
LEMMA2Jolie: A Tool to Generate Microservice APIs
from Domain Models

Saverio Giallorenzo a, Fabrizio Montesi b, Marco Peressotti b, Florian
Rademacher c

aUniversità di Bologna, Italy and INRIA, France
bUniversity of Southern Denmark

cUniversity of Applied Sciences and Arts Dortmund

Abstract

We introduce LEMMA2Jolie, a tool for translating domain models of mi-
croservice architectures given in LEMMA into concrete APIs of microservices
in the Jolie programming language. Our tool combines the state of the
art for the design and implementation of microservices: developers can use
Domain-Driven Design (DDD) for the construction of the domain models of
a microservice architecture, and then automatically transition to a service-
oriented programming language that provides native linguistic support for
implementing the behaviour of each microservice.

Keywords: Microservices, Model-Driven Engineering, Domain-Driven
Design, LEMMA, Jolie

Metadata

See Table 1.

1. Motivation and Significance

Microservice Architecture (MSA) is an approach towards the service-
oriented design, development, and operation of software systems based on
microservices : small and reusable services, which can be composed by using
message passing [28, 9]. Microservices can greatly enhance the scalability and
maintainability of software systems. They are often contrasted to monoliths,

Email addresses: saverio.giallorenzo@gmail.com (Saverio Giallorenzo),
fmontesi@imada.sdu.dk (Fabrizio Montesi), peressotti@imada.sdu.dk (Marco
Peressotti), florian.rademacher@fh-dortmund.de (Florian Rademacher)

https://orcid.org/0000-0002-3658-6395
https://orcid.org/0000-0003-4666-901X
https://orcid.org/0000-0002-0243-0480
https://orcid.org/0000-0003-0784-9245
https://orcid.org/0000-0002-3658-6395
https://orcid.org/0000-0003-4666-901X
https://orcid.org/0000-0002-0243-0480
https://orcid.org/0000-0003-0784-9245

Nr. Code metadata description Please fill in this column
C1 Current code version v1
C2 Permanent link to code/repository

used for this code version
https://archive.softwareheri
tage.org/browse/origin/direc
tory/?origin_url=https://gith
ub.com/jolie/lemma2jolie

C3 Permanent link to Reproducible
Capsule

https://archive.softwareheri
tage.org/browse/origin/direc
tory/?origin_url=https://gith
ub.com/jolie/lemma2jolie

C4 Legal Code License MIT
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
Docker, Jolie, Kotlin, LEMMA
Model Processing Framework, Shell-
script, Xtend

C7 Compilation requirements, operat-
ing environments and dependencies • Local installation: Java 11

(compiler and operating environ-
ment), JAR files in libs direct-
ory (local dependencies), Maven
3.6.3 (remote dependency man-
agement according to file pom.xml
and build management); the
install.sh script can be used to
perform a complete local installa-
tion

• Docker-based installation:
Docker >= 20.10.18; the
docker-build.sh script can
be used to build the Docker image
on local hardware

C8 If available, link to developer docu-
mentation/manual

https://archive.softwareheri
tage.org/browse/content/sha1
_git:014ea173786c83e149004bad
1f4721a548e07d7e/

C9 Support email for questions florian.rademacher@fh-dortmund.de

Table 1: Code metadata

2

https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jolie/lemma2jolie
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jolie/lemma2jolie
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jolie/lemma2jolie
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jolie/lemma2jolie
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jolie/lemma2jolie
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jolie/lemma2jolie
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jolie/lemma2jolie
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/jolie/lemma2jolie
https://archive.softwareheritage.org/browse/content/sha1_git:014ea173786c83e149004bad1f4721a548e07d7e/
https://archive.softwareheritage.org/browse/content/sha1_git:014ea173786c83e149004bad1f4721a548e07d7e/
https://archive.softwareheritage.org/browse/content/sha1_git:014ea173786c83e149004bad1f4721a548e07d7e/
https://archive.softwareheritage.org/browse/content/sha1_git:014ea173786c83e149004bad1f4721a548e07d7e/
mailto:florian.rademacher@fh-dortmund.de

applications whose modules cannot be implemented, executed, and deployed
independently [9]. However, the adoption of microservices also introduces
complexity, a notable example being the structuring of a software architec-
ture into multiple services [40].

To cope with this complexity, researchers in software engineering and
programming languages recently started to investigate linguistic approaches
to microservices. Such approaches propose language frameworks with syn-
tactic constructs that cover microservice-specific concerns on a high level
of abstraction. Consequently, these concerns become explicitly addressable,
which facilitates the design, development, and operation of MSAs. Here
in particular, we are interested in LEMMA1 [36] and Jolie2 [24]. LEMMA
applies Model-Driven Engineering (MDE) [6] to provide a set of integrated
modelling languages and model processors that, among others, support the
high-level specification and implementation of microservice domain models
following Domain-Driven Design (DDD) [11]. Jolie, on the other hand, is a
programming language focusing on the development of microservices, includ-
ing their configuration and coordination.

This paper presents LEMMA2Jolie: a tool that integrates LEMMA and
Jolie by mapping domain models expressed in LEMMA’s Domain Data Mod-
elling Language (DDML) to executable Jolie code, based on the encoding
specified in [16]. LEMMA2Jolie brings the following contributions to the field
of microservices:

• Support for the refinement of microservices’ abstract specifications to
implementations by combining MDE and programming abstractions.

• Improvement of DDD adoption in microservice design—in practice, this
is frequently perceived complex, given the lack of formal guidelines on
how to map domain models to microservice code [2].

• Increase of domain models’ value by elevating them from documenta-
tion to implementation artefacts.

• Fostering the collaboration of domain experts, who can capture domain
knowledge using LEMMA’s DDML, and microservice developers, who
can readily integrate Jolie programs generated from LEMMA domain
models with their microservice implementations.

LEMMA2Jolie is an open-source command line application that takes an
input file containing a valid LEMMA domain model and, according to the

1https://github.com/SeelabFhdo/lemma
2https://jolie-lang.org

3

https://github.com/SeelabFhdo/lemma
https://jolie-lang.org

specified encoding [16], generates an output file with a corresponding Jolie
program. To keep LEMMA2Jolie portable, it is implemented as a standalone
executable Java application that can also be run in Docker3 containers.

In the context of microservices, there are other approaches to the applica-
tion of MDE, like MicroBuilder [43], MDSL [20], and JHipster [18], and other
programming languages, like Ballerina [30]. We chose LEMMA and Jolie as
basis for our work because their independently-developed metamodels are
known to be similar [14], which not only aids our implementation but also
strengthens our confidence in the foundations for LEMMA2Jolie. Addition-
ally, LEMMA has been validated in real-world use cases [41, 37] and Jolie’s
abstractions have been found to offer a productivity boost in industry [17].
Nevertheless, LEMMA2Jolie is a concrete example of how research on MDE
and programming languages for microservices can benefit from each other in
general.

2. Software Description

In the following, we describe LEMMA2Jolie’s architecture (cf. Sect. 2.1)
and functionalities (cf. Sect. 2.2).

2.1. Software Architecture
Figure 1 shows the architecture of LEMMA2Jolie as a UML class dia-

gram [29].
LEMMA provides a model processing framework (MPF) [34] that aims to

facilitate the development of model processors, e.g. code generators or static
analysers, by MSA engineers without a strong background in MDE. Among
others, the MPF has built-in support for parsing models that were construc-
ted with languages based on the Eclipse Modelling Framework [42]—as is the
case for all LEMMA modelling languages including the DDML. Additionally,
the MPF prescribes a workflow that consists of steps which are frequent in
practical model processing. Due to its popularity in MSA engineering [38,
2], the MPF focuses on the Java Virtual Machine (JVM) and is written
in Kotlin4. Furthermore, like the Spring framework5, which is popular in
JVM-based microservice development [2], the MPF adopts annotation-based
Inversion of Control (IoC) [19]. This approach enables MSA engineers, who
want develop model processors, to integrate with the MPF’s model processing

3https://www.docker.com
4https://www.kotlinlang.org
5https://www.spring.io

4

https://www.docker.com
https://www.kotlinlang.org
https://www.spring.io

GenerationModule
+ getLanguageNamespace() : String
+ execute(phaseArguments: String[*], moduleArguments: String[*]) : Java::Map<String, String>
+ generateContext(context : LEMMA::Context) : String
+ generateComplexType(type : LEMMA::ComplexType) : String
+ generateDataField(field : LEMMA::DataField) : String
+ generatePrimitiveType(typeName : String)
+ generateInterface(structure : LEMMA::DataStructure) : String
+ generateOperation(structure : LEMMA::DataOperation) : String
...

AbstractCodeGenerationModule
- name: String
- modelFile: String
- resource: EMF::Resource
+ getLanguageNamespace() : String
+ execute(phaseArguments: String[*], moduleArguments: String[*])
 : Java::Map<String, Kotlin::Pair<String, Java::Charset> >

XtextLanguageDescription

+ XtextLanguageDescription(
 eInstance: EPackage,
 languageSetup: Xtext::ISetup
)
+ loadModel(path: String) : EMF::Resource

LanguageDescription

+ loadModel(path: String) : EMF::Resource«interface»
LanguageDescriptionProviderI
+ getLanguageDescription(
 forNamespace : Boolean,
 forExtension : Boolean,
 namespaceOrExtension: String
) : LanguageDescription

LangDescriptionProvider
+ getLanguageDescription(
 forNamespace : Boolean,
 forExtension : Boolean,
 namespaceOrExtension: String
) : LanguageDescription

PhaseHeap

+ set(
 phaseId: String,
 entryName: String,
 entryValue: Object
)
+ get(
 phaseId: String,
 entryName: String
) : Object
+ remove(
 phaseId: String,
 entryName: String
)

CodeGenerationPhase

+ process(args: String[*])

SourceModelParsingPhase

+ process(args: String[*])

ExpectedReturnParameterReturnParameter
- name: String
- type: Class<?>
- optional: Boolean

Abstract
ModelProcessingPhase

- id: String
+ process(args: String[*])

AbstractModelProcessor

+ AbstractModelProcessor(
 scanPackage: String
)
+ run(args: String[*])

Lemma2Jolie

+ Lemma2Jolie()
+ main(args: String)

1..*

**

*
successors
*
predecessors

Figure 1: Architecture of LEMMA2Jolie depicted as a UML class diagram [29]. Highlighted
classes are part of LEMMA2Jolie. All other classes originate from LEMMA’s model pro-
cessing framework.

workflow via Java annotations, and readily focus on the actual processing lo-
gic rather than boilerplate code for model parsing, model validation, or code
generation.

LEMMA2Jolie is based on LEMMA’s MPF. Consequently, the source code
of our tool mainly revolves around its actual task, i.e., the translation of
LEMMA domain models into Jolie programs, with the MPF abstracting most
of the complexity in model processing. As a result, in the implementation of
LEMMA2Jolie, we leveraged the mentioned structure and focussed our efforts
on the meaningful modules that make up the logic of the tool: the three the
classes highlighted in grey in Fig. 1, which we describe below.

The Lemma2Jolie class provides the entrypoint of our LEMMA2Jolie by
implementing a static main method as expected by the JVM. The class
also extends the MPF’s AbstractModelProcessor class and invokes its run
method from main, thereby delegating all further execution to the MPF.

As a next step, the MPF will parse the commandline arguments from the
args array, and then scan the Java package hierarchy of the model processor
following annotation-based IoC for a class that acts as language description

5

provider and implements the LanguageDescriptionProviderI interface. At
model processor runtime, the MPF queries the language description provider
whenever it requires information about the language of a given model, e.g.,
for parsing purposes, by invoking the providers getLanguageDescription
method. This method must return an instance of the LanguageDescrip-
tion class that comprises an implementation of the loadModel method (cf.
Fig. 1). This method is expected to return an instance of the Resource class,
which is EMF’s for persistent documents including models [42].

With the LanguageDescriptionProviderI interface and LanguageDe-
scription class, the MPF abstracts from concrete modelling languages and
enables to implement custom loaders for EMF-based modelling techniques.
Since LEMMA’s modelling languages are based on the Xtext framework6 the
MPF already integrates a specialised language description with the Xtext-
LanguageDescription class (cf. Fig. 1). LEMMA2Jolie’s language descrip-
tion provider in the LangDescriptionProvider class relies on this specialised
language description to provide the MPF with all information necessary to
parse LEMMA domain models. More precisely, the getLanguageDescrip-
tion method of LangDescriptionProvider will return an XtextLanguage-
Description instance covering LEMMA’s DDML whenever the namespace-
OrExtension parameter exhibits the value “data”, which indicates that the
MPF received as commandline argument the path to a LEMMA domain
model with the file extension “.data” (cf. Sect. 2.3).

LEMMA’s MPF applies the Phased Construction pattern of model trans-
formation design [21] to systematize the processing of input models in con-
secutive phases. AbstractModelProcessingPhase is the base class of all
MPF phases (cf. Fig. 1). A concrete phase must implement the process
method, which receives phase-specific commandline arguments at runtime.
To facilitate the implementation of model processors, the MPF prescribes a
workflow of certain phases, e.g., for model parsing and code generation, and
thus provides built-in phases such as SourceModelParsingPhase and Code-
GenerationPhase (cf. Fig. 1). A phase can specify return values in the form
of ReturnParameter instances and also express the expectation of certain
return values from previous phases leveraging the ExpectedReturnParamet-
er class. The MPF ensures that phases return values matching the name
and type of non-optional ReturnParameter instances so that subsequent
phases have guaranteed access to expected values via the PhaseHeap, which
is a generic means for phases to share data.

In MDE terms, LEMMA2Jolie is a code generator that produces Jolie code

6https://www.github.com/xtext

6

https://www.github.com/xtext

from LEMMA domain models. Hence, it integrates with the MPF’s phase for
code generation whose execution is controlled by the CodeGenerationPhase
class. This class relies on the notion of code generation module to enable
implementers the organisation of code generation steps, e.g., by the kinds of
processed models or produced artefacts. The code generation phase scans
the Java package hierarchy of MPF-model processors for implementations
of the AbstractCodeGenerationModule class (cf. Fig. 1). A concrete code
generation module specifies a name, and receives the path to the model-
File it shall process as well as the corresponding EMF resource of the
parsed model. The code generation phase will only invoke those modules
on a given model file for which the return value of getLanguageNamespace
matches the namespace of the parsed model as identified by the language the
model was constructed with. For the DDML and LEMMA domain models
constructed with it, only code generation modules targeting the namespace
de.fhdo.lemma.data are applicable. A code generation module is expected
to implement the execute method and return a Java Map instance7 that
determines per file path the content and character set of the generated file.

The GenerationModule class realises the code generation module of LEM-
MA2Jolie (cf. Fig. 1). Each method of the module with the prefix generate is
responsible for mapping a certain kind of LEMMA domain model element to
corresponding Jolie code following the specified encoding [16]. For example,
generateComplexType maps a domain concept specified in a LEMMA do-
main model [36] to the corresponding Jolie type. The generateInterface
method, on the other hand, produces code for Jolie interfaces from a given
LEMMA structure type. According to the specified encoding [16], each
LEMMA structure receives a Jolie interface consisting of request-response
operations derived from LEMMA domain operations by the generateOper-
ation method of the GenerationModule class (cf. Fig. 1).

2.2. Software Functionalities
We describe the functionalities of LEMMA2Jolie along with its usage work-

flow shown in Fig. 2 as a UML activity diagram [29].
LEMMA2Jolie’s usage workflow consists of the following steps:

S1. Domain Model Construction: This step covers the construction of
the LEMMA domain model to be processed by LEMMA2Jolie. This
may be a new model or an existing model that is adapted to cope with
newly discovered facts about the application domain [11]. For guided

7https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util
/Map.html

7

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html

(User)

Domain Model

Construction

LEMMA

Domain Model

(LEMMA2Jolie)

Domain Model

Parsing

In-Memory

Object Graph

(LEMMA2Jolie)

Template

Execution

In-Memory

Jolie Program

(LEMMA2Jolie)

SerialisationJolie Program

[refinement required] (User)

Program

Refinement

Figure 2: Usage workflow of LEMMA2Jolie as a UML activity diagram [29].

domain model construction including syntax highlighting, code comple-
tion, and interactive model validation, the user may apply LEMMA’s
Eclipse plugin for the DDML [33]. While LEMMA2Jolie does not as-
sume a certain kind of user for domain model construction, this step
is usually performed by domain experts, possibly in collaboration with
microservice developers [36].

S2. Domain Model Parsing: LEMMA2Jolie performs this step after the
user invoked the tool on the previously constructed domain model.
More precisely, the SourceModelParsingPhase class of LEMMA’s MPF
(cf. Sect. 2.1) accounts for this step, which will result in an in-memory
object graph of the parsed model. Specifically, this graph is an instance
of the DDML metamodel [36, 14].

S3. Template Execution: LEMMA2Jolie relies on template-based code
generation [6] to transform LEMMA domain models into Jolie pro-
grams. A template is a specification consisting of static Jolie state-
ments and dynamic variables pointing to concepts from the metamodel
of LEMMA’s DDML. At runtime, LEMMA2Jolie evaluates each tem-
plate and replaces the dynamic variables with actual values from the
in-memory object graph resulting from Step S2. For example, the
template that maps a bounded context in a LEMMA domain model
to the corresponding Jolie code [16] is located in the generateCon-
text method of LEMMA2Jolie’s GenerationModule class (cf. Sect. 2.1)
and starts with the statement ///@beginCtx(«context.name»). The
guillemets enclose the dynamic part of the template to be evaluated at
runtime. All other parts of the statement are static and thus invariant
at runtime (cf. Sect. 2.3). The Template Execution step produces an
in-memory representation of the target Jolie program as a single string
consisting of Jolie statements resulting from template evaluations.

8

S4. Serialisation: This step stores the in-memory representation of the
target Jolie program in a file with the extension “.ol” as expected by
the Jolie interpreter [24]. The file path and name can be specified by
the user upon invocation of LEMMA2Jolie in Step S1.

S5. Program Refinement: In this optional step, the user, usually a ser-
vice developer, can refine the serialised Jolie program, e.g., to add
additional documentation. For this purpose, the user can rely on the
Jolie extension for Visual Studio Code8. Like the Eclipse plugins for
LEMMA’s modelling languages, the extension supports Jolie program-
ming with syntax highlighting, code completion, and interactive valid-
ation.

2.3. Sample Code Snippets
In the following, we describe the implementation of LEMMA2Jolie’s core

components which account for the realisation of the workflow steps that ex-
hibit the LEMMA2Jolie annotation [29] in the UML activity diagram in Fig. 2.
We orient the description towards the ordering of the annotated activities.
LEMMA2Jolie was written in the Xtend Java dialect9 and its complete source
code can be found in the accompanying code repository.

2.3.1. Domain Model Parsing
As described in Sect. 2.1, LEMMA’s MPF is capable of parsing domain

models expressed in the DDML. In order to delegate parsing to the MPF,
a model processor like LEMMA2Jolie must provide a language description
provider and specify the Java package to scan for that provide following
annotation-based IoC. Listing 1 shows the implementation of the Lemma2-
Jolie class. It is the programmatic entrypoint of LEMMA2Jolie and specifies
the Java package for the MPF to search for annotated classes.

Listing 1: Programmatic entrypoint of LEMMA2Jolie written in Xtend.
1 class Lemma2Jolie extends AbstractModelProcessor {
2 new() { super("lemma2jolie") }
3 def static void main(String[] args) { new Lemma2Jolie().run(args) }
4 }

In Line 2, the class configures the MPF to search for annotated classes
in the “lemma2jolie” Java package by passing the package name to the con-
structor of the AbstractModelProcessor class (cf. Sect. 2.1). Line 3 im-
plements the entrypoint method of LEMMA2Jolie and delegates execution to

8https://github.com/jolie/vscode-jolie
9https://www.eclipse.org/xtend

9

https://github.com/jolie/vscode-jolie
https://www.eclipse.org/xtend

the MPF by calling the run method inherited from the AbstractModelPro-
cessor.

The execution of run results in the MPF to first parse the commandline
arguments in the args array and then scan the “lemma2jolie” Java package
for a language description provider. Listing 2 shows an excerpt of the Lang-
DescriptionProvider class, which implements LEMMA2Jolie’s language de-
scription provider.

Listing 2: Xtend excerpt of LEMMA2Jolie’s language description provider.
1 @LanguageDescriptionProvider
2 class LangDescriptionProvider implements LanguageDescriptionProviderI {
3 override getLanguageDescription(..., String namespaceOrExtension) {
4 return switch (namespaceOrExtension) {
5 case "data": new XtextLanguageDescription(DataPackage.eINSTANCE,
6 new DataDslStandaloneSetup)
7 ...
8 }
9 }

10 }

The MPF identifies LangDescriptionProvider to constitute LEMMA-
2Jolie’s language description provider by the @LanguageDescriptionPro-
vider annotation (cf. Line 1). As described in Sect. 2.1, the class’s getLan-
guageDescription method returns an XtextLanguageDescription whenever
LEMMA2Jolie received a LEMMA domain model file, recognized by the “.data”
extension, as input model (cf. Lines 4 to 6).

2.3.2. Template Execution
Listing 3 shows selected code generation templates of LEMMA2Jolie.

Listing 3: Selected Xtend templates of LEMMA2Jolie.
1 @CodeGenerationModule(name="main", ...)
2 class GenerationModule extends AbstractCodeGenerationModule {
3 ...
4
5 private def generateContext(Context context) {’’’
6 ///@beginCtx(«context.name»)
7 «context.complexTypes.map[it.generateComplexType].join("\n")»
8 ///@endCtx
9 ’’’}

10
11 private def dispatch generateComplexType(DataStructure structure) {’’’
12 «structure.generateType»
13 «IF !structure.operations.empty»
14 «structure.generateInterface»
15 «ENDIF»
16 ’’’}
17
18 ...
19 }

10

All code generation templates are located in methods with the gener-
ate prefix in LEMMA2Jolie’s code generation module implemented by the
GenerationModule class (cf. Sect. 2.1). To make a code generation mod-
ule recognizable at runtime by the MPF, its class must be augmented with
the @CodeGenerationModule annotation as shown in Line 1. Lines 5 to 16
illustrate the realisation of code generation templates in Xtend by the gen-
erateContext and generateComplexType methods. An Xtend template is
enclosed by three consecutive apostrophes (’’’). Within a template, Xtend
treats all strings outside a pair of guillemets as static template parts. For
example, the string “///@beginCtx(” in Line 6 is a static part, whereas the
following statement «context.name» constitutes a dynamic part that Xtend
replaces at runtime with the value in the name attribute of the context para-
meter (cf. Line 5), i.e., the name of the processed bounded context from the
given LEMMA domain model [36].

For each data structure in a bounded context of a LEMMA domain model,
generateContext delegates to generateComplexType to generate the Jolie
code for the structure (cf. Line 7). According to the previously specified
encoding [16], a LEMMA data structure will be mapped to a Jolie type
by invoking the generateType method of the GenerationModule class (cf.
Line 12 and Fig. 1). Furthermore, in case the structure does not only define
data field but also operations, LEMMA2Jolie will derive a Jolie interface for
the structure [16] (cf. Lines 13 to 15).

2.3.3. Serialisation
Next to template execution, the GenerationModule class is also respons-

ible for providing the MPF with the generated Jolie code to serialise as files
on the user’s hard drive. Listing 4 shows the corresponding excerpt from the
implementation of the GenerationModule class.

The execute method is the entrypoint of MPF code generation modules,
from which the in-memory object graph of the parsed model (cf. Fig. 2) is ac-
cessible via the inherited resource attribute. Line 7 of LEMMA2Jolie’s code
generation module retrieves the root of the parsed LEMMA domain model as
an instance of the DataModel concept of the DDML’s metamodel [36]. Next,
the module calls the template method generateContext (cf. Listing 3) for
each parsed Context instance under the domain model root and gathers the
generated Jolie code as a list of strings in the generatedContexts variable
(cf. Line 8).

Finally, the module determines the path of the file for the generated Jolie
code which will be created in the given target folder and with the same base
name as the input LEMMA domain model but with the extension “ol” (cf.
Lines 9 and 10). The serialisation of the generated Jolie code is triggered

11

Listing 4: Xtend excerpt of LEMMA2Jolie’s code generation module responsible for Jolie
code serialisation.

1 @CodeGenerationModule(name="main", ...)
2 class GenerationModule extends AbstractCodeGenerationModule {
3 ...
4 override getLanguageNamespace() { return DataPackage.eNS_URI }
5
6 override execute(String[] phaseArguments, String[] moduleArguments) {
7 val model = resource.contents.get(0) as DataModel
8 val generatedContexts = model.contexts.map[it.generateContext]
9 val baseFileName = FilenameUtils.getBaseName(modelFile)

10 val targetFile = ’’’«targetFolder»«File.separator»«baseFileName».ol’’’
11 return withCharset(#{targetFile -> generatedContexts.join("\n")},
12 StandardCharsets.UTF_8.name)
13 }
14
15 /* cf. Listing 3 */
16 private def generateContext(Context context) { ... }
17 private def dispatch generateComplexType(DataStructure structure) { ... }
18 }

by invoking the inherited MPF method withCharset. The method expects
a map of file paths and contents, and the target character set as argument.
For LEMMA2Jolie’s code generation module, the first argument associates
the previously assembled path of the file for the generated Jolie code with
the generated code concatenated in a string separated by line breaks (cf.
Line 11). The second argument of withCharset determines the character
set of the generated code, i.e., UTF-8 (cf. Line 12).

3. Illustrative Examples

We exemplify the main functions of LEMMA2Jolie (cf. Sect. 2.2) by an
excerpt of a case study for booking parking spaces with charging stations
for electric vehicles. The case study was introduced by a previous paper [37]
and also used to illustrate our encoding of LEMMA domain models into
Jolie programs [16]. The complete case study, including a description of
its processing with LEMMA2Jolie, can be found in the accompanying code
repository. Additionally, we provide a video showing the practical usage of
LEMMA2Jolie on the case study10.

Next, we describe LEMMA2Jolie’s application on the selected excerpt of
the case study following the structure of the workflow in Fig. 2.

3.1. Domain Model Construction
Figure 3 exemplifies the construction of a LEMMA domain model using

the Eclipse plugin for the DDML. The complete model can be found in the

10https://doi.org/10.5281/zenodo.7547046

12

https://doi.org/10.5281/zenodo.7547046

accompanying code repository

Figure 3: Construction of a LEMMA domain model using LEMMA’s Eclipse plugin for
the DDML.

The domain model specifies the BookingManagement bounded context[11,
16]. The context comprises the ParkingSpaceBooking structure which is a
DDD aggregate and entity. As a result, instances of the structure resemble
object graphs that must maintain a consistent state when being fetched from
and stored to a database [11].

The structure consists of the following data fields:

• bookingID: The field is of LEMMA’s primitive type long [36] and
enables to distinguish ParkingSpaceBooking instances.

• parkingSpace: The field allows storing information about the booked
parking space together with a ParkingSpaceBooking instance. There-
fore, parkingSpace is modelled as an aggregate part that, according
to DDD, is only valid and accessible from the root of its enclosing
aggregate [11].

• driver, timeSlot: These fields enable storing information about the
driver of an electric vehicle who made a certain parking booking and
the time slot for which this booking is valid together with the booking.
As for the same reason as parkingSpace, both fields are modelled as
parts of the ParkingSpaceBooking aggregate.

• priceInEuro: The field is of LEMMA’s primitive type double and
receives the price for the parking space booking in the Euro currency.

Next to the data fields, the structure also specifies the signature of the
priceInDollars function which is responsible for converting the value in the
priceInEuro field to the Dollar currency.

13

3.2. LEMMA2Jolie
The domain model in Fig. 3 can be transformed into the corresponding

Jolie program by executing LEMMA2Jolie from its Java archive or Docker
image. To this end, the user invokes LEMMA2Jolie from the commandline as
shown in Listing 5.

Listing 5: Execution of LEMMA2Jolie with (a) Java and (b) Docker.

(a)
java -jar lemma2jolie.jar \
-s /home/user/sample.data \
-t /home/user

(b)
docker run \
-u ‘id -u‘:‘id -g‘ \
-v /home/user:/home/user \
lemma2jolie:latest \
-s /home/user/sample.data \
-t /home/user

3.3. Program Refinement
The execution of LEMMA2Jolie on the LEMMA domain model (cf. List-

ing 5) in the file sample.data (cf. Fig. 3) results in a Jolie program file
sample.ol. As depicted in Fig. 4, this file can be refined, e.g., by a mi-
croservice developer, using the Jolie extension for Visual Studio Code. We
provide the complete source code of the sample.ol file in the accompanying
code repository

Following the specified encoding [16], LEMMA2Jolie transformed the Book-
ingManagement bounded context introduced by the LEMMA domain model
(cf. Fig. 3) into a Jolie documentation comment starting with @beginCtx
(cf. Line 1). In addition, the tool mapped the ParkingSpaceBooking struc-
ture to a Jolie type consisting of fields the correspond to those in the input
LEMMA structure (cf. Lines 4 to 14). The priceInDollars function was
however transformed into a request-response operation of the Jolie interface
for the ParkingSpaceBooking structure (cf. Lines 18 to 21). The opera-
tion expects an instance of the priceInDollars_type (cf. Lines 15 to 17)
as input, thereby, following the encapsulation principle of object-oriented
programming, allowing implementers to access the ParkingSpaceBooking
instance for which the operation was invoked.

4. Conclusion: Impact and Future Plans

LEMMA2Jolie demonstrates how the ecosystems of Model-Driven Engin-
eering (MDE), Domain-Driven Design (DDD), and service-oriented program-
ming can be successfully integrated, using in particular LEMMA and Jolie.
The immediate benefit is providing an automatic transition from DDD (in

14

Figure 4: Refinement of a Jolie program, which was derived from a LEMMA domain model
by LEMMA2Jolie, using the Jolie extension for Visual Studio Code.

LEMMA) to the implementation of each service (in Jolie), including inform-
ative annotations in the generated Jolie code that come from the domain
models.

In general, our approach paves the way for the future exploration of syn-
ergies between the abstraction facilities of MDE/DDD and service-oriented
programming languages. We mention five interesting directions for future
investigations.

First, LEMMA2Jolie could be extended to cover all phases of MSA en-
gineering, from domain-driven service design to implementation and deploy-
ment. For example, we plan to extend LEMMA2Jolie to cover also the deploy-
ment configuration of MSAs. A promising option is leveraging the toolchain
presented in [25] for automatically slicing a codebase consisting of many Jolie
services into separate codebases, each with its own configuration for contain-
erisation, and a deployment configuration for a container orchestrator (e.g.,
Docker Swarm, Kubernetes). In the same spirit, we plan on integrating
LEMMA, Jolie, and deployment languages more closely, by supporting de-
velopment environments where the languages can be used together with a
unified view. This is in line with corresponding research on software lan-
guage composition [10, 8, 3]. For example, we could use quasi-quotation

15

mechanisms to enable layering the languages and expose information about
the domain model to the implementation in Jolie and the deployment con-
figurations such that mismatches across these boundaries could be detected.

Second, LEMMA2Jolie offers the possibility to study approaches to round-
trip engineering (RTE) [39], i.e., the bidirectional synchronisation of LEMMA
models and Jolie code. RTE support for LEMMA2Jolie would improve inter-
action between domain experts and microservice developers. Each stake-
holder would use their views of interest (model vs implementation) to under-
stand, build, and modify a given architecture and LEMMA2Jolie would keep
those views consistent. In this way, LEMMA2Jolie would support RTE by
reflecting changes done by developers on the Jolie codebase on its compan-
ion domain models and, vice versa, keep the codebase on par when experts
change the domain models.

Third, we envision that LEMMA2Jolie could also stimulate research con-
cerning the specification of coordinated microservice behaviour following the
paradigm of Choreographic Programming (CP) [22, 23]. CP formally models
how distributed components coordinate with each other via communication
as artifacts called choreographies, which are then compiled to correct-by-
construction implementations of communication behaviours for the compon-
ents. CP guarantees quality attributes such as compliance (the components
interact as expected) and deadlock-freedom [4, 7, 13, 23]. Choreography, in
the sense of distributed coordination, is the de-facto best practice for the com-
position of microservices [28]. CP facilitates the writing of choreographies
and their correct implementation, giving a high potential for impact. How-
ever, while there exist early works on the application of CP to microservices
in Jolie [4, 12], there are still no tools that enable domain experts to particip-
ate in the specification of domain aspects in choreographies. This could be
achieved, e.g., by providing abstract textual or graphical representations of
choreographies that correspond to choreographies in CP. In this spirit, MSDL
(Microservice Domain-Specific Language) includes a textual language for ex-
pressing integration flows, but it is not integrated with CP [45].

Fourth, there is potential in exploring the connection between architec-
tural and API patterns for microservices in MDE and their implementation
in Jolie. For example, the application of reusable infrastructural components
(like circuit breakers) and patterns for API control has been investigated in
both the realms of MDE and Jolie [45, 31, 32, 26, 27, 5]. While these aspects
are interesting for both communities, they have never been integrated to
support, e.g., the application of infrastructural and API management com-
ponents starting from domain models.

Finally, following the approach of Software Architecture Reconstruction [1]
(SAR), LEMMA supports the model-based reconstruction of microservice

16

architectures for which no documentation exists or whose documentation is
outdated [35]. Currently, we are working on automating model-based SAR
with LEMMA [44]. In combination with LEMMA2Jolie, automated SAR with
LEMMA provides an opportunity for studying the semi-automated migration
of microservices from general-purpose programming languages, such as Java
or C# [38], to Jolie with the aim of raising service implementation quality
by relying on service-oriented primitives that, e.g., ensure the correctness of
concurrent service execution.

Acknowledgements

Work partially supported by Independent Research Fund Denmark, grant
no. 0135-00219.

References

[1] Len Bass, Paul Clements and Rick Kazman. Software Architecture in
Practice. Third. Addison-Wesley, 2013.

[2] Justus Bogner et al. “Microservices in Industry: Insights into Techno-
logies, Characteristics, and Software Quality”. In: 2019 IEEE Inter-
national Conference on Software Architecture Companion (ICSA-C).
IEEE, Mar. 2019, pp. 187–195. doi: 10.1109/ICSA-C.2019.00041.

[3] Arvid Butting et al. “Modeling Language Variability with Reusable
Language Components”. In: SPLC ’18. Gothenburg, Sweden: Associ-
ation for Computing Machinery, 2018, pp. 65–75.

[4] Marco Carbone and Fabrizio Montesi. “Deadlock-freedom-by-design:
multiparty asynchronous global programming”. In: The 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013. Ed. by
Roberto Giacobazzi and Radhia Cousot. ACM, 2013, pp. 263–274. doi:
10.1145/2429069.2429101.

[5] Ramaswamy Chandramouli. Security Strategies for Microservices-based
Application Systems. Available at https://doi.org/10.6028/NIST
.SP.800-204. National Institute of Standards and Technology, 2019.
doi: https://doi.org/10.6028/NIST.SP.800-204.

[6] Benoit Combemale et al. Engineering Modeling Languages: Turning
Domain Knowledge into Tools. CRC Press, 2017.

[7] Mila Dalla Preda et al. “Dynamic Choreographies: Theory And Imple-
mentation”. In: Logical Methods in Computer Science 13.2 (2017). doi:
10.23638/LMCS-13(2:1)2017.

17

https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.6028/NIST.SP.800-204
https://doi.org/10.6028/NIST.SP.800-204
https://doi.org/https://doi.org/10.6028/NIST.SP.800-204
https://doi.org/10.23638/LMCS-13(2:1)2017

[8] J. Deantoni. “Modeling the Behavioral Semantics of Heterogeneous
Languages and their Coordination”. In: 2016 Architecture-Centric Vir-
tual Integration (ACVI). 2016, pp. 12–18.

[9] Nicola Dragoni et al. “Microservices: Yesterday, Today, and Tomorrow”.
In: Present and Ulterior Software Engineering. Ed. by Manuel Mazzara
and Bertrand Meyer. Springer, 2017, pp. 195–216. isbn: 978-3-319-
67425-4.

[10] Sebastian Erdweg, Paolo G. Giarrusso and Tillmann Rendel. “Lan-
guage Composition Untangled”. In: LDTA ’12. Tallinn, Estonia: Asso-
ciation for Computing Machinery, 2012. isbn: 9781450315364.

[11] Eric Evans. Domain-Driven Design. Addison-Wesley, 2004.

[12] Saverio Giallorenzo, Ivan Lanese and Daniel Russo. “ChIP: A Choreo-
graphic Integration Process”. In: On the Move to Meaningful Internet
Systems. OTM 2018 Conferences - Confederated International Confer-
ences: CoopIS, C&TC, and ODBASE 2018, Valletta, Malta, October
22-26, 2018, Proceedings, Part II. Springer, 2018, pp. 22–40. doi: 10
.1007/978-3-030-02671-4_2.

[13] Saverio Giallorenzo, Fabrizio Montesi and Marco Peressotti. “Object-
Oriented Choreographic Programming”. In: arXiv, 2022. doi: 10.4855
0/ARXIV.2005.09520. url: https://arxiv.org/abs/2005.09520.

[14] Saverio Giallorenzo et al. “Jolie and LEMMA: Model-Driven Engin-
eering and Programming Languages Meet on Microservices”. In: Co-
ordination Models and Languages. Springer, 2021, pp. 276–284. isbn:
978-3-030-78142-2.

[15] [SW] Saverio Giallorenzo et al., LEMMA2Jolie: A Tool to Generate
Jolie APIs from LEMMA Domain Models 2022. Università di Bologna
et al. vcs: https://github.com/jolie/lemma2jolie, swhid: ⟨swh:
1:dir:bb764182f97dc9bff420347092356eac38e0d051;origin=http
s://github.com/jolie/lemma2jolie;visit=swh:1:snp:73e0bba67
9965a3f7fa712eca7b161f2fac3c673;anchor=swh:1:rev:4011e45ec
b5a233acbe29853dc47606159767a78⟩.

[16] Saverio Giallorenzo et al. “Model-Driven Generation of Microservice
Interfaces: From LEMMA Domain Models to Jolie APIs”. In: Coordin-
ation Models and Languages. Ed. by Maurice H. ter Beek and Marjan
Sirjani. Cham: Springer Nature Switzerland, 2022, pp. 223–240. isbn:
978-3-031-08143-9.

18

https://doi.org/10.1007/978-3-030-02671-4_2
https://doi.org/10.1007/978-3-030-02671-4_2
https://doi.org/10.48550/ARXIV.2005.09520
https://doi.org/10.48550/ARXIV.2005.09520
https://arxiv.org/abs/2005.09520
https://github.com/jolie/lemma2jolie
http://archive.softwareheritage.org/swh:1:dir:bb764182f97dc9bff420347092356eac38e0d051;origin=https://github.com/jolie/lemma2jolie;visit=swh:1:snp:73e0bba679965a3f7fa712eca7b161f2fac3c673;anchor=swh:1:rev:4011e45ecb5a233acbe29853dc47606159767a78
http://archive.softwareheritage.org/swh:1:dir:bb764182f97dc9bff420347092356eac38e0d051;origin=https://github.com/jolie/lemma2jolie;visit=swh:1:snp:73e0bba679965a3f7fa712eca7b161f2fac3c673;anchor=swh:1:rev:4011e45ecb5a233acbe29853dc47606159767a78
http://archive.softwareheritage.org/swh:1:dir:bb764182f97dc9bff420347092356eac38e0d051;origin=https://github.com/jolie/lemma2jolie;visit=swh:1:snp:73e0bba679965a3f7fa712eca7b161f2fac3c673;anchor=swh:1:rev:4011e45ecb5a233acbe29853dc47606159767a78
http://archive.softwareheritage.org/swh:1:dir:bb764182f97dc9bff420347092356eac38e0d051;origin=https://github.com/jolie/lemma2jolie;visit=swh:1:snp:73e0bba679965a3f7fa712eca7b161f2fac3c673;anchor=swh:1:rev:4011e45ecb5a233acbe29853dc47606159767a78
http://archive.softwareheritage.org/swh:1:dir:bb764182f97dc9bff420347092356eac38e0d051;origin=https://github.com/jolie/lemma2jolie;visit=swh:1:snp:73e0bba679965a3f7fa712eca7b161f2fac3c673;anchor=swh:1:rev:4011e45ecb5a233acbe29853dc47606159767a78

[17] Claudio Guidi and Balint Maschio. “A Jolie based platform for speeding-
up the digitalization of system integration processes”. In: Proceedings
of the Second International Conference on Microservices (Microservices
2019). 2019. https://www.conf-micro.services/2019/papers/Mic
roservices_2019_paper_6.pdf.

[18] JHipster. JHipster Domain Language (JDL). 2022-14-02. url: https:
//www.jhipster.tech/jdl.

[19] Ralph E. Johnson and Brian Foote. “Designing Reusable Classes”. In:
Journal of Object-Oriented Programming 1.2 (1988). SIGS Publica-
tions, pp. 22–35.

[20] Stefan Kapferer and Olaf Zimmermann. “Domain-Driven Service Design”.
In: Service-Oriented Computing. Springer, 2020, pp. 189–208.

[21] Kevin Lano and Shekoufeh Kolahdouz-Rahimi. “Model-Transformation
Design Patterns”. In: IEEE Transactions on Software Engineering 40.12
(2014). IEEE, pp. 1224–1259.

[22] Fabrizio Montesi. “Choreographic Programming”. PhD thesis. IT Uni-
versity of Copenhagen, 2013.

[23] Fabrizio Montesi. “Introduction to Choreographies”. Accepted for pub-
lication by Cambridge University Press. 2022.

[24] Fabrizio Montesi, Claudio Guidi and Gianluigi Zavattaro. “Service-
Oriented Programming with Jolie”. In: Web Services Foundations. Ed.
by Athman Bouguettaya, Quan Z. Sheng and Florian Daniel. Springer,
2014, pp. 81–107. doi: 10.1007/978- 1- 4614- 7518- 7_4. url:
https://doi.org/10.1007/978-1-4614-7518-7%5C_4.

[25] Fabrizio Montesi, Marco Peressotti and Valentino Picotti. “Sliceable
Monolith: Monolith First, Microservices Later”. In: IEEE International
Conference on Services Computing, SCC 2021, Chicago, IL, USA, Septem-
ber 5-10, 2021. Ed. by Barbara Carminati et al. IEEE, 2021, pp. 364–
366. doi: 10.1109/SCC53864.2021.00050. url: https://doi.org/1
0.1109/SCC53864.2021.00050.

[26] Fabrizio Montesi and Janine Weber. “Circuit Breakers, Discovery, and
API Gateways in Microservices”. In: CoRR abs/1609.05830 (2016).
arXiv: 1609.05830. url: http://arxiv.org/abs/1609.05830.

19

https://www.conf-micro.services/2019/papers/Microservices_2019_paper_6.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_6.pdf
https://www.jhipster.tech/jdl
https://www.jhipster.tech/jdl
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1007/978-1-4614-7518-7%5C_4
https://doi.org/10.1109/SCC53864.2021.00050
https://doi.org/10.1109/SCC53864.2021.00050
https://doi.org/10.1109/SCC53864.2021.00050
https://arxiv.org/abs/1609.05830
http://arxiv.org/abs/1609.05830

[27] Fabrizio Montesi and Janine Weber. “From the decorator pattern to cir-
cuit breakers in microservices”. In: Proceedings of the 33rd Annual ACM
Symposium on Applied Computing, SAC 2018, Pau, France, April 09-
13, 2018. Ed. by Hisham M. Haddad, Roger L. Wainwright and Richard
Chbeir. ACM, 2018, pp. 1733–1735. doi: 10.1145/3167132.3167427.
url: https://doi.org/10.1145/3167132.3167427.

[28] Sam Newman. Building Microservices: Designing Fine-Grained Sys-
tems. O’Reilly, 2015.

[29] OMG. OMG Unified Modeling Language (OMG UML) Version 2.5.1.
Standard formal/17-12-05. Object Management Group, 2017.

[30] Andy Oram. Ballerina: A Language for Network-Distributed Applica-
tions. O’Reilly, 2019.

[31] Mila Dalla Preda et al. “Interface-Based Service Composition with Ag-
gregation”. In: Service-Oriented and Cloud Computing - First European
Conference, ESOCC 2012, Bertinoro, Italy, September 19-21, 2012.
Proceedings. Ed. by Flavio De Paoli, Ernesto Pimentel and Gianluigi
Zavattaro. Vol. 7592. Lecture Notes in Computer Science. Springer,
2012, pp. 48–63. doi: 10.1007/978-3-642-33427-6_4. url: https:
//doi.org/10.1007/978-3-642-33427-6%5C_4.

[32] Mila Dalla Preda et al. “Service integration via target-transparent me-
diation”. In: 2012 Fifth IEEE International Conference on Service-
Oriented Computing and Applications (SOCA), Taipei, Taiwan, Decem-
ber 17-19, 2012. IEEE Computer Society, 2012, pp. 1–5. doi: 10.110
9/SOCA.2012.6449432. url: https://doi.org/10.1109/SOCA.2012
.6449432.

[33] [SW] Florian Rademacher, Eclipse Plugin for LEMMA’s Domain Data
Modelling Language 2022. University of Applied Sciences and Arts
Dortmund. vcs: https://github.com/SeelabFhdo/lemma, swhid:
⟨swh:1:dir:78f5d6179d9f84fa847d07c609cac4e43eb93e19;origin
=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:d29f6
f5ad7f519755932db9fa22ff237c3beab90;anchor=swh:1:rev:13cac
5a32db49c362244d5b9f6545d28757edbee;path=/de.fhdo.lemma.da
ta.datadsl/⟩.

[34] [SW] Florian Rademacher, LEMMA Model Processing Framework 2022.
University of Applied Sciences and Arts Dortmund. vcs: https://gi
thub.com/SeelabFhdo/lemma, swhid: ⟨swh:1:dir:5280a90287fb45
c1bfea4d217497399fc8b345d6;origin=https://github.com/Seela
bFhdo/lemma;visit=swh:1:snp:d29f6f5ad7f519755932db9fa22ff2

20

https://doi.org/10.1145/3167132.3167427
https://doi.org/10.1145/3167132.3167427
https://doi.org/10.1007/978-3-642-33427-6_4
https://doi.org/10.1007/978-3-642-33427-6%5C_4
https://doi.org/10.1007/978-3-642-33427-6%5C_4
https://doi.org/10.1109/SOCA.2012.6449432
https://doi.org/10.1109/SOCA.2012.6449432
https://doi.org/10.1109/SOCA.2012.6449432
https://doi.org/10.1109/SOCA.2012.6449432
https://github.com/SeelabFhdo/lemma
http://archive.softwareheritage.org/swh:1:dir:78f5d6179d9f84fa847d07c609cac4e43eb93e19;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:d29f6f5ad7f519755932db9fa22ff237c3beab90;anchor=swh:1:rev:13cac5a32db49c362244d5b9f6545d28757edbee;path=/de.fhdo.lemma.data.datadsl/
http://archive.softwareheritage.org/swh:1:dir:78f5d6179d9f84fa847d07c609cac4e43eb93e19;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:d29f6f5ad7f519755932db9fa22ff237c3beab90;anchor=swh:1:rev:13cac5a32db49c362244d5b9f6545d28757edbee;path=/de.fhdo.lemma.data.datadsl/
http://archive.softwareheritage.org/swh:1:dir:78f5d6179d9f84fa847d07c609cac4e43eb93e19;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:d29f6f5ad7f519755932db9fa22ff237c3beab90;anchor=swh:1:rev:13cac5a32db49c362244d5b9f6545d28757edbee;path=/de.fhdo.lemma.data.datadsl/
http://archive.softwareheritage.org/swh:1:dir:78f5d6179d9f84fa847d07c609cac4e43eb93e19;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:d29f6f5ad7f519755932db9fa22ff237c3beab90;anchor=swh:1:rev:13cac5a32db49c362244d5b9f6545d28757edbee;path=/de.fhdo.lemma.data.datadsl/
http://archive.softwareheritage.org/swh:1:dir:78f5d6179d9f84fa847d07c609cac4e43eb93e19;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:d29f6f5ad7f519755932db9fa22ff237c3beab90;anchor=swh:1:rev:13cac5a32db49c362244d5b9f6545d28757edbee;path=/de.fhdo.lemma.data.datadsl/
https://github.com/SeelabFhdo/lemma
https://github.com/SeelabFhdo/lemma
http://archive.softwareheritage.org/swh:1:dir:5280a90287fb45c1bfea4d217497399fc8b345d6;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:d29f6f5ad7f519755932db9fa22ff237c3beab90;anchor=swh:1:rev:13cac5a32db49c362244d5b9f6545d28757edbee;path=/de.fhdo.lemma.model_processing/
http://archive.softwareheritage.org/swh:1:dir:5280a90287fb45c1bfea4d217497399fc8b345d6;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:d29f6f5ad7f519755932db9fa22ff237c3beab90;anchor=swh:1:rev:13cac5a32db49c362244d5b9f6545d28757edbee;path=/de.fhdo.lemma.model_processing/
http://archive.softwareheritage.org/swh:1:dir:5280a90287fb45c1bfea4d217497399fc8b345d6;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:d29f6f5ad7f519755932db9fa22ff237c3beab90;anchor=swh:1:rev:13cac5a32db49c362244d5b9f6545d28757edbee;path=/de.fhdo.lemma.model_processing/
http://archive.softwareheritage.org/swh:1:dir:5280a90287fb45c1bfea4d217497399fc8b345d6;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:d29f6f5ad7f519755932db9fa22ff237c3beab90;anchor=swh:1:rev:13cac5a32db49c362244d5b9f6545d28757edbee;path=/de.fhdo.lemma.model_processing/

37c3beab90;anchor=swh:1:rev:13cac5a32db49c362244d5b9f6545d
28757edbee;path=/de.fhdo.lemma.model_processing/⟩.

[35] Florian Rademacher, Sabine Sachweh and Albert Zündorf. “A Modeling
Method for Systematic Architecture Reconstruction of Microservice-
Based Software Systems”. In: Enterprise, Business-Process and Inform-
ation Systems Modeling. Springer, 2020, pp. 311–326. isbn: 978-3-030-
49418-6.

[36] Florian Rademacher et al. “Graphical and Textual Model-Driven Mi-
croservice Development”. In: Microservices: Science and Engineering.
Springer, 2020, pp. 147–179. isbn: 978-3-030-31646-4.

[37] Florian Rademacher et al. “Towards an Extensible Approach for Gener-
ative Microservice Development and Deployment Using LEMMA”. In:
Software Architecture. Ed. by Patrizia Scandurra et al. Cham: Springer
International Publishing, 2022, pp. 257–280. isbn: 978-3-031-15116-3.

[38] Gerald Schermann, Jürgen Cito and Philipp Leitner. “All the Services
Large and Micro: Revisiting Industrial Practice in Services Comput-
ing”. In: Service-Oriented Computing – ICSOC 2015 Workshops. Ed.
by Alex Norta et al. Berlin, Heidelberg: Springer, 2016, pp. 36–47. isbn:
978-3-662-50539-7.

[39] Bran Selic. “The pragmatics of model-driven development”. In: IEEE
Software 20.5 (Sept. 2003). IEEE, pp. 19–25. issn: 1937-4194. doi:
10.1109/MS.2003.1231146.

[40] Jacopo Soldani, Damian Andrew Tamburri and Willem-Jan Van Den
Heuvel. “The pains and gains of microservices: A Systematic grey liter-
ature review”. In: Journal of Systems and Software 146 (2018). Elsevier,
pp. 215–232. issn: 0164-1212.

[41] Jonas Sorgalla et al. “Applying Model-Driven Engineering to Stimulate
the Adoption of DevOps Processes in Small and Medium-Sized Devel-
opment Organizations”. In: SN Computer Science 2.6 (2021), p. 459.
issn: 2661-8907.

[42] Dave Steinberg et al. EMF: Eclipse Modeling Framework. Second. Addison-
Wesley, 2008.

[43] Branko Terzić et al. “Development and evaluation of MicroBuilder:
a Model-Driven tool for the specification of REST Microservice Soft-
ware Architectures”. In: Enterprise Information Systems 12.8-9 (2018).
Taylor & Francis, pp. 1034–1057.

21

http://archive.softwareheritage.org/swh:1:dir:5280a90287fb45c1bfea4d217497399fc8b345d6;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:d29f6f5ad7f519755932db9fa22ff237c3beab90;anchor=swh:1:rev:13cac5a32db49c362244d5b9f6545d28757edbee;path=/de.fhdo.lemma.model_processing/
http://archive.softwareheritage.org/swh:1:dir:5280a90287fb45c1bfea4d217497399fc8b345d6;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:d29f6f5ad7f519755932db9fa22ff237c3beab90;anchor=swh:1:rev:13cac5a32db49c362244d5b9f6545d28757edbee;path=/de.fhdo.lemma.model_processing/
http://archive.softwareheritage.org/swh:1:dir:5280a90287fb45c1bfea4d217497399fc8b345d6;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:d29f6f5ad7f519755932db9fa22ff237c3beab90;anchor=swh:1:rev:13cac5a32db49c362244d5b9f6545d28757edbee;path=/de.fhdo.lemma.model_processing/
http://archive.softwareheritage.org/swh:1:dir:5280a90287fb45c1bfea4d217497399fc8b345d6;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:d29f6f5ad7f519755932db9fa22ff237c3beab90;anchor=swh:1:rev:13cac5a32db49c362244d5b9f6545d28757edbee;path=/de.fhdo.lemma.model_processing/
https://doi.org/10.1109/MS.2003.1231146

[44] Philip Wizenty and Florian Rademacher. “Towards Viewpoint-Based
Microservice Architecture Reconstruction”. In: Fourth International Con-
ference on Microservices (Microservices 2022). url: https://www.co
nf-micro.services/2022/papers/paper_16.pdf.

[45] Olaf Zimmermann et al. Patterns for API Design: Simplifying Integ-
ration with Loosely Coupled Message Exchanges. Addison-Wesley Pro-
fessional, 2022. isbn: 978-0137670109.

LEMMA2Jolie’s source code is permanently available at Software Heritage
under the persistent identifier (SWHID) swh:1:dir:bb764182f97dc9bff4
20347092356eac38e0d051;origin=https://github.com/jolie/lemma2j
olie;visit=swh:1:snp:73e0bba679965a3f7fa712eca7b161f2fac3c673;a
nchor=swh:1:rev:4011e45ecb5a233acbe29853dc47606159767a78 [15].

22

https://www.conf-micro.services/2022/papers/paper_16.pdf
https://www.conf-micro.services/2022/papers/paper_16.pdf

	Motivation and Significance
	Software Description
	Software Architecture
	Software Functionalities
	Sample Code Snippets
	Domain Model Parsing
	Template Execution
	Serialisation

	Illustrative Examples
	Domain Model Construction
	LEMMA2Jolie
	Program Refinement

	Conclusion: Impact and Future Plans

