, and
Kubernetes runtimes), FunLess-bare-edge requires
the least amount of memory out of all the platforms
(on average ca. 438 MB). Intuitively, this configuration
can reach such a low memory footprint because it
omits the overhead due to containers and container
orchestration. While FunLess allows one to deploy
the platform without the support of containers and
container orchestrators, all the considered alternatives
heavily rely on the latter, making it unfeasible to avoid
their usage and prevent the overhead they generate.
On the contrary, the deployment flexibility afforded by
FunLess allows one to have a functioning Worker run-
ning with minimal overhead (e.g., that of the underlying

operating system).

Looking at the plot line of FunLess’ Core compo-
nent, labelled FunLess-edge-only (core node) in k ,
the Core uses around 620 MB, including the operat-
ing system, the database (Postgres), the monitoring
service (Prometheus) and Docker, for an additional
memory overhead of ca. 450MB. One could further
reduce FunLess’ memory footprint by deploying the
whole stack without Docker, but the platform makes
it feasible to afford containers for the edge setting.

We close our comparison by contrasting the size of
the function artefacts of the four benchmarks under the
considered alternatives. Specifically, for both KNative
and OpenFaaS we measure the size of the container-
ised functions they use for function deployment, which
respectively average to 47.94MB (26.84 stdev) and
20.63MB (11.41 stdev). Since Fission injects functions
into “environment” containers for their execution at
runtime, we do not have function artefacts, and we
take the size of these containers as a lower bound,
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1 // tag: mapReduce
2 ( jobs , m, r ) => {
3 for(i in range(0, m)) {
4 call Map(jobs , i)
5 for(j in range(0, r)) {
6 call Reduce(jobs , i, j)
7 }
8 }
9 }

10

+
main(J,m,r,M,R) = for2(0,m,r,M,R) [ ]
for2(i,m,r,M,R) = M + for4(0,r,R)+ for2(i+1,m,r,M,R) [ m � i ]
for2(i,m,r,M,R) = 0 [ i � m+1 ]
for4( j,r,R) = R+ for4( j +1,r,R) [ r � j ]
for4( j,r,R) = 0 [ j � r +1 ]

+

Cost Expression: m*(M + r*R)

+
W in ( W1, W2 )
where m *( W.latency( Map )

+ r * W.latency( Reduce ) )
is < 300

Fig. 6: The map-reduce function, its cost analysis, and
scheduling invalidation logic.

possibly invalidate it if the computed value is greater than
300.

6 Implementation

We now describe the implementation of a prototype serverless
framework that allows to use cAPP to express cost-aware
function scheduling policies.

6.1 The FunLess Platform

To develop the prototype, we rely on FunLess [15], i.e., a
FaaS platform designed for mixed edge-cloud environments,
using WebAssembly [47] (Wasm) to run functions. This ap-
proach offers several advantages: enhanced security through
Wasm’s inherent isolation mechanisms, reduced memory
and CPU footprint by eliminating the need for container run-
times and orchestrators, and mitigated cold-start issues thanks
to Wasm’s fast startup times and efficient caching. More-
over, FunLess ensures a consistent function development and
deployment environment across diverse hardware and soft-
ware architectures, making it adaptable to various edge-cloud
scenarios and providing flexible deployment options, either
through existing containerization solutions or simpler setups,
leveraging Wasm’s portability and lightweight nature.

FunLess is composed of two kinds of services built with
Elixir and Rust (the Core and the Workers), on top of the
BEAM virtual machine, a Database (Postgres), and a moni-
toring system (Prometheus). The platform’s architecture is
shown in Figure 7, with the yellow highlighted components
being the ones we have added or modified to support cAPP.

Core. The central management component of FunLess is the
Core. It exposes an HTTP REST API for users to interact
with the platform and handle the lifecycle of functions — cre-
ation, storage, scheduling, and invocation. When a function is
uploaded to the platform, it is stored in the Postgres database
and broadcasted to the available Workers, which will cache
it locally to reduce cold-start times during invocation. The
Core is also responsible for scheduling function executions.
It uses real-time metrics collected by Prometheus to select the
Worker with the highest amount of available memory. This
results in a balanced workload distribution in case of work-
ers with similar resources. Communication between the two
components leverages the BEAM’s lightweight distributed
messaging system.

Workers. The workers are the components responsible for
executing functions as directed by the Core. Workers use
the Wasmtime [46] runtime, a WebAssembly engine that
supports the WebAssembly System Interface (WASI) [48].
Each Worker caches function binaries locally upon receiving
them from the Core. When a function is invoked, it first
checks its cache for the required binary: if the binary is
present, it is loaded and executed immediately; if not, the
Worker requests the binary from the Core, which sends it
back for execution. Each Worker’s maximum cache size is
configurable, and when the cache exceeds its limit, the least
recently used functions are evicted. Workers are designed to
abstract away the specifics of the Wasm runtime, allowing for
future flexibility in supporting different or multiple runtimes.
This design ensures that functions can be executed across
different hardware architectures, making FunLess versatile
for various deployment environments, from cloud servers to
low-power edge devices.

6.2 Extending FunLess to support cAPP

To correctly handle cAPP-based scheduling policies in Fun-
Less, several additions had to be made to the platform, both
in terms of deployment and implementation.

Firstly, we implemented a miniSL-to-Wasm compiler,
to produce binaries that would be compatible with Fun-
Less’ Workers. As discussed in the previous section, the
cost-analysis that we perform on miniSL functions consid-
ers the invocations that such functions perform on external
services. Moreover, we expect to monitor, at run time the
latencies of the worker-external service invocations. To this

Leveraging Static Analysis for Cost-aware Serverless Scheduling Policies 11

1 // tag: mapReduce
2 ( jobs , m, r ) => {
3 for(i in range(0, m)) {
4 call Map(jobs , i)
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7 }
8 }
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Cost Expression: m*(M + r*R)
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W in ( W1 , W2 )
where m *( W.latency( Map )

+ r * W.latency( Reduce ) )
is < 300

Fig. 6: The map-reduce function, its cost analysis, and
scheduling invalidation logic.

possibly invalidate it if the computed value is greater than
300.

6 Implementation

We now describe the implementation of a prototype serverless
framework that allows to use cAPP to express cost-aware
function scheduling policies.

6.1 The FunLess Platform

To develop the prototype, we rely on FunLess [15], i.e., a
FaaS platform designed for mixed edge-cloud environments,
using WebAssembly [47] (Wasm) to run functions. This ap-
proach offers several advantages: enhanced security through
Wasm’s inherent isolation mechanisms, reduced memory
and CPU footprint by eliminating the need for container run-
times and orchestrators, and mitigated cold-start issues thanks
to Wasm’s fast startup times and efficient caching. More-
over, FunLess ensures a consistent function development and
deployment environment across diverse hardware and soft-
ware architectures, making it adaptable to various edge-cloud
scenarios and providing flexible deployment options, either
through existing containerization solutions or simpler setups,
leveraging Wasm’s portability and lightweight nature.

FunLess is composed of two kinds of services built with
Elixir and Rust (the Core and the Workers), on top of the
BEAM virtual machine, a Database (Postgres), and a moni-
toring system (Prometheus). The platform’s architecture is
shown in Figure 7, with the yellow highlighted components
being the ones we have added or modified to support cAPP.

Core. The central management component of FunLess is the
Core. It exposes an HTTP REST API for users to interact
with the platform and handle the lifecycle of functions — cre-
ation, storage, scheduling, and invocation. When a function is
uploaded to the platform, it is stored in the Postgres database
and broadcasted to the available Workers, which will cache
it locally to reduce cold-start times during invocation. The
Core is also responsible for scheduling function executions.
It uses real-time metrics collected by Prometheus to select the
Worker with the highest amount of available memory. This
results in a balanced workload distribution in case of work-
ers with similar resources. Communication between the two
components leverages the BEAM’s lightweight distributed
messaging system.

Workers. The workers are the components responsible for
executing functions as directed by the Core. Workers use
the Wasmtime [46] runtime, a WebAssembly engine that
supports the WebAssembly System Interface (WASI) [48].
Each Worker caches function binaries locally upon receiving
them from the Core. When a function is invoked, it first
checks its cache for the required binary: if the binary is
present, it is loaded and executed immediately; if not, the
Worker requests the binary from the Core, which sends it
back for execution. Each Worker’s maximum cache size is
configurable, and when the cache exceeds its limit, the least
recently used functions are evicted. Workers are designed to
abstract away the specifics of the Wasm runtime, allowing for
future flexibility in supporting different or multiple runtimes.
This design ensures that functions can be executed across
different hardware architectures, making FunLess versatile
for various deployment environments, from cloud servers to
low-power edge devices.

6.2 Extending FunLess to support cAPP

To correctly handle cAPP-based scheduling policies in Fun-
Less, several additions had to be made to the platform, both
in terms of deployment and implementation.

Firstly, we implemented a miniSL-to-Wasm compiler,
to produce binaries that would be compatible with Fun-
Less’ Workers. As discussed in the previous section, the
cost-analysis that we perform on miniSL functions consid-
ers the invocations that such functions perform on external
services. Moreover, we expect to monitor, at run time the
latencies of the worker-external service invocations. To this

- mapReduce: 
 - workers: 

  - wrk: W1 
    - wrk: W2 
   invalidate: max_latency



OLAS Meeting 2025

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA 36

Distributed Serverless Function Scheduling in Ad-Hoc Drone Networks  
Software Components • Base Station

function scheduler

state sentinel

function execution
tracker

message exchange
on network drones

message request on
function scheduling,
response on function
execution, and offload

store function execution
decisions (and set timeouts)

lookup status of nodes

 

Edge/Cloud

Figure 6: Software components found within the Base Station in our approach.

run f , as indicated by the offload parameter in a — of course, one can also532

introduce refinements of the offloading logic, e.g., having the Base Station533

preserve a copy of f and a so that the drone can just send back a message534

(fid, �) carrying the function identifier and the data.535

Notice that, in Figure 5, we do not indicate which device runs f outside536

the ad-hoc network (and belonging to the Edge-Cloud domain). Since the537

execution of the offloaded functions is an external ingredient to our proposal538

— i.e., the ad-hoc drone serverless network works irrespective of how the Base539

Station decides to handle the execution of these functions — we abstract away540

the specification of the execution of offloaded functions, and we focus only541

on the specification of the offload functionality.542

3.5. Software Components: the Base Station and the Drones543

We close this section by presenting the software components that sup-544

port function scheduling, routing, execution, offloading, and response in the545

elements that make up the ad-hoc network: the Base Station and the drones.546

Starting from the Base Station, depicted in Figure 6, we find three main547

software components: the function scheduler, the state sentinel, and the548

assumption because messages usually carry a label to categorise them.
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Figure 7: Software components found within a drone in our approach.

assemble an overall picture of the configuration of the network.587

The function execution runtime is the component that, embedding a We-588

bAssembly engine, can run the functions. Note that, through the execution589

runtime, the functions can both access the hardware of the drone (e.g., cam-590

era, rotors, etc.) and its local runtime APIs, among which its key-value stor-591

age, useful when running function workflows where some function “leaves”592

some data on the drone and a successive one retrieves it for computation.593

These APIs are particularly useful when implementing the offloading feature594

— where the policy that accompanies the function can specify some value595

that the function uses and the offloading command pairs with the request of596

running the function on some external component.597

4. Ad-Hoc Allocation Priority Policies598

We now present the language, called Ad-Hoc Allocation Priority Policies599

(AHAPP), that we provide to users for expressing the scheduling policies of600
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Abstract—State-of-the-art serverless platforms use hard-

coded scheduling policies that are unaware of the possible

topological constraints of functions. Considering these con-

straints when scheduling functions leads to sensible performance

improvements, e.g., minimising loading times or data-access

latencies. This issue becomes more pressing when considered in

the emerging multi-cloud and edge-cloud-continuum systems,

where only specific nodes can access specialised, local resources.

To address this problem, we present a declarative language for

defining serverless scheduling policies to express constraints on

topologies of schedulers and execution nodes. We implement

our approach as an extension of the OpenWhisk platform.

I. INTRODUCTION

Serverless is a cloud service that lets users deploy archi-
tectures as compositions of stateless functions, delegating all
system administration tasks to the serverless platform [1].
This has two benefits for users. First, they save time by del-
egating resource allocation, maintenance, and scaling to the
platform. Second, they pay only for the resources that perform
actual work, and eschew the costs of running idle servers.

For example, Amazon AWS Lambda, Google Cloud
Functions, and Microsoft Azure Functions1 are managed
serverless offers by popular cloud providers, while
OpenWhisk, OpenFaaS, OpenLambda, and Fission2 are
open-source alternatives, used also in private deployments.

In all these cases, the platform manages the allocation of
function executions over the available computing resources,
also called workers. However, not all workers are equal when
allocating functions. Indeed, effects like data locality [2]—
due to high latencies to access data—or session locality [2]—
due to the need to authenticate and open new sessions to
interact with other services—can sensibly increase the run
time of functions. These issues become more prominent when
considered in multi-cloud and edge-cloud-continuum systems,
where only specific workers can access some local resources.

1Resp. https://aws.amazon.com/lambda/, https://cloud.google.com/
functions/, https://azure.microsoft.com/.

2Resp. https://openwhisk.apache.org/, https://www.openfaas.com/,
https://github.com/open-lambda/open-lambda, https://fission.io/
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Figure 1: Representation of the case study.

To tackle this problem, we present a solution that lets
users define topology-aware scheduling policies able to
mitigate and/or rule out inefficient function allocations.

More specifically, with “topology” of a serverless platform
we mean: 1) the deployment of the platform over different
zones, i.e., sets of resources geographically located in the
same area, 2) the presence in such zones of several controllers,
i.e., the components that manage the scheduling of functions,
and 3) the availability of different workers, each one located
in one zone but potentially reachable by all the controllers.

Motivating example: We clarify the concepts above
with a case study from a company among our industry
partners. We deem the case useful to clarify the motivation
behind our work and help understand our contribution.

The case concerns an edge-cloud-continuum system to
control and perform both predictive maintenance and anomaly
detection over a fleet of robots in the production line. The
system runs three categories of computational tasks: i) predic-
tions of critical events, performed by analysing data produced
by the robots, ii) non-critical predictions and generic control
activities, and iii) machine learning tasks. Tasks i) follow a
closed-control loop between the fleet that generates data and
issues these tasks and the workers that run these tasks and can
act on the fleet. Since tasks i) can avert potential risks, they
must execute with the lowest latency and their control signals
must reach the fleet urgently. The users of the system launch
the other categories of tasks. These are not time-constrained,
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Similarly to workers, we identify controllers with a label.
A controller clause can have topology_tolerance as

optional parameter. This additional parameter allows users
to further refine how TAPP handles failures (of controllers).
Indeed, when deploying controllers and workers, users can
label them with the topological zone they belong in4. Hence,
when the designated controller is unavailable, TAPP can
use this topological information to try to satisfy the schedul-
ing request by forwarding it to some alternative controller.

The topology_tolerance option specifies what workers
an alternative controller can use: all is the default and most
permissive option and imposes no restriction on the topology
zone of workers; same constrains the function to run on
workers in the same zone of the faulty controller (e.g., for
data locality); none forbids the forward to other controllers.

TAPP expands the expressiveness of the universal selector
* found in APP—corresponding to the second, highlighted
workers:. . . fragment in Figure 3). In APP, assigning * to

the workers parameter indicates that the policy encompasses
all available workers. In TAPP, users can restrict the scope
of * by suffixing it with a label, e.g., workers:*local
selects only those workers associated to the local label.

The scheduling on *-induced worker-sets follows the
same logic of block-level worker selection: it exhausts all
workers before deeming the block invalid. Since worker-set
policies could differ from block-level ones, we allow users
to define the strategy and invalidate policies to select
the worker in the set. For example, if we pair the above
selection with a strategy and an invalidate options, e.g.,
workers:*local strategy:random invalidate:capacity_used:50%

we tell the scheduler to adopt the random strategy and the
capacity_used invalidation policy when selecting the work-
ers in the local set. When worker-sets omit strategies or in-
validation options, they follow those of their enclosing block.

Lastly, TAPP extends APP by letting users express a
selection strategy for policy blocks. This is represented by
the highlighted, optional strategy fragment of the tag rule.
The extension is backwards compatible, i.e., when we omit
to define a strategy policy for blocks, TAPP has the same
semantics as APP, trying to allocate functions following the
blocks from top to bottom—i.e., best_first is the default
policy. Here, for example, setting the strategy to random
captures the simple load-balancing strategy of uniformly
distributing requests among the available controllers.

A. Case Study

We exemplify TAPP by showing and commenting on the
salient parts of a TAPP script—reported in Figure 4—that
captures the scheduling semantics of the case in Figure 1.

In the script, at lines 1–6, we define the tag associated to
critical ( ! ) functions: only LocalCtl_1 can manage their

4TAPP neglects zone labels of controllers and workers, which is
infrastructure-level information, and it only specifies co-location constraints.

1 critical:
2 - controller: LocalCtl_1
3 workers:
4 - *edge
5 strategy: random
6 followup: fail
7 machine_learning:
8 - controller: CloudCtl
9 workers:

10 - *cloud
11 topology_tolerance: same
12 followup: default

13 default:
14 - controller: LocalCtl_1
15 workers:
16 - *internal
17 strategy: random
18 - *cloud
19 strategy: random
20 strategy: best_first
21 - controller: LocalCtl_2
22 workers: # same as above
23 strategy: best_first
24 strategy: random

Figure 4: A TAPP script that implements the scheduling
semantics of the case study in Section I (Figure 1).

scheduling, they can only execute on #edge/*edge workers
(W1,...,Wi in Figure 1), and no other policy can manage them
(followup:fail). At line 5 we specify to evenly distribute
the load among all *edge workers with strategy:random.

At lines 7–12, we find the tag of the machine_learning
( ) functions. We define CloudCtl as the controller and
consider all #cloud workers (Wk+1,...,Wj in Figure 1) as
executors, i.e., any worker in the public cloud Wk+1,...,Wj .
Notice that at line 12 we specify to use the default
policy as the followup, in case of failure. The interaction
between the followup and the topology_tolerance (line
11) parameters makes for an interesting case. Since the
topology_tolerance is (the) same (zone of the controller
CloudCtl), we allow other controllers to manage the
scheduling of the function (in the default tag) but we
continue to restrict the execution of machine-learning
functions only to workers within the same zone of CloudCtl,
which, here, coincide with #cloud-tagged workers.

Lines 13–24 define the special, default policy tag, which
is the one used with tag-less functions (here, our generic
ones ) and with failing tags targeting it as their followup
(as seen above, line 12). In particular, the instruction at
line 24 indicates that the default policy shall randomly
distribute the load on both worker blocks (lines 14–20 and 21–
23), respectively controlled by LocalCtl_1 and LocalCtl_2.
Since the two blocks at lines 14–20 and 21–23 are the same,
besides the controller parameter, we focus on the first one.
There, we indicate two sets of valid workers: the #internal
ones (line 16, Wi+1,...,Wk in Figure 1) and the #cloud ones
(as seen above, for lines 9–10). The instruction at line 20
(strategy:best_first) indicates a precedence: first we try
to run functions on the #local cluster and, in case we fail to
find valid workers, we offload on the #cloud workers—in
both cases, we distribute the load randomly (lines 17 and 19).

IV. TAPP IN OPENWHISK

We modified OpenWhisk to support TAPP-based schedul-
ing (available at https://github.com/mattrent/openwhisk). In
particular, to manage the deployment of components, we
pair OpenWhisk with the popular and widely-supported
container orchestrator Kubernetes. The extended platform
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