
A Unifying, Lightweight Platform for Microservice and Serverless Deployments

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Microservices 2023

A Unifying, Lightweight Platform
for Microservice and Serverless

Deployments

1

Allocation Priority Policies for Serverless

Function-execution Scheduling Optimisation

Giuseppe De Palma1, Saverio Giallorenzo1,2, (former) 3,
Jacopo Mauro3, Gianluigi Zavattaro1,2

1Università di Bologna, IT 2INRIA, FR 3University of Southern Denmark, DK

Abstract. Serverless computing is a Cloud development paradigm where
developers write and compose stateless functions, abstracting from their
deployment and scaling. In this paper, we address the problem of function-
execution scheduling, i.e., how to schedule the execution of Serverless
functions to optimise their performance against some user-defined goals.
We introduce a declarative language of Allocation Priority Policies (APP)
to specify policies that inform the scheduling of function execution. We
present a prototypical implementation of APP as an extension of Apache
OpenWhisk and we validate it by i) implementing a use case combining
IoT, Edge, and Cloud Computing and ii) by comparing its performance
to an alternative implementation that uses vanilla OpenWhisk.

Keywords: Serverless · Function-execution Scheduling · Optimisation.

1 Introduction

Serverless computing [1], also known as Functions-as-a-Service, is a new devel-
opment paradigm where programmers write and compose stateless functions,
leaving to Serverless infrastructure providers the duty to manage their deploy-
ment and scaling. Hence, although a bit of a misnomer—as servers are of course
involved—the “less” in Serverless refers to the removal of some server-related
concerns, namely, their maintenance, scaling, and expenses deriving from their
sub-optimal management (e.g., idle servers). Serverless computing was first pro-
posed as a deployment modality for Cloud architectures [1] that pushed to the
extreme the per-usage model of Cloud Computing, letting users pay only for the
computing resources used at each function invocation. However, recent industrial
and academic proposals, such as platforms to support Serverless development
in Edge [2] and Internet-of-Things [3] scenarios, confirm the rising interest of
neighbouring communities to adopt the Serverless paradigm.

While Serverless providers have become more and more common [4,5,6,7,8,9,10]
the technology is still in its infancy and there is much work to do to overcome
the many limitations [9,11,12,1] that hinder its wide adoption. One of the main
challenges to address is how should Serverless providers schedule the functions on
the available computation nodes. To visualise the problem, consider for example
Fig. 1 depicting the availability of two Workers—the computation nodes where
functions can execute. One Worker is in Italy (Site 1) and the other in Greece

Saverio Giallorenzo , Claudio Guidi , Luca Tagliavini 1,2 3 1

Università di Bologna (IT) FOCUS Team, INRIA (FR) ItalianaSoftware S.r.l. (IT)1 2 3

A Unifying, Lightweight Platform for Microservice and Serverless Deployments

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Microservices 2023

A Gentle Introduction to Serverless

2

Monolith Microservices Serverless

Software Unit Runtime EnvironmentFunction

A Unifying, Lightweight Platform for Microservice and Serverless Deployments

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Microservices 2023

3

Programming
Layer

Implementation
Layer

A Gentle Introduction to Serverless

A Unifying, Lightweight Platform for Microservice and Serverless Deployments

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Microservices 2023

Why unifying Microservices and Serverless?

4

Microservices

Software Unit Runtime EnvironmentFunction

Serverless
Pro
- Resource-efficient on

sustained traffic loads
- Marginal cold-start

problems

Cons
- Waste resources when idle
- Complex deployment and

scaling logic

Pro

- Resource-efficient on
intermittent traffic loads

- No deployment/scaling
issue (platform-managed)

Cons

- Costly (and inefficient)
under sustained traffic
load

- Cold-start problems

A Unifying, Lightweight Platform for Microservice and Serverless Deployments

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Microservices 2023

Why unifying Microservices and Serverless?

5

Microservices

Software Unit Runtime EnvironmentFunction

Serverless
Pro
- Resource-efficient on

sustained traffic loads
- Marginal cold-start

problems

Cons
- Waste resources when idle
- Complex deployment and

scaling logic

Pro

- Resource-efficient on
intermittent traffic loads

- No deployment/scaling
issue (platform-managed)

Cons

- Costly (and inefficient)
under sustained traffic
load

- Cold-start problems

What if we could have the best of both worlds?

A Unifying, Lightweight Platform for Microservice and Serverless Deployments

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Microservices 2023

6

Programming
Layer

Implementation
Layer

The Idea

A Unifying, Lightweight Platform for Microservice and Serverless Deployments

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Microservices 2023

7

main
{
 twice(number)(result) {
 result = number * 2
 }
}

inputPort WebServicePort {
 location: "socket://…"
 protocol: http
 interfaces: TwiceInterface
}

inputPort BluetoothPort {
 location: "bluetooth://…"
 protocol: JSON/RPC
 interfaces: TwiceInterface
}

One behaviour

inputPort LocalPort {
 location: "local"
 interfaces: TwiceInterface
}

Many deployments

One specification

interface TwiceInterface {
 requestResponse:

twice(int)(int)
}

inputPort IOTPort {
 location: "socket://myhost:8000"
 protocol: mqtt {
 broker = "socket://broker.com:1883"

 }
 interfaces: TwiceInterface
}

A Unifying, Lightweight Platform for Microservice and Serverless Deployments

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Microservices 2023

8

Jolie
Functions
(JFN)

A Unifying, Lightweight Platform for Microservice and Serverless Deployments

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Microservices 2023

9

3 Implementation

and Executors. The Provisioner, which ties these services together, is currently
the only non-scalable component of the architecture. It can be distributed, pro-
vided some rework is done to move its logic state in a decentralized store, as
described in Section 4.2.

Overall, the runtime is made up of:

• The Function Catalog, which is responsible for the storage and serving
of the function’s code.

• One or more Gateways, which receive the incoming invoke requests and
route them to the best Executor. The load-balancing choice is made by
the Provisioner.

• The Provisioner is the component tasked to load balance the system and
schedule the start and termination of new Executors, as the load shifts.

• One or more Executors, which have the task of running a function with
the provided data.

3.2 Example function call
We show a call for a function 𝑓 with input 𝑥 in the sequence diagram found
in Figure 3.1.

Client Gateway Executor 𝑓
invoke 𝑓(𝑥)

invoke 𝑓(𝑥)
compute on 𝑥𝑓(𝑥)

result of 𝑓(𝑥)
result of 𝑓(𝑥)

Figure 3.1: Abstract sequence diagram of a function call.

26

JFN Flows

A Unifying, Lightweight Platform for Microservice and Serverless Deployments

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Microservices 2023

10

JFN Flows

3.3 Detailed description

Calling op invokes the function specified in the fn field with the data provided
in the leaf data. If an error has occurred, the error field is set to true, and
data is a string describing the issue. Otherwise, error is false and the data
field carries the output of the computation.

3.3.3 The Provisioner

The Provisioner is the main microservice that ties all the infrastructure to-
gether. Its main job is to make decisions on load-balancing while keeping track
of the currently running Executors. Because of its function, it has to be aware
of each and every function call that goes through the system, and has to stay
periodically in contact with all the Executors to check their health. This is
necessary, as sending a function call to an unavailable Executor might mean
that the call never gets back to the Gateway, leaving a client hanging until
timeout.

Provisioner Executor

ping
pong

Remove Executor
FailureFailure network down, power outage

HeartbeatHeartbeat repeat every second

Figure 3.4: Heartbeat protocol between the Provisioner and an Executor.

When an Executor comes online, it registers with the Provisioner to notify
the system of its availability. In Figure 3.4, we depict the lifecycle of the

31

A Unifying, Lightweight Platform for Microservice and Serverless Deployments

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Microservices 2023

11

JFN Flows

3.3 Detailed description

all functions has been fixed to concurrent; therefore it is the Runner’s job
to stop the embedded service once the call has completed. This requirement
comes from a limitation of the service parameters, which cannot specify the
execution mode (see Section 2.2.8). On the other hand, this design choice
can be used to further enhance the performance of the Runner by waiting a
cooldown period before stopping each embedded service. This tweak would
allow for calls arriving in quick succession to reuse the same embedded ser-
vice, improving response times and lowering the resource usage. However,
optimization have to be carefully considered; we address this issue, discussing
all the benefits and disadvantages in Section 4.3.

Gateway Runner Runtime Catalog 𝑓
invoke 𝑓(𝑥) on 1

hash(𝑓)
092fcfbb
get(𝑓)𝑥 + 1

Embed 𝑓
local://.. 𝑓(1)2

Stop 𝑓2
Figure 3.6: Sequence diagram of a function invocation, with a detailed Runner in-

teraction.

We repeat in Figure 3.6 the invocation of a function 𝑓 which returns the input
number incremented by 1. In this scenario, the function is not cached on the
Runner’s filesystem and the code has to be requested to the catalog. The
figure also details the calls to Jolie’s builtin Runtime service, which enables
the embedding and stopping of the function’s service. When subsequent calls

39

3.3 Detailed description

all functions has been fixed to concurrent; therefore it is the Runner’s job
to stop the embedded service once the call has completed. This requirement
comes from a limitation of the service parameters, which cannot specify the
execution mode (see Section 2.2.8). On the other hand, this design choice
can be used to further enhance the performance of the Runner by waiting a
cooldown period before stopping each embedded service. This tweak would
allow for calls arriving in quick succession to reuse the same embedded ser-
vice, improving response times and lowering the resource usage. However,
optimization have to be carefully considered; we address this issue, discussing
all the benefits and disadvantages in Section 4.3.

Gateway Runner Runtime Catalog 𝑓
invoke 𝑓(𝑥) on 1

hash(𝑓)
092fcfbb
get(𝑓)𝑥 + 1

Embed 𝑓
local://.. 𝑓(1)2

Stop 𝑓2
Figure 3.6: Sequence diagram of a function invocation, with a detailed Runner in-

teraction.

We repeat in Figure 3.6 the invocation of a function 𝑓 which returns the input
number incremented by 1. In this scenario, the function is not cached on the
Runner’s filesystem and the code has to be requested to the catalog. The
figure also details the calls to Jolie’s builtin Runtime service, which enables
the embedding and stopping of the function’s service. When subsequent calls

39

A Unifying, Lightweight Platform for Microservice and Serverless Deployments

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Microservices 2023

12

JFN: From Microservices to Functions

3.7 An Example of a service conversion

location: "local"
interfaces: MergeSort

}

main {…
[sort(array)(sorted){

mid = (array.end - array.start) / 2
sort@Self({ data << array.data, start = data.start, end

= mid })(array.data)
sort@Self({ data << array.data, start = mid+1, end = end

})(array.data)
merge@Self(array)(sorted)

}]
}

}

Listing 3.4: Merge sort’s ports and sort operation.

In order to transform the Sorter service into functions for the JFN platform,
we are going to follow these generic steps, which can be applied to any con-
version:

1. Identify all operations which receive “many” calls. In this example, both
sort and merge receive “many” calls for large enough inputs.

2. Create a JFN function, as described in Section 3.5, for each operation
selected in the previous step. For any operation which has not selected,
its code shall be included in any function where it is needed.

3. Finally, in all functions, replace all calls to operations which have been
moved to a separate function as follows:

name@Self(input)(output)

51

3 Implementation

Becomes:

op@Gateway({ fn = "name", data << input })(response)
output << response.data

In any function that calls an operation on the Gateway, you must include
a definition for its output port, pointing to your JFN deployment.

Having applied all the steps outlined before, the Sorter service would be
converted as follows:

service Sort {…
outputPort Gateway {…
}

main {…
[fn(request)(response){

mid = (request.data.end - request.data.start) / 2
op@Gateway({ op = "sort", data << {

data << request.data.data,
start = request.data.start,
end = mid

} })
op@Gateway({ op = "sort", data << {

data << request.data.data,
start = mid+1,
end = request.data.end

} })
op@Gateway({ op = "merge", data << { data << request.

data.data } })

52

FaaSification

1. Identify the operation to
expose as a function (e.g., sort)

2. Create a JFN function where:

- its body is the body of the operation
(making sure to map the input/outputs)

- all calls to operations which have been
moved to a separate function as follows:

A Unifying, Lightweight Platform for Microservice and Serverless Deployments

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Microservices 2023

13

Future Work (implementation)
Increase the scalability of the architecture. Immediate targets:

architectural: Function Catalog and Provisioner

infrastructural: Kubernetes

Support the deployment of microservice packages (JAPs) to run:

 multi-file Jolie microservices

 Java and JavaScript microservices

saverio.giallorenzo@gmail.com • Università di Bologna and INRIA

Microservices 2023 A Unifying, Lightweight Platform for Microservice and Serverless Deployments

14

