
tAPP OpenWhisk: a Serverless
Platform for Topology-Aware Allocation Priority Policies

Giuseppe De Palmaa,c,
Saverio Giallorenzoa,c, Jacopo Maurob, Matteo Trentina,b,c, Gianluigi Zavattaroa,c

aUniversità di Bologna, Italy
bSouthern Denmark University, Odense, Denmark

cINRIA, France

Abstract

The Function-as-a-Service (FaaS) paradigm offers a serverless approach that
abstracts the management of underlying infrastructure, enabling developers to
focus on application logic. However, leveraging infrastructure-aware features can
further optimize serverless performance.

We present a software prototype that enhances Apache OpenWhisk serverless
platform with a novel architecture incorporating tAPP (topology-aware Allocation
Priority Policies), a declarative language designed for specifying topology-aware
scheduling policies. Through a case study involving distributed data access
across multiple cloud regions, we show that tAPP can significantly reduce latency
and minimizes performance variability compared to the standard OpenWhisk
implementation.

Keywords:
Serverless, Function-as-a-Service, Cloud Optimization, Topology-awareness.

1. Introduction

Function-as-a-Service (FaaS) is a serverless model in which users program
architectures of stateless functions, leaving system operations entirely to the
platform [1]. Although FaaS abstracts away infrastructural details, providing
information on topological traits can enhance the performance of serverless applica-
tions. For example, function execution performance often depends on the specific
computing resource, or worker, handling the task. When choosing a worker to
execute a function, overlooking data locality [2] — the latency of accessing data
at a repository — and session locality [2] — the latency of authenticating and
initiating new sessions with stateful services— can cause delays and overhead,
negatively affecting function runtime. The tAPP language [3] enables users to

declaratively specify infrastructural constraints related to the topology of the
infrastructure, to guide function scheduling.

We present the software artefact we developed to support tAPP-based schedul-
ing policies obtained by extending Apache OpenWhisk. This article presents the
software artefact of a previous contribution [4], providing more details on the
deployment of the platform and a reproducible, self-contained case study. We
illustrate its use by presenting a simple case study on the execution of server-
less functions showing that topology-aware allocation policies can significantly
improve the performance of locality-bound functions. The artefact is available
at https://zenodo.org/records/14447726.

2. The tAPP Language

In serverless platforms, developers define functions in languages like JavaScript
and Python and specify events that trigger the execution of these functions. For ex-
ample, a data storage request may trigger the execution of a function that works on
the stored data. The serverless platform manages all stages of function scheduling,
deployment, and monitoring. Often, these platforms use containers [5] or VMs [6]
to create the isolated execution environments where functions can run without
interfering with each other, while sharing the same workers. Since the creation
of these environments takes time (impacting the run time of functions), serverless
platforms usually optimise performance by having workers keep a pool of “warm”
environments where they ran their functions for later re-use. Besides the mentioned
session and data localities, code locality [2] entails the possibility of identifying
the workers with a warm environment for the function under scheduling, so they
can run the function without enduring latencies due to environment initialisation.

tAPP. The tAPP language specifies scheduling policies of functions on workers for
serverless functions. Essentially, a policy couples a tag to a list of policy blocks, each
specifying on which workers to schedule the function and how to select among them.

We report in Fig. 1 an example policy where the tag couchdb_query targets
functions accessing a database. In the policy, we select specific workers (DB_worker1
or DB_worker2) randomly and specify their validity to run the functions based on the
occupancy of the other functions running on them — specifically, we indicate that
the worker’s available resources shall be greater than 50% of their total capacity.

Since topology-aware scheduling regards the management of the allocation
of functions across different zones, we assume to have a controller in each of
the zones that make up the deployment of the platform. In the example, we
assume to have a zone tagged EUzone, and we indicate that the function should
be scheduled in that zone with the controller clause. Moreover, we can specify a
topology_tolerance parameter, which indicates if the functions can be scheduled

2

https://zenodo.org/records/14447726

couchdb_query :

- workers:

- wrk: DB_worker1

- wrk: DB_worker2

strategy: random

invalidate: capacity_used 50%

controller: EUzone

topology_tolerance: same

followup: fail

Figure 1: Example of a simple tAPP script.

in other zones than the indicated one. Specifically, same constrains the function
to run on workers in the same zone of the indicated controller.

The followup clause specifies what to do if all workers are invalid; in the
example, fail indicates to stop the scheduling in case we found no available worker.

The interested reader can find a complete presentation of tAPP in the paper
that introduced the language [3].

3. tAPP-based OpenWhisk Architecture

Our tAPP prototype builds on Apache OpenWhisk, a widely-used, open-source
FaaS platform. Specifically, we target an OpenWhisk Kubernetes-based deploy-
ment. For compactness, we show in Fig. 2 the architecture of OpenWhisk and high-
light the components that we modify/introduce to support tAPP-based scheduling.

Commenting on Fig. 2, from left to right, we find Nginx, which acts as the
system’s entry point and load balancer, directing requests to Controllers. Con-
trollers assign function execution to specific computation nodes called Workers.
Apache Kafka [7] is used for request routing and queueing, and CouchDB [8] is
used for authorisation, function storage, and response management.

The key components that we modify/add in our tAPP extension include:

OpenWhisk Controller. We modify the Controller’s load balancer (written in
Scala) to interpret tAPP policies through a new ConfigurableLoadBalancer class,
adding policy parsing and scheduling capabilities to support dynamic worker
selection based on tAPP tags.

Watcher and NFS Server Services. We introduce a Watcher service that interacts
with the Kubernetes API to track cluster topology, mapping Kubernetes nodes to
tAPP labels and storing this information in an NFS (Network File System) server

3

authorisation, functions, responses

balancing

executionqueuing

nodes status, script repository status monitoring

scheduling

DevOps

Figure 2: Architectural view of our OpenWhisk extension. The existing OpenWhisk components
we modified are in light blue while the new ones are in yellow .

(also introduced by us). Nginx and controllers access this data to resolve tags (ir-
respective of physical deployment details), allowing for dynamic topology changes.

Nginx Gateway. We modify Nginx using njs (Nginx JavaScript)1 to parse function
requests and forward tagged requests based on tAPP policy. The Nginx plugin
caches policy data for efficient handling of inbound traffic.

4. Case Study

We present an illustrative example of deployment and execution of functions
on our prototype, in comparison with vanilla OpenWhisk. In particular, we focus
on functions that present data-locality properties, showing how tAPP improves
function runtimes.

Experiments Execution Environment. To run the experiments of our case study,
we use a Kubernetes cluster deployed on five nodes across two Google Cloud
Platform regions (Central US and West Europe). Of the five nodes, three are
in the West Europe region and two in the Central US region. Two nodes in each
region host an OpenWhisk Controller and an Invoker, respectively. The remaining
one runs the Kubernetes control-plane. All the nodes are of type e2-medium with
2 vCPUs and 4 GB of memory, running Ubuntu 20.04. We automate the creation

1https://github.com/nginx/njs.

4

https://github.com/nginx/njs

data:

- controller: EUzone

workers:

- wrk: EU -w1

topology_tolerance: all

followup: default

Figure 3: The tAPP script used in the tests.

of the VMs and the installation of Kubernetes and OpenWhisk using Terraform
and Ansible scripts 2.

The Invoker in the European region hosts a web server, exposing a simple
REST API with one endpoint to retrieve a large JSON document of 26.14 MB.

The behaviour of the function in the case study regards retrieving the JSON
document from the web server and returning the document’s byte size. We execute
the function 100 times for each platform (vanilla and tAPP-based), measuring
the latency between the sending of the execution request and the response.

tAPP Configuration. Regarding the testing of our prototype, in Fig. 3, we show the
script we define to optimise function execution. The script specifies that the func-
tions should be scheduled in the European region — i.e., by the controller located
in the EUzone. We leave the strategy and invalidate options unspecified, which
makes tAPP use the platform’s default ones. In this way, we focus only on the im-
pact of the topology-aware scheduling by using the same strategy and invalidation
logic between vanilla OpenWhisk and our prototype. We set the topology tolerance
to all, which allows the function to be scheduled on other regions, if the scheduling
within the EUzone fails — thanks to the followup parameter set to default.

Results. We show the latencies in Fig. 4, corresponding to the 100 function execu-
tions on vanilla OpenWhisk and our tAPP prototype, visualised as a cumulative
distribution function showing the proportions of the requests completed in a given
time. From the plots, we can observe a significant reduction in latency when
using tAPP-based OpenWhisk with the tAPP script above. Interestingly, the plot
illustrates also that, by using tAPP, we can stabilise an otherwise highly variable
performance scenario due to OpenWhisk’s default load-balancing behaviour that
routes requests in a round-robin fashion. We observe this behaviour given the
gradual increment of the tAPP-based requests, which continue until around 90%,
while the cumulative distribution of the vanilla OpenWhisk plot becomes steeper at

2The scripts are available at https://github.com/giusdp/scp-artifact.

5

https://github.com/giusdp/scp-artifact

0 20 40 60 80 100
Percentage of requests

3000

3500

4000

4500

5000

5500

6000

6500

7000

Re
sp

on
se

 T
im

e
(m

s)

Tapp (All Requests)
Tapp 95th Percentile
Tapp 99th Percentile

Vanilla (All Requests)
Vanilla 95th Percentile
Vanilla 99th Percentile

Figure 4: Cumulative distribution funciton of the request-response latencies of 100 invocations
of the use case function under vanilla and tAPP-based OpenWhisk.

around the 50% mark. We explain this phenomena given that we have one worker
in each of the two zones, one close to the service where we fetch the data and one
further from it, shorter latencies correspond to scheduling instances that selected
the worker in the European region, while longer ones correspond to instances
where the platform selected the worker in the US region. Our observations are
confirmed by the 95th, 99th and 100th percentiles of the cumulative distributions
of the two cases, where the three thresholds of the tAPP-based one are more than
1 second lower than the corresponding values of the vanilla OpenWhisk case.

We summarise the results of the experiments in Table 1, where we report the
measured average, median, standard deviation, and maximum latency of vanilla
OpenWhisk and our tAPP prototype.

Configuration Average (ms) Median (ms) Std Dev (ms)

tAPP-based OW 3268.13 3204.22 251.87
Vanilla OW 4054.36 4365.03 902.14

Table 1: Latency measurements for vanilla OpenWhisk and our tAPP-based extension.

From the results in Table 1, we can see how our tAPP-based variant signifi-
cantly reduces the average and median latencies compared to vanilla OpenWhisk.

6

4.1. Threats to Validity and Limitations
While our case study demonstrates significant latency reductions when using

the tAPP-enhanced version of OpenWhisk, several threats to validity may affect
the generalisability of these results. First, the experiments were conducted in a
controlled environment with a specific cloud provider (Google Cloud Platform)
and a particular infrastructure setup (two regions with nodes of type e2-medium).
Different cloud providers, node types, or network conditions could impact the
effectiveness of topology-aware scheduling differently. Second, the case study
focused on a specific type of workload characterised by data locality requirements;
workloads with different computational or networking patterns might not benefit
to the same extent from tAPP policies. Third, the current evaluation is based
on a single function and a limited set of invocation scenarios; more diverse work-
loads and larger-scale deployments could introduce additional variability. Finally,
potential external factors such as transient network congestion and region-specific
performance variability may influence the observed latencies. Future studies en-
compassing broader settings, varied workloads, and stress-testing under dynamic
conditions would strengthen the generalisability of our findings.

Although the tAPP-enhanced OpenWhisk shows clear improvements in aver-
age and median latencies, several limitations remain. As seen in the experimental
results, sporadic spikes in response times persist even under topology-aware
scheduling. These can largely be attributed to cold start phenomena [9], where
a function execution requires the initialisation of a new container, introducing
unavoidable latency overhead. While tAPP can guide scheduling based on ge-
ographical locality (data locality), improving performance using other locality
principles, like code locality, requires further extensions of the APP language, e.g.,
supporting affinity-based approaches — these improve performance exploiting
the co-occurrence of functions on the same workers can significantly reduce cold
starts and better exploit locality at a finer granularity [10]. Integrating code
locality awareness and affinity-driven scheduling into tAPP would be a promising
direction for further reducing latency variability and improving cold start resilience.
Another mitigation strategy is using alternative serverless implementation tech-
nologies than standard virtual machines and containers, e.g., through lightweight
runtime like WebAssembly [11, 12].

5. Related Work and Conclusion

Related Work. There are many proposals that optimise serverless function la-
tency via scheduling [13, 14], investigating among other resource-aware schedul-
ing [15, 16], package-aware caching [17], prioritising by data locality [18], and
function isolation and state sharing [19, 20]. The main difference between these
approaches and tAPP is that the former have an implicit notion of topology related

7

to some proxy property (resources, caching, partitioning), whereas tAPP intro-
duces topology-specific constraints that allow users to model explicitly topological
properties of the scheduling logic.

Conclusion. We presented the implementation of a tAPP-based serverless plat-
form obtained by extending Apache OpehWhisk. tAPP enables topology-aware
scheduling and we present an experiment, consisting of a locality-sensitive use
case, in which tAPP boosts performances w.r.t. vanilla OpenWhisk. As future
work, we aim to extend tAPP compatibility to platforms like OpenLambda and
OpenFAAS and explore cloud-edge use cases.

Metadata

Nr. Code metadata description
C1 Current code version commit 0bd27a5
C2 Permanent link to code/repository

used for this code version
https://github.com/mattrent/
openwhisk

C3 Permanent link to Reproducible
Capsule

https://zenodo.org/records/14447726

C4 Legal Code License Apache 2.0
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
Scala, Kubernetes, GCP Compute
Engine

C7 Compilation requirements, operating
environments and dependencies

Linux, Docker, Scala 2.12, OpenJDK 8

C8 If available, link to developer docu-
mentation/manual

https://github.com/mattrent/
openwhisk/blob/master/README.
md

C9 Support email for questions

Table 2: Code metadata

References

[1] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu,
V. Shankar, J. Menezes Carreira, K. Krauth, N. Yadwadkar, J. Gonzalez,
R. A. Popa, I. Stoica, D. A. Patterson, Cloud programming simplified:
A berkeley view on serverless computing, Tech. Rep. UCB/EECS-2019-3,
EECS Department, University of California, Berkeley (2019).

8

https://github.com/mattrent/openwhisk
https://github.com/mattrent/openwhisk
https://zenodo.org/records/14447726
https://github.com/mattrent/openwhisk/blob/master/README.md
https://github.com/mattrent/openwhisk/blob/master/README.md
https://github.com/mattrent/openwhisk/blob/master/README.md

[2] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, R. H. Arpaci-Dusseau, Serverless computation with
openlambda, in: Proc. of USENIX HotCloud, 2016.

[3] G. De Palma, S. Giallorenzo, J. Mauro, M. Trentin, G. Zavattaro, A
declarative approach to topology-aware serverless function-execution
scheduling, in: 2022 IEEE International Conference on Web Services, ICWS
2022, Barcelona, Spain, July 11–15, 2022, IEEE, 2022.

[4] G. De Palma, S. Giallorenzo, J. Mauro, M. Trentin, G. Zavattaro, An
openwhisk extension for topology-aware allocation priority policies, in:
I. Castellani, F. Tiezzi (Eds.), Coordination Models and Languages - 26th
IFIP WG 6.1 International Conference, COORDINATION 2024, Held
as Part of the 19th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2024, Groningen, The Netherlands, June
17-21, 2024, Proceedings, Vol. 14676 of Lecture Notes in Computer Science,
Springer, 2024, pp. 201–218. doi:10.1007/978-3-031-62697-5_11.

[5] D. Bernstein, Containers and cloud: From lxc to docker to kubernetes, IEEE
Cloud Computing 1 (3) (2014) 81–84.

[6] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia, Above the clouds:
A berkeley view of cloud computing, University of California, Berkeley, Rep.
UCB/EECS 28 (13) (2009) 2009.

[7] J. Kreps, N. Narkhede, J. Rao, et al., Kafka: A distributed messaging
system for log processing, in: Proc. of NetDB, Vol. 11, 2011, pp. 1–7.

[8] J. C. Anderson, J. Lehnardt, N. Slater, CouchDB: the definitive guide: time
to relax, " O’Reilly Media, Inc.", 2010.

[9] P. Vahidinia, B. J. Farahani, F. S. Aliee, Cold start in serverless computing:
Current trends and mitigation strategies, in: COINS, IEEE, 2020, pp. 1–7.
doi:10.1109/COINS49042.2020.9191377.
URL https://doi.org/10.1109/COINS49042.2020.9191377

[10] G. De Palma, S. Giallorenzo, J. Mauro, M. Trentin, G. Zavattaro,
Affinity-aware serverless function scheduling, in: 22nd IEEE International
Conference on Software Architecture, ICSA 2025, Odense, Denmark, March
31-April 4, 2025, IEEE, 2025.

[11] G. De Palma, S. Giallorenzo, J. Mauro, M. Trentin, G. Zavattaro, Funless:
Functions-as-a-service for private edge cloud systems, in: IEEE International

9

https://doi.org/10.1007/978-3-031-62697-5_11
https://doi.org/10.1109/COINS49042.2020.9191377
https://doi.org/10.1109/COINS49042.2020.9191377
https://doi.org/10.1109/COINS49042.2020.9191377
https://doi.org/10.1109/COINS49042.2020.9191377

Conference on Web Services, ICWS 2024, Shenzhen, China, July 7-13, 2024,
IEEE, 2024, pp. 961–967. doi:10.1109/ICWS62655.2024.00114.

[12] G. De Palma, S. Giallorenzo, J. Mauro, M. Trentin, G. Zavattaro,
Webassembly at the edge: Benchmarking a serverless platform for
private edge cloud systems, IEEE Internet Computing (01) (2024) 1–8.
doi:10.1109/MIC.2024.3513035.

[13] A. Kuntsevich, P. Nasirifard, H.-A. Jacobsen, A distributed analysis and
benchmarking framework for apache openwhisk serverless platform, in: Proc.
of Middleware (Posters), 2018, pp. 3–4.

[14] M. Shahrad, J. Balkind, D. Wentzlaff, Architectural implications of
function-as-a-service computing, in: Proc. of MICRO, 2019, pp. 1063–1075.

[15] A. Banaei, M. Sharifi, Etas: predictive scheduling of functions on worker
nodes of apache openwhisk platform, The Journal of Supercomputing (9
2021). doi:10.1007/s11227-021-04057-z.

[16] A. Suresh, A. Gandhi, Fnsched: An efficient scheduler for serverless
functions, in: Proc. of WOSC@Middleware, ACM, 2019, pp. 19–24.
doi:10.1145/3366623.3368136.

[17] C. L. Abad, E. F. Boza, E. V. Eyk, Package-aware scheduling of faas
functions, in: Proc. of ACM/SPEC ICPE, ACM, 2018, pp. 101–106.
doi:10.1145/3185768.3186294.

[18] J. Sampé, M. Sánchez-Artigas, P. García-López, G. París, Data-driven
serverless functions for object storage, in: Proc. of Middleware, ACM, 2017,
p. 121–133. doi:10.1145/3135974.3135980.
URL https://doi.org/10.1145/3135974.3135980

[19] S. Kotni, A. Nayak, V. Ganapathy, A. Basu, Faastlane: Accelerating
function-as-a-service workflows, in: Proc. of USENIX ATC, USENIX
Association, 2021, pp. 805–820.

[20] S. Shillaker, P. Pietzuch, Faasm: Lightweight isolation for efficient stateful
serverless computing, in: Proc. of USENIX ATC, USENIX Association,
2020, pp. 419–433.

10

https://doi.org/10.1109/ICWS62655.2024.00114
https://doi.org/10.1109/MIC.2024.3513035
https://doi.org/10.1007/s11227-021-04057-z
https://doi.org/10.1145/3366623.3368136
https://doi.org/10.1145/3185768.3186294
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3135974.3135980

	Introduction
	The tAPP Language
	tAPP-based OpenWhisk Architecture
	Case Study
	Threats to Validity and Limitations

	Related Work and Conclusion

