
Breadth-first Cycle Collection Reference Counting:
Theory and a Rust Smart Pointer Implementation

Saverio Giallorenzo
Alma Mater Studiorum - Università di Bologna

Italy
INRIA
France

saverio.giallorenzo2@unibo.it

Francesco Goretti
Alma Mater Studiorum - Università di Bologna

Italy
francesco.goretti2@studio.unibo.it

Abstract
We present a new garbage collection reference counting algorithm
capable of collecting reference cycles—overcoming a known limita-
tion of traditional reference counting. The algorithm’s key features
include resilience to errors during tracing, support for object finali-
sation, no need for supplementary heap memory during collection,
and a fast breadth-first tracing approach that avoids stack over-
flows.We implement the algorithm as a Rust library that is idiomatic
and highly compatible with the Rust ecosystem and that leverages
Rust’s type system and borrow checker to minimise unsafe code
and prevent undefined behaviour. We report benchmarks that show
that our proposal performs comparably to popular Rust alternatives
and outperforms them when dealing with garbage cycles.

CCS Concepts
• Software and its engineering→ Garbage collection.

Keywords
Garbage Collection, Reference Counting, Cycle Collection, Rust
ACM Reference Format:
Saverio Giallorenzo and Francesco Goretti. 2025. Breadth-first Cycle Col-
lection Reference Counting: Theory and a Rust Smart Pointer Implementa-
tion. In The 40th ACM/SIGAPP Symposium on Applied Computing (SAC ’25),
March 31-April 4, 2025, Catania, Italy. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3672608.3707785

1 Introduction
Reference counting is one of the first techniques for garbage collec-
tion [9]. While it provides good performance, an important limita-
tion regards the impossibility to free cyclic structures. Later refine-
ments introduced companion mark-and-sweep routines, with the
related overhead, to deal with cycle collection [3, 6, 19, 22]. Alter-
native approaches minimise overheads using cycle collectors [7, 8].

Inspired by state-of-the-art cycle collectors such as by Lins [18]
and Bacon and Rajan [4], we present the Single-threaded Intrusive
Lists Breadth-first Recycler (SILB-Recycler), a garbage collection
reference counting algorithm able to collect reference cycles. SILB-
Recycler distinctive features include: a) resiliency to fatal errors
during the tracing phase, b) support for object finalisation, c) no

This work is licensed under a Creative Commons 4.0 International License.
SAC ’25, March 31-April 4, 2025, Catania, Italy
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0629-5/25/03
https://doi.org/10.1145/3672608.3707785

need for supplementary heap memory during collection, and d) fast
breadth-first tracing approach (no stack overflows).

Sketching out SILB-Recycler’ logic, detailed in Section 2, in the
absence of cycles, the algorithm behaves as a standard reference
counting system, finalising and deallocating objects when their ref-
erence count reaches zero. However, if an object belongs to a cycle,
the collector finalises and deallocates it when the last strong pointer
to the cycle is destroyed — when a strong pointer is destroyed, the
collector adds its object to a list of potential cyclic garbage.

Cycle identification follows two phases. The first is the trace
counting phase, which performs a breadth-first traversal starting
from the list of potential cyclic garbage, marking the visited objects
as traced. Each object has a separate tracing counter incremented for
each followed pointer. After having finished the visit, the collector
compares the tracing counter with the reference counter of the
object to identify potential roots, separating the objects between
two list of non-root and root objects. The second phase, trace roots,
begins the visit from the root objects, traversing all the references
of the encountered objects. When the collector visits an object, it
removes it from its list and marks it as such. Upon completion, the
root list is empty and the non-root list contains all and only the
collectible objects in unreachable cycles.

Besides introducing SILB-Recycler, in Section 3, we present an
implementation of the proposed algorithm as a Rust library, called
rust-cc. The library provides a SILB-Recycler-based smart pointer
(that manages the memory it references) whose APIs follow those of
Rust’s standard library (e.g., Rc), achieving both familiarity for Rust
developers and seamless integration within the Rust ecosystem. The
library, highly integrated in Rust’s package manager (Cargo), makes
minimal use of unsafe code and leverages Rust’s type system and
borrow checker to prevent undefined behaviour.

In Section 4, we use rust-cc to benchmark SILB-Recycler against
popular Rust alternatives, in particular, gc and safe-gc, resp. the
de-facto standard garbage-collection library and an alternative safe
implementation, and one implementing Bacon-Rajan [4]. The main
takeaway is that rust-cc is generally on par with the fastest alter-
natives and faster than these when dealing with garbage cycles.

We conclude by positioning our contribution with related work,
in Section 5, and drawing final remarks and future steps in Section 6.

2 Breadth-first Cycle Collection Reference
Counting

We now present our novel cycle collection algorithm: the structure
of the objects it manages, how finalisation and weak pointers work,
and a discussion on the details of its logic.

https://orcid.org/0000-0002-3658-6395
https://orcid.org/0009-0005-5919-0886
https://doi.org/10.1145/3672608.3707785
https://creativecommons.org/licenses/CC-BY-SA/4.0/legalcode
https://creativecommons.org/licenses/CC-BY-SA/4.0/legalcode
https://doi.org/10.1145/3672608.3707785

SAC ’25, March 31-April 4, 2025, Catania, Italy S. Giallorenzo and F. Goretti

Intr. list/queue︷ ︸︸ ︷
Next Prev MetadataPointer CounterMarker Allocated Value︸ ︷︷ ︸

Header

Figure 1: Layout of the traced objects.

Vtable pointer A WeakCounter

Figure 2: Metadata layout.

MA Tracing counter ME FIN Reference counter

Figure 3: CounterMarker layout.

2.1 Structure of Traced Objects
The algorithm assumes that objects in memory have the header
structure as depicted in Figure 1. The header contains the reference
counter and the fields needed for cycle collection:
• Next and Prev implement lists/queue for cycle collection;
• MetadataPointer contains a pointer either directly to the
structure collecting the operations working on the object,
called “Vtable”, or to a Metadata structure, depicted in Fig-
ure 2, used to manage weak pointers. The structure aggre-
gates the Vtable pointer, the counter of weak references
(WeakCounter), and the status bit A, which tracks whether
it is possible to dereference the pointer to the object or not;
• CounterMarker, whose layout is depicted in Figure 3, holds
the counters, marks, and status of the object.

Since it is particularly important for implementing the logic of
SILB-Recycler, we detail the structure of the CounterMarker:
• MA is a two-bit field which can assume one of four statuses:
– NON_MARKED: no list (or queue) contains the object;
– IN_POSSIBLE_CYCLES: the object might be a cycle root;
– IN_LIST: the object is in one of the lists;
– IN_QUEUE: the object is in the breath-first traversal queue.
• Tracing counter is the counter of the strong pointers traced
during collection. This counter stores the number of refer-
ences to each object encountered during the traversal. Using
a separate counter from the reference counter is necessary
against faults, which could halt the collection at any time.
As such, decrementing the reference counter is not a viable
option since we could not restore it at faults. Using the trac-
ing counter also benefits execution times, since we replace
the expensive reference counter restoration by resetting the
tracing counter once per managed object.
• ME is a one-bit field that holds the MetadataPointer status —
when it points to the Vtable is 0 and 1 for the Metadata.
• FIN is a one-bit field that tracks the finalisation status — set
to 1 after the execution of the finaliser;
• Reference counter is the counter of the total strong pointers.

Additionally, we use the CounterMarker to indicate whether the
object has already been dropped, setting to the maximum value (all

ones) the tracing counter — if the tracing counter is equal to its
maximum value, then we already ran the destructor of the object.

2.2 Finalisation
Finalisers support the release (e.g., clean-up and state updates to
enforce consistency) of resources that an object may hold and no
longer needs, e.g., file handles, network/database connections. SILB-
Recycler supports the execution of finalisers when an object’s refer-
ence counter reaches 0 and before freeing identified garbage cycles.

Since finalisers can “resurrect” objects, before collection, SILB-
Recycler checks that any collectible object did not return accessible.

When the reference counter has reached 0, SILB-Recycler verifies
that the reference counter remained at 0 after finalisation, mak-
ing it safe to remove the object. Otherwise, it places the object in
the POSSIBLE_CYCLES list (the list of potentially cyclical garbage),
since it can belong to a garbage loop. During cycle collection, SILB-
Recycler needs to perform the identification of the cycles after a
finalisation. In this case, the collector reinserts the traced objects
within the POSSIBLE_CYCLES list and restarts the cycle identifica-
tion procedure from the beginning. Since this mechanism can lead
to non-termination, we set an upper bound on the number of execu-
tions of the cycle identification routine within the same collection
session — the finaliser of each object can run at most once and the
values allocated during the execution of a finaliser are not finalised.

2.3 Weak pointers
At an object’s creation, MetadataPointer contains the direct pointer
to the object’s Vtable. When the runtime creates the first weak
pointer to the object, SILB-Recycler creates the Metadata structure
and sets the pointer to the object’s Vtable therein, sets to 1 both the
fields A andWeakCounter, sets theMetadataPointer to reference the
new structure, and updates CounterMarker to reflect this change.

Besides pointing to the Metadata structure, the weak pointers
also have a pointer to the object and accessing a weak pointer
entails checking the accessibility status (cf. A in Figure 2) of the
Metadata structure before dereferencing the pointer to the object.
Since the metadata structure has no cycles, SILB-Recycler keeps it
allocated until it freed the objects and the WeakCounter reached 0.

Separating an object from its Metadata allows SILB-Recycler to
free the object’s allocation irrespective of its weak pointers’ status.

2.4 Pseudocode Procedures of SILB-Recycler
We detail (using pseudocode) the main procedures of SILB-Recycler.

For simplicity, the pseudcode presented in this section omits the
parts of the algorithm related to managing faults, which make SILB-
Recycler resilient to fatal errors. However, these are minimal and
regard the calls to finalisers (finalize), tracing (trace), and destroyers.
In all these cases, the algorithm empties all lists and queue (root,
non-root, etc.) and unmarks the traced objects.

At an object’s creation, SILB-Recycler sets it NON_MARKED.
When SILB-Recycler creates a strong pointer to an object, it

removes the latter from POSSIBLE_CYCLES (if present), since it has
a positive reference counter and cannot be in a garbage cycle.

When a strong pointer goes out of scope, SILB-Recycler follows
Procedure 1, which decrements the reference counter and finalises
and frees the object if the reference counter reached zero. More

Breadth-first Cycle Collection Reference Counting:
Theory and a Rust Smart Pointer Implementation SAC ’25, March 31-April 4, 2025, Catania, Italy

Procedure 1 Strong pointer destructor.
1: proc sp_destroy(sp: SP)
2: if sp.mark = IN_LIST then
3: sp.RC← sp.RC − 1
4: else if sp.RC > 1 then
5: sp.RC← sp.RC − 1
6: add_to_possible_cycles(sp)
7: else
8: if finalisation_enabled() && is_to_finalise(sp) then
9: set_finalised(sp)
10: finalise(sp.value)
11: if sp.RC > 1 then ⊲ The object was resuscitated
12: sp.RC← sp.RC − 1
13: add_to_possible_cycles(sp)
14: return
15: sp.RC← sp.RC − 1
16: ⊲ Make sure sp is not in POSSIBLE_CYCLES ⊳

17: remove_from_possible_cycles(sp)
18: set_dropped(sp)
19: drop_object(sp.value)
20: drop_metadata(sp)
21: FREE(sp)

precisely, if the reference counter would reach 0, SILB-Recycler
executes the object’s finaliser before decrementing the counter, to
soundly allow the creation of new possible references to the object
during the finaliser’s execution — SILB-Recycler performs the final-
isation only if enabled and not already executed on the object (FIN),
marked before its execution (line 9). After having run the finaliser,
the collector frees the object if the reference counter is still 1, i.e.,
the finaliser did not “resurrect” the object. Otherwise, it follows the
procedure for objects with a reference counter greater than one
(described below). Before these steps, the procedure checks whether
the cycle collector marked the object as a member of a garbage cycle
(line 2). The check is necessary since the procedure drop_object
within Procedure 5 destroys the strong pointers contained by mem-
bers of garbage cycles, which would incorrectly free objects that the
cycle collector is already handling. If the reference counter is greater
than one, SILB-Recycler inserts the object in the POSSIBLE_CYCLES
list, since it may be a garbage cycle root. When inserting objects
in POSSIBLE_CYCLES (using add_to_possible_cycles), we set the
object’s marking to IN_POSSIBLE_CYCLES and reset its tracing
counter — we avoid adding objects twice if already present.

When SILB-Recycler drops and frees the object, the object can
be in the POSSIBLE_CYCLES list. In this case, the collector removes
the object (using remove_from_possible_cycles) before dropping it.

Procedure 2 identifies the garbage cycles to collect. After having
reset the necessary lists and queue, it performs the two tracing
phases, trace counting and trace roots, which process each element
at the head of the lists/queue until their exhaustion.

Trace counting starts the tracing from the POSSIBLE_CYCLES list,
since it contains the candidate roots of garbage cycles. After the
tracing of the references contained inside an object (line 9), depend-
ing on the values of the object’s reference and tracing counters, the
procedure inserts it within the non_root_list or root_list.

Procedure 2 Garbage cycles identification.
1: proc identify_garbage_cycles()
2: root_list← new List
3: non_root_list← new List
4: queue← new Queue
5: ⊲ Trace counting ⊳

6: for all q ∈ {POSSIBLE_CYCLES, queue} do
7: while q.is_not_empty() do
8: sp← q.remove_first()
9: trace(sp.value)
10: if sp.RC = sp.TC then
11: non_root_list.add(sp)
12: else
13: root_list.add(sp)
14: ⊲ Trace roots ⊳

15: for all q ∈ {root_list, queue} do
16: while q.is_not_empty() do
17: sp← q.remove_first()
18: sp.mark← NOT_MARKED
19: trace(sp.value)

Slightly simpler, trace roots unmarks the allocation before tracing
the object. The traversal starts from the elements of root_list,
since it contains the externally reachable objects. This traversal
leaves in non_root_list only the members of garbage cycles.

Although we omit error-handling code for brevity, we outline its
rationale for Procedure 2, which concerns the main fault manage-
ment logic of the algorithm. Briefly, if a fatal error occurs during
either of the calls to trace (lines 9 and 19), we handle the error by
emptying all the lists and the queue — root_list, non_root_list
and queue — and unmarking every contained object before halting
the collection. Moreover, if a fault occurs during trace counting (line
9), we also unmark the object being traced (referenced by sp).

The trace operation (cf. Procedure 3) in Procedure 2 encodes
the tracing logic, which, for strong pointers, avoids tracing an
object’s fields and co-operates with Procedure 2 to implement the
two breath-first heap traversals. The procedure differs depending
on the tracing phase. During trace counting, if the object is marked

• IN_POSSIBLE_CYCLES or IN_QUEUE, Procedure 2 handles the
tracing and insertion of the object in a list. As such, we need
to only increment the tracing counter.
• IN_LIST, the object is either in non_root_list or root_list.
We increment the tracing counter and, if the reference counter
is equal to the latter, wemove the object into non_root_list
(Procedure 2 already handled it).
• NON_MARKED, the object has never been traced. Thus, the trac-
ing counter must be reset and set to one (single assignment),
followed by the queuing of the object for traversal.

During trace roots, we only move the object inside the queue if
found in non_root_list, since root_list’s elements are already
traced by Procedure 2. We know the traversal cannot visit untraced
objects, since every traced object is in a list at the start of this phase.
An object is inside non_root_list if its mark is IN_LIST and its
reference and tracing counters are equal.

SAC ’25, March 31-April 4, 2025, Catania, Italy S. Giallorenzo and F. Goretti

Procedure 3 Tracing procedure for strong pointers.
1: proc sp_trace(sp: SP)
2: if is_trace_counting() then ⊲ Trace counting
3: if sp.mark ∈ {IN_POSSIBLE_CYCLES, IN_QUEUE} then
4: sp.TC← sp.TC + 1
5: else if sp.mark = IN_LIST then
6: sp.TC← sp.TC + 1
7: if sp.RC = sp.TC then
8: root_list.remove(sp)
9: non_root_list.add(sp)
10: else ⊲ sp.mark = NON_MARKED
11: sp.TC← 1
12: sp.mark← IN_QUEUE
13: queue.add(sp)
14: else ⊲ Trace roots
15: if sp.mark = IN_LIST && sp.RC = sp.TC then
16: non_root_list.remove(sp)
17: sp.mark← IN_QUEUE
18: queue.add(sp)

Procedure 4 performs cycle collection. Without finalisation, it
only identifies the cycles and frees them, done by Procedure 2 and
Procedure 5. With finalisation, it re-runs the cycle identification
after having executed the finalisers. To avoid divergence, it exe-
cutes the cycle collection up to a maximum of 10 times — avoiding
pathological non-termination due to cycles of “resurrection”.

After having identified the objects in garbage cycles, we run
their finalisers (those yet to run, lines 5–10 of Procedure 4). If
we execute at least one finaliser, then we re-insert the objects in
POSSIBLE_CYCLES and the loop continues (lines 13–14). Otherwise,
we free the identified garbage cycles using Procedure 5. Note the
insertion of the finalised object in POSSIBLE_CYCLES at line 14;
necessary for resuming at the next cycle collection if the loop
reached its maximum executions.

Procedure 5 frees the identified garbage cycles. Since objects can
access each other at destruction, we call all the destructors before
freeing memory. Hence, this procedure performs two iterations
over non_root_list. In the first, it sets to “dropped” the status
of the objects and calls drop_object to execute their destructor —
followed by recursively calling the procedure on each field of the
destructed object. In the second iteration, we free the metadata
structure or mark it inaccessible, freeing the objects — if an object
has the metadata structure, we can free it if there are no weak
pointers referencing it; otherwise, we set the accessible flag to false,
preventing access via those weak pointers.

SILB-Recycler upgrades weak to strong pointers, returning None
otherwise, depending on four conjunctive conditions:

• the metadata structure is accessible (the object is allocated);
• the reference counter is greater than 0;
• the object has not been dropped — it would be unsafe to
provide a pointer to a destroyed object;
• the object is not inside non_root_list when the collector
is executing Procedure 5 (otherwise the object is part of a
garbage cycle and the collector is going to destroy it).

Procedure 4 Start cycle collection.
1: proc collect_cycles()
2: if finalisation_enabled() then
3: loop 10 times ⊲ Avoid non-termination
4: identify_garbage_cycles()
5: has_finalised← false
6: for all sp ∈ non_root_list do
7: if is_to_finalise(sp) then
8: has_finalised← true
9: set_finalised(sp)
10: finalise(sp.value)
11: if has_finalised then
12: ⊲ Wefinalised some values, we recheck the cycles ⊳
13: for all sp ∈ non_root_list do
14: add_to_possible_cycles(sp)
15: else
16: drop_non_root_list()
17: return ⊲ Garbage cycles have been collected
18: else
19: identify_garbage_cycles()
20: drop_non_root_list()

Procedure 5 Free garbage cycles.
1: proc drop_non_root_list()
2: for all sp ∈ non_root_list do
3: set_dropped(sp)
4: drop_object(sp.value)
5: for all sp ∈ non_root_list do
6: drop_metadata(sp)
7: FREE(sp)

A weak pointer that goes out of scope decrements the weak
counter and frees the metadata if the counter reached 0 and the
structure is not accessible (i.e., we already freed the object).

3 A Rust Safe Interface SILB-Recycler Library
We implement SILB-Recycler as a Rust [26] library, called rust-cc,
released on crates.io at https://crates.io/crates/rust-cc under ei-
ther the MIT or Apache-2.0 licences, source code available at https:
//github.com/frengor/rust-cc.

We design rust-cc with flexibility and safety in mind and take
inspiration for its public API from Rust standard library’s reference-
counted pointers to provide a familiar and idiomatic experience
for Rust developers and to help them integrate it within Rust’s
ecosystem. Notably, rust-cc makes minimal usage of unsafe1 in
its API and safe code can use all its features. Thanks to Rust’s type
system and borrow checker, the compiler can check and prevent
any undefined behaviour encountered when using rust-cc. The
integration within Cargo [25] — Rust’s package manager — allows
the library to parametrise all its features, which developers can en-
able when needed, possibly reducing compile times and improving
performance (cf. benchmarks with(out) finalisers in Section 4.2).
1A scoping mechanism that disables the compilers’ static checks, e.g., useful when deal-
ing with low-level memory-management logic that would be too complex/inefficient
to implement so that the compiler can successfully perform its static checks.

https://crates.io/crates/rust-cc
https://github.com/frengor/rust-cc
https://github.com/frengor/rust-cc

Breadth-first Cycle Collection Reference Counting:
Theory and a Rust Smart Pointer Implementation SAC ’25, March 31-April 4, 2025, Catania, Italy

unsafe trait Trace: Finalize {
fn trace(&self, ctx: &mut Context<'_>);

}
trait Finalize {

fn finalize(&self) {}
}

Listing 1: Mandatory traits for cycle-collectable types.

rust-cc exposes the Cc<T> smart pointer (i.e., a pointer which
manages the memory it references), which is a single-threaded
reference-counted strong pointer collected using SILB-Recycler.
Specifically, Cc<T> has a similar API to the reference-counted pointer
Rc from Rust’s standard library. The associated function new allo-
cates and returns the first strong pointer to a new cycle-collected
value, while the clone method increments the reference counter
and returns a new strong pointer to an already-existing value.
Cc also supports the dereferencing operator (*), which returns a
compile-time checked reference to the pointed value.

Users can obtain weak pointers using the downgrade method,
which they can convert back to Ccs using the upgrade method.

rust-cc also supports cleaners, i.e., closures that execute clean-
up code when the runtime drops their enclosing structure. Specifi-
cally, the user can define a Cleaner field of a cycle-collected type
and register clean-up closures executed at the field’s destruction.
Users can directly execute registered clean-up actions, but these
invocations prevent the closures from running at their Cleaner’s
drop — rust-cc allows only one execution of any clean-up action.

Thanks to the design of SILB-Recycler, it is always safe for
the methods related to collection (trace, finalize, drop) of cycle-
collectable values to panic, i.e., to raise errors.

3.1 Mandatory Traits of Cycle-collectable Types
Rust traits are interfaces one can implement in a generic way, al-
lowing the definition of shared functionalities between types.

To use a type with rust-cc, i.e., to make it cycle-collectable, it
must implement the Trace and Finalize traits, shown in Listing 1.

Finalize allows the finalisation of cycle-collected values. Since
it is an option, even though the developer can disable the usage
of finalisers, they have to implement the Finalize trait to allow
compatibility with libraries that have it enabled.

Trace enables tracing the type’s fields, performed by calling
the trace method on the fields of the type. Since it is not possible
to express every requirement of the Trace trait in the Rust type
system — we would need to specify behaviour rather than structure,
e.g., tracing Ccs not owned by self — we mark it unsafe. Thus,
implementations must adhere to the following safety requirements
to avoid undefined behaviour:

(1) trace every Cc instance exclusively owned by self. No other
Cc instance can be traced;2

2Tracing can happen at most once to support ignoring some fields. In Rust, every
value has a unique owner — a variable or another value — which binds the former’s
lifetime to the latter’s. We impose exclusive ownership because some types provide
“shared ownership”, binding the value’s lifetime to that of the last “standing” owner. By
requiring exclusive ownership over the traced Ccs, we disallow tracing Cc instances
behind references (&, &mut) or with shared ownership (e.g., Rc<Cc<...>>).

(2) during the same tracing phase, two trace calls on the same
value must behave the same, i.e., they must trace the same Cc
instances.3 If a panic happens during the second trace call,
then the Cc instances traced during the second call must be
a subset of the Cc instances traced in the first one.

(3) trace must not create, clone, move, dereference or drop Ccs.
(4) destructors in cycle-collectable types cannot create, clone,

move, dereference, drop or call methods on any Cc instance4.
To allow safe code to implement the Trace trait, rust-cc pro-

vides a homonymous derive macro. The macro emits an implemen-
tation which traces every type’s field not marked with the attribute
#[rust_cc(ignore)]. Using the attribute is safe and useful when
some fields are not traceable, e.g., when deriving Trace for a type
which contains fields like Cell — from Rust’s standard library —
that does not implement Trace. Ignoring a field may leak memory
if the field contains a Cc, but it never leads to undefined behaviour.

To respect the destructors’ safety requirement (4), the derive
macro emits an empty destructor implementation, which always
satisfies the safety requirements and prevents the user from im-
plementing a potentially wrong custom destructor. Experienced
users can unsafely implement a custom destructor by applying
the attribute #[rust_cc(unsafe_no_drop)] to the type definition,
which suppresses the emission of the destructor implementation.

rust-cc also provides a derive macro for Finalize, which emits
an empty implementation, useful when finalisers are unnecessary.

Implementation Details. rust-cc triggers collections when allo-
cating new values and determined by a threshold (over the allocated
bytes) and an adjustment percentage.

When the allocated bytes exceed the threshold, rust-cc starts a
new collection. If the number of allocated bytes still exceeds the
threshold after the collection, we double the threshold to adjust
the triggering to the size of the allocated data. Otherwise, rust-cc
regulates the threshold by checking whether its value multiplied
by the adjustment percentage is greater than the allocated bytes. If
it is the case, then rust-cc halves the value of the threshold until
the multiplied value is lower than that of the allocated data.

The cycle collector in rust-cc seamlessly supports cleaners (no
special cases) thanks to ignored fields. Indeed, the Trace imple-
mentation of Cleaner is empty, avoiding tracing the Ccs captured
by the registered clean-up closures. Hence, the pointed objects are
alive and not collected until after the execution of all the cleaners.

The rust-cc test suite includes 80+ thorough tests. Its continu-
ous integration infrastructure checks every commit using GitHub
Actions, which run the test suite using the tool cargo-hack [11].
This tool executes all tests for each combination of rust-cc features,
enabling comprehensive checks — compared to the complexity of
devising their combination by hand. Furthermore, since rust-cc
uses unsafe code, we run the test suite with a detector of undefined
behaviour for Rust programs (Miri [10]).

3Calls to the tracemethod happen during tracing phases. To detect if successive trace
calls happen within the same phase, we use a function which returns false when
traces belong to different phases (spec. to calls on different values). Referring to the
pseudocode shown in Section 2.4, two trace calls can happen during the same tracing
phase if called during the same execution of Procedure 2. This requirement ensures
that the traced objects do not change between the trace counting and trace roots phases.
4Since the members of garbage cycles can access each other during the execution of
their destructors, it is not safe to access Ccs, as they could point to dropped objects.

SAC ’25, March 31-April 4, 2025, Catania, Italy S. Giallorenzo and F. Goretti

4 Evaluation
We evaluate our SILB-Recycler implementation both qualitatively
and quantitatively; respectively, we compare rust-cc’s design/fea-
tures against its main competitors in the Rust ecosystem, and we
report the latter’s and rust-cc’s performance under 4 benchmarks.

4.1 Qualitative Evaluation
We gather the main single-threaded garbage collectors in the Rust
ecosystem, considering the most all-time downloaded ones at the
time of writing (reported in brackets) from crates.io: gc [14] (219k),
bacon-rajan-cc [12] (10k), broom [5] (7K), and safe-gc [13] (1k).
Notably, none of the alternatives supports cleaners.

gc is one of the most used garbage collectors in the Rust ecosys-
tem. It is a mark-and-sweep garbage collector, and it presents an
API similar to that of rust-cc, but with some important limitations:

(1) it is not possible to use the RefCell type — the main one for
interior mutability — within collectable types, but it is nec-
essary to use the GcCell type instead, limiting developer’s
options in designing their data structures and reducing com-
patibility with the rest of the Rust ecosystem;

(2) excluding a field’s tracking is unsafe;
(3) no support for weak pointers;
(4) while the use of the derive macro is close to rust-cc, the

trait Trace is more complex to implement manually.
bacon-rajan-cc is a cycle collector that closely implements the

algorithm presented by Bacon and Rajan [4], hence the name. It
presents an API similar to that of rust-cc, but it does not support
finalisation and automatic collection. Moreover, the library is un-
sound, as the trait Trace is not marked as unsafe to implement,
leading to possible undefined behaviour caused by safe code.

safe-gc is a library that implements a garbage collected arena
using a mark-and-sweep algorithm, it includes no unsafe code, and
uses data structures and smart pointers from the standard library.
The API/feature-set of safe-gc is quite different w.r.t. rust-cc:

(1) allocations happen via the alloc method of a Heap instance,
which implements an arena of garbage collected objects of
possibly heterogeneous types;

(2) there are two types of pointers, a root and a non-root garbage
collected one, and their correct usage is the users’s responsi-
bility (incorrect use never leads to undefined behaviour);

(3) users cannot directly dereference pointers, but they need to
pass the pointer to Heap’s get and get_mut methods;

(4) no support for finalisation and weak pointers.
Despite its strong safety guarantees, safe-gc requires more

explicit management, adding complexity/cognitive overhead. The
inability to directly dereference pointers (accessed using special
methods) makes the API less ergonomic and potentially slower.

broom is a library that implements a garbage collected arena
using a mark-and-sweep algorithm similar to safe-gc, but with
the fundamental difference that objects allocated within the arena
can be of only one type, which greatly reduces its flexibility.

4.2 Quantitative Evaluation
To compare the performance of rust-cc and the considered alter-
natives, we devise 4 benchmarks: stress test, binary trees, binary trees

Library Avg Time St. Dev. St. Dev. % Δ𝑡%

bacon-rajan-cc 20.45 ms ±0.24 1.15% +29.73%
broom 64.65 ms ±0.25 0.39% +310.14%
gc 53.93 ms ±0.29 0.54% +242.13%
rust-cc 15.76 ms ±0.15 0.96% -
rust-cc, no fin. 15.68 ms ±0.15 0.93% −0.51%
safe-gc 70.97 ms ±0.29 0.41% +350.26%

Table 1: Stress test benchmark.

with parent pointers and large linked list. We derive and adapt the
first three benchmarks from the shredder [23] library and provide
the source code of the tests at https://github.com/frengor/rust-cc-
benchmarks.

We run all benchmarks under Linux Mint (kernel version 5.4.0)
on amachine equippedwith a Ryzen 9 5900X 12 core 24 threads CPU
and 32 GB of RAM, using the cset-shield command to exclusively
allocate a core for each benchmark. We implement the tests using
resp. rust-cc 0.6.1, gc 0.5.0, bacon-rajan-cc 0.4.0, safe-gc 1.1.1,
and broom 0.3.2 and compile them under Rust 1.81.0. To provide
context and further insights on the results, we also implement and
report on the binary trees, binary trees with parent pointers, and large
linked list benchmarks using the Rc and Arc pointers from Rust’s
standard library (which do not support automatic cycle collection).

We collect themeasurements using the criterion.rs library [1]
with the parameters code -C opt-level=3 codegen-units=1
lto=thin, i.e., enabling all compilation optimisations, reducing
parallel compilation (high parallel compilation may produce slower
code), and enabling link-time optimisations.

We measure 100 samples for each pair benchmark-alternative
where each (Criterion.rs) sample consists of many iterations
of the benchmark. The number of iterations derives from a set
recording timeout and the time taken by each benchmark instance
(executed after a warm-up period), e.g., rust-cc totals 800 itera-
tions under stress test. We present the results of each benchmark
both in tabular form and as violin plots, considering rust-cc with
and without finalisation to fairly compare it with libraries that do
not support the option.

4.3 Stress test benchmark
The stress test benchmark creates a directed graph with 215 + 1
vertices and 215 + 1 random edges, maintaining a strong pointer
to each vertex, which are then gradually destroyed by performing
collections at regular intervals.

We report in Table 1 the average execution time, the standard
deviation (absolute and in percentage) and the percentage time
delta between rust-cc and the alternatives. We visualise the data
in Figure 4, where the x-axis tracks the time in milliseconds, and we
distribute on different lines of the y-axis the candidates for clarity.

From Table 1 and Figure 4, both rust-cc and bacon-rajan-cc
are approximately 3 times faster than the alternatives, with rust-cc
being a few milliseconds quicker. The performance difference with
other competitors is likely due to the ability of both cycle collectors
to avoid tracing the entire heap during each collection. As expected,
disabling finalisation makes rust-cc (slightly) faster.

https://github.com/frengor/rust-cc-benchmarks
https://github.com/frengor/rust-cc-benchmarks

Breadth-first Cycle Collection Reference Counting:
Theory and a Rust Smart Pointer Implementation SAC ’25, March 31-April 4, 2025, Catania, Italy

Figure 4: Violin plot of stress test (x-axis in ms).

Library Avg Time St. Dev. St. Dev. % Δ𝑡 %

arc 4.12 ms ±0.01 0.18% −18.53%
bacon-rajan-cc 4.47 ms ±0.00 0.03% −11.69%
broom 25.10 ms ±0.51 2.03% +396.02%
gc 12.52 ms ±0.02 0.13% +147.37%
rc 4.08 ms ±0.00 0.04% −19.46%
rust-cc 5.06 ms ±0.00 0.01% -
rust-cc, no fin. 4.85 ms ±0.00 0.02% −4.11%
safe-gc 13.56 ms ±0.02 0.15% +167.95%

Table 2: Binary trees benchmark.

4.4 Binary trees
The binary trees benchmark measures the efficiency and impact of
reference counting in the absence of cycles. In the benchmark, we
create and destroy complete binary trees, with no parent pointers
and a maximum height of 10. We use the same representation for
stress test for both the tabular data in Table 2 and the visualisation in
Figure 5. The main observation we report is that algorithms using
reference counting (note the presence of rc and arc) are faster (and
perform similarly) than the alternatives. Notably, bacon-rajan-cc
is slightly faster than rust-cc. We expected this behaviour since
bacon-rajan-cc does not perform automatic collections, making
only use of reference counting during the benchmark execution
and saving time compared to rust-cc. Indeed, disabling automatic
collection, rust-cc becomes slightly faster than bacon-rajan-cc.

rust-cc

Figure 5: Violin plot of binary trees. (x-axis in ms).

Library Avg. Time St. Dev. St. Dev. % Δ𝑡%

arc 4.82 ms ±0.01 0.11% −67.36%
bacon-rajan-cc 22.01 ms ±0.07 0.34% +49.10%
broom 28.69 ms ±0.74 2.57% +94.36%
gc 14.88 ms ±0.02 0.16% +0.80%
rc 4.56 ms ±0.02 0.41% −69.11%
rust-cc 14.76 ms ±0.01 0.08%
rust-cc, no fin. 10.70 ms ±0.01 0.07% −27.54%
safe-gc 18.96 ms ±0.03 0.15% +28.42%
Table 3: Binary trees with parent pointers benchmark.

arc

rc

rust-cc, no fin.

gc

rust-cc

safe-gc

bacon-rajan-cc
broom

Figure 6: Violin plot of binary trees with parent pointers (x-
axis in ms).

4.5 Binary trees with parent pointers
This benchmark builds on binary trees by adding parent pointers
to create reference cycles. Specifically, each internal node of the
generated trees participates in three cycles, two with the children
and one with the parent node. All internal pointers in the trees are
strong pointers, except in the benchmarks for Rc and Arc, which use
weak pointers to the parent nodes because, otherwise, they would
not collect the reference cycles. Following the layout of previous
benchmark, we report the data in Table 3 and visualise it in Figure 6.

From the results, the alternatives using reference counting are
the fastest, with rc and arc on top. Next, we find rust-cc and
gc, both taking ∼15 ms. Contrarily to the binary trees benchmark,
bacon-rajan-cc is substantially slower than rust-cc (49%), em-
pirically demonstrating the performance advantage provided by
our proposal. Notably, disabling finalisation further improves the
performance of rust-cc by 28%, making it the closest to Rc/Arc.

4.6 Large linked list
This benchmark creates several doubly linked lists, each containing
4096 elements, and collects them. As with the binary trees with
parent pointers benchmark, we only use strong pointers, except for
Rc and Arc, which use weak pointers for the pointers to the previous
nodes. Following the previous benchmarks’ layouts, we respectively
report in Table 4 and Figure 7 the data and its visualisation.

Also in this case, Rc and Arc are the fastest, followed by gc, which
is 12% faster than rust-cc. We attribute the good performance of
gc for this case to the distinctive feature of the benchmark, i.e., that
all the linked lists have the same dimension, while the structures
of the tree-based benchmarks have different sizes. Moreover, also

SAC ’25, March 31-April 4, 2025, Catania, Italy S. Giallorenzo and F. Goretti

Library Avg. Time St. Dev. St. Dev. % Δ𝑡%

arc 3.33 ms ±0.00 0.06% −55.76%
bacon-rajan-cc 14.42 ms ±0.06 0.45% +91.31%
broom 24.10 ms ±0.70 2.91% +219.78%
gc 6.65 ms ±0.01 0.12% −11.82%
rc 2.48 ms ±0.01 0.38% −67.05%
rust-cc 7.54 ms ±0.00 0.06%
rust-cc, no fin. 5.31 ms ±0.01 0.20% −29.54%
safe-gc 13.40 ms ±0.00 0.02% +77.76%

Table 4: Results of large linked list.

Figure 7: Violin plot of large linked list (x-axis in ms).

the number of lists created and destroyed in the case is the same,
while in the tree-based ones the number changes depending on the
structures’ size. Considering that gc performs recursive rather than
queue-based tracing, we conjecture that rust-cc pays a cost in
moving allocations in the queue before tracing. We deem this point
interesting to explore in future refinements of our approach and
implementation. We confirm the observations made about rust-cc
and bacon-rajan-cc with binary trees with parent pointers, where
the latter is substantially slower than rust-cc (here, 91%) — dis-
abling finalisation improves rust-cc’s performance by ca. 30%.

5 Related Work
Reference counting is an efficient garbage collection method, but it
struggles with cyclic data structures. In the last 3 decades, several
proposals refined the basic technique to overcome the issue.

Bobrow and Christopher [7, 8] presented two of the first pro-
posals of a garbage collection algorithm able to collect circularly
linked inaccessible structures. In particular, Christopher’s algo-
rithm requires no additional information beyond that required by
a reference count scheme and the garbage collector does not have
to find pointers outside the heap. Roy et al. [24] applied cycle-
collection reference counting to the problem of garbage collec-
tion in object-oriented databases. Their algorithm keeps track of
auxiliary reference count information to detect and collect cyclic
garbage, working correctly also in the presence of concurrently
running transactions and system failures. Lins [18] proposed an
algorithm for cyclic reference counting in garbage collection that
addresses inefficiencies of previous methods in dealing with cyclic
data structures, particularly in object-oriented languages where
sharing and cyclic structures are common. The main innovation
is the introduction of a queue system that delays the mark-scan
phase, allowing for more efficient memory management. Bacon

and Rajan [4] introduced the algorithm that inspired SILB-Recycler,
which can perform concurrent cycle collection operating without
global searches. Lin and Hou [17] presented a “lightweight” cyclic
reference counting algorithm based on partial tracing and consider-
ing a single sub-graph, instead of individual cycles, as the basic unit
of cycle collection. Widemann [28] proposed a reference-counting
garbage collector designed for functional programming languages
that balances and mitigates the complexity of maintaining a sub-
set of marked edges (ensuring that every cycle contains at least
one marked edge) and the inefficiencies of local mark-and-scan
procedures for cycle detection.

SILB-Recycler distinguishes itself from these proposals by being
resilient to fatal errors during the tracing phase, supporting ob-
ject finalisation, not needing supplementary heap memory during
collection, and applying a fast breadth-first approach for tracing.

Looking at the rust-cc implementation, the technique of emit-
ting an empty destructor implementation from the Trace derive
macro was first used by the gc library. The library also inspired
the Finalize trait signature (and derive macro) and the threshold
used to trigger automatic collections, even though it lacks the ad-
justment percentage. The Trace signature is similar to the one of
bacon-rajan-cc, however the library’s equivalent of the Context
type (cf. Listing 1) is different from the one rust-cc uses. Cleaners
have been originally introduced in Java [20] but are a common and
pattern-specific concept in Rust programming.

6 Conclusion
Wepresent SILB-Recycler, a novel cycle collection reference-counting
algorithm resilient to fatal errors during the tracing phase, support-
ing object finalisation and weak pointers, fast breadth-first tracing
approach that avoids stack overflows and the need for supplemen-
tary heap memory during collection.

We implement SILB-Recycler as a Rust [26] library, rust-cc, pre-
senting its API and performing both a qualitative and a quantitative
comparison with its main alternatives in the Rust ecosystem. Qual-
itatively, the library APIs follow those of Rust’s standard library,
achieving both familiarity for Rust developers and seamless inte-
gration within the Rust ecosystem — additionally, the library makes
minimal use of unsafe code and leverages Rust’s type system and
borrow checker to prevent undefined behaviour. Quantitatively,
rust-cc is one of the most efficient alternatives, in particular it is
the fastest option when dealing with garbage cycles.

Looking at future steps, we see potential to improve our proposal
by integrating generational [16, 27] or age oriented [22] techniques
to further reduce overhead and obtain better throughput. Another
interesting direction is the integration of sliding-views [2, 15, 21]
to obtain on-the-fly, concurrent cycle collection.

Acknowledgments
Research partly supported by project PNRR CN HPC - SPOKE 9 -
Innovation Grant LEONARDO - TASI - RTMER funded by the
NextGenerationEU European initiative through the MUR, Italy
(CUP: J33C22001170001)

References
[1] Aparicio, Jorge. 2017. Criterion.rs. https://crates.io/crates/criterion. Accessed:

19-06-2024.

https://crates.io/crates/criterion

Breadth-first Cycle Collection Reference Counting:
Theory and a Rust Smart Pointer Implementation SAC ’25, March 31-April 4, 2025, Catania, Italy

[2] Hezi Azatchi, Yossi Levanoni, Harel Paz, and Erez Petrank. 2003. An on-the-fly
mark and sweep garbage collector based on sliding views. SIGPLAN Not. 38, 11
(oct 2003), 269–281. https://doi.org/10.1145/949343.949329

[3] Hezi Azatchi and Erez Petrank. 2003. Integrating Generations with Advanced
Reference Counting Garbage Collectors. In Compiler Construction, 12th Inter-
national Conference, CC 2003, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003,
Proceedings (Lecture Notes in Computer Science, Vol. 2622), Görel Hedin (Ed.).
Springer, 185–199. https://doi.org/10.1007/3-540-36579-6_14

[4] David F. Bacon and V. T. Rajan. 2001. Concurrent Cycle Collection in Reference
Counted Systems. In ECOOP 2001 - Object-Oriented Programming, 15th European
Conference, Budapest, Hungary, June 18-22, 2001, Proceedings (Lecture Notes in
Computer Science, Vol. 2072), Jørgen Lindskov Knudsen (Ed.). Springer, 207–235.
https://doi.org/10.1007/3-540-45337-7_12

[5] Barretto, Joshua. 2020. Broom. https://crates.io/crates/broom. Accessed: 20-06-
2024.

[6] StephenM. Blackburn and Kathryn S.McKinley. 2003. Ulterior reference counting:
fast garbage collection without a long wait. In Proceedings of the 2003 ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages and
Applications, OOPSLA 2003, October 26-30, 2003, Anaheim, CA, USA, Ron Crocker
and Guy L. Steele Jr. (Eds.). ACM, 344–358. https://doi.org/10.1145/949305.949336

[7] Daniel G. Bobrow. 1980. Managing Reentrant Structures Using Reference Counts.
ACM Trans. Program. Lang. Syst. 2, 3 (July 1980), 269–273. https://doi.org/10.
1145/357103.357104

[8] Thomas W. Christopher. 1984. Reference Count Garbage Collection. Softw. Pract.
Exp. 14, 6 (1984), 503–507. https://doi.org/10.1002/SPE.4380140602

[9] George E. Collins. 1960. A method for overlapping and erasure of lists. Commun.
ACM 3, 12 (1960), 655–657. https://doi.org/10.1145/367487.367501

[10] The Rust Project Developers. 2016. Miri. https://github.com/rust-lang/miri.
Accessed: 29-05-2024.

[11] Taiki Endo. 2019. cargo-hack. https://crates.io/crates/cargo-hack. Accessed:
29-05-2024.

[12] Fitzgerald, Nick. 2015. bacon-rajan-cc. https://crates.io/crates/bacon-rajan-cc.
Accessed: 20-06-2024.

[13] Fitzgerald, Nick. 2024. safe-gc. https://crates.io/crates/safe-gc. Accessed: 20-06-
2024.

[14] Goregaokar, Manish. 2015. gc. https://crates.io/crates/gc. Accessed: 20-06-2024.
[15] Yossi Levanoni and Erez Petrank. 2006. An on-the-fly reference-counting garbage

collector for java. ACM Trans. Program. Lang. Syst. 28, 1 (jan 2006), 1–69. https:
//doi.org/10.1145/1111596.1111597

[16] Henry Lieberman and Carl Hewitt. 1983. A real-time garbage collector based
on the lifetimes of objects. Commun. ACM 26, 6 (jun 1983), 419–429. https:
//doi.org/10.1145/358141.358147

[17] Chin-Yang Lin and Ting-Wei Hou. 2007. A simple and efficient algorithm for
cycle collection. ACM SIGPLAN Notices 42, 3 (2007), 7–13. https://doi.org/10.
1145/1273039.1273041

[18] Rafael Dueire Lins. 1992. Cyclic Reference Counting with Lazy Mark-Scan. Inf.
Process. Lett. 44, 4 (1992), 215–220. https://doi.org/10.1016/0020-0190(92)90088-D

[19] R. M. Muthukumar and D. Janakiram. 2006. Yama: A Scalable Generational
Garbage Collector for Java in Multiprocessor Systems. IEEE Trans. Parallel
Distributed Syst. 17, 2 (2006), 148–159. https://doi.org/10.1109/TPDS.2006.28

[20] Oracle and/or its affiliates. 2017. Java Platform, Standard Edition, Version 9 API
Specification - Cleaner. https://docs.oracle.com/javase%2F9%2Fdocs%2Fapi%2F%
2F/java/lang/ref/Cleaner.html. Accessed: 20-06-2024.

[21] Harel Paz, David F. Bacon, Elliot K. Kolodner, Erez Petrank, and V. T. Rajan. 2007.
An efficient on-the-fly cycle collection. ACM Trans. Program. Lang. Syst. 29, 4
(aug 2007), 20–es. https://doi.org/10.1145/1255450.1255453

[22] Harel Paz, Erez Petrank, and Stephen M. Blackburn. 2005. Age-Oriented Concur-
rent Garbage Collection. In Compiler Construction, 14th International Conference,
CC 2005, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings (Lecture
Notes in Computer Science, Vol. 3443), Rastislav Bodík (Ed.). Springer, 121–136.
https://doi.org/10.1007/978-3-540-31985-6_9

[23] Peach, Gregor. 2020. shredder. https://crates.io/crates/shredder. Accessed:
19-06-2024.

[24] Prasan Roy, S. Seshadri, Abraham Silberschatz, S. Sudarshan, and Srinivas Ashwin.
1998. Garbage Collection in Object-Oriented Databases Using Transactional
Cyclic Reference Counting. VLDB J. 7, 3 (1998), 179–193. https://doi.org/10.1007/
S007780050062

[25] The Rust Foundation. 2015. Cargo. https://doc.rust-lang.org/cargo/index.html.
Accessed: 18-09-2024.

[26] The Rust Foundation. 2015. Rust. https://www.rust-lang.org/. Accessed: 21-06-
2024.

[27] David Ungar. 1984. Generation Scavenging: A non-disruptive high performance
storage reclamation algorithm. In Proceedings of the First ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development Environments
(SDE 1). Association for Computing Machinery, New York, NY, USA, 157–167.
https://doi.org/10.1145/800020.808261

[28] Baltasar Trancón y Widemann. 2008. A reference-counting garbage collec-
tion algorithmfor cyclical functional programming. In Proceedings of the 7th
International Symposium on Memory Management, ISMM 2008, Tucson, AZ, USA,
June 7-8, 2008, Richard E. Jones and Stephen M. Blackburn (Eds.). ACM, 71–80.
https://doi.org/10.1145/1375634.1375645

https://doi.org/10.1145/949343.949329
https://doi.org/10.1007/3-540-36579-6_14
https://doi.org/10.1007/3-540-45337-7_12
https://crates.io/crates/broom
https://doi.org/10.1145/949305.949336
https://doi.org/10.1145/357103.357104
https://doi.org/10.1145/357103.357104
https://doi.org/10.1002/SPE.4380140602
https://doi.org/10.1145/367487.367501
https://github.com/rust-lang/miri
https://crates.io/crates/cargo-hack
https://crates.io/crates/bacon-rajan-cc
https://crates.io/crates/safe-gc
https://crates.io/crates/gc
https://doi.org/10.1145/1111596.1111597
https://doi.org/10.1145/1111596.1111597
https://doi.org/10.1145/358141.358147
https://doi.org/10.1145/358141.358147
https://doi.org/10.1145/1273039.1273041
https://doi.org/10.1145/1273039.1273041
https://doi.org/10.1016/0020-0190(92)90088-D
https://doi.org/10.1109/TPDS.2006.28
https://docs.oracle.com/javase%2F9%2Fdocs%2Fapi%2F%2F/java/lang/ref/Cleaner.html
https://docs.oracle.com/javase%2F9%2Fdocs%2Fapi%2F%2F/java/lang/ref/Cleaner.html
https://doi.org/10.1145/1255450.1255453
https://doi.org/10.1007/978-3-540-31985-6_9
https://crates.io/crates/shredder
https://doi.org/10.1007/S007780050062
https://doi.org/10.1007/S007780050062
https://doc.rust-lang.org/cargo/index.html
https://www.rust-lang.org/
https://doi.org/10.1145/800020.808261
https://doi.org/10.1145/1375634.1375645

	Abstract
	1 Introduction
	2 Breadth-first Cycle Collection Reference Counting
	2.1 Structure of Traced Objects
	2.2 Finalisation
	2.3 Weak pointers
	2.4 Pseudocode Procedures of SILB-Recycler

	3 A Rust Safe Interface SILB-Recycler Library
	3.1 Mandatory Traits of Cycle-collectable Types

	4 Evaluation
	4.1 Qualitative Evaluation
	4.2 Quantitative Evaluation
	4.3 Stress test benchmark
	4.4 Binary trees
	4.5 Binary trees with parent pointers
	4.6 Large linked list

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

