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Abstract. Microservices is an emerging paradigm for the development
of distributed systems that, originating from Service-Oriented Architec-
ture, focuses on the small dimension, the loose coupling, and the dynamic
topology of services. Microservices are particularly appropriate for the
development of distributed systems in the Cloud. However, their dynamic
nature calls for suitable techniques for their automatic deployment. In
this paper we address this problem and we propose JRO (Jolie Redeploy-
ment Optimiser), a tool for the automatic and optimised deployment of
microservices written in the Jolie language. The tool uses Zephyrus, a
state of the art tool that automatically generates a fully detailed Service-
Oriented Architecture configuration starting from a partial and abstract
description of the target application.
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ployment, Optimal Component Allocation

1 Introduction

Microservices [16] is an emerging paradigm for the development of distributed
systems that evolved from Service-Oriented Architecture [18] (SOA). The key
aspect of microservices is that the idea of using services as components is per-
vasive.

In typical SOAs, services are used as an overlay meant to integrate and
coordinate autonomous information systems. This coordination is obtained via
communications, which operate using standard protocols. Such information sys-
tems can be built following different methodologies; in practice, many of them
are legacy systems. Microservices explore a different direction, i.e., that of using
services as the inner components of an information system. This allows to apply
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to microservices the same principles that apply to component-based software en-
gineering. For example, since microservices should be small (or, better, “micro”)
it should be natural to follow principles towards cohesion, such as the Single
Responsibility Principle6.

Moreover, in this paradigm even the components of a single software applica-
tion are all autonomous services that can interact only through message passing.
This has the important benefit of obtaining a loosely-coupled implementation
of the internals of an application, thus facilitating modularity and scalability.
Due to the fact that microservices are already loosely-coupled, operate via mes-
sage passing, and offer APIs to be invoked by external software it is easier to
coordinate information systems based on microservices.

To understand how microservices support scalability, suppose that a service
in a system is under heavy load. Since all the other components can interact
with this service only through its message interface, we can replace it with a
load balancer that offers the same API and forwards requests to a new subsys-
tem running a set of replicated instances of the original service. From the loose
coupling property of microservices we obtain that the rest of the system remains
unchanged, independently from its implementation details. This feature makes
the topology of a microservices architecture (i.e., the number of its components
and their interactions) very dynamic.

Due to their properties, one of the main application contexts of microservices
is the deployment of distributed systems in the Cloud [36]. Indeed, in the Cloud
it is easy to scale the infrastructure of a system by adding or removing instances
of virtual machines. However, allocating and deploying services on that machines
while the system is running is a complex task. Usually the deployment of services
is done either manually or it is handled programmatically with pre-configured
deployment schemas that tools like Puppet [43] and Chef [40] automate. In either
cases, the developers and DevOps7 must carefully define where — in which
virtual machine — services must be deployed and specify their connections.
The planning of the deployment of a system must balance between the cost of
its resources and its performances. Even in systems composed of few types of
services, devising such a deployment plan quickly becomes a cumbersome and
complex task due to dependencies between services and availability of different
kinds of virtual machines, with different range of resources and costs. When
looking for an optimal plan the task becomes extremely difficult, also from a
theoretical perspective, since very easily one encounter NP-hard [26] and even
undecidable problems [8].

In this paper, we address the problem of automatic optimal deployment plan-
ning of microservices. We assume the use of reconfigurable microservices, thus
abstracting from the preservation, partition, and consistency of their state and
data between successive re-deployments. We present Jolie Redeployment Opti-

6 This is a well know example from the object oriented world, stating that there should
never be more than one reason for a class to change.

7 DevOps are professionals that collaborate in the development of programs by re-
porting their experiences with tests and deployments scenarios to developers [11].



miser (JRO), a tool for the automatic and optimised deployment of microservices
written in the Jolie language [21, 30–32]. Jolie is an open-source programming
language for developing distributed applications based on microservices which
combines computation and composition primitives in an intuitive and concise
syntax. In Jolie each component is a (micro)service that can communicate with
other components by sending and receiving messages over a network. The be-
haviour and deployment of a Jolie service are orthogonal: they can be inde-
pendently defined and recombined as long as they have compatible typing. In
order to support concurrency, a service can run multiple instances of its be-
haviour, called processes. Processes can direct messages to each other by using
arbitrary sets of data, a mechanism commonly called message correlation [38]
and borrowed from Service-Oriented Architectures. The semantics of processes
and correlation in Jolie is formally defined [29] and used in studies aiming at
providing formal properties on service systems, such as those based on choreog-
raphy languages [4,33]. Jolie also includes useful features for the programming of
dynamic service systems such as embedding that allows the supervised execution
of sub-services inside of other services [28]. Embedding can be used at runtime
to enable service mobility and the runtime adaptation of parts of a running
process [23].

The Jolie Redeployment Optimiser tool is based on the following three main
components:

Zephyrus [7] A tool that automatically generates, starting from a partial and
abstract description of the target application, a fully detailed architecture,
indicating which and how many components are needed to realize such ap-
plication, how to distribute them on virtual machines, and how to bind
them together. Zephyrus is also capable of producing optimal architectures,
minimizing the amount of needed virtual machines while still guaranteeing
that each service has its needed share of computing resources (CPU power,
memory, bandwidth, etc.) on the machine where it gets deployed.

Jolie Enterprise (JE) A distributed framework for deploying and managing
microservices written in the Jolie language. Jolie Enterprise exposes Appli-
cation Program Interfaces (APIs) i) to access all the data related to the
platforms and services running in the managed system, ii) to deploy, start,
stop, and remove services, and iii) to monitor their performances and re-
source consumption.

Jolie Reconfiguration Coordinator (JRC) A tool that, given a desired con-
figuration and a context for the deployment (provided by Jolie Enterprise)
interacts with Zephyrus to produce the optimised deployment planning.

We depict in Figure 1 how JRC, JE, and Zephyrus interact in JRO, start-
ing from a desired configuration and its actual deployment. The sequence of
interactions in Figure 1 can be described as follows.

1. The User defines the requirements of the deployment, e.g., how many in-
stances of a service must be deployed or that some type of services cannot
run in the same machine with others.
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Fig. 1. JRO Workflow

2. JRO retrieves from JE the context of the deployment, i.e., the available
virtual machines in the system (in the figure DC#1, DC#2, and DC#3).

3. JRO uses JRC which uses Zephyrus to find the optimal solution.

4. If the User agrees with the solution, JRO proceeds with the orchestration of
the deployment, instructing JE on how services should be deployed, linked
or removed.

To the best of our knowledge JRO is the first tool allowing to optimally
deploy a microservice based application.

Structure of the paper. Section 2 presents a comprehensive, real-world use-
case to illustrate how JRO works from the user perspective. In Section 3 we
describe the details of JRO and its features. Section 4 contains a discussion on
related work and our closing remarks.

2 Example

In this section, we show how JRO can be used to deploy a realistic SOA using as a
running example a blog microservices architecture [27]. As depicted in Figure 2,
the blog comprises 5 types of microservices for post publication and commenting:

– Auth enables the users of the blog to authenticate themselves;

– Posts allows an author to edit a post. Posts needs an instance of Auth to
authenticate authors;

– Comments Balancer dispatches the submission of comments from the readers
to an instance of the Comments service;

– Comments receives the submission of a comment and publishes it. Comments
needs an instance of Comments Balancer to receive incoming submissions
and an instance of Auth to authenticate the reader who sent the comment;



Web
Clients

Mobile
Clients

Publication
Gateway

Comments
Balancer

CommentsCommentsComments

PostsPostsPosts

AuthAuthAuth

work flow
depedency

Fig. 2. Blog microservices architecture.

– Publication Gateway is the service accessed by clients to read the blog.
Publication Gateway needs and instance of Auth to let readers access the
contents of the blog.

All these services come with some information related to the resources that they
require to be installed. In particular, every service specifies how much RAM and
processing power it needs, to how many services it can provide its functionalities
(Provision) and the number and the type of services it requires to work (Depen-
dencies)8. In the table below we summarize this information for the services of
the blog.

Service Mem CPU Dependencies Provision
Auth 50 2 - 5
Posts 20 1 Auth: 1 1
Comments Balancer 50 4 - ∞
Comments 30 1 Auth: 1, Comments Balancer: 1 1
Gateway 50 4 Auth: 1 ∞

Observe that the profiling of Comments Balancer and Gateway marks a the-
oretical infinite provision. This is because these services do no intensive compu-
tation and they just dispatch requests towards other services. The Auth instead
can be used by 5 other services instances, whether they may be Post, Comment,
or Gateway services.

The usual way of setting up an instance of the blog to satisfy some expected
traffic load requires to reserve some virtual machines and deploy a certain number
of Post, Comment, Comment Balancer, and Gateway services, which in turn need
the deployment of several Auth services. Besides the deployment, it would be also

8 We assume that this information, usually obtained through some profiling of the
services, has to be initially entered by the service developer.



necessary to connect all the deployed services — e.g., all Post services to their
correspondent Auth services — in such a way that they can sustain the expected
load and do not generate bottlenecks.

With JRO all these concerns are handled automatically and it is guaranteed
that the obtained deployment respects the initial desiderata.

For example, let us consider that a DevOps wants to deploy two Posts ser-
vices, two Comments services, and a Gateway. In JRO she does that by specifying
the following string.

Post = 2 and Comments = 2 and Gateway = 1

These services are usually deployed on a cloud or some (private) cluster of
machines. In the context of this work, we use the term of Deployment Containers
(DC) to capture the notion of the basic unit where services can be deployed,
whether they may be virtual machines, physical machines, or containers a la
Docker [13]. A DC is characterised by a cost and some resources that it can
provide. For this running example, let us consider the two DCs reported below
and characterised by their Cost, expressed in dollar/month, Memory expressed
in MB, and processing power, expressed in processor units (CPU).

DC Cost Memory CPU

Small 4 60 2

Big 6 100 4

When the DevOps enters her desiderata, JRO automatically computes the
optimal (i.e., the least expensive) configuration that satisfies her request. In
our case, the computed configuration is the one reported in Figure 3, where a
Gateway service and a Comments Balancer service are deployed in two separated
Big DC, two Comments services are in a Small DC and the remaining services
(one Auth and two Post) are on another Big DC.

The DevOps obtained a correct configuration but she realises that it is not
right for fault tolerance and load balancing reasons. Indeed, deploying on the
same DC respectively two Post services and two Comments services can lead to
outages in case of high load or crash of one of the DCs. Hence, the DevOps
wants to specify that services of the same kind should be deployed on different
machines. With JRO it is also possible to express constraints on the co-location
and distribution of services. Let us suppose that DevOps requires that every DC
contains at most one Post, one Comments, and one Auth service and that the
Auth service cannot be co-located with a Post or Comments service. In this case,
the configuration computed by JRO is the one depicted in Fig. 4. The DevOps
finally accepts the solution and deploys the obtained configuration.

Let us now make the case that, after some usage, the DevOps notices that
many users comment the same post, which overloads the Comments services
and slows down the responsiveness of the blog. To cope with the high load on
comments, the DevOps wants to re-deploy the architecture of the blog with a
total of four Comments services.
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JRO makes very easy to specify the re-deployment of an architecture. It
is sufficient to modify the previous specification by requiring 4, instead of 2,
Comments services. JRO produces the configuration depicted in Fig. 5. Observe
that the increase of 2 Comments requires the addition of an additional Auth

service to handle the increase in authentication requests generated by all the
Comments services. This is done automatically and the DevOps does not need to
handle any dependency between services.

As a final example, let us consider that the profiling of the blog changes. This
can be due to a wrong initial profiling or to the introduction of a new version
of the services of the blog. In this case, some service of the blog can require
more or less resources to work correctly. JRO covers also this case: the DevOps
just needs to update the previous profiling and rerun the tool to redistribute the
component in the optimal way.
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3 JRO

In this section, we detail how JRO works. As previously mentioned, the execution
phases of JRO are summarized in Figure 1. The deployment of a new configura-
tion or the reconfiguration of an existing one is triggered by the user that enters
her desiderata. JRO queries the deployment platform (in our case it is JE) to
retrieve the current deployed configuration and the list of the services that could
be deployed with their resource needs and dependencies. These data are then
encoded and submitted to Zephyrus to obtain a tentative final configuration.
This configuration is presented to the user, which may accept it or refuse it by
entering a different specification. If a configuration is accepted, it is deployed
on the target deployment platform by issuing the commands to install and run
the services. The user has only to enter her goals and, if desired, perform the
optional step of deciding if accepting or not a given configuration.

JRO can be used in an interactive way to refine the configuration until an
acceptable one is obtained. To make this process automatic, JRO requires the
services to be annotated with their profiling, i.e., that each service is annotated
with its resource consumption, its dependencies, and its capabilities. In JRO
annotations are written in a JSON file that, by convention, has the same name
and is stored on the same location of the Jolie service. For example, the JSON
annotation associated to the Post service is the following:

1 { "cost":

2 { "Memory": 20, "CPU": 1 } ,

3 "dependencies":

4 { "Auth" : 1 }

5 }

At Line 2, we specify that the service requires the use of a 1 CPU and 20
MB of memory9. At Line 4, we specify that Post depends on the functionali-

9 This number is given just for illustrative purposes. The real service consumes indeed
more resources.



ties provided by the Auth service. Hence, to be properly installed, it needs the
location of an existing Auth to invoke.

In the annotation, it is also possible to quantify the number of other services
that can exploit the functionalities provided be the annotated services. This can
be done by means of the provide property. For example, the Auth service is
annotated with {"provide" : 5}, which indicates that every instance of Auth

can receive invocation from at most 5 different services.
JRO automatically retrieves the information related to the running SOA by

exploiting the JE APIs. In particular, it finds what are the Deployment Com-
ponents (DC) that are running, their resources (e.g., the number of CPUs and
the RAM), and the services deployed on of them. Since the available DCs may
not be enough to deploy the desired system, it is possible to specify additional
resources to use that may be acquired from a cloud provider and their monetary
cost.

The list of deployment components is given as a JSON object with two prop-
erties: DC description, which describes the different types of deployment com-
ponents, and DC availability, which specifies the number of available instances
for each of these types. A deployment component type is identified by a name,
the list of the resources it provides, and a cost that the user has to pay in order to
use it. For instance, the following JSON object defines the possibility of using 5
c3.large and 3 c3.xlarge Amazon AWS instances as deployment components.

1 { "DC_description": [

2 { "name" : "c3.large", "cost" : 105,

3 "provide_resources" : {"CPU" : 2, "Memory" : 375} },

4 { "name" : "c3.xlarge", "cost" : 210

5 "provide_resources" : {"CPU" : 4, "Memory" : 750} } ],

6 "DC_availability": {

7 "c3.large" : 5, "c3.xlarge" : 3 } }

The c3.large AWS machine is identified as a deployment component type
that provides 2 CPUs and 3.75 GB of RAM. When used, this type of deployment
component costs 105 dollars per month.

As previously mentioned, the DevOps triggers the execution of JRO by en-
tering the specification of the target configuration. The DevOps does not need
to design the final configuration and she rather declares some constraints (e.g.,
number of services she wants to deploy, co-installation or distribution require-
ments) of the final configuration. All these goals and desiderata are expressed
in a domain specific language called Service Desiderata Language (SDA). In the
remainder of this section, we first detail this language and then describe the
integration of Zephyrus via JRC and how the final configuration, if accepted, is
actually deployed in JE.

3.1 Service Desiderata Language (SDA)

The Service Desiderata Language (SDA) is an ad-hoc language created to suc-
cinctly state the constraints that the final configuration should entail. As shown



1 spec

2 : expr comparisonOP expr | spec boolOP spec | ’true’

3 | ’not’ spec | ’(’ spec ’)’ ;

4 expr

5 : ’DC[’ resourceFilter ’|’ simpleExpr ’]’

6 | ’DC[’ simpleExpr ’]’

7 | expr arithmeticOP expr | simpleExpr ;

8 resourceFilter

9 : STRING comparisonOP INT

10 | resourceFilter ’;’ resourceFilter ;

11 simpleExpr

12 : exprNoDC comparisonOP exprNoDC

13 | simpleExpr boolOP simpleExpr |

14 | ’true’ | ’not’ spec | ’(’ spec ’)’ ;

15 exprNoDC :

16 INT | STRING

17 | exprNoDC arithmeticOP exprNoDC ;

18 comparisonOP : ’<=’ | ’<’ | ’=’ | ’>=’ | ’>’ ;

19 arithmeticOP : ’+’ | ’-’ | ’*’ ;

20 boolOP : ’and’ | ’or’ | ’impl’ | ’iff’ ;

Fig. 6. SDA grammar.

in Fig. 6, which reports the SDA grammar defined using the ANTLR tool10, a
constraint is a specification spec of basic constraints expr comparisonOP expr

(Line 2) combined using the usual logical connectives. These basic constraints
specify how many services the user desires to create. An expression expr could
identify either an integer value or the number of services.

With this expressiveness, it is possible to add constraints that abstract away
from the DC. For instance, one might require, as in the running example, the
deployment of at least 2 Post and 2 Comments services as follows.

Post >= 2 and Comments >= 2

More complex constraints can be stated to restrict the applications installed
on the DC. These constraints are expressed (Line 5) with the notation DC[

resourceFilter | simpleExpr ] where resourceFilter is an optional se-
quence of constraints on the resources provided by the DC and simpleExpr

is an expression. DC[ resourceFilter | simpleExpr ] denotes the number of
deployment components that satisfy the resource constraints of resourceFilter
and that contain objects satisfying the expression simpleExpr. For instance, we
can specify that no deployment component having less than 8 CPUs should
contain more than one Post service as follows.

DC[ CPU <= 8 | Post > 1 ] = 0

10 ANTLR (ANother Tool for Language Recognition) - http://www.antlr.org/

http://www.antlr.org/


It is also possible to express constraints on co-location or distribution. This is
an important feature when dealing with performances — e.g., by co-locating
services that frequently interact —, or with security or fault handling — e.g., by
keeping some kinds of services separated. As an example, consider the case in
Section 2 in which we forbid to co-locate the Post and the Comments services on
the same DC. Such requirement is easily stated with the following constraint.

DC[ Post > 0 and Comments > 0 ] = 0

3.2 JRC

When the specification and the information on the running configuration are
retrieved, they must be transformed and encoded in order to exploit the engine
of the Zephyrus configurator. This task is performed by JRC, which processes
the available information to generate the universe file of components required by
Zephyrus [7]. Services have to be encoded into Aeolus components since Zephyrus
requires as input a representation of the components following the Aeolus model
specification [8]. In Aeolus, a component is a grey-box showing relevant inter-
nal states and the actions that can be acted on the component to change its
state during the deployment process. Each state activates “provide” and “re-
quire” ports that represent functionalities that the component offers and needs,
respectively.

In this context, a service S for JRO can be simply seen as an Aeolus com-
ponent with two states: an initial state Init representing the fact that S is not
yet deployed, and an On state meaning that the service has been deployed. If the
service has some initialization parameters (e.g., Post requires a service Auth)
these are seen as require ports.

In Aeolus, it is possible to associate numbers to ports to deal with capaci-
ty/replication constraints. The number associated to a require port indicates the
minimal number of distinct components that should provide resources to satisfy
the requirement. The number associated to the provide port stands instead for
the maximal amount of distinct components that can use the provided function-
ality. In our setting, the number of service dependencies is therefore the number
associated to the require port. Dually, the number of services that can use the
functionalities of a given service is the number associated to the provide of its
Aeolus representation.

Zephyrus requires as additional input also the specification file containing
the encoding of the constraints that should be satisfied in the final configura-
tion following an ad-hoc specification language, and the location file containing
the list of the containers to be used to deploy the components. The generation
of these files from the available information is quite straightforward since the
Zephyrus specification language is more expressive than SDA because, thanks to
the chosen encoding, the notion of component and ports in the Aeolus model
collapses into the notion of services (i.e., components and ports share the same
domain).



When all the input of Zephyrus is generated, JRC runs the configurator. This
is the most computational intensive task of the entire process11. We use Zephyrus
to compute the cheapest solution satisfying the user desiderata.

3.3 Deployment of the final configuration

When the configuration is returned and it is accepted by the DevOps, JRO
removes the services that are deployed but not present in the final configuration
and then starts to deploy the new services on the virtual machines defined in
the configuration computed by using Zephyrus.

In the final configuration the dependencies between the components are the
connection between the services. Since the services are developed in Jolie, sat-
isfying a dependency can be performed simply by changing the configuration of
the output port of the dependent service with the appropriate location and the
setting of the protocol needed to reach the required service. Services that do not
have dependencies are deployed before those requiring these services. In case of
a circular dependency (e.g., service A requires service B that requires A), first
JRO deploys the services, then it retrieves their inbound connection data, and
finally it dynamically rebinds their output ports.

It is important to notice here that, while in principle any suitable platform
could be used for the deployment of service, the use of the Jolie Enterprise
framework simplify considerably this task.

Jolie Enterprise is structured on two main nodes: the control panel and the
cloud node. The Jolie microservices are deployed and run within cloud nodes,
while the control panel offers a set of Web APIs for interacting with the cloud
nodes by using operations such as setService, startService, stopService

and getServiceList. Operation setService registers a service in the cloud
node, startService executes it, stopService stops its current execution, and
getServiceList returns the list of all the available services along with its exe-
cution status (running, disabled). In our implementation of JRO we have created
a service, called ResourceManager, which can call Jolie Enterprise APIs in or-
der to get the current configuration of the system, consisting of active services
and inactive services. Such a configuration is then passed to JRC to obtain an
output containing the new desired configuration for the system. At this stage,
the ResourceManager calls again the Jolie Enterprise APIs in order to deploy
and execute the new configuration.

The Jolie Enterprise is a proprietary solution and therefore is not freely avail-
able. Nevertheless, JRC, the core part of the JRO, is open-source and available
at https://github.com/jolie/jrc. This tool can be used to support other de-
ployment platforms providing the same functionalities of JE. JRC is provided
along with the input and configurations for all the outputs of the running sce-
nario in Section 2.

11 As formalized in [6], the problem solved by Zephyrus is NP-hard.

https://github.com/jolie/jrc


4 Related Work and Conclusion

Nowadays, developing applications for the cloud is usually accomplished by rely-
ing on the Infrastructure as a Service (IaaS) or the Platform as a Service (PaaS)
levels. The IaaS level provides a set of low-level resources forming a “bare”
computing environment. Developers pack the whole software stack into virtual
machines containing the application and its dependencies and run them on phys-
ical machines of the provider’s cloud. Exploiting the IaaS directly allows a great
flexibility but requires also a great expertise and knowledge of both the cloud
infrastructure and the application components involved in the process. The most
common solutions for the deployment of a cloud application is still to rely on
pre-configured virtual machines (e.g., Bento Boxes [15], Cloud Blueprints [5], and
AWS CloudFormation [1]) or to exploit configuration management tools such as
Puppet [43] or Chef [40] to better customize the application.

At the PaaS level (e.g., [3, 19]) a full development environment is provided.
Applications are directly written in a programming language supported by the
framework offered by the provider, and then automatically deployed to the cloud.
The high-level of automation comes however at the price of flexibility: the choice
of the programming language to use is restricted to the ones supported by the
PaaS provider, and the application code must conform to specific APIs. Appli-
cation in PaaSes are usually scalable and can exploit the elasticity of the cloud
to accommodate more requests. However, we are not aware of PaaSes that can
guarantee the optimal automatic allocation of services allowing the minimization
of the cost of the entire application.

In this work, we combine the flexibility typical of the IaaS level with the high-
level automation typical of the PaaS level by allowing the DevOps to specify their
SOAs and then automatically deploying the specified SOAs, optimising its costs,
its performances, and its resource consumption.

The most similar approach to ours is Aeolus Blender [12] from which we
draw inspiration. Blender is a software product for the automatic deployment
and configuration of complex distributed software systems in the “cloud”. It
relies on a configuration optimiser (i.e., Zephyrus as also in our case) and an
ad-hoc deployment planner [24] to deploy real-life applications on an OpenStack
cloud. However, differently from our tool, Blender requires every service life-
cycle to be described with the Armonic formalism [25] which essentially uses
state machines to represent the different steps that need to be performed to
deploy a service. Due to the fact that Jolie services can be easily deployed and
do not need complex iteration patterns to be installed, we were able to simplify
the entire deployment process requiring to the user to specify just the resource
consumption of the services and thus avoiding the use of a planner to compute the
sequence of deployment action to perform. Moreover, differently from Blender,
JRO can also deal with configurations where services depend on each other.

Another related work is [10] that relies on Zephyrus to allocate objects to
deployment containers starting from a program in modelling language ABS (Ab-
stract Behavioural Specification) where classes are annotated to indicate the
resource consumption of their objects.



JRO can be easily extended to handle other services or applications written
in different languages. Indeed, we only require that the installation of such com-
ponents does not involve an interaction with other components and that their
dependencies could be configured after their installation. In particular, we can
capture and deploy SOA relying on stateless services or application following
the best practice of the “immutable server” approach [34, 35]. In any case, our
interest lies in how we can suitably change the configuration of a system. This
depends on the property that the system supports reconfiguration, which can be
achieved in different ways. In this work, we have used Jolie to support the writ-
ing and execution of services. As mentioned in Section 1, Jolie services support
concurrency by running multiple instances of their behaviour, called processes.
Processes in Jolie can be stateful or stateless. In the former case, a popular ap-
proach for supporting reconfiguration is using distributed agreement algorithms
among the replicated processes [14,22,39]. There are other technologies that we
could have combined with JRO, e.g., Erlang [2] or other frameworks based upon
the actor model [20]. Both Jolie processes and actors are meant as executable
instances of a behaviour, to be run inside of a service. The main differences be-
tween the two approaches are in what kind of behaviours can be written and
in the primitives for communications, e.g., Jolie processes explicitly specify the
data used to identify other processes, whereas actors usually leave this duty to
another layer and assume that the other actors can be explicitly found via di-
rect references. These differences are orthogonal w.r.t. our work, which focuses
on how to change reconfigurations rather than the details of how processes (or
actors) are implemented in services.

Apart from this immediate generalization, we see several other directions for
future developments in order to obtain a more inclusive and enhanced tool for
the automatic and optimised deployment of micro services. First, the human
interface part did not receive the due attention so far. We are therefore planning
to construct a suitable GUI which allows one to graphically define the desired
specification and its modifications, as in the case of the Blender GUI12.

On a different level, we plan to integrate in our system an existing monitoring
functionality of Jolie Enterprise in order to be able to determine the current load
of the system and therefore to be able to automatically balance the load, pos-
sibly modifying the configuration, in order to maintain some given service level
agreements for the deployed services. Suitable extensions of such a monitoring
tool could also be used to combine run time checking with static analysis (e.g.,
based on types) in order to ensure the correctness of the system, and more gen-
erally to verify service level agreements along the lines described in [9, 37]. The
same techniques can be also exploited to automatize the deployment of system
developed by means of choreographic languages [17,41,42].

We would also like to address some of the current limitations of JRO due
to the use of the Zephyrus configurator. In particular, we would like to extend
Zephyrus in order to be able to find the best deployment configuration given

12 For some example of GUIs we can adopt within JRO we invite the interested reader
to see the screen cast at http://www.aeolus-project.org/.

http://www.aeolus-project.org/


a user-specified maximal cost and a maximal resource consumption. We also
intend to add support for annotations with parametric costs that depend on ser-
vice parameters. Finally, we would also like to tackle the computational aspects
involved in the process of finding the optimal configuration allowing the users
to exploit heuristics – such as local search techniques – in order to quickly get
good but possibly sub-optimal solutions.
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