
saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

The Servers of Serverless Computing

�1

A Formal Revisitation of Functions as Services

Saverio Giallorenzo� , Ivan Lanese� , Fabrizio
Montesi� , Davide Sangiorgi� , and Stefano Pio Zingaro �

1,2former 1
2 1 1

� Università di Bologna/INRIA

� University of Southern Denmark

1
2

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

A Gentle Introduction to Serverless

�2

Monolith Microservices Serverless
Software Unit Runtime EnvironmentFunction

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

A Gentle Introduction to Serverless

�3

Execution Scheduling

Heterogeneous
storage/
messaging
patterns

Deployment

Optimisation
and Security

Programming
Layer

Implementation
Layer

Programming
model

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

Serverless as Research Topic

�4

Source: Scopus

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

Serverless as Research Topic

�5

Venue # Papers Core / SCIMAGO Rank
Future Generation Computer Systems 8 Software : Q1

IEEE Internet Computing 3 Computer Networks and
Communications : Q1

IEEE Transactions on Parallel and Distributed Systems 2 Computational Theory and
Mathematics: Q1

USENIX Annual Technical Conference + HotCloud 13 (6,7) A / -
IC2E + IEEE CLOUD + CLOSER 20 (5,10,5) - / B / -

ACM Symposium on Cloud Computing (SoCC) 12 -
SIGMOD 4 A*

Middleware 4 A
CIDR 3 A

OOPSLA 2 A*
ICSE 2 A*

INFOCOM 2 A*
Source: DBLP

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

�6

Programming
Layer

Implementation
Layer

The Servers of Serverless

SKC
influenced by � and � calculusλ π

� calculusπ

⇒ ⇒

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

SKC • Simple Example (async)

�7

S. Giallorenzo et al. 5:7

not contain any mapping for f (but can become unstuck if a mapping appears later on).210

Rule take is similar, but the mapping for the called function is removed from the definition211

repository: we write undef(D, f) for the repository obtained by removing the mapping for f212

from D.213

The other rules are the expected ones for dealing with restriction (res-s and res-c),214

parallel composition (par), and structural equivalence (str): reductions under restriction215

and parallel composition can be lifted, and the reduction relation ≠≠æ is closed under the216

structural equivalence ©.217

I Example 1 (Local vs Async execution). As we are going to see in Section 3, the definition218

repository is useful to store data and functions that are commonly reused. By itself, term219

call f retrieves the body of function f from the repository and runs it locally. One can220

combine call with async to execute the retrieved function asynchronously, which gives some221

control on how functions from the repository should be executed.222

The caller of a function does not need to worry about which strategy is used by the callee,223

since the semantics of SKC makes both to eventually reduce to the same result. For example,224

assume that D(f) = V . The following reduction chains show the respective behaviours of225

the two strategies.226

Èc J call f, DÍ ≠≠æ Èc J V, DÍ (1)227

228

Èc J async call f, DÍ
≠≠æ È‹cÕ (c J cÕ | cÕ J call f), DÍ
≠≠æ È‹cÕ (c J cÕ | cÕ J V), DÍ
≠≠æ È‹cÕ (c J V | cÕ J V), DÍ

(2)229

The resulting term has the same behaviour of the one resulting from the local execution.230

One could make the two terms syntactically equal by implementing garbage collection for231

unused futures (and the related values).232

I Example 2 (Shared state). The definition repository can be used to store and share state.233

A simple example is keeping a counter of requests. We abuse notation and use arithmetic234

operators and natural numbers in SKC — as presented in Section 3. The counter can be235

initialised with236

(store counter V0 M)237

where V0 is the initial value, and incremented with238

(⁄x. store counter (call sum 1 x) M) (take counter)239

In both the cases M is a continuation.240

I Example 3 (Libraries). Updating shared state as in the previous example happens often in241

serverless computing. One could think of o�ering a replace primitive as syntactic sugar.242

replace h N M , (⁄x. store h (N x) M) (take h)243

We can then rewrite our previous counter example as follows.244

replace counter (call sum 1) M245

Gabbr i e l l i ’ s Fes t sch r i f t

S. Giallorenzo et al. 5:7

not contain any mapping for f (but can become unstuck if a mapping appears later on).210

Rule take is similar, but the mapping for the called function is removed from the definition211

repository: we write undef(D, f) for the repository obtained by removing the mapping for f212

from D.213

The other rules are the expected ones for dealing with restriction (res-s and res-c),214

parallel composition (par), and structural equivalence (str): reductions under restriction215

and parallel composition can be lifted, and the reduction relation ≠≠æ is closed under the216

structural equivalence ©.217

I Example 1 (Local vs Async execution). As we are going to see in Section 3, the definition218

repository is useful to store data and functions that are commonly reused. By itself, term219

call f retrieves the body of function f from the repository and runs it locally. One can220

combine call with async to execute the retrieved function asynchronously, which gives some221

control on how functions from the repository should be executed.222

The caller of a function does not need to worry about which strategy is used by the callee,223

since the semantics of SKC makes both to eventually reduce to the same result. For example,224

assume that D(f) = V . The following reduction chains show the respective behaviours of225

the two strategies.226

Èc J call f, DÍ ≠≠æ Èc J V, DÍ (1)227

228

Èc J async call f, DÍ
≠≠æ È‹cÕ (c J cÕ | cÕ J call f), DÍ
≠≠æ È‹cÕ (c J cÕ | cÕ J V), DÍ
≠≠æ È‹cÕ (c J V | cÕ J V), DÍ

(2)229

The resulting term has the same behaviour of the one resulting from the local execution.230

One could make the two terms syntactically equal by implementing garbage collection for231

unused futures (and the related values).232

I Example 2 (Shared state). The definition repository can be used to store and share state.233

A simple example is keeping a counter of requests. We abuse notation and use arithmetic234

operators and natural numbers in SKC — as presented in Section 3. The counter can be235

initialised with236

(store counter V0 M)237

where V0 is the initial value, and incremented with238

(⁄x. store counter (call sum 1 x) M) (take counter)239

In both the cases M is a continuation.240

I Example 3 (Libraries). Updating shared state as in the previous example happens often in241

serverless computing. One could think of o�ering a replace primitive as syntactic sugar.242

replace h N M , (⁄x. store h (N x) M) (take h)243

We can then rewrite our previous counter example as follows.244

replace counter (call sum 1) M245

Gabbr i e l l i ’ s Fes t sch r i f t

M

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

SKC • Example, Private State

�8

(newLog , νlog ("#$%& log '()) nil log)) ∈ D} } }
Name Body Continuation

}

Fresh name

/restriction

Empty list}

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

SKC • Example, Private State

�9

(newLog , νlog ("#$%& log '()) nil log)) ∈ D

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

SKC • Example, Private State

�9

(newLog , νlog ("#$%& log '()) nil log)) ∈ D

⟨c!(λx . ('()) pair ((M x)(N x)) x)) '()) newLog , D⟩

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

SKC • Example, Private State

�9

(newLog , νlog ("#$%& log '()) nil log)) ∈ D

⟨c!(λx . ('()) pair ((M x)(N x)) x)) '()) newLog , D⟩
⟨c!(λx . ('()) pair ((M x)(N x)) x)) νlog ("#$%& log '()) nil log), D⟩

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

SKC • Example, Private State

�9

(newLog , νlog ("#$%& log '()) nil log)) ∈ D

⟨c!(λx . ('()) pair ((M x)(N x)) x)) '()) newLog , D⟩
⟨c!(λx . ('()) pair ((M x)(N x)) x)) νlog ("#$%& log '()) nil log), D⟩
νlog ⟨c!(λx . ('()) pair ((M x)(N x)) x)) log , D ∪ {(log , '()) nil)}⟩

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

SKC • Example, Private State

�9

(newLog , νlog ("#$%& log '()) nil log)) ∈ D

⟨c!(λx . ('()) pair ((M x)(N x)) x)) '()) newLog , D⟩
⟨c!(λx . ('()) pair ((M x)(N x)) x)) νlog ("#$%& log '()) nil log), D⟩
νlog ⟨c!(λx . ('()) pair ((M x)(N x)) x)) log , D ∪ {(log , '()) nil)}⟩
νlog ⟨c!'()) pair ((M log)(N log)) log , D ∪ {(log , '()) nil)}⟩

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

SKC • Example, Private State

�9

(newLog , νlog ("#$%& log '()) nil log)) ∈ D

⟨c!(λx . ('()) pair ((M x)(N x)) x)) '()) newLog , D⟩
⟨c!(λx . ('()) pair ((M x)(N x)) x)) νlog ("#$%& log '()) nil log), D⟩
νlog ⟨c!(λx . ('()) pair ((M x)(N x)) x)) log , D ∪ {(log , '()) nil)}⟩
νlog ⟨c!'()) pair ((M log)(N log)) log , D ∪ {(log , '()) nil)}⟩
νlog ⟨c!'()) pair (M log VN) log , D ∪ {(log , Nlog)}⟩

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

SKC • Example, Private State

�9

(newLog , νlog ("#$%& log '()) nil log)) ∈ D

⟨c!(λx . ('()) pair ((M x)(N x)) x)) '()) newLog , D⟩
⟨c!(λx . ('()) pair ((M x)(N x)) x)) νlog ("#$%& log '()) nil log), D⟩
νlog ⟨c!(λx . ('()) pair ((M x)(N x)) x)) log , D ∪ {(log , '()) nil)}⟩
νlog ⟨c!'()) pair ((M log)(N log)) log , D ∪ {(log , '()) nil)}⟩
νlog ⟨c!'()) pair (M log VN) log , D ∪ {(log , Nlog)}⟩
νlog ⟨c!'()) pair VM log , D ∪ {(log , Nlog :: Mlog)}⟩

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

SKC • Results, � Operational CorrespondenceSKC ↔ π

�10

Theorem 1. From � -to-� operational correspondence

If � then �

SKC π

C → C′� [[C]]* → ≈ [[C′ �]]*

Theorem 2. From � -to-� operational correspondence.

If � then there is � with � and �

π SKC

{[C]} * → P C′� C → C′� P ≈ [[C′�]]*

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

SKC • Future Work

�11

- guarantees like sequential execution/consistency (global total order) and
weaker forms, like global-state transformation serialisability (equivalence
to a global serial schedule);

- programming models to have a global view of the logic of the distributed
functions, yet capturing the loosely-consistent execution model of
Serverless (e.g., choreographies);

- transformation frameworks, e.g., depending on the application context
and inbound load, users/optimisation systems can transform parts of a
given system from Serverless to Microservices and vice versa;

- prediction models for cost/resource usage, which require a modelling
that relates functions and their execution at the implementation layer.

saverio.giallorenzo@gmail.com

The Servers of Serverless Computing DIP2020

Thank for your time

�12

Happy
cruising!

