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Abstract
We formally define and implement a translation of domain and service models expressed in the
LEMMA modelling ecosystem for microservice architectures to source code in the Jolie microservice
programming language. Specifically, our work extends previous efforts on the generation of Jolie
code to the inclusion of the LEMMA service modelling layer.

We also contribute an implementation of our translation, given as an extension of the
LEMMA2Jolie tool, which enables the practical application of our encoding. As a result,
LEMMA2Jolie now supports a software development process whereby microservice architectures can
first be designed by microservice developers in collaboration with domain experts in LEMMA, and
then be automatically translated into Jolie APIs. Our tool can thus be used to enhance productivity
and improve design adherence.
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1 Introduction

Microservice Architecture (MSA) has risen to be a popular approach [24], but it also
presents challenges related to design, development, and operation [5, 35]. To tackle design
and development, researchers in software engineering and programming languages have
proposed linguistic approaches to MSA, which feature high-level abstractions aimed at
making microservice concerns more visible.

Model-Driven Engineering (MDE) [2] is a popular method for designing service architec-
tures [1]. MDE can be applied to MSA by means of modelling languages such as MicroBuilder,
MDSL, LEMMA, and JHipster [37, 39, 30, 15]. LEMMA, in particular, has been validated
in real-world applications [36, 31]. On the side of development, Ballerina and Jolie [25, 22]
are programming languages oriented towards services and their coordination. Jolie’s abstrac-
tions have been found to improve productivity in industry [13], and LEMMA’s support for
Domain-Driven Design has been validated in real-world applications [36, 31].
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In recent work, Giallorenzo et al. [10] observed that the metamodels of LEMMA and
Jolie have numerous contact points. This motivated the quest for integrating the two tools
and their approaches, which in the long term could bring (quoting from [10])

“an ecosystem that coherently combines MDE and programming abstractions to offer
a tower of abstractions [18] that supports a step-by-step refinement process from the
abstract specification of a microservice architecture to its implementation”.

In other words, the objective is building a toolset that allows for (i) designing an MSA using
the principles of MDE, and then (ii) seamlessly switching to implementing the design with
a programming language that offers dedicated linguistic support for coding microservices.
Achieving this objective requires integrating three elements of the metamodels of both
LEMMA and Jolie [10]:
1. Application Programming Interfaces (API), describing what functionalities (and their

data types) a microservice offers to its clients;
2. Access Points, capturing where and how clients can interact with a microservice’s API;
3. Behaviours, defining the internal business logic of a microservice.
In [9], we started addressing the first element, by presenting an encoding, and a tool built
on such encoding, that translates a large fragment of LEMMA’s Domain Data Modelling
Language (DDML) to Jolie types and interfaces. However, this encoding ignored the important
aspects of modelling services, and in particular their interfaces in terms of operations and
their associated communication patterns (e.g., synchronous vs asynchronous data provision).
In this paper, we aim to bridge this gap and obtain the first prototype of an API generator
from LEMMA service models.

Since the API is the layer the other two build upon, in this paper we focus on concretising
the relationship between LEMMA and Jolie API layers. To this end, we extend previous work
focused on a formal encoding from a large fragment of LEMMA’s Domain Data Modelling
Language (DDML) to Jolie types and interfaces [9]

Our key contribution is extending the encoding in [9] to a significant fragment of LEMMA’s
Service Modelling Language (SML); the one used for defining a set of microservices with their
interfaces, operations, and accompanying communication patterns. Our extended encoding
supports the systematic translation of LEMMA domain models – which, following Domain-
Driven Design (DDD) [6] principles, capture domain-specific types including operation
signatures – to Jolie APIs. As a second contribution, we extend the tool presented in [9],
called LEMMA2Jolie, to accept both DDML and SML models and translate these into Jolie
APIs, following the extended version of the encoding presented in this paper.

Taken together, these contributions constitute a new milestone on the roadmap traced
in [10] for building a conceptual and technical bridge between the communities of program-
ming languages and MDE on microservices. Specifically, our previous work made domain
information from microservices’ design actionable [9]. Here, we build upon our previous
work [9] and move forward by adding support for the Service Viewpoint in MSA engineer-
ing [30]. While domain modelling is essential to most software systems and independent
of the implemented architectural style, service modelling is essential to MSA, as it reifies
the foundational concepts of information hiding and component interfacing. Therefore, this
contribution completes previous work on APIs [9], and is pivotal for future activities that
address the remaining elements, i.e., Access Points and Behaviours.

The remainder of the paper is organised as follows. Section 2 presents modelling concepts
from LEMMA’s DDML and SML and the relevant elements of the Jolie APIs required by
the encoding, which we present in Section 3. Section 4 describes the implementation of
LEMMA2Jolie and illustrates it with an example. Section 5 presents related work and a
concluding discussion.



S. Giallorenzo, F. Montesi, M. Peressotti, and F. Rademacher 6:3

CT X ::= context id {CT }
CT ::= ST R | COL | ENM

ST R ::= structure id [⟨ST RF ⟩] {F LD OP S}
ST RF ::= aggregate | domainEvent | entity | factory

| service | repository | specification | valueObject
F LD ::= id id [⟨F LDF ⟩] | S id [⟨F LDF ⟩]
F LDF ::= identifier | part
OP S ::= procedure id [⟨OP SF ⟩] (F LD) | function (id | S) id [⟨OP SF ⟩] (F LD)
OP SF ::= closure | identifier | sideEffectFree | validator
COL ::= collection id {(S | id)}
ENM ::= enum id {id}
S ::= int | string | unspecified | . . .

Figure 1 Simplified grammar of LEMMA’s DDML [9]. Greyed out features are out of the scope
of this paper and subject to future work.

2 Background

This section describes and exemplifies domain and service modelling with LEMMA, and the
development of microservice APIs with Jolie.

2.1 LEMMA Domain Modelling Concepts

LEMMA’s DDML supports domain experts and service developers in the construction of
models that capture domain-specific types of microservices. We include the core grammar of
this language in Figure 1 (grayed elements are not relevant for the translation presented in
this work).1

LEMMA’s DDML captures the foundational DDD concepts for MSA design. DDD’s
Bounded Context pattern [6] marks the boundaries of coherent domain concepts, thereby
defining their scope and applicability [24]. A LEMMA domain model defines named bounded
contexts (rule CTX in Figure 1). A context may specify domain concepts in the form of
complex types (CT ), which are either structures (STR), collections (COL), or enumerations
(ENM).

A structure gathers a set of data fields (FLD) each associated with a type that can
be either a complex type from the same bounded context (id) or a built-in primitive type,
e.g., int or string (S). LEMMA support continuous domain exploration by allowing the
construction of underspecified models by means of the keyword unspecified. This concise
solution provides domain experts and developers with a light-weight facility for refining models
as they gain new domain knowledge [29]. structures can comprise operation signatures
(OPS) to reify domain-specific behaviour. An operation is either a procedure without a
return type, or a function with a complex or primitive return type.

1 The complete grammar can be found at https://github.com/SeelabFhdo/lemma/blob/main/de.fhdo.
lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext.
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SV R ::= microservice id {IF}
IF ::= interface id {IOP}
IOP ::= id (PAR)
PAR ::= SY N DIR id : id

SY N ::= sync | async
DIR ::= in | out

Figure 2 Simplified grammar of LEMMA’s SML.

LEMMA’s DDML supports the assignment of DDD patterns, called features, to structured
domain concepts and their components. For instance, the entity feature (rule STRF in
Figure 1) expresses that a structure comprises a notion of domain-specific identity. The
identifier feature then marks the data fields (FLDF ) or operations (OPSF ) of an entity
which determine its identity.

The DDML also enables the modelling of collections (rule COL in Figure 1), which
represent sequences of primitives (S) or complex (id) values, as well as enumerations (ENM),
which gather sets of predefined literals.

The following listing shows an example of a LEMMA domain model constructed with the
grammar of the DDML [31].

context BookingManagement {
structure ParkingSpaceBooking⟨entity⟩ {
long bookingID⟨identifier⟩,
double priceInEuro,
function double priceInDollars

}
}

LEMMA

The domain model defines the bounded context BookingManagement and its structured
domain concept ParkingSpaceBooking. It is a DDD entity whose bookingID field holds the
identifier of an entity instance. The entity also clusters the field priceInEuro to store the
price of a parking space booking, and the function signature priceInDollars for currency
conversion of a booking’s price.

2.2 LEMMA Service Modelling Concepts

We report in Figure 2 the (simplified) grammar of LEMMA’s SML. Following the rules, we
see that a LEMMA SML model can contain one or more microservices, each associated
with a name (id) and a collection of interfaces. Each interface encloses a collection of
operations, each identified by an id and a collection of PARameters. These parameters define
the messaging pattern of the operation by associating each parameter – id : id, where the
first id from the left is the name of the parameter and the second one is the name of its type
(cf. Section 2.1) – with its timing of reception/transmission. Indeed, each parameter can
either be synchronous or asynchronous and either be part of an inbound or an outbound
message. We illustrate the matter with an example
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I ::= interface id {[RequestResponse id(TP1)(TP2)][OneWay id(TP )]}
TP ::= id | B

TD ::= type id : T

T ::= B [{id C : T}] | undefined
C ::= [[[min, max]]] | ∗ | ?
B ::= int[(R)] | string[(R)] | void | . . .

R ::= range([[[min, max]]]) | length([[[min, max]]]) | enum(...) | . . .

Figure 3 Simplified syntax of Jolie APIs (types and interfaces).

interface Sample {
op(sync in a : int, async in b : int, sync out c : int, async out d : int)

}
LEMMA

Above, we defined an interface called Sample which contains a single operation, op. The
operation has four parameters. Starting from the leftmost, we find the parameter a, which
is synchronous and inbound. This means that a is part of the messages that op receives
upon invocation. On the contrary, b is an asynchronous inbound message, which means
that it can reach op at any time between the invocation of op and its termination. Looking
at the outbound parameters, we have c which is synchronous, meaning that it is part of
the message op sends when it terminated; d, on the contrary, is an asynchronous outbound
parameter, which op can transmit at any time between its invocation and its termination.

2.3 Jolie Types and Interfaces

Jolie interfaces and types define the functionalities of a microservice and the data types
associated with those functionalities i.e., the API of a microservice. Figure 3 shows a
simplified variant of the grammar of Jolie APIs, taken from [22] and updated to Jolie 1.10
(the latest major release at the time of writing).An interface is a collection of named
operations (RequestResponse),where the sender delivers its message of type TP1 and
waits for the receiver to reply with a response of type TP2 – although Jolie also supports
oneWays, where the sender delivers its message to the receiver, without waiting for the
latter to process it (fire-and-forget), we omit them here because they are not used in the
encoding (cf. Section 3). Operations have types describing the shape of the data structures
they can exchange, which can either define custom, named types (id) or basic ones (B)
(integers, strings, etc.).

Jolie type definitions (TD) have a tree-shaped structure. At their root, we find a basic
type (B) – which can include a refinement (R) to express constraints that further restrict
the possible inhabitants of the type [7]. The possible branches of a type are a set of nodes,
where each node associates a name (id) with an array with a range length (C) and a type T .

Jolie data types and interfaces are technology agnostic: they model Data Transfer Objects
(DTOs) built on native types generally available in most architectures [4].

Based on the grammar in Figure 3, the following listing shows the Jolie equivalent of the
example LEMMA domain model from Section 2.1.

Microservices 2020/2022
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///@beginCtx(BookingManagement)
///@entity
type ParkingSpaceBooking {
///@identifier
bookingID: long
priceInEuro: double

}
interface ParkingSpaceBooking_interface {
RequestResponse:
priceInDollars(ParkingSpaceBooking)(double)

}
///@endCtx

Jolie

Structured LEMMA domain concepts like ParkingSpaceBooking and their data fields, e.g.,
bookingID, are directly translatable to corresponding Jolie types.

To map LEMMA DDD information to Jolie, we use Jolie documentation comments
(///) together with an @-sign followed by the DDD feature name, e.g., entity or identifier.
This approach enables to preserve semantic DDD information for which Jolie currently
does not support native language constructs. The comments serve as documentation to the
programmer who will implement the API. In the future, we plan on leveraging these special
comments also in automatic tools (see Section 5).

LEMMA operation signatures are expressible as RequestResponse operations within a
Jolie interface for the LEMMA domain concept that defines the signatures. For example, we
mapped the domain concept ParkingSpaceBooking and its operation signature priceInDollars
to the Jolie interface ParkingSpaceBooking_interface with the operation priceInDollars.

The following listing shows the Jolie equivalent of the example LEMMA service model
from Section 2.2.

///@interface(Sample)
///@operationTypes(Sample.op)
type op_in {
a : int

}
type op_out {
c : int

}
type op_in_b {
token:Token
data : int

}
interface Sample {
RequestResponse:
op_in(op_in)(Token)
op_out_d(Token)(int)
op_out(Token)(op_out)

OneWay:
op_in_b(op_in_b)

}
Jolie

The operation op defined by the interface Sample contains asynchronous input and output
parameters which do not have a direct equivalent in Jolie and thus need to be encoded. We
propose to implement op into a series of request-response and one-way operations correlated
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Jcontext id {CT}KC = ///module(id)
JCT KC

Jstructure id [⟨STRF ⟩] {FLD OPS}KO = [///@STRF] interface id_interface {JOPSKO
id}

Jprocedure id [⟨OPSF ⟩] (FLD)KO
ids

= RequestResponse : [///@OPSF] id(id_type)(ids)

Jfunction (S | idr) id [⟨OPSF ⟩] (FLD)KO
ids

= RequestResponse : [///@OPSF] id(id_type)((JSKS | idr))

Jstructure id [⟨STRF ⟩] {FLD OPS}KC = type Jstructure id [⟨STRF ⟩] {FLD}KS

JOPSKC
id Jstructure id [⟨STRF ⟩] {OPS}KO

id

Jprocedure id [⟨OPSF ⟩] (FLD)KC
ids

= type id_type : void {self ? : ids JFLDKS}

Jfunction (idr | S) id [⟨OPSF ⟩] (FLD)KC
ids

= type id_type : void {self ? : ids JFLDKS}

Jcollection id {(S | idr)}KC = type id : void {Jcollection id {(S | idr)}KS}

Jenum id {id}KC = type Jenum id {id}KS

Jstructure id [⟨STRF ⟩] {FLD}KS = [///@STRF] id : void {JFLDKS}

JS id [⟨FLDF ⟩]KS = [///@FLDF] id : JSKS

Jidr id [⟨FLDF ⟩]KS = [///@FLDF] id : idr

Jcollection id {S}KS = id∗ : JSKS

Jcollection id {idr}KS = id∗ : idr

Jenum id {id}KS = id : string(enum(′′id′′))

JintKS = int

JunspecifiedKS = undefined

Figure 4 Salient parts of the Jolie encoding for LEMMA’s domain modelling concepts [9].

by a Token. The first is the request-response op_in which takes the synchronous inputs of op
and returns the token to be used to invoke the operation to provide and retrieve the remaining
parameters of the operation. The asynchronous input b is provided to the implementation of
op by means of the one-way operation op_in_b which takes as argument the token provided
by op_in and the value for b. The asynchronous output d is retrieved by invoking op_out_d
with the given token and the synchronous output c by invoking op_out. This encoding
leverages Jolie’s behavioural language which allows the definition of sophisticated interactions
among a client and a service within the same session.

3 Encoding LEMMA Domain and Service Models as Jolie APIs

In this section we extend the encoding from LEMMA Domain Models to Jolie APIs presented
in [9] (Section 3.1) to support also Service Models (Section 3.2).

3.1 Encoding LEMMA Domain Models [9]
We recap the description of the encoding from LEMMA domain models to Jolie from [9].

The encoding of LEMMA domain models is reported in Figure 4 and consists of three
encoders: the context encoder J · KC walks through the structure of LEMMA domain models
to generate Jolie APIs using the encoders for operations (J · KO) and for structures (J · KS),
respectively.

Microservices 2020/2022
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The operations encoder J · KO generates Jolie interfaces based on procedures and
functions in the given models by translating structure-specific operations into Jolie opera-
tions. Because Jolie separates data from code that can operate on it (operations) the encoding
needs to decouple procedures and functions from their defining structures as illustrated
in Section 2.3 by the mapping of the LEMMA domain concept ParkingSpaceBooking and its
operation signature priceInDollars to the Jolie interface ParkingSpaceBooking_interface with
the operation priceInDollars.

Given a structure X, we extend the signature of its procedures with a parameter
for representing the structure they act on and a return type X for the new state of the
structure, essentially turning them into functions that transform the enclosing structure.
For instance, we regard a procedure with signature (Y × · · · × Z) in X as a function with
type X × Y × · · · × Z → X. This approach is not new and can be found also in modern
languages like Rust [17, 38] and Python [27]. The operation synthesised by the J · KO encoder
accepts the id_type generated by the J · KC encoder that, in turn, has a self leaf carrying the
enclosing data structure (ids). The encoding of functions follows a similar path. Note that,
when encoding self leaves, we do not impose the constraint of providing one such instance
(represented by the ? cardinality), but rather allow clients to provide it (and leave the check
of its presence to the API implementer).

The main encoder J · KC and the structure encoder J · KS transform LEMMA types into
Jolie types. contexts translate into modules and, similarly to other DDD features, using
pairs of ///@beginCtx(context_name) and ///@endCtx Joliedoc comment annotations. All
the other constructs translate into types and their subparts. When translating procedures
and functions, the two encoders follow the complementary scheme of J · KO and synthesise
the types for the generated operations. The other rules are straightforward.

3.2 Encoding LEMMA Service Models

The encoding of LEMMA service models is reported in Figure 5. The microservice interface
encoder L · MMI translates the interfaces of a microservice into Jolie interfaces using the
encoders L · MRR and L · MOW to translate its operations and L · MOT to generate the types
required by them. The encoding assumes that each microservice works within a single
context and fixes a type Token for data used to correlate invocations to Jolie operations that
implement the same LEMMA operation (as discussed in Section 2.3), e.g., a UUID.

The type encoder L · MOT generates for each operation (i) a type collecting all its synchron-
ous input parameters, (ii) a type for all its synchronous output parameters and (iii) at type
for each of its asynchronous input parameters (to pair them with the token). Asynchronous
output parameters do not require dedicated types.

The operation encoder L · MRR generates the request-response operations required to
implement a LEMMA operation. If the LEMMA operation has only synchronous parameters,
then it can be directly implemented as a single Jolie operation (similarly to procedure and
functions of LEMMA’s DDML). If an operation has asynchronous parameters, then it is
encoded using multiple operations: (i) one to accept the synchronous inputs which is invoked
first and provides the token used by the subsequent operations; (ii) one for retrieving each
asynchronous output given a token; and (iii) one for awaiting the end of the implemented
operation and retrieve all the synchronous outputs. Asynchronous inputs are provided using
one-way operations generated by the encoder L · MOW.
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Lmicroservice ms {IF }MMI = LIF MMI
ms

Linterface if {IOP }MMI
ms = ///@interface(ms.if)

LIOP MOT
if

interface if {
RequestResponse : LIOP MRR

if

OneWay : LIOP MOW
if

}

Lop


sync in idSI : id′

SI ,

async in idAI : id′
AI ,

async out idAO : id′
AO,

sync out idSO : id′
SO

 M
OT

if

=

///@operationTypes(if.op)
type op_in{idSI : id′

SI}
type op_out{idSO : id′

SO}
type op_in_idAI{token : Token, data : id′

AI}

Lop

(
sync in idSI : id′

SI ,

sync out idSO : id′
SO

)
M

RR

if

= ///@operation(if.op)
op(op_in)(op_out)

Lop


sync in idSI : id′

SI ,

async in idAI : id′
AI ,

async out idAO : id′
AO,

sync out idSO : id′
SO

 M
RR

if

=

///@operation(if.op)
op_in(op_in)(Token)
op_out_idAO(Token)(idAO)
op_out(Token)(op_out)

Lop


sync in idSI : id′

SI ,

async in idAI : id′
AI ,

async out idAO : id′
AO,

sync out idSO : id′
SO

 M
OW

if

= ///@operation(if.op)
op_out_idAI (op_in_idAI)

Figure 5 Jolie encoding for LEMMA’s service modelling concepts.

4 LEMMA2Jolie and Example

4.1 LEMMA2Jolie

We implement our extended encoding (cf. Section 3) by including the parsing of SML models
and the new rules of the encoding presented here into LEMMA2Jolie. LEMMA2Jolie is a tool
that transforms LEMMA models into Jolie code and that was initially presented in [9] where
we have shown the feasibility of producing Jolie code from LEMMA domain models. The
additions to LEMMA2Jolie described in this paper target LEMMA service models and are
relatively straightforward. Specifically, we integrate the parsing of the SML models, which
generate an in-memory object graph containing types and service information. Then, these
run through an execution engine for templates, that transforms the in-memory representation
into Jolie code that the tool outputs in file format. We provide the extended version of
LEMMA2Jolie in a permanent repository on Software Heritage2.

2 https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https:
//github.com/jolie/lemma2jolie
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4.2 Example
We exemplify the encoding of LEMMA service and domain models in Jolie APIs based on
the Food to Go (FTGO) case study by Richardson [33]. FTGO consists of six microservices
that realise the backend of a web application for online food ordering from local restaurants.
The microservices are responsible for accounting, consumer handling, delivery management,
kitchen management, order handling, and restaurant organization. In the following, we focus
on FTGO’s Order microservice which is responsible for handling food orders. The following
listing shows an excerpt of the LEMMA domain model for the Order microservice3.
context API {
structure CreateOrderRequest⟨valueObject⟩ {
immutable long consumerId,
immutable long restaurantId,
immutable LineItems lineItems

}

structure LineItem {
string menuItemId,
int quantity

}

collection LineItems { LineItem i }

structure CreateOrderResponse⟨valueObject⟩ {
immutable long orderId

}

structure GetOrderResponse⟨valueObject⟩ {
immutable long orderId,
immutable string state,
immutable double orderTotal

}
}

LEMMA

The domain model defines the API bounded context. It comprises five domain concepts:
CreateOrderRequest: This domain concept is a DDD valueObject and as such responsible
for encapsulating data that is shared between software components [6]. The data fields
of value objects are usually immutable because they receive a value exactly once for
data transmission. The Order microservice enables clients to communicate information
relevant to food order placing using the CreateOrderRequest concept.
LineItem: This domain concept models a single line item of some food order. Therefore,
it identified the item on the available menu and its ordered quantity.
LineItems: The LineItems concept gathers all line items of a food order. CreateOrderRe-
quest concept relies on it to communicate a consumer’s order to the selected restaurant.
CreateOrderResponse: The Order microservice replies to CreateOrderRequesta with this
valueObject. It clusters the identifier of the created order.

3 The complete model can be found at https://archive.softwareheritage.org/browse/
revision/d4447fe8bfcaa319e540ed89d160d8fe817e128f/?origin_url=https://github.com/jolie/
lemma2jolie&path=sample-2.data&revision=d4447fe8bfcaa319e540ed89d160d8fe817e128f

https://archive.softwareheritage.org/browse/revision/d4447fe8bfcaa319e540ed89d160d8fe817e128f/?origin_url=https://github.com/jolie/lemma2jolie&path=sample-2.data&revision=d4447fe8bfcaa319e540ed89d160d8fe817e128f
https://archive.softwareheritage.org/browse/revision/d4447fe8bfcaa319e540ed89d160d8fe817e128f/?origin_url=https://github.com/jolie/lemma2jolie&path=sample-2.data&revision=d4447fe8bfcaa319e540ed89d160d8fe817e128f
https://archive.softwareheritage.org/browse/revision/d4447fe8bfcaa319e540ed89d160d8fe817e128f/?origin_url=https://github.com/jolie/lemma2jolie&path=sample-2.data&revision=d4447fe8bfcaa319e540ed89d160d8fe817e128f
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GetOrderResponse: Using this domain concept, the Order microservice provides clients
with information about the state of a certain order, e.g., “accepted‘” or “cancelled”, and
its total costs.

The following listing shows an example LEMMA service model for the Order microservice4.
import datatypes from ‘‘sample−2.data’’ as Domain

functional microservice org.example.OrderService {
interface Orders {
createOrder(
sync in request : Domain::API.CreateOrderRequest,
sync out response : Domain::API.CreateOrderResponse

) ;

getOrder(
sync in orderId : long,
sync out response : Domain::API.GetOrderResponse

) ;

monitorOrder(
sync in orderId : long,
async out response : Domain::API.GetOrderResponse

) ;
}

}
LEMMA

The model imports the above domain model including the API bounded context.
LEMMA’s import mechanism allows the composition of models for different viewpoints
on a microservice architecture by enabling inter-model references [30]. The purpose of these
references depends on the composed model kinds. For a service model that imports a domain
model as shown in the listing, inter-model references support typing of microservice operation
parameters with modelled domain concepts (see below). Import statements in LEMMA
start with the import keyword followed by a keyword that identifies the kinds of imported
elements, e.g., datatypes for domain concepts that are to be used as types for microservice
operation parameters. After the from keyword, modellers specify the path to the imported
model, i.e., “sample-2.data” in the listing5, and a shorthand alias after the as keyword. Thus,
in the service model, modellers can refer to the elements of the above domain model located
in the file “sample-2.data” by the alias Domain.

After the import statement, the service model defines the functional microservice
org.example.OrderService. In LEMMA’s SML, microservices must have at least one qualifying
naming level like “org.example” to allow the semantic clustering of services [30]). The
OrderService consists of a single interface called Orders that gathers the following operations:

4 The actual model can be found at https://archive.softwareheritage.org/browse/content/sha1_
git:267211533f271c8140166b3acc3729906baf3126/?origin_url=https://github.com/SeelabFhdo/
lemma&path=examples/food-to-go/Order/Order.services

5 Please note that the file “sample-2.data” comprises the previous domain model and that the
filename indicates the fact that the file clusters the LEMMA model code for the second
usage example of LEMMA2Jolie in its repository at https://archive.softwareheritage.
org/browse/revision/d4447fe8bfcaa319e540ed89d160d8fe817e128f/?origin_url=https:
//github.com/jolie/lemma2jolie.
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createOrder: This operation supports the creation of food orders in FTGO. To this end, it
expects the synchronously incoming parameter request whose type is the domain concept
CreateOrderRequest imported from the API bounded context of the above domain model.
The synchronously outgoing parameter response then represents the result of food order
creation as reified by the imported concept CreateOrderResponse.
getOrder: This operation enables the retrieval of information about placed food orders.
Therefore, it requires the identifier of an order and informs callers about its state by means
of the GetOrderResponse concept from the imported domain model. As for createOrder,
getOrder interacts with clients in a fully synchronous fashion.
monitorOrder: Similar to getOrder, this operation provides callers with information about
food orders. However, it expects continuous querying for this information leveraging the
asynchronously outgoing parameter response. Thus, the operation can be used, e.g.,
by mobile apps to display notifications about order state changes without the need for
re-establishing synchronous HTTP connections6.

Based on our encoding (Sect. 3), LEMMA2Jolie produces the following Jolie code from
the LEMMA service model and the imported domain model.
///@beginCtx(API)
///@valueObject
type CreateOrderRequest {
consumerId: long
restaurantId: long
lineItems : LineItems

}
type LineItem {
menuItemId: string
quantity: int

}
type LineItems {
i ∗: LineItem

}
///@valueObject
type CreateOrderResponse {
orderId: long

}
///@valueObject
type GetOrderResponse {
orderId: long
state : string
orderTotal: double

}
///@endCtx

Jolie

The code between the Joliedoc comments ///@beginCtx(API) and ///@endCtx(API)
represents the result of our encoding for LEMMA’s domain modelling concepts (Sect. 2). The
code following the Joliedoc comment ///@interface(org.example.OrderService.Orders), on the
other hand, adheres to the novel encoding for LEMMA’s service modelling concepts (Sect. 3).

6 Note that monitorOrder is not part of the Order microservice’s original interface [33]. Instead, we
included this operation for illustration purposes.



S. Giallorenzo, F. Montesi, M. Peressotti, and F. Rademacher 6:13

That is, all synchronously typed parameters of the createOrder, getOrder, and monitorOrder
receive a dedicated type per direction (createOrder_in and createOrder_out, getOrder_in
and getOrder_out, and monitorOrder_in) given LEMMA’s semantics of communicating
synchronous data in coherent data transfer objects [4]. By contrast, each asynchronously
typed parameter (response of monitorOrder) is mapped to a dedicated type (monitorOr-
der_out_response) to enable clients the sending and receipt of asynchronous data at arbitrary
and decoupled points in operations’ runtime.
///@interface(org.example.OrderService.Orders)
///@operationTypes(org.example.OrderService.Orders.createOrder)
type createOrder_in {
request : CreateOrderRequest

}
type createOrder_out {
response : CreateOrderResponse

}
///@operationTypes(org.example.OrderService.Orders.getOrder)
type getOrder_in {
orderId : long

}
type getOrder_out {
response : GetOrderResponse

}
///@operationTypes(org.example.OrderService.Orders.monitorOrder)
type monitorOrder_in {
orderId : long

}
type monitorOrder_out_response {
response : GetOrderResponse

}
interface org_example_OrderService_Orders {
RequestResponse:
createOrder(createOrder_in)(createOrder_out),
getOrder(getOrder_in)(getOrder_out),
monitorOrder_in(monitorOrder_in)(Token),
monitorOrder_out_response(Token)(monitorOrder_out_response)

}
Jolie

As described in Sect. 3, interfaces of modelled LEMMA microservices are encoded as Jolie
interfaces. That is, from the OrderService’s Orders interface, LEMMA2Jolie produces the
Jolie interface org_example_OrderService_Orders with four RequestResponse operations.
createOrder and getOrder map to the eponymous, fully synchronous operations in the
LEMMA service model for the OrderService. On the other hand, monitorOrder_in and
monitorOrder_out_response reify different parts of the modelled monitorOrder operation.
monitorOrder_in is the synchronous trigger for the execution of the monitorOrder logic. The
result of the trigger’s invocation is a Token that identifies the execution of the triggered
monitorOrder instance. monitorOrder_out_response then requires the Token to provide
clients with the instance’s data that was modelled by the asynchronous response parameter.
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5 Discussion, Related Work, and Conclusion

The use of MDE in both industrial and academic contexts, along with its effective support
for developing intricate software systems, has led to the creation of numerous tools similar to
LEMMA2Jolie [34, 16, 39, 37, 15]. These tools act as code generators within the conceptual
framework of MDE [2] and generate artefacts for the engineering of MSA. They accomplish
this task through models built using specific modelling languages.

Compared to LEMMA2Jolie, most of the related alternatives focus on Java as the target
technology [34, 37, 15], rather than service-oriented programming languages. Contrarily,
LEMMA2Jolie focuses on Jolie, which has been introduced to reduce the semantic gap between
microservice concepts and implementation languages. Jolie’s APIs are by design technology-
agnostic and support their implementation with different transport protocols and technologies
(e.g., Jolie, Java, JavaScript) [22, 20, 19]. Additionally, the modelling languages supported
by the mentioned proposals and the resulting generated code only address single concerns
in MSA engineering, such as domain modelling [34, 16] or service API implementation and
provisioning [39, 37, 15]. In contrast, LEMMA’s modelling languages provide an integrated
solution for multi-concern modelling in MSA engineering by offering modelling languages for
various microservice architecture viewpoints [30].

As described in Section 3 and Section 4, the encoding we specify and its implementation
demonstrate the practicality of combining the LEMMA and Jolie ecosystems. There are
several areas for future exploration, including extending the findings to other programming
languages, examining the maturity of LEMMA2Jolie, formally proving the correctness of the
encoding, and expanding the integration in different directions.

Interesting future work includes assessing the practical usefulness of LEMMA2Jolie. We
mention a few possibilities, inspired also by best practices found in previous research on
modelling languages [36, 31]. The first is to conduct controlled user experiments with
practitioners, for example in order to evaluate how LEMMA2Jolie contributes to improving
quality and productivity. Second, we could recruit practitioners to use LEMMA2Jolie, in order
to evaluate their experience with using it and the result of their efforts. Finally, we could
use LEMMA2Jolie to recreate existing microservice architectures written in Jolie and then
compare the existing and obtained codebases in qualitative and quantitative terms [13, 11, 3].
Some of these architectures [11, 3] follow the API patterns recently identified in [39], and
checking whether these patterns can be faithfully captured in LEMMA2Jolie could extend
our knowledge on the connection between API patterns and MDE for microservices [31, 32].

To provide correctness guarantees of the encoding, we must first establish a formalisation
of the semantics of both LEMMA’s DDML and SML and Jolie APIs, and then prove that
the encoding generates Jolie APIs that maintain the semantics of the input DDML and
SML models. This effort is currently underway, as portions of Jolie have already been
formalised [12, 21, 8, 22], and LEMMA implements context conditions [14] to restrict the
proper formation of DDML models concerning their intended semantics [30].

We also intend to expand LEMMA2Jolie with capabilities for round-trip engineering
(RTE). RTE accounts for the bidirectional synchronisation between models and generated
code [26]. In the context of LEMMA2Jolie, RTE would further strengthen the collaboration
between domain experts, who capture relevant application concepts in non-technical DDML
models, and microservice developers, who adapt generated Jolie code to their needs and
leverage RTE to reflect these changes back to the model-level for an efficient communication
with domain experts.
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The extension of LEMMA2Jolie presented in this paper forms the basis for future support
of Access Point and Behaviour derivation from LEMMA models (Section 1). To this end,
LEMMA2Jolie would have to consider further languages of LEMMA, e.g., the Technology
Modeling Language [28] and Operation Modeling Language [30], in the translation towards
Jolie code. Further along this direction, we plan to investigate the integration with [23]
to automatically decompose the Jolie codebase generated by LEMMA2Jolie and synthesise
suitable cloud deployment configurations.
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