
Alma Mater Studiorum — Università di Bologna

DOTTORATO DI RICERCA IN INFORMATICA

Ciclo: XXVIII

Settore Concorsuale di Afferenza: 01/B1
Settore Scientifico Disciplinare: INF/01

Real-World Choreographies

Presentata da: Saverio Giallorenzo

Coordinatore Dottorato:
Paolo Ciaccia

Relatore:
Maurizio Gabbrielli

Correlatore:
Fabrizio Montesi

Esame finale anno 2016

Abstract
Since the early days of the Internet, distributed software applications have become one of
the leading forces behind the development and economic growth of our society. Nonethe-
less, the practice of programming distributed systems is one of the most error-prone. De-
velopers strive to correctly implement separate components that, put together, enact an
agreed protocol. If one component fails to follow such protocol, it could lead to sys-
tem blocks or misbehaviours. Ensuring that all components correctly follow the intended
protocol is very difficult due to the inherent non-determinism of distributed programs.

This led practitioners and theoretical researchers to explore new tools to assist the de-
velopment of distributed systems. Choreographies are one of these tools. They have been
introduced to describe from a global viewpoint the exchange of messages among the com-
ponents of a distributed system. Moreover, since they describe atomic communications
(not split into I/Os), they are free from deadlocks and race conditions by design. Recent
theoretical results proved that it is possible to define proper Endpoint Projection (EPP)
functions to compile choreographic specifications into their single components. Since
EPPs are behaviour preserving, projected systems also enjoy freedom from deadlocks
and races by construction. Some of these results have been implemented, however much
work has to be done to make choreographies a suitable tool for real-world programming.

Aim of this PhD is to formalise non-trivial features of distributed systems with chore-
ographies and to translate our theoretical results into the practice of implemented systems.
To this purpose, we provide two main contributions.

The first contribution tackles one of the most challenging features of distributed de-
velopment: programming correct and consistent runtime updates of distributed systems.
There is no affirmed technology for structuring runtime updates of distributed applica-
tions. Moreover, the non-determinism of distributed systems easily leads to partial ap-
plications of updates and to inconsistent systems. Our solution is a theoretical model of
dynamic choreographies, called DIOC. DIOC provides a clear definition of which com-
ponents and behaviours can be updated. We prove that systems compiled from a DIOC
definition are correct and consistent after any update. Finally, we refine our theoretical
model with constructs for a finer control over updates. On this refinement, we develop a
framework for programming adaptable distributed systems, called AIOCJ.

The second contribution covers one of the main issues of implementing theoretical re-
sults on choreographies: formalising the compilation from choreographies to executable
programs. There is a sensible departure between choreographic frameworks like Chor
(the first on this paradigm) and AIOCJ and their theoretical models: their theories abstract
communications with synchronisation on names (à la CCS/π-calculus) yet they compile
to Jolie programs, an executable language that uses correlation — a renowned technol-
ogy of Service-Oriented Computing — for message routing. This discontinuity breaks the
chain of proven correctness from choreographies to implemented systems. Our solution is
a theory of Applied Choreographies (AC) that models correlation-based message passing.
With AC, we formalise the key theoretical problems and the guiding principles that de-
velopers should follow to obtain correct implementations. Finally, we prove our approach
by defining a correct compiler from AC to the calculus behind the Jolie language.

II

III

Acknowledgements

If I have seen further, it is by standing on the
shoulders of giants.

Sir Isaac Newton

A PhD is a formidable endeavour, not only academically speaking but also at the per-
sonal level. It gave to me the opportunity to face my limits, to experiment failure, and, in
many senses, to grow up. Thankfully, I was very lucky to have the best people around me.
These are my acknowledgements to them all.

I thank my parents, Patrizia and Vito, for supporting all my (mostly eccentric) projects
and for giving me the freedom to be wrong. I owe to them my creativity and love for
Science. They taught me patience and perseverance, principles that “saved” me countless
times and that I like to think constitute some of my best qualities.

In these years, I also contracted an infinite debt of gratitude with my girlfriend Daniela.
She has been my most passionate supporter and best friend. Times and times she encour-
aged me while I lingered in self-doubt and comforted me when I complained about broken
formalisations, buggy programs, and rejected papers. I owe to her all the sacrifices she
made for me: the days and nights passed alone while I was working for a deadline, the
missed vacations, and the long trips to Denmark. I deeply thank her for all the love she
gave to me and for accepting a simple “Ti amo” (“I love you”) in exchange for all of that.

I dedicate this work to Daniela, Ma, and Pa, for their unbreakable belief in me.
Thanks also to Roberta and Andrea for having accepted this chaotic guy in their family

and to Giorgia for all the joyful games and talks about dinosaurs (!).
In my PhD I had the good fortune to have many teachers, whom I thank.
Thanks to my two co-advisors: Maurizio Gabbrielli and Fabrizio Montesi.
I thank Maurizio for having believed in me and that a poor “Scienziato di Internet”

(graduate in IT and Management) could pull off some basic research. I owe to Maurizio
many thanks: for having set up a nice research team at the beginning of my PhD, for
the freedom he has always given to me, for having pushed me beyond my limits, and for
cheering me up during my saddest moments.

I owe a lot also to Fabrizio. He is the crazy guy who coded the most part of the Jolie
language, which brought me in 2012 to work with him in Copenhagen (again, thanks
to Maurizio) while he was working on his PhD on “Choreographic Programming” — of
which this thesis can be considered a continuation. Fabrizio dedicated a lot of his time to
teach me academic rigour and to seek clarity in the definition of problems before venturing
in their resolution. I really enjoyed all the time we spent together trying to bring elegance
and balance to our formalisations, Jolie, and choreographies1.

Thanks to Ivan Lanese for the many times he proved me (and, above all, calmly ex-
plained why I was) wrong. I hope I have been able to steal a little of Ivan’s mathematical
genius and cleverness during our restless sessions on our theoretical model and its proofs.

1and, by extension, to the Force.

IV

Thanks to Jacopo — O Captain, My Captain! — Mauro. I had the good fortune to have
a big brother like him in the Underground Laboratory in Bologna. Thanks for having
given to me stability when I desperately needed some, for all the advices and chats, and
for begin a very good friend to me.

Thanks to Claudio Guidi for having introduced me into the academic world, “Galeotto
fu il linguaggio (Jolie) e chi lo scrisse2” and for all the inspiring conversations we had on
languages, abstractions, and “visions”.

Thanks to Marco Carbone, my (now) academic grandfather who (back then) hosted me
for my first stay-abroad in Copenhagen. It was a pleasure to know him as a person and I
thank him for contributing in making all this possible.

Thanks to Davide Sangiorgi for all the inestimable support he gave to me before and
during my PhD, both academically and personally. I am also really grateful to Davide for
having let me teach Jolie in his course on Operating Systems (yay!).

Thanks to Gianluigi Zavattaro for the interesting discussions and alternative visions on
choreographies and for having given to me the opportunity to present Jolie at the Bertinoro
International Spring School, that was really great!

I also want to thank my reviewers, Ilaria Castellani and Thomas Hildebrandt, who
not only took the duty of refereeing this thesis but provided encouraging and stimulating
comments to improve its contents.

I thank all the members of the INRIA Focus team in Bologna for all the inspiring talks.
Thanks to the people in the research group of Programming, Logic and, Semantics at
the IT University of Copenhagen and in the department of Mathematics and Computer
Science (IMADA) at the Southern Denmark University. I also thank Maja, Borna, Marco,
and Luís for the joyful time in Odense.

Finally I owe a great deal of gratitude to all my fellow colleagues and PhD students for
having shared with me the joys, the grumbles, the aperitivi, and the awesome discussions
in and out of the (Hardcore) Underground Laboratory.

Many thanks to Valeria Vignudelli for the endless hours spent to teach me proof tech-
niques, for all the laughs, and the cheerful pats on the shoulder that I needed.

Thanks to Jean-Marie Madiot for sharing with me many serious (and definitely not seri-
ous) talks, many pat-pats on the shoulder, and for that “You don’t know Hacker News?!”.

Thanks to Francesco Gavazzo, for the desperate mission to explain to me Category
Theory and for all the fruitful chats on the philosophy of dark knights and the super men.

Thanks also to Mila, Ornela, Paolo, Gustavo, Giulio, Roberto, Abel and Yiyi (¡gracias
por el ron!), Stefano, Vincenzo, Giacomo, (the other) Vincenzo, Federico, and Luca for
all the nice time spent together.

Thank you all, my giants.

2Accurséd was the language (Jolie) and those who wrote it.

V

List of Publications
• Dalla Preda, Mila, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese,

and Jacopo Mauro. Dynamic Choreographies: From Theory to Practice.
Submitted.

• Maurizio Gabbrielli, Saverio Giallorenzo, Claudio Guidi, Fabrizio Montesi,
Jacopo Mauro. Self-configuring Microservices. In Theory and Practice of
Formal Methods, pp. 194–210. Springer International Publishing, 2016.

• Maurizio Gabbrielli, Saverio Giallorenzo, and Fabrizio Montesi. Applied
Choreographies. Submitted.

• Dalla Preda, Mila, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese,
and Jacopo Mauro. Dynamic Choreographies — Safe Runtime Update
of Distributed Applications. In Coordination Models and Languages, pp.
67–82. Springer International Publishing, 2015.

• Dalla Preda, Mila, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese,
and Jacopo Mauro. Developing correct, distributed, adaptive software. Sci-
ence of Computer Programming 97, pp. 1–46. Elsevier, 2015.

• Dalla Preda, Mila, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro, and
Maurizio Gabbrielli. AIOCJ: A choreographic framework for safe adap-
tive distributed applications. In Software Language Engineering, pp. 161-
170. Springer International Publishing, 2014.

• Maurizio Gabbrielli, Saverio Giallorenzo, and Fabrizio Montesi. Service-
Oriented Architectures: from design to production exploiting workflow pat-
terns. In Distributed Computing and Artificial Intelligence, 11th Interna-
tional Conference, pp. 131–139. Springer International Publishing, 2014.

• Claudio Guidi, Saverio Giallorenzo, and Maurizio Gabbrielli. Towards a
Composition-based APIaaS Layer, In CLOSER 2014 - Proceedings of the
4th International Conference on Cloud Computing and Services Science,
pp. 425–432. SciTePress, 2014.

Items with titles in bold are part of this dissertation.

VI

Contents

Abstract I

Acknowledgements III

List of Publications V

Table of Contents VI

List of Figures XI

1 Introduction to the dissertation 1
1.1 Problem Description . 1
1.2 Aim and Thesis Statement . 1
1.3 Contributions . 3
1.4 Structure of the Dissertation . 3

I Introduction and Background 7

2 Introduction to Choreographies 9
2.1 Distributed Programming, in brief 9

2.1.1 Problems of Distributed Programming 10
2.2 The Service-Oriented Approach 12

2.2.1 Breaking down complexity 14
2.3 Orchestration . 15
2.4 Choreography . 16

VII

VIII CONTENTS

2.5 Programming with Choreographies 18
2.6 Contributions . 20

II Adaptable Choreographies 23

3 Runtime Software Update and Adaptation 25
3.1 Linguistic Constructs for Adaptation 25

3.1.1 Reflection and Metaprogramming 27
3.1.2 Aspect- and Context-Oriented Programming 28
3.1.3 Adaptation in Process-Aware Information Systems 29

3.2 Safe Update of Distributed Systems 32

4 Dynamic Choreographies 33
4.1 Introduction . 33
4.2 Dynamic Interaction-Oriented Choreographies 36

4.2.1 DIOC Syntax . 36
4.2.2 Annotated DIOCs and their Semantics 37

4.3 Dynamic Process-Oriented Choreographies 42
4.3.1 DPOC syntax . 42
4.3.2 DPOC semantics . 44

4.4 Projection Function . 49
4.5 Running Example: Projection and Execution 53

4.5.1 Projection . 53
4.5.2 Runtime Execution . 53

4.6 Connected DIOCs . 57
4.7 Correctness . 60

5 Adaptable Interaction-Oriented Choreographies in Jolie 65
5.1 Introduction . 65

5.1.1 DIOC Language Extensions in AIOCJ 66
5.2 AIOCJ Practice . 69
5.3 Implementation . 70
5.4 Validation . 72

III Applied Choreographies 77

6 Applied Choreographies 79
6.1 Introduction . 79
6.2 Applied Choreography Language 82

CONTENTS IX

6.2.1 Syntax . 82
6.2.2 Semantics . 84
6.2.3 An example . 90

6.3 Typing . 92
6.3.1 Types and Type Projection 92
6.3.2 Type checking . 93
6.3.3 Runtime Typing . 96
6.3.4 Properties . 101

6.4 Endpoint Projection . 102
6.4.1 Projection Example . 104
6.4.2 Properties . 105

6.5 Dynamic Correlation Calculus Language 106
6.6 Compiler from AC to DCC and Properties 107

6.6.1 Compiler . 107
6.6.2 Example of Compilation 111
6.6.3 Properties . 113

IV Conclusion 115

7 Conclusion 117
7.1 Adaptable Choreographies . 117

7.1.1 Adaptable Choreographies and their degree of flexibility . 119
7.2 Applied Choreographies . 119

V Appendix 135

A Adaptable Choreographies: Proofs 137
A.1 Proof of Theorem 1 . 137
A.2 Proof of Theorem 2 . 138

B Adaptable Choreographies: Test Code 161
B.1 Code used for validation . 161

B.1.1 Pipe and fork-join code 161
B.1.2 AIOCJ programs used for benchmarking primitives 164

C Adaptable Choreographies: Models of Adaptation 167
C.1 A distributed adaptive document system 167

C.1.1 Pointcuts . 170
C.1.2 Dynamic wrappers . 171

X CONTENTS

C.2 ContextChat . 172
C.2.1 Online/Offline switch . 177

D Applied Choreographies: Additional Material 179
D.1 Applied Choreographies . 179
D.2 Typing . 180
D.3 Endpoint Projection . 182
D.4 Dynamic Correlation Calculus 185

E Applied Choreographies: Proofs 187
E.1 Proofs of Subject Reduction and Session Fidelity 187

E.1.1 Local and Typing Environment Subtyping 189
E.2 Proof of Deadlock Freedom . 203
E.3 Proof of Endpoint Projection . 204

E.3.1 Minimal Typing . 205
E.3.2 Typing Projection . 205
E.3.3 Proof of Theorem 6 . 207
E.3.4 EPP Theorem . 214
E.3.5 Proof of Theorem 7 . 217

E.4 Proof of Compilation . 228
E.4.1 Proof of Theorem 8 . 228

List of Figures

2.1 Sequence chart of the ATM withdrawal example. 11
2.2 Example of orchestration. 15
2.3 Upper part: example of interaction-oriented choreography. Lower

part: from left to right, the process-oriented choreographies of the
ATM, the Bank, and the Card Issuer. 18

4.1 Fidelity Card Update. 34
4.2 DIOC process for Purchase Scenario. 38
4.3 Annotated DIOC system semantics. 40
4.4 Auxiliary function roles. 41
4.5 DPOC role semantics. Computation rules. (Update rules in Fig-

ure 4.6) . 45
4.6 DPOC role semantics. Update rules. (Computation rules in Fig-

ure 4.5) . 46
4.7 DPOC system semantics. 48
4.8 process-projection function π. 51
4.9 Seller DPOC Process. 54
4.10 Bank DPOC Process. 54
4.11 Buyer DPOC Process. 54
4.12 Auxiliary functions transI and transF. 59

5.1 An AIOC program (upper part) and an applicable adaptation rule
(lower part). 70

5.2 Representation of the AIOCJ framework — Projection and exe-
cution of the example in Figure 5.1. 71

5.3 Check for connectedness: sequence. 72

XI

XII LIST OF FIGURES

5.4 Times of execution of the pipe (left) and the fork-join (right) sce-
narios . 74

6.1 Overall methodology of Applied Choreographies. 81
6.2 Choreography Calculus - Syntax 84
6.3 Choreography calculus, semantics. 87
6.4 Semantics of effects on D . 88
6.5 Choreography Example . 90
6.6 Example of structure of Session Descriptor 92
6.7 Choreography Calculus - Global Type Projection 94
6.8 Choreography Calculus - Typing Rules (selected) 95
6.9 Protocols example . 100
6.10 EPPs of Cc | Cs. Projection on a, dm (excepts), and l. 104
6.11 Dynamic Correlation Calculus, syntax 106
6.12 Correlation Calculus, semantics 108
6.13 Compiler from AC to DCC. 110
6.14 Compilation of C = Cc | Cs, behaviours of c (excepts), a, and l. . 112

D.1 Choreography Calculus, swap relation 'C 179
D.2 Choreography Calculus - Typing Rules 180
D.3 Global types, Swap Relation 'G. 181
D.4 Choreography Calculus - Buffer Type Projection 181
D.5 Choreography Calculus — Annotation operator 182
D.6 Choreography Calculus, process projection 183
D.7 Merging Function . 184
D.8 Service Grouping . 184
D.9 Correlation Calculus, structural congruence 185

E.1 Choreography calculus, annotated semantics. 188
E.2 Choreography Calculus — Minimal typing rules 206
E.3 Correlation Calculus, annotated semantics 243

CHAPTER 1

Introduction to the dissertation

Here we present the scientific context of our research and the problems that we
want to address in this dissertation. The purpose of this chapter is to provide an
overview of the structure of this dissertation. We give a brief introduction of the
concepts that are extensively presented in the next chapters.

1.1 Problem Description
Since the early days of the Internet [1], distributed software applications have
become one of the leading forces behind the development and economic growth
of our society. A distributed system is a software application whose behaviour
emerges from the interaction of several components (programs) that run in paral-
lel and rely on message passing to communicate and coordinate their actions [2].
News systems, messaging, governance, healthcare, and transportation are just
some of the contexts recently revolutionised by distributed applications.

Nonetheless, the practice of programming distributed systems is one of the most
error-prone. Developers strive to correctly implement separate components that,
put together, enact an agreed global behaviour (protocol). If one or more of said
components fail to follow their common protocol, the distributed system can block
or misbehave [3, 4]. Unfortunately, ensuring that all components correctly play
their part in the interaction — i.e., that they follow their intended protocol — is
very difficult due to the inherent non-determinism of several distributed programs
running in parallel.

1.2 Aim and Thesis Statement
Here, we consider “safe” a distributed system in which its components correctly
enact the intended global behaviour of the system, i.e., a safe distributed system
is one free from defective behaviours due to faulty communications between its

1

Chapter 1. Introduction to the dissertation

components. On this definition, we state that the aim of this dissertation is

to advance the scientific knowledge on programming safe distributed systems.

Having proper language abstractions to express and analyse concurrent and dis-
tributed software has proven to be one of the most effective techniques to harness
their complexity and to provide guarantees of their safety [5, 6]. Hence, we pursue
our aim investigating the linguistic abstractions that can support the development
of safe distributed applications.

Choreographies [7] are one of such linguistic abstractions. Introduced for the
definition of protocols of interactions [8, 9], they describe the communications be-
tween the components of a distributed system from a global point of view. Distin-
guishing feature of choreographic languages is that they describe communications
as atomic entities, i.e., not split into inputs and outputs. Since it is impossible to
write mismatched I/Os, distributed systems described in a choreographic language
are free from deadlocks and race conditions by design. However, a choreographic
description of a distributed system is not directly executable. Recent theoretical
results proved [10, 11, 12, 13, 14] that, given a proper choreographic descrip-
tion of a distributed system, it is possible to correctly compile it into its single
components, which are also deadlock- and race-free by construction. This makes
choreographies a very interesting linguistic abstraction for the development of
real-world safe distributed systems. Although promising, the present choreogra-
phy theories and their implementation prototypes still cover a very limited set of
properties of distributed systems. Making choreographies a suitable tool for real-
world programming [15] still requires a lot of work. Extensions of the theoretical
models are needed to capture desirable requirements of distributed applications,
like safety-preserving integrations with existing executable languages (e.g., the
possibility to write Java or Scala code directly in the choreography), exception
handling [16], and runtime updates [17]. Finally, also the correct implementation
of the theoretical models is extremely important to the aim of bringing into the
real-world the desirable properties of choreographies. Indeed, providing a for-
mal treatment of such compilation is of paramount importance to guarantee the
preservation of the properties of correctness and safety of choreographies down to
compiled executable programs.

The thesis of this dissertation affirms that choreographies are a suitable linguis-
tic abstraction that can be successfully extended to support the development of
real-world safe distributed systems.

Thesis Statement
Choreographies can be used to program real-world safe distributed systems.

2

1.3. Contributions

1.3 Contributions
We prove our thesis presenting two main contributions.

The first contribution tackles one of the most challenging features of distributed
programming: guaranteeing the correct update of the behaviour of distributed sys-
tems at runtime. Indeed, beside the lack of proper abstractions to structure dis-
tributed updates, the non-determinism of distributed systems easily lead to partial
applications of updates, leaving systems in an inconsistent state. Our solution is
a theory of Dynamic Choreographies, called DIOCs. DIOCs can update at run-
time in a coherent way and provide a clear definition of which components and
behaviours can be changed. We prove that systems compiled from a DIOC defi-
nition are correct and consistent after any update. Our theory of dynamic chore-
ographies is deliberately general and can be refined to model specific policies of
updates. We extend the DIOC language with constructs for providing a fine con-
trol on the updates and we implement AIOCJ, a framework for the development
of correct, adaptable distributed systems.

The second contribution covers one of the main issues of implementing theo-
retical results on choreographies: providing a formal compilation from a choreo-
graphic language to an executable language. Our solution is to develop a theory
of Applied Choreographies (AC) that models correlation-based message passing.
We pinpoint the key theoretical problems and formalise the guiding principles that
developers should follow to obtain correct implementations. Finally, we prove our
approach by defining a correct compiler from AC to the foundational calculus of
the executable language Jolie.

1.4 Structure of the Dissertation
The reminder of this dissertation is structured in three main parts in which we
introduce the reasons and issues that motivate our investigations and report our
results. All presented results have been produced during the course of the PhD
studies and are here presented in an extended form.

• Part I — Introduction to the Dissertation and Background
It comprises this Chapter about the aim, thesis, and structure of this disser-
tation. In the next Chapter of this Part we present the features and issues of
concurrent, distributed programming, the scientific context of our research,
and the state of the art, on which we build our results. This introduction
is intended to provide the reader with the basic knowledge to interpret the
results presented in the next Parts.

3

Chapter 1. Introduction to the dissertation

• Part II — Adaptable Choreographies
We tackle the problem of programming distributed applications that update
their behaviour at runtime, adopting some new, external behaviours that
were unforeseen at the time of their development. The Part is divided intro
three Chapters.

In the first Chapter we provide a general overview on runtime software up-
date and adaptation. In particular we focus on the renowned technologies
and abstractions introduced to enable and structure runtime software up-
dates.

In the second Chapter we show how choreographies can be modelled into a
language, called DIOC, that provides suitable abstractions for programming
distributed systems that update at runtime. We prove that DIOCs can be
compiled (projected) to sets of processes that correctly enact the indented
behaviour of their specification. We also prove that correctness is preserved
after any step of update.

DIOCs provide a general support for software update and do not specify a
particular policy for the application of updates (indeed such choice is or-
thogonal wrt the guarantees of correctness). In the third Chapter of this Part
we present a refinement of our theoretical model of DIOCs aimed at mod-
elling adaptation of distributed systems. We report how we implemented
such model into a framework, called AIOCJ, for programming safe and
adaptable distributed programs.

• Part III — Applied Choreographies
We address the issue of formalising the implementation of choreography
models presenting our choreography theory of Applied Choreographies (AC).
In particular, we model message passing based on correlation in the seman-
tics of AC. We provide AC with a typing discipline that ensures the correct
use of the low-level mechanism of message correlation, thus avoiding com-
munication errors. We also define a two-step compilation from AC to a low-
level Correlation Calculus, which is the basis of the executable language
Jolie. Finally, we prove an operational correspondence theorem, ensuring
that compiled programs behave as the original choreography.

• Part IV — Conclusion
We summarise the contributions of this dissertation and relate them to sim-
ilar existing work. We also discuss some interesting directions of future
investigation.

4

1.4. Structure of the Dissertation

• Part V — Appendices

– Chapter A — Adaptable Choreographies: Proofs.

– Chapter B — Adaptable Choreographies: Test Code.

– Chapter C — Adaptable Choreographies: Models of Adaptation.

– Chapter D — Applied Choreographies: Additional Material.

– Chapter E — Applied Choreographies: Proofs.

5

6

Part I

Introduction and Background

7

8

CHAPTER 2

Introduction to Choreographies

Clara pacta, boni amici.

Latin proverb

2.1 Distributed Programming, in brief
A distributed system is a software application whose behaviour emerges from the
interaction of several components (programs) that run in parallel and rely on mes-
sage passing to communicate and coordinate their actions [2]. Although simple,
this definition covers all kinds of distributed systems, ranging from networks of
computers to communicating threads of the same program. The practice of writing
distributed applications is called distributed programming.

Distributed programming born with the introduction of the first wide [18] and
local [19] area networks of computers between the late 1970s and the early 1980s.
Since that time, distributed programs evolved along the networks that supported
their communications. During the 1990s the Internet [1] widely spread to consti-
tute an heterogeneous collection of networks — a network of networks — includ-
ing wired and wireless sub-networks connected by different technologies (e.g.,
Ethernet, Bluetooth, WiFi, etc.). Lately, Pervasive Computing [20] and Cloud
Computing [21] are major threads of research, ranging from room-scale to global-
scale networks of interacting component.

Distributed software constitutes the backbone of our society: it enables people
to carry out tasks otherwise unmanageable, automating and ensuring the correct
execution of complex social systems. Healthcare, transportation, commerce, and
manufacturing are some of the industries that are currently experiencing strong
benefits from the integration of software.

The reasons for writing distributed programs can be either compulsory or delib-
erate. In some cases the nature of the application requires to be distributed, e.g.,

9

Chapter 2. Introduction to Choreographies

when production and consumption of data happens in different places. In other
cases, distributed programming fits a particular choice of the designer of the sys-
tem, e.g., a distributed system that uses replicated and (geographically) distributed
components to ensure reliability.

More in general, distributed programs benefit from two main features:

• modularity as message passing imposes no bonds on the components of
a system. Any resource that behaves according to the specification of a
component of the system can be employed as such. If said resource fails
or becomes busy, the system might replace it with a new, compliant one by
simply redirecting its messages.

• scalability, both in functions and size. Once deployed, a distributed pro-
gram can become itself a component employed by another program, en-
hancing its functionalities with minimal effort. In the same way, since com-
ponents are modular, if the workload on a component can be shared, it is
possible to add a new instance of the same component in the system and
separate the workload between the two.

Although distributed programming contributed to shape the present, the prac-
tice of correctly developing and debugging distributed systems remains one of the
most challenging.

2.1.1 Problems of Distributed Programming

Distributed systems are developed to implement some protocol of interaction.
Let us take as an example the sequence of messages exchanged between an

ATM terminal, the bank accounting system, and the issuer of the credit card to
approve a withdrawal. When a client requires a withdrawal, the ATM forwards to
the bank the card ID and the inserted PIN. Next the bank asks the card issuer to
validate the request. Finally, the card issuer approves or denies the withdrawal and
the bank forwards the outcome to the ATM. We depict in Figure 2.1 the sequence
chart diagram of the example.

10

2.1. Distributed Programming, in brief

ATM Bank Card Issuer

validation
approval

approval

pin

Client
withdrawal

card_id

Figure 2.1: Sequence chart of the ATM withdrawal example.

Since the early days of distributed computing, developers introduced and used
several tools to precisely describe the order of interactions between the compo-
nents of a system, like message sequence charts [22] and sequence diagrams [23].
Baseline of all these tools is to avoid or at least minimise the ambiguity of the de-
scription of the sequence of messages in the system. However, developers struggle
to make sure that the final interplay between the components of a distributed sys-
tem correctly implement the global description of that system. The problem here
is that they have to infer the logic of each component from a global protocol where
interactions are considered as a whole and not broken down to sequences of send
and receive actions.

Failing to correctly implement the global protocol of interaction of a system is
the main source of system freezes and misbehaviours. Such errors are classified
in literature as deadlocks [3] and race conditions [4].

Deadlocks. Deadlocks are one of the main causes of blocks of distributed sys-
tems. A system is in a deadlock state when one or more components hang, waiting
for another component to release a resource (e.g., a message). The components
cannot proceed with their computation and the whole system blocks.

Deadlocks usually occur when one of the components of a distributed applica-
tion does not implement the global protocol of the system.

As an example, assume that the developer of the ATM mistakenly reversed the
first two interactions with the bank. As a result, the system ends up in a deadlock
state because i) the ATM hangs waiting for the bank to receive the message car-
rying the PIN whilst ii) the bank waits indefinitely for the message carrying the
card ID.

11

Chapter 2. Introduction to Choreographies

Race Conditions. Race conditions are even subtler errors than deadlocks. When
a system has a race condition, the runtime behaviour of an application depends on
the timing or the sequencing of communications among its components. Due to
their non-deterministic nature, race conditions are one of the most difficult bugs
to spot and may potentially lead to worst scenarios than the block of the system;
among these are data inconsistency and information leakage.

On the example in Figure 2.1, let us assume that the ATM sends the two mes-
sages for the card ID and PIN in parallel to the bank. Contrarily, the implementa-
tion of the bank is sequential: it waits to first receive the card ID and then the PIN.
In this case we have two scenarios, depending on the order in which the bank re-
ceives the messages sent from the ATM. If the bank receives the card ID first then
the interaction proceeds as intended. Otherwise the system ends up in a deadlock
state where the bank waits to receive a message carrying the card ID whilst the
first consumable message is the one carrying the PIN.

To avoid these faulty executions, programmers must make sure that all compo-
nents of a distributed system correctly follow its designed protocol, however such
strong guarantee is very difficult to assess.

On one hand, the static analysis of the non-deterministic interaction of many
programs, executing in parallel, easily leads to the computation of exponentially
many traces of execution, which makes such analysis computationally impractical.

On the other hand, non-determinism makes also the practice of testing and de-
bugging the system unreliable. Plus, corner cases may be hard to predict and
reproduce in all their possible combinations.

In the following sections we provide a brief introduction to the theoretical and
practical solutions that have recently been proposed and adopted to ease the de-
velopment of safe distributed systems. We introduce Service Oriented-Computing
(SOC) and how SOC can be implemented following two opposite approaches,
namely the Orchestration or the Choreographic approach. Finally, we present
some seminal theoretical works that paved the way for the employment of chore-
ographies as language abstraction for the development of safe distributed systems.

2.2 The Service-Oriented Approach
The World Wide Web [24] (WWW or Web for short) is an established technol-
ogy that, although invented to provide human-readable content to users, has gone
acquiring importance also for distributed programming.

Technologies like Uniform Resource Locators (URLs) [25], HyperText Trans-
fer Protocol [26] (HTTP), and the eXtensible Markup Language [27] (XML) pro-
vided a common platform to make distributed programs communicate. In the
context of the Web, distributed systems are composed by Web services that offer a

12

2.2. The Service-Oriented Approach

specific interface of interaction. The World Wide Web Consortium (W3C) defines
a Web Service [28] as:

[. . .] a software system designed to support interoperable machi-
ne-to-machine interaction over a network. It has an interface de-
scribed in a machine-processable format (specifically WSDL [29]).
Other systems interact with the Web service in a manner pre-
scribed by its description using SOAP [30] messages, typically
conveyed using HTTP with an XML serialization in conjunction
with other Web-related standards.

Paraphrasing the above definition, Web services pose no restriction on the in-
ternal technologies that implement their functionalities. Provided that a service
describes its interface of interaction in a machine-processable format (WSDL)
and interacts through SOAP messages, it will be able to interoperate with other
Web services by receiving and sending requests through messages.

Notably, the computing paradigm described by Web services is not bound to
Web standards but can be further abstracted to the so called Service-Oriented [31]
paradigm.

Service orientation is platform-agnostic, it abstracts from the underlying tech-
nologies that enable components to interact in a network, and dictates that any
resource (i.e., any program) of the network shall self-describe its functionalities
through a standard interface. Services offer their functionalities following the
client-server principle. In particular service orientation hinges on two principles:

• Neutrality: clients must be able to require functions of services through
open, standardised, and wide-adopted technologies. Therefore all the layers
that support the invocation of a request should comply with widely accepted
standards.

• Loose Coupling: clients and services must agree only on the terms of the
invocation of a function. Their internal implementations remain unknown
to each other and the interaction does not rely on any knowledge of the
internal structures that enact the execution of that functionality.

The service-oriented paradigm applies to any context that i) provides a common
channel of communication for programs which ii) comply with some shared spec-
ification regarding protocols of communication and serialisation of data. Other
than the Web stack, some renowned technologies that apply the service-oriented
approach are D-Bus [32] and DCOM [33], which are respectively an open-source
and a proprietary message bus that provide a context for one-to-one message pass-
ing for applications of the same system. Enterprise Service Bus [34] (ESB) tech-

13

Chapter 2. Introduction to Choreographies

nologies offer an analogous support for communication between distributed pro-
grams. In particular ESBs usually offer built-in transparent protocol conversion
(e.g., HTTP, SOAP, DCOM, SAP RFC [35], etc.).

2.2.1 Breaking down complexity
The main novelty introduced by service orientation regards a new architectural
perspective for organising distributed systems. Since the construction blocks of
SOC are services, a service-oriented distributed system results from the compo-
sition of interacting services that form a Service-Oriented Architecture (SOA).
The purpose of developing a distributed system as an SOA is to break down its
complexity into simple services and build up the system in a hierarchical way.

This has several benefits, among which:

• Parallel and compartmentalised development. Since services communicate
only through their standardised interfaces, an SOA can be quickly build up
by different teams of developers working in parallel on a distinct subset of
such services.

• Reuse. Usually projects share a common set of functionalities like logging,
monitoring or security. Since services are compositional, it is easy to in-
clude an existing service that provides one of the required functionalities
into a new project. Beside fostering re-usability of code, it also naturally
lends itself to a market of specialised third-party services.

• Simpler debugging. Services that accomplish one simple task are easier to
test and check for compliance (wrt specifics) that more complex ones.

• Systems of systems. SOAs can be built on top of other SOAs. The guiding
principle remains that of ease of testability. Given a set of “simple” services,
a first level of “simple” (to test) SOAs can accomplish more elaborate tasks
as composition of such services. Iteratively, the most complex behaviours
of a distributed system result from high-level SOAs that compose other ar-
chitectures.

These general ideas gave birth to two opposite ways of composing services [7]:

Orchestration where the logic and order of the interactions in an SOA are de-
fined and controlled by a single party, called the orchestrator.

Choreography which defines the sequence of messages each participant exchanges.
Each party implements its own part and the intended interaction emerges from
their interplay.

14

2.3. Orchestration

In the next section we present a brief introduction to the concept of orchestrated
services and discuss the relationship between the former and choreography.

2.3 Orchestration
Nowadays, orchestration is the most adopted solution for service composition and
the main reasons behind its wide adoption are i) that exposing and composing
legacy programs (already developed and owned by businesses) requires little to
no adjustments and ii) orchestrators become themselves new services that other
orchestrators can use in their compositions.

Whilst the industrial standard for orchestration is WS-BPEL [36] (BPEL for
short) all orchestration languages share a common base of functionalities to com-
pose services at message level:

• asynchronous or synchronous delivery and reception of messages;

• sequential composition — an interaction can occur only after the one that
precedes it;

• parallel composition — two or more interactions can occur in parallel;

• guarded composition — only one of a set of interactions can occur while
the others are discarded.

As an example, we report in Figure 2.2 the orchestrated implementation of the
protocol presented in Figure 2.1.

bank SOA

Card Issuer SOA

Card
Validator

ATM

Orchestrator

withdrawal1

2

card ID

4

approval

5 validation

approval6

pin request
3

pin

7

Figure 2.2: Example of orchestration.

In the example, since the bank is the owner of the SOA to which also the ATM
belongs, we do not have a “bank” service but rather we introduce the Orchestrator
service that implements the withdrawal protocol.

15

Chapter 2. Introduction to Choreographies

Following the orchestrative approach, the Orchestrator coordinates all interac-
tions among the services in the systems. When the ATM receives a withdrawal
request 1©, it sends the card ID to the orchestrator. Then 2© the Orchestrator
asks the ATM for the PIN. After having received the PIN 3©, the Orchestrator
asks to validate the request to the Card Validator service (offered and owned by
the card issuer). Finally, the Orchestrator receives the outcome of the validation
(approval) 6© and 7© forwards it to the ATM.

In orchestration the logic of a distributed system is mostly implemented and
enclosed in the orchestrator and therefore it becomes easier to check and test com-
pliance between protocols and implementations.

However, orchestration poses a strong limitation in the development of dis-
tributed systems because it requires a central entity that manages the whole in-
teraction whilst in many distributed contexts that assumption might not hold. For
example, OpenID [37] is a widely adopted protocol that provides authentication
in a decentralised way. In OpenID a service (e.g., a web site) delegates a rely-
ing party to authenticate users. The benefits are twofold: services do not have to
manage users and users avoid to give their credentials to possibly untrusted ser-
vices. In these cases, it is not possible to orchestrate the interaction and the only
available solution is to develop each component separately.

2.4 Choreography

Unlike orchestration, choreography has no central point of coordination and de-
scribes SOAs in terms of interactions between the participant services. In a chore-
ography all services are peers and the logic of the composition is spread among
them. Choreographic composition is an unexplored topic wrt orchestration. In
fact, the paradigm has been mostly used for protocol specification [8, 9].

W3C proposed a candidate recommendation, called WS-CDL [8]. In WS-CDL
the developer specifies the protocol of observable interactions between services
from a global point of view. As already remarked, the main reason behind the
need for a choreographic composition is that the orchestration paradigm requires
a full control on outputs and inputs toward and from the invoked services. On the
contrary, there exist various systems that are composed by several services that
communicate to each other but cannot be coordinated from a centralised position.

However, WS-CDL is not a language for programming composition of services,
it is rather a formal language for specifying protocols, i.e., the correct sequences
of interactions in the composition. Quoting the definition of the purpose of WS-
CDL given by the W3C:

16

2.4. Choreography

The WS-CDL specification is aimed at being able to precisely
describe collaborations between any type of participant regard-
less of the supporting platform or programming model used by
the implementation of the hosting environment.

Using the WS-CDL specification, a contract containing a “glo-
bal” definition of the common ordering conditions and constraints
under which messages are exchanged, is produced that describes,
from a global viewpoint, the common and complementary ob-
servable behaviour of all the participants involved. Each partici-
pant can then use the global definition to build and test solutions
that conform to it. The global specification is in turn realized by
combination of the resulting local systems, on the basis of appro-
priate infrastructure support.

Following to the above declaration of purposes, a choreography describes the
interactions between several participants but it does not provide an implementa-
tion of such interaction. It is up to each participant to correctly implement its
individual part in the choreography.

Beside the interpretation of choreographies given by the W3C, several works
investigated the possibility to use choreographies as abstractions to implement
distributed systems.

For example, OASIS proposed a different perspective to choreographic compo-
sition with BPEL4Chor [38]. Whilst WS-CDL sees choreographies as a top-down
tool that can be used to specify protocols, OASIS considers choreographies from
bottom-up, as an abstraction to define interoperability.

In particular, BPEL4Chor introduces a layer over BPEL where the developer
defines only the activities of sending and reception of messages. Then, given an
abstract specification in BPEL4Chor, the developer can implement the compo-
nents that interact in the choreography as BPEL services. Once a BPEL4Chor
choreography has been “grounded” into several BPEL orchestrators (one for each
participant) the choreography is enacted by the parallel execution of the imple-
mented orchestrators.

The two approaches have interests at odds (analysed in detail in [12]):

• top-down choreographies, à la WS-CDL, benefit from the maximum degree
of abstraction, focussing only on the protocol of interaction. Communica-
tions are atomic and therefore they inherently exclude deadlocks and races
(as seen in § 2.1.1). However, these kind of interaction-oriented choreogra-
phies are meant as design tools and cannot be used to implement distributed
systems.

• contrarily, bottom-up choreographies written in BPEL4Chor are implemen-

17

Chapter 2. Introduction to Choreographies

table, allowing developers to follow a common schema of interaction. How-
ever, since these process-oriented choreographies maintain such close re-
lation to the processes that implement the distributed system, they model
communications as sequences of send and receive actions, possibly leading
to deadlocks and races.

To exemplify the difference between the interaction-oriented and the process-
oriented approach, we report in Figure 2.3 how the two approaches would model
the scenario presented in Figure 2.1.

In the example we use the “Alice and Bob” notation [39] for interaction-oriented
choreographies, where A → B : action represents a communication between two
endpoints (components) of the system, specifically A sending a message through
an action to B, and ; is the sequential composition of interactions. For process-
oriented choreographies we use the notations from A : action and to A : action
to respectively represent the receiving from and the sending to the endpoint A
through action, ; still means sequential composition.

Client→ ATM : withdrawal;
ATM→ Bank : card_id;
ATM→ Bank : pin;
Bank→ Card Issuer : validation;
Card Issuer→ Bank : approval;
Bank→ ATM : approval

ATM process
from Client : withdrawal;
to Bank : card_id;
to Bank : pin;
from Bank : approval

Bank process
from ATM : card_id;
from ATM : pin;
to Card Issuer : validation;
from Card Issuer : approval;
to ATM : approval

Card Issuer process
from Card Issuer : validation;
to Bank : approval

Figure 2.3: Upper part: example of interaction-oriented choreography. Lower
part: from left to right, the process-oriented choreographies of the ATM, the Bank,
and the Card Issuer.

2.5 Programming with Choreographies
Recent theoretical investigations explored how the interaction- and process-oriented
aspects of choreographies could be merged into one language, namely one that en-
joys the minimality and safety (deadlock- and race-freedom) of top-down chore-

18

2.5. Programming with Choreographies

ographies but able to express process-level interactions, needed to implement dis-
tributed systems.

Seminal work in such endeavour are [10, 40, 11].
In [10] Qiu et al. give a first theoretical account of the fundamental issues be-

tween interaction-oriented choreographies and implementations. In that work,
the authors introduce the concept of projection to map the global behaviour of a
distributed system, described as a choreography, into a set of processes that im-
plement it.

In [40], Bravetti and Zavattaro build on the concept of service contracts [41]
— i.e., descriptions of the behaviour of services in terms of their inputs and out-
puts — and define a projection that, given an interaction-oriented choreography,
generates a set of contracts, one for each of its participants. Then, it is possible to
implement the original choreography by executing those services whose contracts
match the generated ones.

Finally, in [11] Carbone at al. formalise a core WS-CDL language and relate
interaction-oriented choreographies and implementations by means of an End-
point Projection (EPP) function. The EPP is a mapping from a choreography
specification to a set of processes which, run in parallel, enact the behaviour de-
scribed by the choreography. The target of the EPP is an applied π-calculus [5]
and not an actual executable language. However in [11] the authors prove that
interaction-oriented choreographies can be made expressive enough to define the
implementation of safe distributed systems. Essentially, the projected processes
enact all and only the behaviours described in the choreography (protocol) and
since choreographies cannot express deadlocks and races also the projected sys-
tem is deadlock- and race-free.

The most notable results of [11] are that i) it paved the way for the concept
of choreographic programming [42] — i.e., to use choreographies as abstraction
to implement distributed systems —, ii) it inspired the introduction of multiparty
session types [43] as evolution of binary session types [44], and iii) it provided a
methodology for the development of distributed software, based on a correctness-
by-construction approach, which we can depict as:

Choreography

(Correct by design)

EPP−−−−−−−−→
Endpoint Projection

(Correct by construction)

Subsequent theoretical works [12, 13, 14] followed a similar approach, extend-
ing the choreography model to support multiparty sessions, channel mobility, and
modularity.

On the other side of the spectrum, some early works [45, 46, 47] explored how
choreographies could be used to support the implementation of distributed pro-
grams, however none of these proposals uses choreographies as a programming

19

Chapter 2. Introduction to Choreographies

abstraction and rather employs them to check endpoint programs.
Chor [48] is the first work that brought the theoretical results on choreographies

into the world of implementation languages. Based on the theoretical framework
presented in [13], Chor supports the definition of global descriptions (protocols),
the programming of compliant choreographies, and the safe projection of said
choreographies into a collection of distributable and executable orchestrators.

Chor gives a tangible proof that choreographic programming is a suitable para-
digm for the implementation of real-world distributed systems because: i) it lets
developers focus on the description of the interactions between the components
in the system and ii) it generates deadlock- and race-free distributed applications
that are guaranteed to follow the designed protocol.

Nonetheless, Chor is just the first attempt at bringing into the real world the
promising theoretical results on choreographies. The language lacks some stan-
dard features of programming languages like modularity1, dynamic updates or
error handling. Beside the expressiveness of the language, the major limitation of
Chor is that its EPP is not formally proven. The theoretical treatment on which
Chor is based uses as target language a process calculus that models communica-
tions through synchronisations on names (as in CCS [49] and the π-calculus [5]).
Contrarily, the EPP equipped with Chor targets Jolie [50], which is an orches-
tration language that uses correlation (à la BPEL) to route messages. Hence, to
ensure that programs projected from Chor correctly implement their originating
choreography, it is necessary to formalise and prove an Endpoint Projection pro-
cedure for the targeted executable language.

2.6 Contributions
In Chapters 4–5 we give a positive answer to the question:

Can we model safe and dynamic updates of distributed systems with
choreographies?

In Chapter 4 we present our theoretical model of Dynamic Choreographies and
our results of correctness of projection and runtime update. In Chapter 5 we re-
fine our theoretical model of Dynamic Choreographies to provide a fine control
over updates. As a result we develop a programming framework for developing
adaptive [51] (cf. Chapter 3) distributed systems. Like Chor, AIOCJ proves that
choreographic programming can be used to deal with different and real-world ap-
plication domains, preserving the desirable properties of correctness and safety of
interaction-oriented choreographies.

1The possibility to compose different choreographies — or better said, different systems pro-
jected from different choreographies — to implement applications in a compositional way.

20

2.6. Contributions

In Chapter 6 we progress our venture by tackling one of the most important
problems of bringing choreographies to the real world. As discussed in § 2.5, Chor
— but also AIOCJ — is based on a theoretical model that abstracts the mechanics
of communication with synchronisation on names. Although such abstraction
allows for an elegant theoretical treatment, it sensibly departs from the reality of
distributed systems, where some underlying technology must be set and used to
support the routing of messages between processes.

As a result, the implementations of Chor and AIOCJ loosely follow the EPP de-
fined in their foundational models. This breaks the chain of guarantee of correct-
ness from choreographies to the implemented systems. For instance, to establish
the communication channels between the processes in the system, the programs
projected by Chor and AIOCJ make some preliminary communications, unex-
pected by their theoretical models. Whether those communications are deadlock
or race-free and that they do not interfere with the behaviour defined at the chore-
ography level is not investigated nor theoretically proven. Moreover, these addi-
tional interactions weaken one of the main advantages of choreographic program-
ming: the clear specification of the communications carried out during execution.
The leading research question that we pose in Chapter 6 is therefore:

Can we formalise the implementation of communications in choreographies?

Interestingly, this question easily overcomes the boundaries of choreographies.
The problem of bringing the results on name-based theoretical models for dis-
tributed systems into the real world of implemented languages has been faced in
various works, following different custom practices [52, 53, 54]. Therefore, solv-
ing the problem of formalising the implementation of communications in chore-
ographies would be a useful reference to formalise the implementation of name-
based languages in general.

Our answer, presented in Chapter 6, is to develop a theoretical model for Ap-
plied Choreographies (AC). ACs support the most advanced features of recent
choreography models like modularity [14], asynchrony, parallelism, and the dy-
namic creation of multiparty sessions and processes, yet it models message-passing
based on correlation, one of the main technologies used in Service-Oriented Com-
puting (BPEL, Java/JMS/ C#/.NET, etc.) to support message routing.

On the definition of AC, we pinpoint the key theoretical problems and formalise
the guiding principles that developers should follow to obtain correct implemen-
tations. Finally, to prove our approach, we define a correct compiler from AC
choreographies to the theoretical model of the Jolie language.

21

Chapter 2. Introduction to Choreographies

22

Part II

Adaptable Choreographies

23

24

CHAPTER 3

Runtime Software Update and Adaptation

In Chapter 2 we discussed how distributed software has become a commodity
used on a daily basis like phone lines, electricity, and water.

As our society becomes more and more dependent on software, it also demands
for solutions that quickly and continuously update and adapt to the changes in
objectives and the surrounding environment. Software systems that respond to
change by self-adapting while running — and providing services — reflect the
vision of autonomic computing [55]. Along with this requirement of flexibil-
ity, software must remain reliable and predictable, in particular when adapting
business- or safety-critical applications.

This requirements gave birth to an important branch of research interested in
providing solutions like design patterns, language abstractions, and frameworks
for the reliable development of systems that are able to adapt, preserving some
desirable properties of correctness and coherence after the adaptation.

In the next sections we present some of the renowned technologies that enable
runtime software update and to structure adaptation, focussing on the constructs
introduced by these technologies to:

• harness the inherent complexity of updating different parts of a software
system, from a software engineering viewpoint;

• guarantee coherence between all the updated components and the correct-
ness of the system after any update.

3.1 Linguistic Constructs for Adaptation
The practice of adapting software at runtime spans various levels of abstraction,
ranging over parameters, methods, aspects, components, applications, architec-
tures, systems, and data-centres [56].

In [57] the authors clarify that there exist two main approaches to software
adaptation:

25

Chapter 3. Runtime Software Update and Adaptation

This research has been addressing both the theoretical founda-
tions of adaptation and, more pragmatically, how adaptation tech-
niques can be applied to solve the problems at hand. [...] To
achieve these goals, solutions to engineer self-adaptive behaviours
are often sought at the software architecture level, including mid-
dleware and component-based design. Accordingly, architec-
tural approaches to dynamic adaptation have been extensively
studied by researchers [58, 59, 60]. As a complementary ap-
proach, researchers also adopted specialized programming para-
digms to implement adaptive systems, such as metaprogramming
and Aspect-Oriented Programming.

Essentially, the first approach is an architectural one and structures adaptation at
the level of software components. The other approach is at language-level, which
aims at providing language constructs for structuring which parts of a programs
shall change at runtime. In their analysis, the authors of [57] remark that:

Supporting behavioural variations at the language level is appeal-
ing with respect to dealing with adaptation at a higher architec-
tural level. First, language-level approaches provide means to
adapt at a very fine-grain detail. Second, many language con-
cepts (e.g., polymorphism and late binding) are well known to
programmers and can be easily specialized to support adapta-
tion [61].

Hence, language-level solutions provide a finer control over the adaptation ac-
tions wrt architectural ones. In particular, constructs for adaptation embedded in
programming languages provide a fine-grained granularity on adaptation whilst
architectures for software adaptation usually rely on a component-based design
that allows adaptation only at a coarser level.

Moreover, adaptation at language level brings several benefits:

• research on constructs for adaptation at language level tends to elicit general
concepts that can be integrated, mixed, and evolved within new languages;

• languages take advantage of various techniques like syntactic and type check-
ers, compilers, etc. that enforce correctness of software;

• adaptation at architectural level introduces strong dependencies on the frame-
works that enable adaptation.

Focussing on the practice of programming adaptive systems, we highlight two
aspects that a language has to address for programming adaptation.

26

3.1. Linguistic Constructs for Adaptation

The first is an enabling aspect, i.e., the possibility of a language to control and
change its own programming at runtime. The second is a structuring aspect, i.e.,
the abstractions offered by the language to program updates in a structured way.

In the following sections we briefly overview some of the main linguistic con-
structs that enable software updates and provide structure to their application.

3.1.1 Reflection and Metaprogramming
In [62], Pattie defines computation reflection as:

[...] the behaviour exhibited by a reflective system, where a re-
flective system is a computational system which is about itself in
a causally connected way.

In the context of the definition, a software system is said to be causally connected
if there is a bond between its internal structures and the domain they represent.
In particular, a reflective system is a computational system endowed with struc-
tures that represent aspects of itself. Having access to its self-representation, the
system can respond to queries about its structural state and change it. Since a
self-representing system is causally connected to the domain of the aspects it rep-
resents, i) the system has always an accurate representation of itself and ii) its
computational status is always compliant with its representation, i.e., it can mod-
ify itself by means of its own computation.

Metaprogramming is the practice of using computational reflection, i.e., the
use of a reflective interface on the program to change its behaviour. As exposed
above, meta (domain) and base levels are causally connected, therefore changes
at meta-level “reflect” in behavioural variations at base level.

Reflection is the most general and powerful mechanism to obtain runtime be-
havioural variation in programs. Examples of its usage span from higher-order
languages like Lisp [63], which uses reflection to handle its own programming
structures as first-class data types, to language APIs, which enable for runtime
structure definitions (e.g., classes).

In general, the main two features of any metaprogramming facility are inspec-
tion and modification. Inspection supports queries on the state of execution of
a program, whilst modification supports the change of the behaviour of a pro-
gram, e.g., intercepting calls, modifying dispatching policies, augmenting data
with new structures, and injecting new functions or modifying the body of existing
ones. [64, 65, 66] are some established examples of usage of metaprogramming.
In [64] Ledoux explains how it is possible to modify dynamically the behaviour
of objects through dynamic classes. In [65] Dowling et al. employ reflection to
enable a program to change the binding between its methods and their implemen-

27

Chapter 3. Runtime Software Update and Adaptation

tations. In [66] Xu et al. propose a method that exploits call interception and code
injection for implementing fault tolerance.

All cited works prove that metaprogramming is the staple linguistic element
that enables developers to pursue any kind of runtime adaptation on programs.
However, due to its unstructured nature, the direct use of metaprogramming tends
to generate code that is difficult to read and debug because programmers have
to figure out which variations affected the behaviour of the program at runtime.
More in general, metaprogramming does not guarantee any property on the state
of the system after adaptation.

This led to the creation of a new set of language constructs i) to precisely define
the boundaries of the effects of metaprogramming and to ii) to clearly specify the
conditions that fire the application of each variation.

3.1.2 Aspect- and Context-Oriented Programming
Aspect-Oriented programming [67] (AOP) is one of the most renowned paradigms
for managing runtime software update. The main reason behind the development
of the aspect-oriented paradigm is to be able to separate the essential functional-
ities of a program from orthogonal modules like logging, persistence, synchroni-
sation, and fault handling. The practice of uncoupling orthogonal modules from
the main functionalities of a software is called separation of concerns and it is
achieved by two specific constructs of AOP, namely point-cuts and join-points.

A point-cut corresponds to a set of join-points. When the execution of the main
code of a program reaches one of the join-points of a point-cut, the control is
transferred from the main code to the code that implements a separate concern
of that point-cut. The code corresponding to a join-point of a point-cut is called
advice. The aspect weaver is the metaprogramming utility that “weaves” (merges)
together the main code of an application, its point-cuts, and a set of advices to
generate the final implementation of an aspect-oriented application.

Aspect-oriented programming has been successfully employed in many works
on dynamic adaptation. Some examples are [68], [69], whilst [70] employed it to
adapt distributed systems.

Although AOP provides a powerful yet easy abstraction to manage separation
of concerns, its scope of application remains that of single programs and lacks
mechanisms that ensure coherence among the adapted parts of a distributed sys-
tem. Moreover, it is possible that various conditions coexist in the environment
of execution and that several variations apply on the same system. Hence, beside
making sure that adaptation is coherent over the system, it should be possible to
express conflicts between variations. Adding such conflicting conditions in plain
AOP quickly clutters the code, tangles the present point-cuts, and makes the in-
sertion of new ones harder.

28

3.1. Linguistic Constructs for Adaptation

This motivations paved the way for the development of an evolution of the
aspect-oriented paradigm for context-aware software: Context-Oriented program-
ming [71] (COP).

The abstractions introduced by COP regard the modularisation of software up-
dates to support the coherent activation of behavioural variations, based on con-
texts [71], that Hirschfeld et al. define as:

Any information which is computationally accessible may form
part of the context upon which behavioural variations depend.

Given its recent introduction, one major direction of research on COP is in-
volved in defining the essential features a context-oriented language should sup-
port. The context-oriented paradigm relies on i) proper abstractions for represent-
ing variations and ii) explicit mechanisms for triggering variations. Usually, COP
extensions for mainstream languages [72], like ContextJ [71], provide abstrac-
tions for representing variations as first-class structures, which can be referenced
and returned. The language provides ad-hoc mechanisms to dynamically activate
and deactivate variations. When a variation is enabled, the set of behaviours it
models activate and modify the runtime behaviour of the application. Vice versa,
if the variation is deactivated the control returns to the main code.

Variations can also be activated simultaneously. In that case, the final behaviour
of the application derives from the combination of the active variations. Since the
applicability of variations is specified wrt both environmental conditions and the
state of other variations, context-oriented languages ensure two properties: i) all
the advices related to a variation are coherently active or inactive ii) conflicting
advices cannot occur.

ContextErlang [73] is an interesting example of context-orientation brought in
the (possibly) distributed world, by enabling the coherent application of variations
on a per-thread basis. Variations can be both expressed internally and be included
at runtime from an external source via message passing.

Although AOP and COP give a sensible contribution to ease the programming
of runtime software updates, their scope remains that of single programs. Indeed,
to the best of our knowledge, there are no formal results on the employment of
such programming abstractions to preserve the coherency of updated distributed
programs nor on the correctness of the programs after the application of updates.

3.1.3 Adaptation in Process-Aware Information Systems
In § 3.1, we underlined that in this work we do not consider architectural-level
solutions wrt to language-level ones because the latter give a finer control over the
adaptation actions.

29

Chapter 3. Runtime Software Update and Adaptation

Nonetheless, architectural-level approaches like that of business process man-
agement [74], and in particular that of Process-Aware Information Systems [75]
(PAIS), investigated in depth how flexibility [76] — to support dynamic process
adaptations — impacts on business processes and their realisation.

PAISs provide a high-level perspective over the whole composition of processes
and, since the implementation is detached from the logic of composition, it is
possible to plan for various degrees of flexibility by selecting which and when
parts of the composition can change.

The community of BPM and PAIS did a formidable work in breaking down the
nuances of such flexible systems into their attributes. In the context of this work,
it is interesting to summarise such attributes and patterns, using them to clarify
the possibilities offered by our language-level solution presented in Chapter 4.

In particular, we focus on the notion of loosely specified processes as given
in [76] and defined as: process models that are not fully pre-specified and that keep
some parts unspecified at built-time by deferring decisions to runtime. We report
below the same breakdown of the attributes of such processes, drawn from [76]:

freedom given to the user to change the process. The lowest degree of freedom
is none, which entails fixed processes that cannot change at runtime. Above it,
we have the runtime selection of parts from a set of predefined alternatives. The
highest level is the modelling or composition of parts of fragments of processes
out of a set of activity templates;

planning approach used to take decisions when changing some parts. From
most constrained to loosest: the plan-driven approach defines a detailed model
of change up-front, the iterative and continuous approach relies on a coarse plan
which is refined at runtime, and the ad-hoc modelling has no plan and resorts to
the interaction with some user-manned or automatic system;

scope of change, i.e., which “regions” of the process model can be changed. The
scope ranges from predefined regions to the entire process;

process perspective define which properties of a process can change. Changes
can regard: the behaviour of a process, the actors executing a particular activity,
the data used in the computation, the functions available in the process and their
concrete implementations (called operational decisions), and finally the concrete
time of start or end of activities;

making and support of decisions to concretise loosely specified processes at run-
time. Decision systems are classified by the policy on which they base their deci-
sions. These can be goal-based, which take into account the overall goals of the
process, rule-based, which rely on a set of rules, experience-based which sug-
gest solutions based on past experiences made in similar contexts (e.g., execution
logs), user decision where decision making is left to the human expert;

degree of automation given to the system to compose instances of processes.

30

3.1. Linguistic Constructs for Adaptation

The division goes from full automation, system-supported interaction with the
user (e.g., by providing context-specific templates which can be adopted), and
manual, without system support.

Focussing in particular on the first two attributes of flexibility, namely the degree
of freedom and the planning approach, the authors of [76] elicit some patterns of
decision deferral, listed below in order of degree of flexibility:

Pattern Description
Degree of
freedom

Planning
approach

Fully
pre-specified

processes

Processes that offer little flexibility. The
model is fully pre-specified. They use a
strict plan-driven approach separating

modelling and execution entirely.

none
plan-
driven

Late
selection

Processes that allow placeholder
activities (whose scope regards

predefined regions). The placeholder
activities are refined during runtime with

concrete implementations from the
available set of alternatives, which must

be specified at build-time following a
plan-driven approach.

selection
plan-
driven

Late
modelling

and
composition

Processes that allow also the automatic
composition (not only selection) of
activities. The scope can encompass
regions or the whole process. The

runtime refinement is still driven by a
pre-specified plan.

modelling
and

composition

plan-
driven

Iterative
refinement

Processes that allow users to iteratively
compose the content of a placeholder

activity by selecting any process
fragment from a given pool. The runtime

refinement is not bound to a
pre-specified plan. The scope spans the

whole process or regions of it.

modelling
and

composition
iterative

Ad-hoc
composition

Processes are composed in an ad-hoc
manner, without any planning, with the

scope spanning the whole process or
regions of it.

modelling
and

composition
ad-hoc

Table 3.1: Decision deferral patterns.

As stated at the beginning of this section, in § 7.1.1 we use the fine-grained

31

Chapter 3. Runtime Software Update and Adaptation

definitions of flexibility reported above to clarify the possibilities offered by our
language-level choreography-based solution presented in Chapter 4.

3.2 Safe Update of Distributed Systems
Updating a single (non-distributed) program and making sure that its behaviour
remains correct and coherent is a difficult task. However, also distributed systems
and, by extension, the programs composing them, need to be updated and adapted.
Guaranteeing that a distributed system remains correct and coherent after a step
of adaptation is even more challenging.

Some interesting works on dynamic adaptation of distributed systems regard
application of Aspect-Oriented programming to Service-Oriented Applications
(introduced in § 2.2). For instance, in [77] Charfi et al. proved that adaptive ser-
vice composition can be effectively addressed combining the constructs of AOP
in BPEL [36]. However, the current technology of development is not well suited
for writing and verifying adaptive distributed systems. This is due to the lack of
high-level structuring abstractions needed for handling complex communication
behaviours and context-aware adaptation.

Recently, several works introduced interesting abstractions for providing high-
level specifications of the expected behaviour of a distributed systems. In par-
ticular we cite session types [11, 78, 43], choreography languages [12, 13], be-
havioural contracts [40], and ad-hoc scripting languages [79].

These concepts usually consider static techniques, which alone are not sufficient
to model dynamically adaptable software. Indeed, the assumption on either the
ability to type-check the component source code, or the availability of its complete
behavioural interface, may not be realistic in presence of adaptation.

On the practice of adapting a distributed system, [80, 81, 61, 82, 83] are some
interesting proposals of middlewares and architectures to enable runtime adapta-
tion (an interesting survey can be found in [84]). Other works applied concepts of
adaptive languages in the context of distributed systems like [85] with traits, [86]
with role-based modelling, and [87] with aspect-oriented programming.

All the mentioned approaches provide tools for programming distributed adap-
tive systems, although they do not provide any guarantee on the expected be-
haviour of the system after the execution of some steps of adaptation. In the case
of dynamically adaptive distributed programs, techniques like static analysis are
impracticable due to the impossibility to know in advance the structure of the
adapted system. For this reason, most of the approaches in the literature offer no
guarantee on the behaviour of the adaptive system after adaptation.

In the next Chapter we report our choreographic solution to the problem of the
safe, runtime (i.e., dynamic) update of distributed system.

32

CHAPTER 4

Dynamic Choreographies

Intelligence is the ability to adapt to change.

Stephen W. Hawking

4.1 Introduction
As illustrated in Chapter 2, programming safe distributed systems is a difficult
activity, which can be made even more difficult if those systems shall update their
behaviour at runtime. In Chapter 3 we presented the difficulties of such task within
a single process and explained why updating a distributed system at runtime in a
correct and coherent way is even more challenging. However, enabling distributed
software to safely update at runtime has countless uses, spanning from dealing
with emergencies, to coping with unexpected requirements or to improving and
specialising applications to user preferences.

Here, we argue that choreographies (presented in § 2.4) are a suitable abstrac-
tion to express the dynamic update of distributed systems and to guarantee co-
herency and correctness of the system after each step of update.

In our treatment, we consider applications whose code can change at runtime
by integrating other code provided by some external party. We propose a general
mechanism for the structuring of updates that consists in delimiting inside the
application blocks of code, called scopes, that may be dynamically replaced with
new code, called an update. Remarkably, scopes and updates are independent and
the details of the behaviour of updates do not need to be foreseen when writing
the scopes. Indeed, updates may be written while the application is running.

Moreover, choreographies naturally lend themselves to the clear definition of
the boundaries of the update and to enforce the coherent application of updates on
all (and only) involved participants. To exemplify this concept, let us consider a
simple interaction of a buyer that asks to a seller the price of some product.

33

Chapter 4. Dynamic Choreographies

1 priceReq : Buyer(prod)→ Seller(order);
2 order_price@Seller = getPrice(order);
3 offer : Seller(order_price)→ Buyer(prod_price)

The first line specifies that the Buyer sends along channel priceReq the name of
the desired product prod to the Seller, which stores it in its local variable order.
The Seller computes the price of the product calling the function getPrice (Line
2) and, via the channel offer , it sends the price to the Buyer (Line 3), that stores
it in a local variable prod_price.

On the above example, let us suppose that the Seller would like to introduce
new commercial offers in the future, e.g., to provide a discount on the computed
prices. Since we want to be able to update the computation of prices, we enclose
Lines 2–3 of the example within a scope, as shown below.

1 scope @Seller{
2 order_price@Seller = getPrice(order);
3 offer : Seller(order_price)→ Buyer(prod_price)
4 }

In essence, a scope is a delimiter that defines which part of the application can
be updated. Each scope identifies a participant as the coordinator of the update,
responsible to decide whether to update and which (among possibly many) update
to apply. In our example, the coordinator of the update is the Seller (Line 1).

Now that we have a scope, we can introduce runtime updates. Let us assume
that the Seller issued a fidelity card to some returning customers and now the
Seller wants to update the system to let Buyers insert their fidelity card to get a
discount. The update in Figure 4.1 answers this business need.

1 cardReq : Seller(null)→ Buyer(_);
2 card_id@Buyer = getInput();
3 cardRes : Buyer(card_id)→ Seller(buyer_id);
4 if isV alid(buyer_id)@Seller {
5 order_price@Seller = getPrice(order) ∗ 0.9
6 } else {
7 order_price@Seller = getPrice(order)
8 };
9 offer : Seller(order_price)→ Buyer(prod_price)

Figure 4.1: Fidelity Card Update.

At runtime, if the Seller (which is the coordinator of the update) selects the

34

4.1. Introduction

update in Figure 4.1, the code of the update replaces the one in the body of the
scope. When this new code executes, the Buyer sends his/her card_id to the
Seller. If the card_id is valid, the Seller issues a 10% discount on the price of
the selected good, otherwise it reports the standard price to the Buyer.

We remark that separately writing the code for the Buyer and the Seller with
some process-level language equipped with update primitives (cf. 3) would be ex-
tremely error prone. For instance, let us consider the case in which the Buyer is
updated first and it starts the new interaction whilst the Seller cannot find the
same update. The Buyer proceeds to send its card ID to the Seller. Contrar-
ily, the Seller is executing the original interaction, it does not expect to receive
the message carrying the card ID from the Buyer and the system is stuck (dead-
locked): the Buyer waits for the Seller to receive its message carrying the card
ID whilst the Seller waits for the Buyer to receive the message carrying the
price of the product. In our setting, the available updates may change at any time,
posing an additional challenge. Extra precautions are needed to ensure that all the
participants agree on which code is used for a given update.

If both the original application and the updates are programmed using a choreo-
graphic language, these problems cannot arise. In fact, at the choreographic level,
the update is applied atomically to all the involved participants.

However, providing the correct compilation from choreographic specifications
to process-level distributed code is a challenging task. In particular, at the level
of processes, the different participants have to coordinate their updates avoiding
inconsistencies.

In this Chapter we propose our theory of dynamic choreographies. We present
our choreographic language, called DIOC, for the programming of distributed
applications supporting code update (§ 4.2). Next, we introduce a process-level
language, called DPOC, based on standard send and receive primitives (§ 4.3)
and we define our Endpoint Projection to compile DIOCs into DPOCs (§ 4.4).
The EPP is proven correct (behaviour-preserving) (§ 4.7). We also prove that the
property of correctness is preserved after any step of update.

In Chapter 5 we present one instantiation of our theory into a development
framework for adaptive distributed applications called AIOCJ. In AIOCJ updates
are embodied into adaptation rules, whose application is not purely non-deterministic
(as in DIOCs), but depends on the state of the system and of its environment.
AIOCJ comprises an Integrated Development Environment, a compiler from chore-
ographies to executable programs, and a runtime environment to support their ex-
ecution and update.

35

Chapter 4. Dynamic Choreographies

4.2 Dynamic Interaction-Oriented Choreographies
In this section we introduce the syntax of DIOCs, we illustrate the constructs of
the DIOC language with a comprehensive example, and we finally present the
semantics of DIOCs.

4.2.1 DIOC Syntax
DIOCs rely on a set of Roles , ranged over by R, S, . . . , to identify the participants
in the choreography. We call them roles to highlight that they have a specific duty
in the choreography. Each role has its local state.

Roles exchange messages over public channels, also called operations, ranged
over by o. We denote with Expr the set of expressions, ranged over by e. We
deliberately do not give a formal definition of expressions and of their typing,
since our results do not depend on it. We only require that expressions include at
least values, belonging to a set Val ranged over by v, and variables, belonging to
a set Var ranged over by x, y, We also assume a set of boolean expressions
ranged over by b.

The syntax of DIOC processes, ranged over by I, I ′, . . ., is defined as follows:

I ::= o : R(e)→ S(x) (interaction)

| I; I ′ (sequence)

| I|I ′ (parallel)

| x@R = e (assignment)

| 1 (inaction)

| 0 (end)

| if b@R {I} else {I ′} (conditional)

| while b@R {I} (while)

| scope @R {I} (scope)

Interaction o : R(e) → S(x) means that role R sends a message on operation o to
role S (we require R 6= S). The sent value is obtained by evaluating expression e
in the local state of R and it is then stored in the local variable x of S. Processes
I; I ′ and I|I ′ denote sequential and parallel composition, respectively. Assign-
ment x@R = e assigns the evaluation of expression e in the local state of R to its
local variable x. The empty process 1 defines a DIOC that can only terminate.
0 represents a terminated DIOC. It is needed for the definition of the operational
semantics and it is not intended to be used by the programmer. We call initial a
DIOC process where 0 never occurs. The conditional if b@R {I} else {I ′} and
the iteration while b@R {I} are guarded by the evaluation of the boolean expres-
sion b in the local state of R. The construct scope @R {I} delimits a subterm I
of the DIOC process that may be updated in the future. In scope @R {I}, role
R is the coordinator of the update: it decides whether to update or not and which
update to apply.

36

4.2. Dynamic Interaction-Oriented Choreographies

A Running Example. We report in Figure 4.2 a running example of a DIOC
process that extends the one presented in the Introduction: the example features a
Buyer that orders a product from a Seller, and a Bank that supports the payment
from the Buyer to the Seller.

At Lines 1–2 the Buyer initialises its local variables price_ok and continue.
These variables control the while loop used by the Buyer to ask the price of some
product to the Seller. The Buyer takes the name of the product from the user
with function getInput, which models interaction with the user (Line 4), and
proceeds to send it to the Seller on operation priceReq (Line 5). The Seller

computes the price of the product calling the function getPrice (Line 7) and, via
operation offer , it sends the price to the Buyer (Line 8), that stores it in a local
variable prod_price. These last two operations are performed within a scope
and therefore they can be updated at runtime to implement some new business
policies (e.g., discounts). At Lines 10–12 the Buyer checks whether the user is
willing to buy the product, and, if (s)he is not interested, whether (s)he wants to
ask prices for other products. If the Buyer accepts the Seller offer, the Seller

sends to the Bank the payment details (Line 16). Next, the Buyer authorises the
payment via operation pay. We omit the details of the local execution of the
payment at the Bank. Since the payment may be critical for security reasons, the
related communications are enclosed in a scope (Lines 17–21), thus allowing the
introduction of more refined procedures later on. After the scope successfully
terminates, the application ends with the Bank acknowledging the payment to the
Seller and the Buyer in parallel (Lines 23–25). If the payment is not successful,
the failure is notified to the Buyer only. Note that at Lines 1–2 the annotation
@Buyer means that the variables price_ok and continue belong to the Buyer.
Similarly, at Line 3, the annotation @Buyer means that the guard of the while
loop is evaluated by the Buyer. The term @Seller at Line 6 is part of the scope
construct and indicates the Seller as coordinator of the update.

4.2.2 Annotated DIOCs and their Semantics
In the remainder of the paper, we define our results on an annotated version of the
DIOC syntax. Annotations are numerical indexes i ∈ N assigned to DIOC con-
structs. We only require indexes to be distinct. Any annotation that satisfies this
requirement provides the same result. Indeed, programmers do not need to anno-
tate DIOCs: the annotation with indexes is mechanisable and can be performed
by the language compiler1. Indexes are used both in the proof of our results and
in the projection to avoid interferences between different constructs. From now
on we consider only well-annotated DIOCs, defined as follows.

1In fact, the AIOCJ compiler implements such a feature.

37

Chapter 4. Dynamic Choreographies

1 price_ok@Buyer = false;
2 continue@Buyer = true;
3 while(!price_ok and continue)@Buyer{
4 prod@Buyer = getInput();
5 priceReq : Buyer(prod)→ Seller(order);
6 scope @Seller{
7 order_price@Seller = getPrice(order);
8 offer : Seller(order_price)→ Buyer(prod_price)
9 };

10 price_ok@Buyer = getInput();
11 if(!price_ok)@Buyer{
12 continue@Buyer = getInput()
13 }
14 };
15 if(price_ok)@Buyer{
16 payReq : Seller(payDesc(order_price))→ Bank(desc);
17 scope@Bank{
18 payment_ok@Bank = true;
19 pay : Buyer(payAuth(prod_price))→ Bank(auth);
20 // code for the payment
21 };
22 if(payment_ok)@Bank{
23 confirm : Bank(null)→ Seller(_)
24 |
25 confirm : Bank(null)→ Buyer(_)
26 }else{
27 abort : Bank(null)→ Buyer(_)
28 }
29 }

Figure 4.2: DIOC process for Purchase Scenario.

38

4.2. Dynamic Interaction-Oriented Choreographies

Definition 1 (Well-annotated DIOC). Annotated DIOC processes are obtained by
indexing every interaction, assignment, conditional, while loop, and scope in a
DIOC process with a positive natural number i ∈ N, resulting in the following
grammar:

I ::= i: o : R(e)→ S(x) | I; I ′ | I|I ′ | i: x@R = e | 1 | 0

| i: if b@R {I} else {I ′} | i: while b@R {I} | i: scope @R {I}

A DIOC process is well annotated if all its indexes are distinct.

DIOC processes do not execute in isolation: they are equipped with a global
state Σ and a set of available updates I, i.e., a set of DIOCs that may replace
scopes. Set I may change at runtime. A global state Σ is a map that defines the
value v of each variable x in a given role R, namely Σ : Roles × Var → Val .
The local state of role R is denoted as ΣR : Var → Val and it verifies that ∀x ∈
Var : Σ(R, x) = ΣR(x). Expressions are always evaluated by a given role R: we
denote the evaluation of expression e in local state ΣR as [[e]]ΣR

. We assume that
[[e]]ΣR

is always defined (e.g., an error value is given as a result if evaluation is not
possible) and that for each boolean expression b, [[b]]ΣR

is either true or false.

Definition 2 (DIOC systems). A DIOC system is a triple 〈Σ, I, I〉 denoting a
DIOC process I equipped with a global state Σ and a set of updates I.

Definition 3 (DIOC systems semantics). The semantics of DIOC systems is de-
fined as the smallest labelled transition system (LTS) closed under the rules in
Figure 4.3, where symmetric rules for parallel composition have been omitted.

The rules in Figure 4.3 describe the behaviour of a DIOC system by induction
on the structure of its DIOC process. We use µ to range over labels. The possible
values for µ are described below.

µ ::= o : R(v)→ S(x) (interaction) | τ (silent)
| I (update) | no-up (no update)
| I (change updates) |

√
(termination)

Rule bDIOC |INTERACTIONe executes a communication from R to S on operation o,
where R sends to S the value v of an expression e. The communication reduces to
an assignment that inherits the index i of the interaction. The assignment stores
value v in variable x of role S. Rule bDIOC |ASSIGNe evaluates the expression e in
the local state ΣR and stores the resulting value v in the local variable x in role R

([v/x, R] represents the substitution). Rule bDIOC |SEQUENCEe executes a step in the
first process of a sequential composition, while rule bDIOC |SEQ-ENDe acknowledges
the termination of the first process, starting the second one. Rule bDIOC |PARALLELe

39

Chapter 4. Dynamic Choreographies

[[e]]ΣR
= v

〈Σ, I, i: o : R(e)→ S(x)〉 o:R(v)→S(x)−−−−−−−→ 〈Σ, I, i: x@S = v〉
bDIOC |INTERACTIONe

[[e]]ΣR
= v

〈Σ, I, i: x@R = e〉 τ−→ 〈Σ[v/x, R], I,1〉
bDIOC |ASSIGNe

〈Σ, I, I〉 µ−→ 〈Σ, I′, I ′〉 µ 6=
√

〈Σ, I, I;J 〉 µ−→ 〈Σ, I′, I ′;J 〉
bDIOC |SEQUENCEe

〈Σ, I, I〉
√
−→ 〈Σ, I, I ′〉 〈Σ, I,J 〉 µ−→ 〈Σ, I,J ′〉
〈Σ, I, I;J 〉 µ−→ 〈Σ, I,J ′〉

bDIOC |SEQ-ENDe

〈Σ, I, I〉 µ−→ 〈Σ, I′, I ′〉 µ 6=
√

〈Σ, I, I ‖ J 〉 µ−→ 〈Σ, I′, I ′ ‖ J 〉
bDIOC |PARALLELe

〈Σ, I, I〉
√
−→ 〈Σ, I, I ′〉 〈Σ, I,J 〉

√
−→ 〈Σ, I,J ′〉

〈Σ, I, I ‖ J 〉
√
−→ 〈Σ, I, I ′ ‖ J ′〉

bDIOC |PAR-ENDe

[[b]]ΣR
= true

〈Σ, I, i: if b@R {I} else {I ′}〉 τ−→ 〈Σ, I, I〉
bDIOC |IF-THENe

[[b]]ΣR
= false

〈Σ, I, i: if b@R {I} else {I ′}〉 τ−→ 〈Σ, I, I ′〉
bDIOC |IF-ELSEe

[[b]]ΣR
= true

〈Σ, I, i: while b@R {I}〉 τ−→ 〈Σ, I, I; i: while b@R {I}〉
bDIOC |WHILE-UNFOLDe

[[b]]ΣR
= false

〈Σ, I, i: while b@R {I}〉 τ−→ 〈Σ, I,1〉
bDIOC |WHILE-EXITe

roles(I ′) ⊆ roles(I) I ′ ∈ I connected(I ′) freshIndexes(I ′)

〈Σ, I, i: scope @r {I}〉 I
′
−→ 〈Σ, I, I ′〉

bDIOC |UPe

〈Σ, I, i: scope @r {I}〉 no-up−−−→ 〈Σ, I, I〉
bDIOC |NOUPe

〈Σ, I,1〉
√
−→ 〈Σ, I,0〉

bDIOC |ENDe
〈Σ, I, I〉 I′−→ 〈Σ, I′, I〉

bDIOC |CHANGE-UPDATESe

Figure 4.3: Annotated DIOC system semantics.

40

4.2. Dynamic Interaction-Oriented Choreographies

roles(i: o : R(e)→ S(x)) = {R, S}
roles(1) = roles(0) = ∅
roles(i: x@R = e) = {R}
roles(I; I ′) = roles(I|I ′) = roles(I) ∪ roles(I ′)
roles(i: if b@R {I} else {I ′}) = {R} ∪ roles(I) ∪ roles(I ′)
roles(i: while b@R {I}) = roles(i: scope @R {I}) = {R} ∪ roles(I)

Figure 4.4: Auxiliary function roles.

allows a process in a parallel composition to compute, while rule bDIOC |PAR-ENDe
synchronises the termination of two parallel processes. Rules bDIOC |IF-THENe and
bDIOC |IF-ELSEe evaluate the boolean guard of a conditional, selecting the “then” and
the “else” branch, respectively. Rules bDIOC |WHILE-UNFOLDe and bDIOC |WHILE-EXITe
correspond respectively to the unfolding of a while loop when its condition is sat-
isfied and to its termination otherwise. The rules bDIOC |UPe and bDIOC |NOUPe deal
with updates: the former applies an update, while the latter allows the body of the
scope to be executed without updating it. More precisely, Rule bDIOC |UPe models
the application of the update I ′ to the scope scope @R {I} which, as a result,
is replaced by the DIOC process I ′. In the conditions of the rule, we use the
function roles and the predicates connected and freshIndexes. Function roles(I),
defined in Figure 4.4, computes the roles of a DIOC process I. The condition
of the rule requires that the roles of the update are a subset of the roles of the
body of the scope. Predicate connected(I ′) holds if I ′ is connected. Connected-
ness is a well-formedness property of DIOCs and is detailed in § 4.6. Predicate
freshIndexes(I ′) holds if all indexes in I ′ are fresh with respect to all indexes
already present in the target DIOC2. Rule bDIOC |NOUPe, used when no update is
applied, removes the scope boundaries and starts the execution of the body of
the scope. Rule bDIOC |ENDe terminates the execution of an empty process. Rule
bDIOC |CHANGE-UPDATESe allows the set I of available updates to change. This rule is
always enabled and models the fact that the set of available updates is not con-
trolled by the system, but by the external world: the set of updates can change at
any time, the system cannot forbid or delay these changes, and the system is not
notified when they happen.

Remark 1. Whether to update a scope or not, and which update to apply if many
are available, is completely non deterministic. We have adopted this view to max-
imise generality. However, for practical applications it is also possible to reduce

2We do not give a formal definition of freshIndexes(I ′) to keep the presentation simple. How-
ever, freshness of indexes can be formally ensured using restriction as in π-calculus [5].

41

Chapter 4. Dynamic Choreographies

the non-determinism using suitable policies to decide when and whether a given
update applies. One of such policies is defined in AIOCJ (see § 5.1).

We can finally provide the definition of DIOC traces and weak DIOC traces,
which we use to express our results of behavioural correspondence between DIOCs
and DPOCs. Intuitively, in DIOC traces all the performed actions are observed,
whilst in weak DIOC traces silent actions τ are not visible.

Definition 4 (DIOC traces). A (strong) trace of a DIOC system 〈Σ1, I1, I1〉 is a
sequence (finite or infinite) of labels µ1, µ2, . . . such that there is a sequence of
DIOC system transitions 〈Σ1, I1, I1〉

µ1−→ 〈Σ2, I2, I2〉
µ2−→

A weak trace of a DIOC system 〈Σ1, I1, I1〉 is a sequence of labels µ1, µ2, . . .
obtained by removing all silent labels τ from a trace of 〈Σ1, I1, I1〉.

4.3 Dynamic Process-Oriented Choreographies
In this section we define the syntax and semantics of DPOCs, the target language
of our projection from DIOCs. We remind that DIOCs are not directly executable
since their basic primitives describe distributed interactions. On the contrary,
mainstream languages like Java and C, used for implementation, describe dis-
tributed computations using local behaviours and communication/synchronisation
primitives, such as message send and message receive. In order to describe im-
plementations corresponding to DIOCs we introduce the DPOC language, a core
language based on this kind of primitives, but tailored to program updatable sys-
tems. Indeed, differently from DIOC constructs, DPOC constructs are locally
implementable in any mainstream language. In AIOCJ (see § 5.1) we implement
the DPOC constructs in the Jolie [88] language.

4.3.1 DPOC syntax
DPOCs include processes, ranged over by P, P ′, . . ., describing the behaviour of
participants. (P,Γ)R denotes a DPOC role named R, executing process P in a
local state Γ. Networks, ranged over by N , N ′, . . ., are parallel compositions of
DPOC roles with different names. DPOC systems, ranged over by S, are DPOC
networks equipped with a set of updates I, namely pairs 〈I,N〉.

DPOCs, like DIOCs, feature operations o. Here we call them public operations
to mark the difference with respect to private operations, also called auxiliary
operations, ranged over by o∗. We use o? to range over both public and private op-
erations. Differently from communications on public operations, communications
on private operations have no direct correspondent at the DIOC level. Indeed, we

42

4.3. Dynamic Process-Oriented Choreographies

introduce private operations in DPOCs to implement the synchronisation mecha-
nisms needed to realise the global constructs of DIOCs (conditionals, while loops,
and scopes) at DPOC level.

Like DIOC constructs, also DPOC constructs are annotated using indexes. How-
ever, in DPOCs we use two kinds of indexes: normal indexes i ∈ N and auxiliary
indexes of the forms iT, iF, i?, and iC where i ∈ N. Auxiliary indexes are intro-
duced by the projection, described in § 4.4, and are described in detail there. We
range over DPOC indexes with ι.

In DPOCs, normal indexes are also used to prefix the operations of sends and
receives. Thus, a send and a receive can interact only if they are on the same
operation and they are prefixed by the same normal index. This is needed to avoid
interferences between different communications, in particular when one of them
comes from an update. We will describe in greater detail this issue later on.

The syntax of DPOCs is the following.

P ::= ι: i.o? : x from R (receive)
| ι: i.o? : e to R (send)
| i: i.o∗ : X to R (send-update)
|P ;P ′ (sequence)
|P | P ′ (parallel)
| ι: x = e (assignment)

|1 (inaction)
|0 (end)
| i: if b {P} else {P ′} (conditional)
| i: while b {P} (while)
| i: scope @R {P} roles {S} (scope-coord)
| i: scope @R {P} (scope)

X ::= no | P N ::= (P,Γ)R | N ‖ N ′

DPOC processes include receive action ι : i.o? : x from R on a specific opera-
tion i.o? (either public or private) of a message from role R to be stored in variable
x, send action ι : i.o? : e to R of the value of an expression e to be sent to role
R, and higher-order send action i : i.o∗ : X to R of the higher-order argument X
to be sent to role R. Here X may be either a DPOC process P , which is the new
code for a scope in R, or a token no, notifying that no update is needed. P ;P ′ and
P |P ′ denote the sequential and parallel composition of P and P ′, respectively.
Processes also feature assignment ι : x = e of the value of expression e to vari-
able x, the process 1, that can only successfully terminate, and the terminated
process 0. DPOC processes also include conditionals i : if b {P} else {P ′}
and loops i: while b {P}. Finally, there are two constructs for scopes. Construct
i: scope @R {P} roles {S} defines a scope with body P and set of participants
S, and may occur only inside role R, which acts as coordinator of the update. The
shorter version i : scope @R {P} is used instead when the role R is not the co-
ordinator of the update. In fact, only the coordinator needs to know the set S of
involved roles to be able to send to them their updates.

43

Chapter 4. Dynamic Choreographies

4.3.2 DPOC semantics
DPOC semantics is defined in two steps: we define the semantics of DPOC roles
first, and then we define how roles interact giving rise to the semantics of DPOC
systems.

Definition 5 (DPOC roles semantics). The semantics of DPOC roles is defined as
the smallest LTS closed under the rules in Figure 4.5, where we report the rules
dealing with computation, and Figure 4.6, in which we define the rules related to
updates. Symmetric rules for parallel composition have been omitted.

DPOC role semantics. We use δ to range over labels. Possible values for δ are
as follows:

δ ::= i.o?(x← v)@S : R (receive) | i.o?〈v〉@S : R (send)

| i.o∗(← X)@S : R (receive-update) | i.o∗〈X〉@S : R (send-update)
| no-up (no-update) | I (update)
|
√

(termination) | τ (silent)

The semantics is in the early style. Rule bDPOC |RECVe receives a value v from role
S and assigns it to local variable x of R. Similarly to Rule bDIOC |INTERACTe (see
Figure 4.3), the reception reduces to an assignment that inherits the index i from
the receive primitive.

Rules bDPOC |SENDe and bDPOC |SEND-UPe execute send and higher-order send ac-
tions, respectively. Send actions evaluate expression e in the local state Γ. Rule
bDPOC |ONEe terminates an empty process. Rule bDPOC |ASSIGNe executes an assign-
ment ([v/x] represents the substitution of value v for variable x). Rule
bDPOC |SEQUENCEe executes a step in the first process of a sequential composition,
while Rule bDPOC |SEQ-ENDe acknowledges the termination of the first process, start-
ing the second one. Rule bDPOC |PARALLELe allows a process in a parallel composi-
tion to compute, while Rule bDPOC |PAR-ENDe synchronises the termination of two
of parallel processes. Rules bDPOC |IF-THENe and bDPOC |IF-ELSEe select the “then” and
the “else” branch in a conditional, respectively. Rules bDPOC |WHILE-UNFOLDe and
bDPOC |WHILE-EXITe model respectively the unfolding and the termination of a loop.

The rules reported in Figure 4.6 deal with code updates. Rules bDPOC |LEAD-UPe
and bDPOC |LEAD-NOUPe specify the behaviour of the coordinator of the update, re-
spectively when an update is performed and when no update is performed. Rules
bDPOC |UPe and bDPOC |NOUPe are the corresponding rules for other roles. The rules
exploit private operations sb∗ and se∗ to coordinate the beginning and the end of
the update, respectively. Communications on sb∗ also carry the new code if the

44

4.3. Dynamic Process-Oriented Choreographies

(1,Γ)R

√
−→ (0,Γ)R

bDPOC |ONEe [[e]]Γ = v

(ι: x = e,Γ)R
τ−→ (1,Γ[v/x])R

bDPOC |ASSIGNe

[[e]]Γ = v(
ι: i.o? : e to S,Γ

)
R

i.o?〈v〉@S:R−−−−−−→ (1,Γ)R

bDPOC |SENDe

(
ι: i.o? : x from S,Γ

)
R

i.o?(x←v)@S:R−−−−−−−−→ (ι: x = v,Γ)R

bDPOC |RECVe

(
i: i.o? : X to S,Γ

)
R

i.o?〈X〉@S:R−−−−−−→ (1,Γ)R

bDPOC |SEND-UPe

(P,Γ)R
δ−→ (P ′,Γ′)R δ 6=

√

(P ;Q,Γ)R
δ−→ (P ′;Q,Γ′)R

bDPOC |SEQUENCEe

(P,Γ)R

√
−→ (P ′,Γ)R (Q,Γ)R

δ−→ (Q′,Γ′)R

(P ;Q,Γ)R
δ−→ (Q′,Γ′)R

bDPOC |SEQ-ENDe

(P,Γ)R
δ−→ (P ′,Γ′)R δ 6=

√

(P | Q,Γ)R
δ−→ (P ′ | Q,Γ′)R

bDPOC |PARALLELe

(P,Γ)R

√
−→ (P ′,Γ)R (Q,Γ)R

√
−→ (Q′,Γ)R

(P | Q,Γ)R

√
−→ (P ′ | Q′,Γ)R

bDPOC |PAR-ENDe

[[b]]Γ = true

(i: if b {P} else {P ′},Γ)R
τ−→ (P,Γ)R

bDPOC |IF-THENe

[[b]]Γ = false

(i: if b {P} else {P ′},Γ)R
τ−→ (P ′,Γ)R

bDPOC |IF-ELSEe

[[b]]Γ = true

(i: while b {P},Γ)R
τ−→ (P ; i: while e {P},Γ)R

bDPOC |WHILE-UNFOLDe

[[b]]Γ = false

(i: while b {P},Γ)R
τ−→ (1,Γ)R

bDPOC |WHILE-EXITe

Figure 4.5: DPOC role semantics. Computation rules. (Update rules in Figure 4.6)

45

Chapter 4. Dynamic Choreographies

roles(I) ⊆ S freshIndexes(I) connected(I)

(i: scope @R {P} roles {S},Γ)R
I−→

∏

Rj∈S\{R}
i: i.sb∗i : π(I, Rj) to Rj ;

π(I, R);∏
Rj∈S\{r}

i: i.se∗i : _ from Rj , Γ

R

bDPOC |LEAD-UPe

(i: scope @R {P} roles {S},Γ)R
no-up−−−→(∏

Rj∈S\{R}
i: i.sb∗i : no to Rj ;P ;

∏
Rj∈S\{R}

i: i.se∗i : _ from Rj ,Γ

)
R

bDPOC |LEAD-NOUPe

(i: scope @S {P},Γ)R
i.sb∗i (←P ′)@S:R−−−−−−−−−−→ (P ′; i: i.se∗i : ok to S,Γ)

R

bDPOC |UPe

(i: scope @S {P},Γ)R
i.sb∗i (←no)@S:R−−−−−−−−−→ (P ; i: i.se∗i : ok to S,Γ)

R

bDPOC |NOUPe

Figure 4.6: DPOC role semantics. Update rules. (Computation rules in Figure 4.5)

update is performed, and a token no otherwise. Communications on se∗ carry no
relevant data: they are used for synchronisation purposes only.

Rule bDPOC |LEAD-UPemodels the fact that the coordinator R of the update applies
an update I. The premises of Rule bDPOC |LEAD-UPe are similar to those of Rule
bDIOC |UPe (see Figure 4.3). Function roles is used to check that the roles in I are
included in the roles of the scope. Freshness of indexes is checked by predicate
freshIndexes, and well formedness of I by predicate connected (formally defined
later on, in Definition 10 in § 4.6).

It is important that the decision on whether to update or not is taken by the
unique coordinator R for two reasons. First, R ensures that all involved roles agree
on whether to update or not. Second, since the set of updates may change at any
time, the choice of the update inside I needs to be atomic, and this is guaranteed
using a unique coordinator. The coordinator R also generates the processes to be
executed by the roles in S using the process-projection function π (detailed in
§ 4.4). More precisely, π(I, Ri) generates the code for role Ri. The processes
π(I, Ri) are sent via auxiliary higher-order communications to the roles that have
to execute them. These communications also notify the other roles that they can
start executing the new code. Here, and in the remainder of the paper, we define∏

Ri∈S Pi as the parallel composition of DPOC processes Pi for Ri ∈ S.
After the communication of the updated code to the other participants, R starts

46

4.3. Dynamic Process-Oriented Choreographies

its own updated code π(I, R). Finally, auxiliary communications se∗i are used to
synchronise the end of the execution of the update (here _ denotes a fresh variable
to store the synchronisation message ok). Summarising, during scope execution
auxiliary communications ensure that the update is performed in a coordinated
way, i.e., the roles agree on when the scope starts and terminates and on whether
the update is performed or not.

Rule bDPOC |LEAD-NOUPe defines the behaviour of the coordinator R when no up-
date is applied. In this case, R sends a token no to the other involved roles, noti-
fying them that no update is applied and that they can start executing their code.
End of scope synchronisation follows that of Rule bDPOC |LEAD-UPe.

Rules bDPOC |UPe and bDPOC |NOUPe define the behaviour of the other roles in-
volved in the scope. The scope waits for a message from the coordinator. If the
content of the message is no, the body of the scope is executed. Otherwise, the
content of the message is a process P ′ which is executed instead of the body of
the scope.

DPOC system semantics.

Definition 6 (DPOC systems semantics). The semantics of DPOC systems is de-
fined as the smallest LTS closed under the rules in Figure 4.7. Symmetric rules
for parallel composition have been omitted.

We use η to range over DPOC systems labels. Possible values of η are as
follows:

η ::= o? : R(v)→ S(x) (interaction)
| o∗ : R(X)→ S() (interaction-update)
| δ (role label)

Rules bDPOC |LIFTe and bDPOC |LIFT-UPe lift role transitions to the system level.
Rule bDPOC |LIFT-UPe also checks that the update I belongs to the set of currently
available updates I. Rule bDPOC |SYNCHe synchronises a send with the correspond-
ing receive, producing an interaction. Rule bDPOC |SYNCH-UPe is similar, but it deals
with higher-order interactions. Note that Rules bDPOC |SYNCHe and bDPOC |SYNCH-UPe
remove the prefixes from DPOC operations in transition labels. The labels of
these transitions store the information on the occurred communication: label o? :
R1(v) → R2(x) denotes an interaction on operation o? from role R1 to role R2

where the value v is sent by R1 and then stored by R2 in variable x. Label
o∗ : R1(X) → R2() denotes a similar interaction, but concerning a higher-order

47

Chapter 4. Dynamic Choreographies

N δ−→ N ′ δ 6= I
〈I,N〉 δ−→ 〈I,N ′〉

bDPOC |LIFTe N I−→ N ′ I ∈ I

〈I,N〉 I−→ 〈I,N ′〉
bDPOC |LIFT-UPe

〈I,N〉 i.o?〈v〉@S:R−−−−−−→ 〈I,N ′〉 〈I,N ′′〉 i.o?(x←v)@R:S−−−−−−−−→ 〈I,N ′′′〉

〈I,N ‖ N ′′〉 o?:R(v)→S(x)−−−−−−−→ 〈I,N ′ ‖ N ′′′〉
bDPOC |SYNCHe

〈I,N〉 i.o∗〈X〉@S:R−−−−−−→ 〈I,N ′〉 〈I,N ′′〉 i.o∗(←X)@R:S−−−−−−−−→ 〈I,N ′′′〉

〈I,N ‖ N ′′〉 o∗:R(X)→S()−−−−−−−→ 〈I,N ′ ‖ N ′′′〉
bDPOC |SYNCH-UPe

〈I,N〉 η−→ 〈I,N ′〉 η 6=
√

〈I,N ‖ N ′′〉 η−→ 〈I,N ′ ‖ N ′′〉
bDPOC |EXT-PARALLELe

〈I,N〉
√
−→ 〈I,N ′〉 〈I,N ′′〉

√
−→ 〈I,N ′′′〉

〈I,N ‖ N ′′〉
√
−→ 〈I,N ′ ‖ N ′′′〉

bDPOC |EXT-PAR-ENDe

〈I,N〉 I′−→ 〈I′,N〉
bDPOC |CHANGE-UPDATESe

Figure 4.7: DPOC system semantics.

48

4.4. Projection Function

valueX , which can be either the code used in the update or a token no if no update
is performed. No receiver variable is specified, since the received value becomes
part of the code of the receiving process. Rule bDPOC |EXT-PARe allows a network
inside a parallel composition to compute. Rule bDPOC |EXT-PAR-ENDe synchronises
the termination of parallel networks. Finally, Rule bDPOC |CHANGE-UPDATESe allows
the set of updates to change arbitrarily.

We now define DPOC traces and weak DPOC traces, which we later use, along
with DIOC traces and weak DIOC traces, to define our result of correctness.

Definition 7 (DPOC traces). A (strong) trace of a DPOC system 〈I1,N1〉 is a
sequence (finite or infinite) of labels η1, η2, . . . with

ηi ∈ {τ, o? : R1(v)→ R2(x), o∗ : R1(X)→ R2(),
√
, I, no-up, I}

such that there is a sequence of transitions 〈I1,N1〉
η1−→ 〈I2,N2〉

η2−→
A weak trace of a DPOC system 〈I1,N1〉 is a sequence of labels η1, η2, . . . ob-
tained by removing all the labels corresponding to private communications, i.e.,
of the form o∗ : R1(v) → R2(x) or o∗ : R1(X) → R2(), and the silent labels τ ,
from a trace of 〈I1,N1〉.

DPOC traces do not allow send and receive actions. Indeed these actions rep-
resent incomplete interactions, thus they are needed for compositionality reasons,
but they do not represent relevant behaviours of complete systems. Note also
that these actions have no correspondence at the DIOC level, where only whole
interactions are allowed.

Remark 2. Contrarily to DIOCs, DPOCs can deadlock. For instance,

(i: i.o : x from R′,Γ)R

is a deadlocked DPOC network where processes are not terminated and the only
enabled actions are changes of the set of updates (i.e., transitions with label I),
which are not actual system activities, but are taken by the environment.

4.4 Projection Function
We now introduce the projection function proj. Given a DIOC specification, proj
returns a network of DPOC programs that, by interacting, enact the behaviour
defined by the originating DIOC.

We write the projection of a DIOC I as proj(I,Σ), where Σ is a global state.
Informally, the projection of a DIOC is a parallel composition of terms, one for
each role of the DIOC. The body of these roles is computed by the process-
projection function π (defined below). Given a DIOC and a role name R, the

49

Chapter 4. Dynamic Choreographies

process-projection returns the process corresponding to the local behaviour of role
R. Since the roles executing the process-projections are composed in parallel, the
projection of a DIOC program results into the DPOC network of the projected
roles.

To give the formal definition of projection, we first define ‖i∈I Ni as the parallel
composition of networks Ni for i ∈ I .

Definition 8 (Projection). The projection of a DIOC process I with global state
Σ is the DPOC network defined by:

proj(I,Σ) =‖
S∈roles(I)

(π(I, S),ΣS)S

The process-projection function that derives DPOC processes from DIOC pro-
cesses is defined as follows.

Definition 9 (Process-projection). Given an annotated DIOC process I and a role
R the projected DPOC process π(I, R) is defined as in Figure 4.8.

With little abuse of notation, we write roles(I, I ′) for roles(I) ∪ roles(I ′). We
assume that variables xi are never used in the DIOC to be projected and we use
them for auxiliary synchronisations.

The projection is homomorphic for sequential and parallel composition, 1 and
0. The projection of an assignment is the assignment on the role performing it
and 1 on other roles. The projection of an interaction is a send on the sender role,
a receive on the receiver, and 1 on any other role. The projection of a scope is
a scope on all its participants. On its coordinator it also features a clause that
records the roles of the involved participants. On the roles not involved in the
scope the projection is 1. Projections of conditional and while loop are a bit more
complex, since they need to coordinate a distributed computation. To this end
they exploit communications on private operations. In particular, cnd∗i coordi-
nates the branching of conditionals, carrying information on whether the “then”
or the “else” branch needs to be taken. Similarly, wb∗i coordinates the beginning
of a while loop, carrying information on whether to loop or to exit. Finally, we∗i
coordinates the end of the body of the while loop. This closing operation carries
no relevant information and it is just used for synchronisation purposes. In order
to execute a conditional i: if b@R {I} else {I ′}, the coordinator R of the condi-
tional locally evaluates the guard and tells the other roles which branch to choose
using auxiliary communications on cnd∗i . Finally, all the roles involved in the
conditional execute their code corresponding to the chosen branch. Execution of
a loop i: while b@R {I} is similar, with two differences. First, end of loop syn-
chronisation on operations we∗i is used to agree on when an iteration is terminated,
and a new one can be started. Second, communication of whether to loop or to

50

4.4. Projection Function

π(1, S) = 1 π(0, S) = 0

π(I; I ′, S) = π(I, S);π(I ′, S) π(I|I ′, S) = π(I, S)|π(I ′, S)

π(i: x@R = e, R) = i: x = e

π(i: x@R = e, S) and S 6= R = 1

π(i: o : R1(e)→ R2(x), R1) = i: i.o : e to R2

π(i: o : R1(e)→ R2(x), R2) = i: i.o : x from R1

π(i: o : R1(e)→ R2(x), S)
and S 6∈ {R1, R2}

= 1

π(i: if b@R {I} else {I ′}, R) =

i: if b

(∏

R′∈roles(I,I′)\{R}
iT: i.cnd

∗
i : true to R′

)
;

π(I, R)

else

(∏

R′∈roles(I,I′)\{R}
iF: i.cnd

∗
i : false to R′

)
;

π(I ′, R)

π(i: if b@R {I} else {I ′}, S)

and S ∈ roles(I, I ′) \ {R} = i?: i.cnd∗i : xi from R; i: if xi {π(I, S)} else {π(I ′, S)}

π(i: if b@R {I} else {I ′}, S)
and S 6∈ roles(I, I ′) ∪ {R} = 1

π(i: while b@R {I}, R) =

i: while b
{

(∏
R′∈roles(I)\{R}

iT: i.wb
∗
i : true to R′

)
; π(I, R);

∏
R′∈roles(I)\{R}

iC: i.we
∗
i : _ from R′

}
;

∏
R′∈roles(I)\{R}

iF: i.wb
∗
i : false to R′

π(i: while b@R {I}, S)
and S ∈ roles(I) \ {R} =

i?: i.wb∗i : xi from R;

i: while xi

 π(I, S);
iC: i.we

∗
i : ok to R;

i?: i.wb∗i : xi from R

π(i: while b@R {I}, S)

and S 6∈ roles(I) ∪ {R} = 1

π(i: scope @R {I}, R) = i: scope @R {π(I, R)} roles {roles(I)}

π(i: scope @R {I}, S)
and S ∈ roles(I) \ {R} = i: scope @R {π(I, S)}

π(i: scope @R {I}, S)
and S 6∈ roles(I) ∪ {R} = 1

Figure 4.8: process-projection function π.

51

Chapter 4. Dynamic Choreographies

exit is more tricky than communication on the branch to choose in a conditional.
Indeed, there are two points in the projected code where the coordinator R sends
the decision: the first is inside the body of the loop and it is used if the decision is
to loop; the second is after the loop and it is used if the decision is to exit. Also,
there are two points where these communications are received by the other roles:
before their loop at the first iteration, inside the body of the loop during previous
iteration in the others.

One has to keep attention since, by splitting an interaction into a send and a
receive primitive, primitives corresponding to different interactions, but on the
same operation, may interfere.

Example 1. We illustrate the issue of interferences using the two DPOC processes
below, identified by their respective roles, R1 (right) and R2 (left), assuming that
operations are not prefixed by indexes. We describe only R1 as R2 is its dual. At
Line 1, R1 sends a message to R2 on operation o. In parallel with the send, R1 had
a scope (Lines 3–5) that performed an update. The new code (Line 4) contains a
send on operation o for role R2. Since the two sends and the two receives share
the same channel (o) and run in parallel, they can interfere with each other.

process R1

1. 1: o : e1 to R2

2. |
3. // update auxiliary code
4. 2: o : e2 to R2

5. // update auxiliary code

process R2

1. 1: o : x1 from R2

2. |
3. // update auxiliary code
4. 2: o : x2 from R2

5. // update auxiliary code

Note that this interference cannot be statically avoided since updates come from
outside and one cannot know in advance which operations they use.

For this reason, in § 4.3 we introduced prefixes for DPOC operations.
A similar problem may occur also for auxiliary communications. In particular,

imagine to have two parallel conditionals executed by the same role. We need to
avoid that, e.g., the decision to take the “else” branch on the first conditional is
wrongly taken by some role as a decision concerning the second conditional. To
avoid this problem, we prefix private operations using the index i of the condi-
tional. In this way, communications involving distinct conditionals cannot inter-
act. Note that communications concerning the same conditional (or while loop)
may share the same operation name and prefix. However, since all auxiliary com-
munications are from the coordinator of the construct to the other roles involved
in it, or vice versa, interferences are avoided.

52

4.5. Running Example: Projection and Execution

We now describe how to generate indexes for statements in the projection. As
a general rule, all the DPOC constructs obtained projecting a DIOC construct
with index i have index i. The only exception are the indexes of the auxiliary
communications of the projection of conditionals and while loops.

Provided i is the index of the conditional: i) in the projection of the coordinator
we index the auxiliary communications for selecting the “then” branch with index
iT, the ones for selecting the “else” branch with index iF; ii) in the projection of
the other roles involved in the conditional we assign the index i? to the auxiliary
receive communications. To communicate the evaluation of the guard of a while
loop we use the same indexing scheme (iT, iF, and i?) used in the projection of
conditional. Moreover, all the auxiliary communications for end of loop synchro-
nisation are indexed with iC.

4.5 Running Example: Projection and Execution
In this section we use our running example (see Figure 4.2) to illustrate the pro-
jection and execution of DIOC programs.

4.5.1 Projection

Given the code in Figure 4.2, we need to annotate it to be able to project it (we re-
mind that in § 4.4 we defined our projection function on well-annotated DIOCs).
Since we wrote one instruction per Line in Figure 4.2, we annotate every instruc-
tion using its line number as index. This results in a well-annotated DIOC.

From the annotated DIOC, the projection generates three DPOC processes for
the Seller, the Buyer, and the Bank, respectively reported in Figures 4.9, 4.11,
and 4.10. To improve readability, we omit some 1 processes. In the projection of
the program, we also omit to write the prefix operations since it is always equal to
the numeric part of the index of their correspondent construct. Finally, we write
auxiliary communications in grey.

4.5.2 Runtime Execution

We now focus on an excerpt of the code to exemplify how updates are performed
at runtime. We consider the code of the scope at Lines 6–9 of Figure 4.2. In
this execution scenario we assume to introduce in the set of available updates the
update presented in Figure 4.1, which enables the use of a fidelity card to provide
a price discount. Below we consider both the DIOC and the DPOC level, dropping
some 1s to improve readability.

53

Chapter 4. Dynamic Choreographies

1 3?: wb∗3 : x3 from Buyer;
2 3: while (x3){
3 5: priceReq : order from Buyer;
4 6: scope @Seller{
5 7: order_price = getPrice(order);
6 8: offer : order_price to Buyer

7 } roles { Seller, Buyer };
8 3C: we

∗
3 : ok to Buyer;

9 3?: wb∗3 : x3 from Buyer

10 };
11 15?: cnd∗15 : x15 from Buyer;
12 15: if (x15){
13 16: payReq : payDesc(order_price) to Bank;
14 22?: cnd∗22 : x22 from Bank;
15 22: if (x22){
16 23: confirm : _ from Bank}
17 }

Figure 4.9: Seller DPOC Process.

1 15?: cnd∗15 : x15 from Buyer;
2 15: if (x15){
3 16: payReq : desc from Seller;
4 17: scope @Bank{
5 18: payment_ok = true;
6 19: pay : auth from Buyer;
7 // code for the payment
8 } roles { Buyer, Bank };
9 22: if (payment_ok){

10 {22T: cnd∗22 : true to Seller

11 | 22T: cnd∗22 : true to Buyer};
12 { 23: confirm : null to Seller

13 | 25: confirm : null to Buyer

14 }
15 } else {
16 {22F: cnd∗22 : false to Seller

17 | 22F: cnd∗22 : false to Buyer};
18 27: abort : null to Buyer

19 }
20 }

Figure 4.10: Bank DPOC Process.

1 1: price_ok = false;
2 2: continue = true;
3 3: while (!price_ok and continue){
4 3T: wb

∗
3 : true to Seller;

5 4: prod = getInput();
6 5: priceReq : prod to Seller;
7 6: scope @Seller{
8 7: offer : prod_price from Seller

9 };
10 10: price_ok = getInput();
11 11: if (!price_ok){
12 12: continue = getInput()
13 };
14 3C: we

∗
3 : _ from Seller

15 };
16 3F: wb

∗
3 : false to Seller;

17 15: if (price_ok){
18 {
19 15T: cnd

∗
15 : true to Seller

20 | 15T: cnd∗15 : true to Bank};
21 17: scope payment@Bank{
22 19: pay : payAuth(prod_price) to Bank

23 // code for the payment
24 }
25 };
26 22?: cnd∗22 : x22 from Bank;
27 22: if (x22){
28 25: confirm : _ from Bank

29 } else {
30 27: abort : _ from Bank}
31 }

Figure 4.11: Buyer DPOC Process.

54

4.5. Running Example: Projection and Execution

Since we describe a runtime execution, we assume that the Buyer has just sent
the name of the product (s)he is interested in to the Seller (Line 5 of Figure 4.2).
The annotated DIOCs we execute is the following.

1 6: scope @Seller{
2 7: order_price@Seller = getPrice(order);
3 8: offer : Seller(order_price)→ Buyer(prod_price)
4 }

At runtime we apply Rule bDIOC |UPe that substitutes the scope with the new code.
The replacement is atomic. Below we assume that the instructions of the update
are annotated with indexes corresponding to their line number plus 30.

1 31: cardReq : Seller(null)→ Buyer(_);
2 32: card_id@Buyer = getInput();
3 33: card : Buyer(card_id)→ Seller(buyer_id);
4 34: if isV alid(buyer_id)@Seller{
5 35: order_price@Seller = getPrice(order) ∗ 0.9
6 } else {
7 37: order_price@Seller = getPrice(order)
8 };
9 39: offer : Seller(order_price)→ Buyer(prod_price)

Let us now focus on the execution at DPOC level, where the application of
updates is not atomic. The scope is distributed between two participants. The
first step of the update protocol is performed by the Seller, since (s)he is the
coordinator of the update. The DPOC description of the Seller before the update
is:

6: scope @Seller{
7: order_price = getPrice(order);
8: offer : order_price to Buyer

} roles {Seller, Buyer}

When the scope construct is enabled, the Seller non-deterministically selects
whether to update or not and, in case, which update to apply. Here, we assume
that the update using the code in Figure 4.1 is selected. Below we report on the
left the reductum of the projected code of the Seller after the application of Rule
bDPOC |LEAD-UPe. The Seller sends to the Buyer the code — denoted as PB and
reported below on the right — obtained projecting the update on role Buyer.

55

Chapter 4. Dynamic Choreographies

1 6: sb∗6 : PB to Buyer;
2 31: cardReq : null to Buyer;
3 33: card : buyer_id from Buyer;
4 34: if isV alid(buyer_id){
5 35: order_price =
6 getPrice(order) ∗ 0.9
7 } else {
8 37: order_price = getPrice(order)
9 };

10 39: offer : order_price to Buyer;
11 6: se∗6 : _ from Buyer;

PB := 31: cardReq : null from Seller;
32: card_id = getInput();
33: card : card_id to Seller;
39: offer : prod_price from Seller

Above, at Line 1 the Seller requires the Buyer to update, sending to him
the new DPOC fragment to execute. Then, the Seller starts to execute its own
updated DPOC. At the end of execution of the new DPOC code (Line 10) the
Seller waits for the notification of termination of the DPOC fragment executed
by the Buyer.

Let us now consider the process-projection of the Buyer, reported below

6: scope @Seller{
8: offer : order_price from Seller

}

At runtime, the scope waits for the arrival of a message from the coordinator of
the update. In our case, since we assumed that the update is applied, the Buyer

receives using Rule bDPOC |UPe the DPOC fragment PB sent by the coordinator. In
the reductum, PB replaces the scope, followed by the notification of termination
to the Seller.

31: cardReq : null from Seller;
32: card_id = getInput();
33: card : card_id to Seller;
39: offer : prod_price from Seller

6: se∗6 : ok to Seller

Consider now what happens if no update is applied. At DIOC level the Seller
applies Rule bDIOC |NOUPe, which removes the scope and runs its body. At DPOC
level, the update is not atomic. The code of the Seller is the following one.

1 6: sb∗6 : no to Buyer;
2 7: order_price = getPrice(order);
3 8: offer : order_price to Buyer;
4 6: se∗6 : _ from Buyer;

56

4.6. Connected DIOCs

Before executing the code inside the scope, the Seller has to notify the other
roles that they can proceed with their execution (Line 1). Like in the case of
update, the Seller also waits for the notification of the end of execution from the
Buyer (Line 4).

Finally, we report the DPOC code of the Buyer after the reception of the mes-
sage that no update is needed. Rule bDPOC |NOUPe removes the scope and adds the
notification of termination (Line 6) to the coordinator at the end.

1 7: offer : prod_price from Seller;
2 6: se∗6 : ok to Seller;

4.6 Connected DIOCs
We now give a precise definition of the notion of connectedness that we mentioned
in § 4.2.2 and § 4.3.2. In both DIOC and DPOC semantics we checked such
a property of updates with predicate connected, respectively in Rules bDIOC |UPe
(Figure 4.3) and bDPOC |UP-LEADe (Figure 4.6).

To give the intuition of why we need to restrict to connected updates, consider
the scenario below of a DIOC (left side) and its projection (right side).

op1 : A(a)→ B(b);

op2 : C(c)→ D(d)

projection
======⇒

process A
op1 : a to B

process B
op1 : b from A

process C
op2 : c to D

process D
op2 : d from C

DIOCs can express interactions that, if projected as described in § 4.4, can be-
have differently with respect to the originating DIOC. Indeed, in our example we
have a DIOC that composes in sequence two interactions: an interaction between
A and B on operation op1 followed by an interaction between C and D on operation
op2. The projection of the DIOC produces four processes (identified by their role):
A and C send a message to B and D, respectively. Dually, B and D receive a message
form A and C, respectively. In the example, at the level of processes we lose the
global order among the interactions: each projected process runs its code locally
and it is not aware of the global sequence of interactions. Indeed, both sends and
both receives are enabled at the same time. Hence, the semantics of DPOC lets the
two interactions interleave in any order. It can happen that the interaction between
C and D occurs before the one between A and B, violating the order of interactions
prescribed originating DIOC.

57

Chapter 4. Dynamic Choreographies

Restricting to connected DIOCs avoids this kind of behaviours. We formalise
connectedness as an efficient (see Theorem 1) syntactic check. More precisely, we
check for connectedness (for sequence), because, intuitively, we make sure that
the DPOC network obtained by projecting a sequence I; I ′ executes first the ac-
tions in I and then those in I ′, thus respecting the intended semantics of sequential
composition and avoiding undesired behaviours. We highlight that our definition
of connectedness does not hamper programmability and it naturally holds in most
of real-world scenarios (the interested reader can find at the website [89] several
of such scenarios).

Remark 3. There exists a trade-off between efficiency and ease of programming
with respect to the guarantee that all the roles are aware of the evolution of the
global computation. This is a common element of choreographic approaches,
which has been handled in different ways, e.g., i) by restricting the set of well-
formed choreographies to only those that do not produce non-deterministic pro-
jections [11]; ii) by mimicking the non-deterministic behaviour of process-level
networks at choreography level [90]; or iii) by enforcing the order of interaction
with additional auxiliary messages between roles [91].

Our choice of preserving the order of interactions defined at DIOC level fol-
lows the same philosophy of [11], whilst for scopes, conditionals, and while loops
we enforce connectedness with auxiliary messages as done in [91]. We remind
that we introduced auxiliary messages for coordination in the semantics of scopes
at DPOC level (§ 4.3.2) and in the projection (§ 4.4). We choose to add such
auxiliary message to avoid to impose strong constraints on the form of scopes,
conditionals, and while loops, which in the end would pose strong limitations to
the programmers of DIOCs. On the other hand, for interactions we choose to fol-
low a stricter approach by preserving the order of interactions defined at DIOC
level.

To formalise connectedness we introduce, in Figure 4.12, the auxiliary func-
tions transI and transF that, given a DIOC process, compute sets of pairs repre-
senting senders and receivers of possible initial and final interactions in its execu-
tion. We represent one such pair as R → S. Actions located at R are represented
as R→ R. For instance, given an interaction i: o : R(e)→ S(x) both its transI and
transF are {R → S}. For conditional, transI(i: if b@R {I} else {I ′}) = {R →
R} since the first action executed is the evaluation of the guard by role R. The set
transF(i : if b@R {I} else {I ′}) is normally transF(I) ∪ transF(I ′), since
the execution terminates with an action from one of the branches. If instead the
branches are both empty then transF is {R→ R}, representing guard evaluation.

Finally, we give the formal definition of connectedness.

58

4.6. Connected DIOCs

transI(i: o : R(e)→ S(x)) = transF(i: o : R(e)→ S(x)) = {R→ S}
transI(i: x@R = e) = transF(i: x@R = e) = {R→ R}
transI(1) = transI(0) = transF(1) = transF(0) = ∅
transI(I|I ′) = transI(I) ∪ transI(I ′)
transF(I|I ′) = transF(I) ∪ transF(I ′)

transI(I; I ′) =

{
transI(I ′) if transI(I) = ∅
transI(I) otherwise

transF(I; I ′) =

{
transF(I) if transF(I ′) = ∅
transF(I ′) otherwise

transI(i: if b@R {I} else {I ′}) = transI(i: while b@R {I}) = {R→ R}

transF(i: if b@R {I} else {I ′}) =

{R→ R} if
transF(I)∪
transF(I ′)

= ∅

transF(I) ∪ transF(I ′) otherwise

transF(i: while b@R {I}) =

{
{R→ R} if transF(I) = ∅
transF(I) otherwise

transI(i: scope @R {I}) = {R→ R}

transF(i: scope @R {I}) =

{R→ R} if roles(I) ⊆ {R}⋃
R′∈roles(I)r{R}

{R′ → R} otherwise

Figure 4.12: Auxiliary functions transI and transF.

Definition 10 (Connectedness). A DIOC process I is connected if each subterm
I ′; I ′′ of I satisfies

∀ R1 → R2 ∈ transF(I ′),∀ S1 → S2 ∈ transI(I ′′) . {R1, R2} ∩ {S1, S2} 6= ∅

Connectedness can be checked efficiently.

Theorem 1 (Connectedness-check complexity).
The connectedness of a DIOC process I can be checked in time O(n2 log(n)),
where n is the number of nodes in the abstract syntax tree of I.

The proof of the theorem is reported in Appendix A.1.

59

Chapter 4. Dynamic Choreographies

We remind that we allow only connected updates. Indeed, replacing a scope
with a connected update always results in a deadlock- and race-free DIOC. Thus,
one just needs to statically check connectedness of the starting program and of the
updates, and there is no need to perform expensive runtime checks on the whole
application after updates have been performed.

4.7 Correctness
In the previous sections we have presented DIOCs, DPOCs, and described how
to derive a DPOC from a given DIOC. This section presents the main techni-
cal result of this work, namely the correctness of the projection. Moreover, as a
consequence of the correctness, we prove that properties like deadlock-freedom,
termination, and race-freedom are preserved by the projection.

Correctness here means that the weak traces of a connected DIOC coincide with
the weak traces of the projected DPOC.

Definition 11 (Trace equivalence). A DIOC system 〈Σ, I, I〉 and a DPOC system
〈I,N〉 are (weak) trace equivalent iff their sets of (weak) traces coincide.

The proof strategy to prove our main result relies on i) the definition of a notion
of bisimilarity which implies weak trace equivalence and ii) the definition of a
suitable bisimulation relating each well-annotated connected DIOC system with
its projection.

Definition 12 (Weak System Bisimulation). A weak system bisimulation is a rela-
tionR between DIOC systems and DPOC systems such that if (〈Σ, I, I〉 , 〈I′,N〉) ∈
R then:

• if 〈Σ, I, I〉 µ−→ 〈Σ′′, I′′, I ′′〉 then 〈I′,N〉 η1−→, . . . , ηk−→ µ−→ 〈I′′′,N ′′′〉 with
∀ i ∈ [1 . . . k], ηi ∈ {o∗ : R1(v)→ R2(x); o∗ : R1(X)→ R2(); τ} and
(〈Σ′′, I′′, I ′′〉 , 〈I′′′,N ′′′〉) ∈ R;

• if 〈I′,N〉 η−→ 〈I′′′,N ′′′〉 with η ∈ {o? : R1(v) → R2(x); o∗ : R1(X) →
R2();

√
; I; no-up; I′′′,

τ} then one of the following two conditions holds:

– 〈Σ, I, I〉 η−→ 〈Σ′′, I′, I ′′〉 and (〈Σ′′, I′′, I ′′〉 , 〈I′′′,N ′′′〉) ∈ R or

– η ∈ {o∗ : R1(v) → R2(x), o∗ : R1(X) → R2(), τ} and (〈Σ, I, I〉 ,
〈I′′′,N ′′′)〉 ∈ R

Due to the existence of a bisimulation between each well-annotated connected
DIOC system with its projection we can prove that the projection is correct. For-
mally:

60

4.7. Correctness

Theorem 2 (Correctness). For each initial, connected DIOC process I, each
state Σ, each set of updates I, the DIOC system 〈Σ, I, I〉 and the DPOC system
〈I, proj(I,Σ)〉 are weak trace equivalent.

We report the full proof of Theorem 2 in Appendix A.2.

Properties. Since the projection preserves weak traces, we have that trace-based
properties of the DIOC are inherited by the DPOC. A first examples of such prop-
erties is deadlock freedom.

Definition 13 (Deadlock freedom). An internal DIOC (resp. DPOC) trace is ob-
tained by removing transitions labelled I from a DIOC (resp. DPOC) trace. A
DIOC (resp. DPOC) system is deadlock free if all its maximal finite internal traces
have

√
as last label.

Intuitively, internal traces are needed since labels I do not correspond to ac-
tivities of the application and may be executed also after application termination.
The fact that after a

√
only rule updates are possible is captured by the following

lemma.

Lemma 1. For each initial, connected DIOC I, state Σ, and set of updates I, if

〈Σ, I, I〉
√
−→ 〈Σ′, I′, I ′〉 then the only transitions of 〈Σ′, I′, I ′〉 have label I′′ for

some I′′.

Proof. The proof is by case analysis on the rules which can derive a transition
with label

√
. All the cases are easy.

Since by construction initial DIOCs are deadlock free we have that also the
DPOC obtained by projection is deadlock free.

Corollary 1 (Deadlock freedom). For each initial, connected DIOC I, state Σ,
and set of updates I the DPOC system 〈I, proj(I,Σ)〉 is deadlock free.

Proof. Let us first prove that for each initial, connected DIOC I, state Σ, and set
of updates I, the DIOC system 〈Σ, I, I〉 is deadlock free. This amounts to prove
that all its maximal finite internal traces have

√
as last label. For each trace, the

proof is by induction on its length, and for each length by structural induction
on I. The proof is based on the fact that I is initial. The induction considers a
reinforced hypothesis, saying also that:

•
√

may occur only as the last label of the internal trace;

• all the DIOC systems in the sequence of transitions generating the trace, but
the last one, are initial.

61

Chapter 4. Dynamic Choreographies

We have a case analysis on the top-level operator in I. Note that in all the cases
at least a transition is derivable.

Case 0 not allowed since we assumed an initial DIOC.

Case 1 trivial because by Rule bDIOC |ENDe and Lemma 1 its only internal trace is√
.

Case x@R = e the only applicable rule is bDIOC |ASSIGNe that in one step leads to a
1 process. The thesis follows by inductive hypothesis on the length of the trace.

Case o? : R1(e)→ R2(x) the only applicable Rule is bDIOC |INTERACTIONe, which leads
to an assignment. Then the thesis follows by inductive hypothesis on the length
of the trace.

Case I; I ′ the first transition can be derived either by Rule bDIOC |SEQUENCEe or
bDIOC |SEQ-ENDe. In the first case the thesis follows by induction on the length of
the trace. In the second case the trace coincides with a trace of I ′, and the thesis
follows by structural induction.

Case I|I ′ the first transition can be derived either by Rule bDIOC |PARALLELe or by
Rule [PAR-END]. In the first case the thesis follows by induction on the length
of the trace. In the second case the thesis follows by Lemma 1, since the label is√

.

Case if b@R {I} else {I ′} the first transition can be derived using either Rule
bDIOC |IF-THENe or Rule bDIOC |IF-ELSEe. In both the cases the thesis follows by in-
duction on the length of the trace.

Case while b@R {I} the first transition can be derived using either Rule
bDIOC |WHILE-UNFOLDe or Rule bDIOC |WHILE-EXITe. In both the cases the thesis follows
by induction on the length of the trace.

Case scope @R {I} the first transition can be derived using either Rule bDIOC |UPe
or Rule bDIOC |NOUPe. In both the cases the thesis follows by induction on the
length of the trace.

The weak internal traces of the DIOC coincide with the weak internal traces of the
DPOC by Theorem 2, thus the finite weak internal traces end with

√
. The same

holds for the finite strong internal traces, since label
√

is preserved when moving
between strong and weak traces, and no transition can be added after the

√
thanks

to Lemma 1.

DPOCs also inherit termination from terminating DIOCs.

62

4.7. Correctness

Definition 14 (Termination). A DIOC (resp. DPOC) system terminates if all its
internal traces are finite.

Note that with arbitrary sets of updates DIOC termination is never granted if
they contain at least a scope, since it can always be replaced by a non-terminating
update, or it can trigger an infinite chain of updates. Thus, to exploit this result,
one should add constraints on the set of updates ensuring DIOC termination.

Corollary 2 (Termination). If the DIOC system 〈Σ, I, I〉 terminates and I is con-
nected then the DPOC system 〈I, proj(I,Σ)〉 terminates.

Proof. It follows from the fact that only a finite number of auxiliary actions are
added when moving from DIOCs to DPOCs.

Other interesting proprieties derived from weak trace equivalence are freedom
from races and orphan messages. A race occurs when the same receive (resp.
send) may interact with different sends (resp. receives). In our setting, an or-
phan message is an enabled send that is never consumed by a receive. Orphan
messages are more relevant in asynchronous systems, where a message may be
sent, and stay forever in the network, since the corresponding receive operation
may never become enabled. However, even in synchronous systems orphan mes-
sages should be avoided: the message is not communicated since the receive is
not available, hence a desired behaviour of the application never takes place due
to synchronisation problems.

Trivially, DIOCs avoid races and orphan messages since send and receive are
bound together in the same construct. Differently, at the DPOC level, since all
receive of the form ι : i.o? : x from R1 in role R2 may interact with the sends of
the form ι : i.o? : e to R2 in role R1, races may happen. However, thanks to the
correctness of the projection, race freedom holds also for the projected DPOCs.

Corollary 3 (Race freedom). For each initial, connected DIOC I, state Σ, and
set of updates I, if 〈I, proj(I,Σ)〉 η1−→ · · · ηn−→ 〈I′,N〉, where ηi ∈ {τ, o? : R1(v)→
R2(x), o∗ : R1(X) → R2(),

√
, I, no-up, I} for each i ∈ {1, . . . , n}, then in N

there are no two sends (resp. receives) which can interact with the same receive
(resp. send).

Proof. We have two cases, respectively for public and private operations.
For public operations, thanks to Lemma 7, case C1, for each global index ξ there

are at most two communication events with global index ξ. The corresponding
DPOC terms can be enabled only if they are outside of the body of a while loop.
Hence, their index coincides with their global index. Since the index prefixes the
operation, then no interferences with other sends or receives are possible.

For private operations, the reasoning is similar. Note, in fact, that sends or re-
ceives with the same global index can be created only by a unique DIOC construct,

63

Chapter 4. Dynamic Choreographies

but they are never enabled together. This can be seen by looking at the definition
of the projection.

As far as orphan messages are concerned, they may appear in infinite DPOC
computations since a receive may not become enabled due to an infinite loop.
However, as a corollary of trace equivalence, we have that terminating DPOCs
are orphan-message free.

Corollary 4 (Orphan-message freedom). For each initial, connected DIOC I,

state Σ, and set of updates I, if 〈I, proj(I,Σ)〉 η1−→ · · · ηn−→
√
−→ 〈I′,N〉, where ηi ∈

{τ, o? : R1(v) → R2(x), o∗ : R1(X) → R2(),
√
, I, no-up, I}, then N contains no

sends.

Proof. The proof is by case analysis on the rules which can derive a transition
with label

√
. All the cases are easy.

64

CHAPTER 5

Adaptable Interaction-Oriented Choreographies in Jolie

5.1 Introduction

In this section, we present AIOCJ (Adaptable Interaction-Oriented Choreogra-
phies in Jolie), a development framework for adaptable distributed applications [55].
AIOCJ is one of the possible instantiations of our theory of Dynamic Choreogra-
phies presented in Chapter 4 and it gives a tangible proof of the expressiveness
and feasibility of our approach, enabling adaptation of distributed programs (cf.
Chapter 3).

We say that AIOCJ is an instance of our theory because it follows the theory,
but it provides mechanisms to resolve the non-determinism related to the choice
of whether to update or not and on which update to select. Indeed, in AIOCJ
updates are chosen and applied according to the state of the system and of its
running environment. To this end, updates are embodied into adaptation rules,
which specify when and whether a given update can be applied, and to which
scopes. AIOCJ also inherits all the correctness guarantees provided by our theory,
in particular: i) applications are free from deadlocks and races by construction, ii)
applications remain correct after any step of adaptation, and iii) it is possible to
add and remove adaptation rules at runtime.

Below we give a brief overview of the AIOCJ framework by introducing its
components: the Integrated Development Environment (IDE), the AIOCJ com-
piler, and the Runtime Environment.

Integrated Development Environment. AIOCJ supports the writing of programs
and adaptation rules in the Adaptable Interaction-Oriented Choreography (AIOC)
language, an extension of the DIOC language. We discuss the main novelties
of the AIOC language in § 5.1.1. AIOCJ offers an integrated environment for
developing programs and adaptation rules that supports syntax highlighting and

65

Chapter 5. Adaptable Interaction-Oriented Choreographies in Jolie

real-time1 syntax checking. Since checking for connectedness (see § 4.6) of pro-
grams and adaptation rules is polynomial (as proven by Theorem 1), the IDE also
performs real-time checks on connectedness of programs and rules.

Compiler. The AIOCJ IDE also embeds the AIOCJ compiler, which imple-
ments the procedure for projecting AIOCs and adaptation rules into distributed
executable code. The implementation of the compiler is based on the rules for
projecting DIOCs, described in § 4.4. The target language of the AIOCJ compiler
is the Jolie [92] language, which sports primitives similar to those of our DPOC
language. Given an AIOC program, the AIOCJ compiler produces one Jolie pro-
gram, also called service, for each role in the source AIOC. The compilation of an
AIOC rule produces one Jolie service for each role and an additional service that
describes the applicability condition of the rule. All these services are enclosed
into an Adaptation Server, described below.

Runtime Environment. The AIOCJ runtime environment comprises a few Jolie
services that support the execution and adaptation of compiled programs. The
main services of the AIOCJ runtime environment are the Adaptation Manager,
Adaptation Servers, and the Environment. The compiled services interact both
among themselves and with an Adaptation Manager, which is in charge of man-
aging the adaptation protocol. Adaptation Servers contain adaptation rules, and
they can be added or removed dynamically, thus enabling dynamic changes in the
set of rules, as specified by Rule bDIOC |CHANGE-UPDATESe. When started, an Adap-
tation Server registers itself at the Adaptation Manager. The Adaptation Manager
invokes the registered Adaptation Servers to check whether their adaptation rules
are applicable. In order to check whether an adaptation rule is applicable, the cor-
responding Adaptation Server evaluates its applicability condition. Applicability
conditions may refer to the state of the role which coordinates the update, to prop-
erties of the scope, and to properties of the environment, stored in the Environment
service.

In the remainder of this Section we detail the grammar of the AIOC language
used by AIOCJ in § 5.1.1, we illustrate the use of AIOCJ on a simple example in
§ 5.2, we discuss some relevant implementation aspects of AIOCJ in § 5.3, and
we provide provide a preliminary validation in § 5.4.

5.1.1 DIOC Language Extensions in AIOCJ

AIOCs extend DIOCs with:

1In this context, real-time means “while the developer is writing AIOC programs and rules”.

66

5.1. Introduction

• the definition of adaptation rules, instead of updates, that include the infor-
mation needed to evaluate their applicability condition;

• the definition of constructs to express the deployment information needed
to implement real-world distributed applications.

Below we describe in detail, using Extended Backus-Naur Form [93], the new or
refined constructs introduced by the AIOC language.
Function inclusions. The AIOC language can exploit functionalities provided by
external services via the include construct. The syntax is as follows.

Include ::= include ID [,ID]* from "URL" [with PROTOCOL]+

This allows one to reuse existing legacy code and to interact with third-party exter-
nal applications. As an example, the Seller of our running example can exploit
an external database to implement the functionality for price retrieval getPrice,
provided that such a functionality is exposed as a service. If the service is lo-
cated at "socket://myService:8000" and accessible via the "HTTP" protocol
we enable its use with the following inclusion:

include getPrice from "socket :// myService :8000" with "HTTP"

This feature enables a high degree of integration since AIOCJ supports all pro-
tocols provided by the underlying Jolie language, which include TCP/IP, RMI,
SOAP, XML/RPC and their encrypted correspondents over SSL.

External services perfectly fit the theory described in previous sections, since
they are seen as functions, and thus introduced in expressions. In order for the
theory to apply they need to satisfy the condition of never blocking and always
returning a value (possibly an error notification), exactly as other expressions.
Adaptation rules. Adaptation rules extend DIOC updates, and are a key ingredi-
ent of the AIOCJ framework. The syntax of adaptation rules is as follows:

Rule ::= rule {
[Include]*
on { Condition }
do { Choreography }

}

The applicability condition of the adaptation rule is specified using the keyword
on, while the code to install in case adaptation is performed (which corresponds to
the DIOC update) is specified using the keyword do. Optionally, adaptation rules
can include functions they rely on.

The Condition of an adaptation rule is a propositional formula which specifies
when the rule is applicable. To this end it can exploit three sources of informa-
tion: local variables of the coordinator of the update, environmental variables,

67

Chapter 5. Adaptable Interaction-Oriented Choreographies in Jolie

and properties of the scope to which the adaptation rule is applied. Environmental
variables are meant to capture contextual information that is not under the con-
trol of the application (e.g., temperature, time, available resources, . . .). To avoid
amibiguities, local variables of the coordinator are not prefixed, environment vari-
ables are prefixed by E, and properties of the scope are prefixed by N.

For example, if we want to apply an adaptation rule only to those scopes whose
property name is equal to the string "myScope" we can use as applicability condi-
tion the formula N.name == "myScope".
Scopes. As described above, scopes in AIOC also feature a set of properties
(possibly empty). Scope properties describe the current implementation of the
scope, including both functional and non-functional properties. Such properties
are declared by the programmer, and the system only use them to evaluate the
applicability condition of adaptation rules, to decide whether a given adaptation
rule can be applied to a given scope. Thus the syntax for scopes in AIOC is:

scope @ID { Choreography }
[prop { Properties }]?

where clause prop introduces a list of comma-separated assignments of the form
N.ID = Expression.

For instance, the code

scope @A {
// AIOC code

} prop { N.name = "myScope"}

specifies that the scope has a property name set to the string "myScope", thus
satisfying the condition of the adaptation rule above.
Programs. AIOC programs have the following structure.

Program ::=
[Include]*
preamble {

starter: Role
[Location]*

}
aioc { Choreography }

where Include allows one to include external functionalities, as discussed above,
and keyword aioc introduces the behaviour of the program, which is a DIOC
apart for the fact that scopes may define properties, as specified above.

The keyword preamble introduces deployment information, i.e., the definition
of the starter of the AIOC and the Location of participants.

The definition of a starter is mandatory and designs which role is in charge of
waiting for all other roles to be up and running before starting the actual compu-

68

5.2. AIOCJ Practice

tation. Any role can be chosen as starter, but the chosen one needs to be started
first when running the distributed application.
Locations define where the participants of the AIOC will be deployed. They

are specified using the keyword location:

Location ::= location@ID:"URL"

where ID is the name of a role (e.g., Role1) and URL specifies where the service
can be found (e.g., "socket://Role1:8001"). When not explicitly defined, the
projection automatically assigns a distinct local TCP/IP location to each role.

5.2 AIOCJ Practice
Here we present a brief description of how a developer can write an adaptable
distributed system in AIOCJ, execute it, and change its behaviour at runtime by
means of adaptation rules. For simplicity, we reuse here the minimal example
presented in the Introduction, featuring a scope that encloses a price offer from
the Seller to the Buyer and an update — here an adaptation rule — that provides
a discount for the Buyer. We report the AIOC program in the upper part and the
adaptation rule in the lower part of Figure 5.1.

At Line 1 of the AIOC program we have the preamble. The preamble specifies
deployment information, and, in particular, defines the starter, i.e., the service
that ensures that all the participants are up and running before starting the actual
computation. No locations are specified, thus default ones are used. The actual
code is at Lines 3–6, where we declare a scope. At Line 6 we define a property
scope_name of this scope with value "price_inquiry".

Figure 5.2 depicts the process of compilation 1© and execution 2© of the AIOC.
From left to right, we write the AIOC and we compile it into a set of executable
Jolie services (Buyer service and Seller service). To execute the projected system,
we first launch the Adaptation Manager and then the two compiled services, start-
ing from the Seller, which is the starter. Since there is no compiled adaptation
rule, the result of the execution is the offering of the standard price to the Buyer.

Now, let us suppose that we want to adapt our system to offer discounts in the
Fall season. To do that, we can write the adaptation rule shown in the lower part
of Figure 5.1.

Since we want to replace the scope for the price_inquiry, we define that this
rule applies only to scopes with property scope_name set to "price_inquiry".
Furthermore, since we want the update to apply only in the Fall season, we also
specify that the environment variable E.season should match the value "Fall".
The value of E.season is retrieved from the Environment Service.

The body of the adaptation rule specifies the same behaviour described in Fig-

69

Chapter 5. Adaptable Interaction-Oriented Choreographies in Jolie

1 preamble{ starter: Seller }
2 aioc {
3 scope @Seller {
4 order_price@Seller = getPrice(order);
5 offer: Seller(order_price) -> Buyer(prod_price)
6 } prop { N.scope_name = "price_inquiry" }

1 rule {
2 on { N.scope_name == "price_inquiry" and E.season == "Fall" }
3 do {
4 cardReq: Seller(_) -> Buyer(_);
5 card_id@Buyer = getInput("Insert your customer card ID");
6 cardRes: Buyer(card_id) -> Seller(buyer_id);
7 if isValid(buyer_id)@Seller {
8 order_price@Seller = getDiscountedPrice(order , buyer_id);
9 } else {

10 order_price@Seller = getPrice(order)
11 };
12 offer: Seller(order_price) -> Buyer(prod_price)
13 }
14 }

Figure 5.1: An AIOC program (upper part) and an applicable adaptation rule
(lower part).

ure 4.1 in the Introduction: the Seller asks the Buyer to provide its card_id,
which the Seller uses to provide a discount on the price of the ordered prod-
uct. We depict the inclusion of the new adaptation rule and the execution of the
adaptation at point 3© of Figure 5.2 (outlined with dashes). From right to left, we
write the rule and we compile it. The compilation of a (set of) adaptation rule(s) in
AIOCJ produces a service, called Adaptation Server, that the Adaptation Manager
can query to fetch adaptation rules at runtime. The compilation of the adaptation
rule can be done while the application is running. After the compilation, the gen-
erated Adaptation Server is started and registers on the Adaptation Manager. Since
the rule relies on the environment, in order to check its applicability condition we
also need the Environment service to be running. In order for the adaptation rule
to apply we need the environment variable season to have value "Fall".

5.3 Implementation
AIOCJ is composed of two elements: the AIOCJ Integrated Development Envi-
ronment (IDE), named AIOCJ− ecl, and the adaptation middleware that enables

70

5.3. Implementation

Runtime Environment

AIOC

Buyer service

Seller service

Adaptation
Server

Adaptation
Manager

Environment
service

AIOC Language Jolie Language

Adaptation
Rules

AIOC Language

Compilation on

role Buyer

Compilation on

role Seller

Compilation
1

2

3

Figure 5.2: Representation of the AIOCJ framework — Projection and execution
of the example in Figure 5.1.

AIOC programs to adapt, called AIOCJ−mid.
AIOCJ− ecl is a plug-in for Eclipse [94] based on Xtext [95]. Starting from a

grammar, Xtext generates the parser for programs written in the AIOC language.
Result of the parsing is an abstract syntax tree (AST) we use to implement i)
the checker of connectedness for AIOC programs and adaptation rules and ii)
the generation of Jolie code for each role. Since the check for connectedness
has polynomial computational complexity (cf. § 4.6) it is efficient enough to
be performed on-the-fly while editing the code. Figure 5.3 shows AIOCJ− ecl
notifying the error on the first non-connected instruction (Line 13).

As already mentioned, we chose Jolie as target language of the compilation of
AIOCJ because its semantics and language constructs naturally lend themselves to
translate our theoretical results into practice. Indeed, Jolie supports architectural
primitives like dynamic embedding, aggregation, and redirection, which ease the
compilation of AIOCs.

Each scope at the AIOC level is projected into a specific sub-service for each
role. The roles run the projected sub-services by embedding them and access
them via redirection. In this way, we implement adaptation by disabling the de-
fault sub-service and by redirecting the execution to a new one, obtained from the
Adaptation server.

When at runtime the coordinator of the update reaches the beginning of that
scope, it queries the Adaptation Manager for adaptation rules to apply. The Adap-
tation Manager queries each Adaptation Server sequentially, based on their order
of registration. On its turn, each Adaptation Server checks the applicability con-
dition of each of its rules. The first rule whose applicability condition holds is
applied. The adaptation manager sends to the coordinator the updates that are
then distributed to the other involved roles. In each role, the new code replaces

71

Chapter 5. Adaptable Interaction-Oriented Choreographies in Jolie

Figure 5.3: Check for connectedness: sequence.

the old one.
For reason of performances, the implementation differs from the theory in two

respects. First, adaptation rules are compiled statically and not by the coordina-
tor of the update when the update is applied. Second, to ensure that operations
coming from distinct constructs do not interfere — what is guaranteed in the the-
ory by prefixing operations with fresh indexes — we statically check that each
program and each adaptation rule never features two interactions using the same
operation in parallel (we call this property connectedness for parallel), and we run
AIOCs coming from different programs or updates in different namespaces, thus
forbidding interferences between them.

5.4 Validation
In this section, we give a preliminary empirical validation of our implementation.
The main aim is to test how our mechanisms for adaptation impact on perfor-
mances.

In the literature, to the best of our knowledge, there is no approach to adapta-
tion based on choreography programming. Thus, it is difficult to directly compare
our results with other existing approaches. Moreover, we are not aware of any es-
tablished benchmark to evaluate adaptive applications. For this reason, we tested
AIOCJ performances by applying it to two typical programming patterns: pipes

72

5.4. Validation

and fork-joins.
Since we are interested in studying the cost of adaptation, our scenarios contain

minimal computation and are particularly affected by the overhead of the adapta-
tion process. Clearly, the percentage of the overhead due to adaptation will be far
lower in real scenarios, which are usually more computationally intensive. In the
first scenario, we program a pipe executing n tasks (in a pipe, the output of task ti
is given as input to task ti+1, for i ∈ {1, . . . , n − 1}). To keep computation to a
minimum, each task simply computes the increment function.

In the fork-join scenario, n tasks are computed in parallel. Each task processes
one character of a message of length n, shifting it by one position. The message
is stored in an external service.

The code of both scenarios is in Appendix B.1.
To enable adaptation, each task is enclosed in a scope. We test both scenarios

with an increasing number of tasks n ∈ {10, 20, . . . , 100} to study how perfor-
mances scale as the number of adaptation scopes increases. We evaluate perfor-
mances in different contexts, thus allowing us to understand the impact of different
adaptation features, such as scopes, adaptation servers, and adaptation rules.

Context 1 no scopes, no adaptation servers, no rules;

Context 2 each task is enclosed in a scope, no adaptation servers, no rules;

Context 3 each task is enclosed in a scope, one adaptation server, no rules;

Context 4 as Context 3, but now the adaptation server contains 50 rules. Each
rule is applicable to a unique scope i, and no rule is applicable to scopes with
i > 50. The rules are stored in random order.

Context 5 as Context 4, but with 100 rules, one for each scope.

Each rule in Contexts 4 and 5 is applicable to one specific scope only (through a
unique property of the scope), hence when testing for 50 rules, only the first 50
scopes adapt.

In order to reduce variability of performances, we repeated every test 5 times.
We performed our tests on a machine equipped with a 2.6GHz quad-core Intel
Core i7 processor and 16GB RAM. The machine runs Mavericks 10.9.3, Java
1.7.55, and Jolie r.2728. Figure 5.4 shows the tests for the pipe (left) and the fork-
join (right). Both charts display on the x-axis the number of tasks/scopes and on
the y-axis the execution time in milliseconds.

As expected, in both scenarios there is a significant gap between Contexts 1
and 2. In words, the introduction of scopes has a strong effect on performances.
The ratio is 1:13 for the pipe scenario and 1:5.5 for the fork-join scenario. This
is due to the auxiliary communications needed to correctly execute a scope. The

73

Chapter 5. Adaptable Interaction-Oriented Choreographies in Jolie

● ● ● ● ● ● ● ● ● ●

0
20

00
0

40
00

0
60

00
0

80
00

0
Pipe

number of scopes

m
ill

is
ec

on
ds

10 20 30 40 50 60 70 80 90 100

● ● ● ● ● ● ● ● ● ●

0
10

00
30

00
50

00
70

00

Fork−Join

number of scopes

m
ill

is
ec

on
ds

10 20 30 40 50 60 70 80 90 100

● C1: no scopes

C2: scopes, no adaptation server

C3: scopes, 1 adaptation server, no rules

C4: scopes, 1 adaptation server, 50 rules

C5: scopes, 1 adaptation server, 100 rules

Figure 5.4: Times of execution of the pipe (left) and the fork-join (right) scenarios

observed overhead is higher in the pipe scenario, since different scopes check for
adaptation in sequence, while this is done in parallel for the fork-join scenario.

Adding an adaptation server (from Context 2 to Context 3) has little impact on
performances: 19% of decay for pipe, and 17% for fork-join. That is reasonable,
considered that Context 3 just adds one communication wrt Context 2.

On the contrary, there is a notable difference when adding rules to the adap-
tation server (Context 4 is 1.4 times slower than Context 3 for the pipe scenario,
2.9 for the fork-join scenario). In Contexts 4 and 5, performances are really close
up to 50 scopes (in the pipe scenario they almost overlap) although Context 5 has
twice the rules of Context 4. This illustrates that the time to test for applicability
of rules is negligible. Hence, the highest toll on performances is related to actual
adaptation, since it requires to transfer and embed the new code. This is partic-
ularly evident in the fork-join scenario where multiple adaptations are executed
in parallel and the adaptation server becomes a bottleneck. This problem can be
mitigated using multiple distributed adaptation servers.

The fact that the most expensive operations are scope execution and actual adap-
tation is highlighted also by the results below. The table shows the cost of different
primitives, including scopes in different contexts. Times are referred to 5 execu-
tions of the sample code in Appendix B.1.

As future work we will exploit these results to increase the performances of
our framework, concentrating on the bottlenecks highlighted above. For instance,
scope execution (as well as conditionals and cycles) currently requires many aux-
iliary communications ensuring that all the processes agree on the chosen path. In
many cases, some of these communications are not needed, since a process will
eventually discover the chosen path from the protocol communications. Static

74

5.4. Validation

Test Time (ms) Test Time (ms)

assignment 2.2
scope, 1 adaptation server,

1 matching rule
280.6

interaction 4.2
scope, 1 adaptation server,

50 rules, none matching
254.2

if statement 16.6
scope, 1 adaptation server,

50 rules, 1 matching
338.6

scope,
no adaptation server

129.4
scope, 1 adaptation server,
100 rules, none matching

310.2

scope, 1 adaptation
server, no rule

203.8
scope, 1 adaptation server,

100 rules, 1 matching
385

analysis can discover redundant communications and remove them. Another im-
provement is letting the adaptation server send the new code directly to the in-
volved roles, skipping the current forward chain.

75

Chapter 5. Adaptable Interaction-Oriented Choreographies in Jolie

76

Part III

Applied Choreographies

77

78

CHAPTER 6

Applied Choreographies

There is nothing as practical as a good theory.

Kurt Z. Lewin

6.1 Introduction
Our work on Dynamic Choreographies in Chapter 4 and the implementation de-
scribed in Chapter 5 proved that choreographies are a suitable model to tackle
challenging and unsolved problems of distributed systems.

However, we highlight that in the development of AIOCJ, we took a sensible de-
parture from the theoretical model of DIOCs. Indeed, in our theory we defined an
EPP that targets the DPOC language, a process-level language that bases message
passing on names, like DIOCs do. Synchronisation on names (as in CCS and the
π-calculus [49, 5]) simplifies the theoretical treatment and it is used in many other
works on choreographies as programming abstractions [10, 12, 43, 96, 13, 97].
Nevertheless, the compiler provided by AIOCJ targets the Jolie language [92, 50],
which handles communications with message correlation, a standard technique
in Service-Oriented Computing and Web Services that routes messages inspect-
ing the data they carry (e.g., headers) [36, 98]. This makes the EPP provided by
AIOCJ much more technically involved than its formal specification, including
the management of underlying data structures (e.g., message queues) and unex-
pected — not present in the theoretical treatment — communications in the re-
sulting executable code. We remark that a similar occurrence exists between the
choreographic language Chor [99] and its theoretical model [13] and, more in
general, that it is a typical characteristic of implementations of process calculi,
see, e.g., [100, 52].

This key difference between formal models and implementations can compro-
mise the benefits of choreographic programming: the correctness-by-construction

79

Chapter 6. Applied Choreographies

approach and the clear specification of the communications carried out during
execution. Thus we ask:

How can we formalise the implementation of communications in
choreographies?

A satisfactory answer should preserve the correctness-by-construction guarantees
of choreography models down to the level of how communications are concretely
implemented.

A challenging task that requires the definition of a model with i) the typical
clarity of choreography languages and with ii) all the necessary details to formally
reason on how to support communications at the lower level.

Our answer is to develop a theory of Applied Choreographies (AC). AC pro-
vides the simple and intuitive syntax of choreography languages along with the
most advanced features of recent choreography models like modularity, asyn-
chrony, parallelism, and the dynamic creation of multiparty sessions and pro-
cesses. The key contribution of AC lies in its semantics: equipped with a novel
notion of deployment, it lets us reason on how messages are routed between par-
ticipants. Deployments separate the logic of choreographies (message passing,
creation of sessions and processes) from their implementation. Notably, by just
changing the definition of deployments and their effects we can easily formalise
different implementation models, e.g., distributed objects [101], correlation, etc..

In this work, we chose to model correlation because clarifying the relationship
between this communication model and choreographies is a relevant and chal-
lenging task, whose solution immediately yields a practical impact. Indeed, most
practitioners use choreographies to describe correct distributed systems, but they
have to deal with how channel-based interactions (e.g., as in WS-CDL [8]) can be
correctly implemented with message correlation (used in most major frameworks,
including WS-BPEL [36], Java/JMS, C#/.NET, etc.).

Here, we model correlation on notions from Service-Oriented Computing, the
setting where choreographies are used the most as design tool (cf. § 2.4). We
pinpoint the key theoretical problems and formalise the guiding principles devel-
opers should follow to obtain correct implementations. On this result, we define
a correct compiler from AC choreographies to the theoretical model behind the
Jolie language.

Contributions. We list below our main contributions:
Applied Choreographies. AC is a choreography model for the modular develop-
ment of choreographies based on asynchronous message passing. AC captures
how communications among processes are concretely supported via message cor-
relation (§ 6.2). The main novel aspect of AC is a notion of deployment for chore-

80

6.1. Introduction

ographies which, for each process in the choreography, keeps track of i) the lo-
cation of the service in which it executes (multiple processes can run in the same
service), ii) its input message queues (for asynchronous communications), and iii)
its state (the value of its variables). This yields a close representation of how real-
world service-oriented scenarios implement communications, which is the basis
for all of our results.
Type system. We modelled real-world message passing in AC to formalise how
programs may encounter execution errors. For example, it may be impossible to
route a message from one endpoint to another, due to missing information in the
deployment of a choreography (e.g., a suitable input queue at the receiver). This
is a significant departure from previous choreography models, where it is assumed
that communications between two processes can always be performed [10, 43, 12,
102, 96, 13] (cf. Chapter 4). In § 6.3 we present a typing discipline for AC that
prevents communication errors. Our type language is that of standard multiparty
session types [43]. This is a remarkable feature of AC: despite the additional
complexity of its semantics, the complexity of the types a programmer needs to
specify to check a choreography remain unchanged.

Service

Service

Service

Service

DeploymentDeployment

Choreography

Endpoint
Projection

Dynamic Correlation CalculusApplied Choreographies

Choreography

Choreography

Endpoint Choreography

Processes

Step 1 Step 2

Compiler
Endpoint Choreography

Endpoint Choreography

Endpoint Choreography

Endpoint Choreography

Processes

Processes

Processes

Figure 6.1: Overall methodology of Applied Choreographies.

Compilation of AC programs. We define a two-step methodology to transform a
choreography in AC into programs of the Dynamic Correlation Calculus (DCC), a
model for executable code based on message correlation. We depict our methodol-
ogy in Figure 6.1. The first step is a source-to-source Endpoint Projection (as seen
in [14]) which projects a choreography describing the behaviour of many partici-
pants to a series of choreography modules, called Endpoint Choreographies, each
describing the behaviour of a single participant. The second step is a compilation
from endpoint choreographies to DCC programs, which define the behaviour of
services following the Service-Oriented model. Specifically, DCC formalises a
syntax and a semantics for a fragment of the Jolie language. We chose Jolie be-
cause its reference implementation is based on a formal specification [98] called

81

Chapter 6. Applied Choreographies

Correlation Calculus (CC). DCC improves CC by adding message queues that
can be created at runtime, a necessary feature to support our choreography model.
We prove that the compiled processes implement the behaviour of the EPP and
therefore, that of the originating AC program.

6.2 Applied Choreography Language
We introduce Applied Choreographies (AC) that, on key elements of choreogra-
phy calculi like processes, sessions, and roles, introduces the notion of locations.

6.2.1 Syntax

In the syntax of AC (Figure 6.2) C denotes a choreography, p, q processes, A, B
roles, k sessions, o operations, l locations, X procedures, and x variables1. We
consider all sets of identifiers disjoint. Processes are independent execution units
that proceed in parallel. They can communicate with each other through sessions.
Roles track which role each process plays in a session. As in standard multiparty
session types [43] Roles are the basis for our typing discipline in § 6.3. Locations
represent publicly reachable addresses, where we assume that an always-available
service supports the creation and the execution of new processes. We introduce
the notion of location to model the deployment of processes into services. Fol-
lowing the SOC model, a service is a container, reachable at a defined address (the
location), where processes execute in parallel. In § 6.6, when compiling ACs to
the lower language DCC, we map each location to a concrete service implemen-
tation. Using locations makes us depart from previous choreography languages,
which do not consider the deployment of processes in their models. AC includes
complete and partial actions to support modularity, as in previous choreography
models [14]. A complete action specifies the behaviour of all participants involved
in the action. A partial action describes the behaviour of only some participants.
Partial actions enable compositionality: choreographies with compatible partial
actions can be composed in parallel.

Complete Actions. Term (start) denotes session initiation: process p starts a
new session k together with processes q̃. p, called active process, is already run-
ning, whereas each process q in l̃.q, called service process, is dynamically created
at its respective location l in l̃.q. Service locations can be used repeatedly to

1Variables are paths to traverse structured data, e.g., x can be a path x.y.z where “.” is the
path nesting operator. § 6.2.2 formalises variables and paths.

82

6.2. Applied Choreography Language

spawn multiple processes, even inside recursions. We assume l̃.q always non-
empty. Term (com) models a communication: on session k, process p sends to
process q a message for operation o; the message carries the evaluation of expres-
sion e on the local state of p whilst x is the variable where q will store the content
of the message.

Partial Actions. In term (req), process p requests the creation of some external
processes at their respective locations l̃ to start a new session k. l̃.B means that
each location l in l̃.B is expected to spawn a process that behaves as specified by
the related role B. The dual of (req) is term (acc), which provides the implementa-
tion of service processes. Specifically, term (acc) defines a reusable choreography
module that accepts, at locations l̃, the creation of processes q̃ playing their respec-
tive roles B̃. Following the design idea that services should always be available,
shared by other models [96, 13], we assume that all (acc) terms in a choreography
are at top level (not guarded by other actions). Term (send) models the sending of
a message, for operation o, from process p to an external process playing role B in
session k. Dually, in term (recv), process q receives a message from an external
process playing role A in session k; q proceeds with the continuation correspond-
ing to the operation where the message was received, e.g., receiving the message
on oj , q proceeds with continuation Cj — like in the standard branching found in
session-oriented calculi [44].

Other Terms. In a conditional (cond) process p evaluates a condition e in its
local state to choose between the continuations C1 and C2. Term (par) is the stan-
dard parallel composition of choreographies, as in [14, 97]. Terms (def), (call),
and (inact) denote respectively the standard definition of recursive procedures,
procedure calls, and inaction. Some terms bind identifiers in continuations. In
terms (start) and (acc), the session identifier k and the process identifiers q̃ are
bound (as they are freshly created). All other identifiers are free. In terms (com)
and (recv), the variables used by the receiver to store the message are bound (x
and all the xi, respectively). In term (req), the session identifier k is bound. Fi-
nally, in term (def), the procedure identifier X is bound. In the remainder, we
omit 0 or irrelevant variables (e.g., in communications with empty messages).

Remark 4. As in [13], AC terms, except for (start), (req), and (acc), do not need
to be annotated with roles as we can infer them from session identifiers. However,
we include roles in all AC terms to ease the treatment of our typing discipline in
§ 6.3.

83

Chapter 6. Applied Choreographies

C ::= η;C (seq)
| C1 | C2 (par)
| X (call)
| 0 (inact)

| if p.e {C1} else {C2} (cond)
| def X = C ′ in C (def)

| acc k : l̃.q[B];C (acc)
| k : A -> q[B].{oi(xi);Ci}i∈I (recv)

η ::= start k : p[A] <=> l̃.q[B] (start) | req k : p[A] <=> l̃.B (req)
| k : p[A].e -> q[B].o(x) (com) | k : p[A].e -> B.o (send)

Figure 6.2: Choreography Calculus - Syntax

6.2.2 Semantics
The semantics of AC is one of our major contributions: it formally captures, on
the level of choreographies, the real-world communication mechanism found in
SOC, called message correlation [36]. We first give an informal overview of this
communication mechanism. Communications in SOC are asynchronous: each
process has a set of FIFO input queues that act as buffers, managed by its en-
closing service. Each queue is equipped with some data, here called correlation
key, that can be used to distinguish (identify) the queue among the many present
inside a service. When a service receives a message from the network, it inspects
the content of the message for a portion of data that matches the correlation key
of one of its queues. If a queue can be found, the message is inserted at the end
of it. The process owning the queue will be able to consume the message later
on in its execution. Thus, when a sender process p sends a message to a receiver
process q, it needs to know i) the location of the service where q is running and ii)
the correlation key of one of the queues owned by q. In practice, the correlation
key in the message can be a part of the message payload itself or be in some sepa-
rate headers (in this work we abstract from such details). Below, we formalise the
semantics of AC by equipping choreographies with deployments, ranged over by
D. We use deployments to formalise the elements of SOC that we have just infor-
mally described, in particular the state and message queues of processes located
at services. We define each element separately.

Data and Process state. Data in SOC is typically structured following a tree-
like format, e.g., XML [27] and JSON [103]. In this work, we use trees to rep-
resent both messages and the state of running processes (as in [98]). Formally,
we consider a set T of rooted trees, ranged over by t, where edges are labelled
by names, ranged over by x,y, · · · . We assume that all outgoing edges of a node
have distinct labels and that only leafs contain values, which can be either a loca-
tion l or some basic data (integer, string, etc.). Variables in AC, ranged over by
x, are formalised as paths to traverse a tree: x, y, z ::= x.x | ε . ε is the empty

84

6.2. Applied Choreography Language

path; we often omit the tailing ε in paths. Given a path x and a nonempty tree t,
we denote by x(t) the node reached following the path x in t. Observe that x(t)
is partially defined since the path x may not be valid in t in general. By a slight
abuse of notation, when x(t) is a leaf we denote by x(t) also the value of the node.
In our semantics, we will also use the replacement operator t / (x, t′). If x(t) is
defined , t / (x, t′) returns the tree obtained replacing in t the subtree rooted in
x(t) by t′. If x(t) is undefined, t / (x, t′) adds the smallest chain of empty nodes
to t such that x(t) is defined and inserts t′.

Deployment. A deployment D is an overloaded partial function on locations
and processes. Intuitively, we map locations to the set of processes running at that
location, and we map processes to their local state and input queues. Therefore,
given a location l, we read D(l) = {p̃} as “the processes p̃ are running at the
location l” (for any process p and deployment D, we assume that each process p
is always located at only one location). For processes, instead, given a process
p then D(p) returns a pair (t,M), where t is a tree representing the local state
of p and M is a queue map. A queue map defines the input queues that p can
use to receive messages from other processes. Formally, a queue map M is a
partial function of type M : T ⇀ Seq(O × T)2. A map M(tc) = (̃o, t) means
that the process owning M has an input queue containing (̃o, t) (a sequence of
messages3) that correlates with the data tc, called the correlation key of the queue.
In our semantics, we use correlation keys to formalise our mechanism of message
correlation. When receiving a message with some correlation data, our semantics
places the message in the queue pointed by the correlation key that matches the
correlation data of the message. In a message (o, t), o is the operation used by the
sender and t is the payload of the message. In the remainder, for D(p) = (t,M),
we use the shortcuts D(p).st to refer to t (the state of p) and D(p).que to refer to
M (the queues of p), respectively.

Observe that, in our model, programmers do not need to specify the deploy-
ment of a choreography4. Concretely, for any choreography program C with no
free session names (all sessions are under a start term), we can define a default
deployment where all active processes are assigned to some location and given an
empty state and queue map. Below, we denote the set of free process names in a
choreography C with fp(C), and we write t⊥ for the empty tree.

2Seq(_) is the type constructor of sequences.
3We denote the empty list ε and a list of messages (o1, t1) :: · · · :: (on, tn). We use :: rather

than commas for a clearer definition of the semantics of AC.
4As in other languages states of programs are not specified by programmers.

85

Chapter 6. Applied Choreographies

Definition 15 (Default Deployment). Let C be a choreography with no free ses-
sion names. Then, D is a default deployment for C if for all p ∈ fp(C) : D(p) =
(t⊥, ∅) and p ∈ D(l) for some l.

Reductions. We present the semantics for AC in terms of reductions of the form
D,C → D′, C ′, where D,C is a running choreography. Formally, the reduction
relation→ is the smallest closed under the rules reported in Figure 6.3. In the rules
for session creation and communications, we make use of the auxiliary relation
D, δ I D′ to model how effect δ changes a deployment D into D′. δ ranges over

δ ::= start k : l̃.p[A] | k : p[A].e -> B.o | k : A -> q[B].o(x)

denoting, from left to right, the start of a session and sending and reception of a
message. Below we separately discuss our main rules for D,C → D′, C ′, along
with the definition of D, δ I D′ for each δ. We report the semantics of effects in
Figure 6.4.

Rule bC|STARTe . Rule bC|STARTe starts a fresh (denoted by #5) session k′ with a
complete action, together with some fresh processes r̃ (k′ and r̃ replace respec-
tively k and q̃ in the continuation). Intuitively, in the premise D, δ I D′ for
δ = start k : l̃.p[A], we obtain D′ from D adding the needed information to
support the newly created session in the continuation C ′. In particular, we need
to add information about the location of each new process and to set up the state
and queue maps of each process involved in the new session to enable communi-
cations via message correlation. We formalise this requirement in the predicate of
session support, sup:

Definition 16 (Session Support (sup)). We say that (t, {MA}A∈Ã) is a session sup-
port for a deployment D and some located roles l̃.A, denoted by the predicate
sup(t, {MA}A∈Ã, D, l̃.A), if and only if:

• (Locations) For all l.A ∈ l̃.A, A.l(t) = l.

• (Correlation Keys) For all pairwise-distinct l.A, l′.B in l̃.A, A.B(t) = tc and
MB(tc) = ε for some tc such that tc 6∈ dom(D(s).que) for all s ∈ D(l′).

The predicate sup(t, {MA}A∈Ã, D, l̃.A) holds if the tree t, called session de-
scriptor, contains the locations of the processes playing the roles in the session
and the correlation keys that they use. Note that in t we use roles (which are static

5We let # informal for a simpler presentation, yet it is easy to formalise freshness of names on
D.

86

6.2. Applied Choreography Language

η = k : p[A].e -> B.o D, η I D′

D, η;C → D′, C
bC|SENDe

j ∈ I D, k : A -> q[B].oj(xj) I D′

D, k : A -> q[B].{oi(xi);Ci}i∈I → D′, Cj
bC|RECVe

η = k : p[A].e -> q[B].o(x) D, k : p[A].e -> B.o I D′

D, η;C → D′, k : A -> q[B].o(x);C
bC|COMe

i = 1 if eval(e,D(p).st) = true, i = 2 otherwise
D, if p.e {C1} else {C2} → D, Ci

bC|CONDe

D,C1 → D′, C ′1
D, def X = C2 in C1 → D′, def X = C2 in C ′1

bC|CTXe

R ∈ {≡ , 'C } C1RC ′1 D,C ′1 → D′, C ′2 C ′2RC2

D,C1 → D′, C2
bC|EQe

D,C1 → D′, C ′1
D,C1 | C2 → D′, C ′1 | C2

bC|PARe

#r̃ #k′ p ∈ D(l) δ = start k′ : l.p[A], l̃.r[B] D, δ I D′

D, start k : p[A] <=> l̃.q[B];C → D′, C[k′/k][̃r/q̃]
bC|STARTe

i ∈ {1, . . . , n} #k′

{l̃.B} =
⊎
i{l̃i.Bi} #r̃ {r̃} =

⋃
i{r̃i} p ∈ D(l)

δ = start k′ : l.p[A], ˜l1.r1[B1], . . . , ˜ln.rn[Bn] D, δ I D′

D, req k : p[A] <=> l̃.B;C |
∏
i

(
acc k : ˜li.qi[Bi];Ci

)
→

D′, C[k′/k] |
∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k : ˜li.qi[Bi];Ci

) b
C|PSTARTe

Figure 6.3: Choreography calculus, semantics.

87

Chapter 6. Applied Choreographies

l ∈ k.B.l(D(p).st) q ∈ D(l)

tc = k.A.B(D(p).st) D(q).que(tc) = m̃ tm = eval(e,D(p).st)

D, k : p[A].e -> B.o I D
[
q 7→

(
D(q).st, D(q).que[tc 7→ m̃ :: (o, tm)]

)] bD|SENDe

tc = k.A.B(D(q).st) D(q).que(tc) = (o, tm) :: m̃

D, k : A -> q[B].o(x) I D
[
q 7→

(
D(q).st / (x, tm), D(q).que[tc 7→ m̃]

)] bD|RECVe

sup(t, {MC}C∈{A,B̃}, D, (l.A, l̃.B)) l′.q[B] ∈ l̃.q[B] tp = D(p).st Mp = D(p).que

D′ = D [l′ 7→ D(l′) ∪ {q}]
[
p 7→

(
tp / (k, t),Mp ∪MA

)][
q 7→

(
t⊥ / (k, t),MB

)]
D, start k : l.p[A], l̃.q[B] I D′

bD|STARTe

Figure 6.4: Semantics of effects on D

names) instead of process identifiers because in the message correlation mecha-
nism found in SOC, a sender does not know the process identifier of the intended
receiver (this will be reflected in the development of our target language, DCC, in
§ 6.5). The set {MA}A∈Ã contains the respective queue mapMA for each role A. MA

must contain an empty queue correlating with the corresponding key in t for each
other role in the session, e.g., if role A receives from B, MA contains an empty
queue correlating with the key at B.A in t. Thus, each role has a queue to re-
ceive messages from each other role, as in standard multiparty session types with
session-role channels [104]. Correlation keys must be fresh within the location of
the receiver6.

Rule bC|STARTe applies if Rule bD|STARTe applies. In bD|STARTe, we choose in a
non-deterministic way the session descriptor t and the queue maps {MC}C∈{A,B̃}
under the only requirement that they respect predicate sup. This requirement
makes our semantics very general as it supports potentially many session descrip-
tors and therefore different implementations (e.g., based on cookies, random sets
of data, API keys, etc.), as long as they comply with our definition of session sup-
port (see § 7.2). In bD|STARTe, according to the previous definition, we copy the
session descriptor under k, the path named after the session. This eases the access
to the structure, since all in-session interactions happen under a certain session
name k, which is globally fresh and therefore cannot clash with other pre-existing
structures.

Remark 5. In bD|STARTe the session descriptor assigned to each process is not min-
imal, indeed it contains unused data like correlation keys used by other processes.

6In AC, like in SOC, the sender delivers its message in the queue correlating with the key of
the message and owned by a process located at the location of the receiver. To make correlation
deterministic we forbid duplicate keys within a location.

88

6.2. Applied Choreography Language

However, since it does not alter our result, we favoured this simpler definition.

Rule bC|SENDe . The rule describes a partial sending and, as shown in Figs. 6.3
and 6.4, it updates the deployment with Rule bD|SENDe to account for asynchronous
message passing. We comment the conditions of bD|SENDe, referring paths as ap-
plied on the state of the sender p. The first four conditions (from top left to down
right) guess the receiving process q, which is that process located at l — as re-
trieved under k.B.l — and that owns the queue correlating with the key at k.A.B.
This models real-world message correlation, where the sender guesses the receiver
from its location and the correlation key of the message. tm = eval(e, D(p).st) is
the content of the message, result of the evaluation of expression e on the state of
p. bD|SENDe modifies D such that q stores in the queue correlating with the key at
k.A.B the message (o, tm).

Rule bC|RECVe . Rule bC|RECVe implements a partial reception, updating the de-
ployment with Rule bD|RECVe. In particular, bC|RECVe records on which of the
available operations (oi, i ∈ I) q received a message from the process playing role
A. In bD|RECVe, the first condition finds the queue that q, playing B, uses to receive
from A. The second one provides a new deployment D′ if the head of the queue
has a message on operation o. If it does, D′ removes the message from the head
of the queue and copies in the state of q, under path x, the content of the message
tm.

Other rules. Rule bC|COMe describes a complete communication. Intuitively, the
reduction of a complete communication i) has the same effect on D as a (send)
term and ii) it reduces the (com) to a (recv) on the same operation. Thanks to de-
ployments and effects, we could model complete asynchronous communications
in a fairly simple way wrt previous approaches (see § 7.2). Formally, the effect
of Rule bC|COMe on D is δ = k : p[A].e -> B.o which applies Rule bD|SENDe. In
the reductum, the (com) term reduces to a partial reception on operation o. Rules
bC|CONDe, bC|CTXe, and bC|PARe are standard, while rule bC|EQe accounts for the
structural congruence ≡ and the swapping relation 'C. The structural congru-
ence, defined as the smallest congruence supporting α-conversion and satisfying
the rules below

C | C ′ ≡ C ′ | C (C1 | C2) | C3 ≡ C1 | (C2 | C3)

def X = C ′ in 0 ≡ 0 def X = C ′ in C[X] ≡ def X = C ′ in C[C ′]

abstracts from purely syntactic differences in processes and treats recursion in
a standard way. As in [13], the swap relation 'C exchanges the order of some
actions. This enables more interleaving among processes. We report the rules of

89

Chapter 6. Applied Choreographies

Cc =

1. req kd : c[C] <=> lA.A, lDM.DM, lL.L;
2. kd : c[C].mkReq() -> A.get;

3. def STORE =
4. kd : DM -> c[C].{
5. pkt(bb);
6. ks : c[U].bb -> f[F].append(data);
7. STORE ,
8. chksum(cs);
9. ks : c[U].cs -> f[F].check(cs);

10. if f.check(fname, cs) {
11. ks : f[F] -> c[U].saved
12. } else {
13. ks : f[F] -> c[U].discarded
14. }}
15. in
16. kd : A -> c[C].{
17. ok;
18. start ks : c[U] <=> lC.f[F];
19. ks : c[U].name() -> f[F].create(fname);
20. STORE ,
21. ko }

Cs =

1. acc kd : lA.a[A], lDM.dm[DM], lL.l[L];
2. kd : C -> a[A].get(req);

3. if a.isV alid(req) {
4. kd : a[A].req.rsc -> dm[DM].ok(rsc);

5. kd : a[A] -> C.ok;
6. kd : dm[DM].logok(rsc) -> l[L].log(log);

7. def TRANSFER =
8. if dm.more(rsc) {
9. kd : dm[DM].next(rsc) -> C.pkt;

10. TRANSFER
11. } else {
12. kd : dm[DM].chksum(rsc) -> C.chksum
13. }
14. in

15. TRANSFER
16. } else {
17. kd : a[A].req.rsc -> dm[DM].ko(rsc);

18. kd : a[A] -> C.ko;
19. kd : dm[DM].logko(rsc) -> l[L].log(log)

20. }

Figure 6.5: Choreography Example

the swap relation in Appendix D.1. As an example, consider the Rule below that
swaps η and η′ if they share no processes (returned by pn(η)).

pn(η) ∩ pn(η′) = ∅ ⇒ η; η′ 'C η
′; η bCS|ETAETAe

Swapping terms means that, although a choreography defines the global order
in which its processes send and receive messages, this order can change at run-
time. Despite the change, we guarantee to preserve the order of messages between
each couple of processes in a session. Rule bC|PSTARTe starts a new session syn-
chronising a partial choreography that requests to start a session with other chore-
ographies that can accept the request. The premise of the rule {l̃.B} =

⊎
i{l̃i.Bi}

(
⊎

being the union of the disjoint lists of located roles) requires that, in the ac-
cepting choreographies, the list of locations and their supported roles match the
corresponding list of the request. The accepting choreographies remain available
afterwards, for reuse. The rest of the rule is similar to bC|STARTe.

6.2.3 An example

We show an example of a system for verified file transfer written in AC. We use
the example in § 6.6 to illustrate our compilation.

90

6.2. Applied Choreography Language

Verified file transfer. The program i) validates the file request of a Client on
a Server, ii) transfers a file in multiple parts, and iii) verifies the transfer with
a checksum. The Server logs all requests. We report in Figure 6.5 the code of
program C, parallel composition of the two partial choreographies C = Cc | Cs.
Cc and Cs respectively define the client- and the server-side code.

In C, process c — the only active process — plays the role of the Client C. In
Cs, a plays the Access Manager (A), dm the Download Manager (DM) and l the
Logger (L). In Cc (Line 18 of Cc) process f plays F, accessing the file system. We
locate A, DM, L, and F at respectively lA, lDM, lL, and lC.

Lines 1 of Cc and Cs start session kd between c, a, dm, and l. At Lines 2 of Cc
and Cs, c makes a request for a file to a. Lines 4-15 of Cs define the outcome
of a valid request (Line 3). Following the Lines, a forwards the resource request
to dm and confirms (on ok) to c the request. dm asks l to log the request. Lines
7-14 define the recursive procedure TRANSFER, called at Line 15, for the multi-
part file download. If dm has more packets of the resource, it sends the next to
c on operation pkt and TRANSFER repeats. Else dm ends kd sending to c the
checksum of the file. Lines 17-19 of Cs specify the outcome of an invalid request:
a notifies dm and c of the failed attempt (ko) and dm asks to log the event to l.

Observe thatCc defines at Lines 3-15 a procedure to STORE the file. At Line 18
of Cc, after the approval, c (playing user U) starts a new session ks with f, asking f
to create a file to store the incoming packets. Then, in STORE, if c receives a new
packet of bytes from dm (Line 5), it asks f to append them to the local file and
STORE repeats. Else c receives the checksum from dm (Line 8) and c forwards it
to f. Finally, f notifies c whether it saved or discarded the file wrt the checksum.

Remark 6. To illustrate compositionality of ACs, we (logically) divided the exam-
ple into two choreographies, (resp. the client- and server-side described above).
However, we could specify the system as single choreography, e.g.,

1. start kd : c[C] <=> lA.a[A], lDM.dm[DM], lL.l[L]; 2. kd : c[C].mkReq() -> a[A].get(req); . . .

We comment some features of AC programs in the example.

Session Descriptors. At Lines 1 of Cc and Cs c requests to start a new session
kd with some service processes a, dm, and l. We describe the structure of the
session descriptor, stored in the state of the mentioned processes under path kd.

We report in Figure 6.6 such structure. Following the path A, we find a subtree
with i) a node l that stores the location lA of a and ii) a set of nodes, named after
all the other roles in kd, leading to subtrees containing the correlation keys related
to the roles in the paths. For example, the path A.C points the tree tAC, which
contains the correlation key used by a to send messages to c.

91

Chapter 6. Applied Choreographies

C A L DMl
lClC

tCAtCA A

tCLtCL
L

tCDMtCDM

DM
l

lAlA
tACtAC

C

tALtAL

L

tADMtADM

DM l

lLlL tLCtLC

C

tLAtLA

A

tLDMtLDM

DM

l
lDMlDM

tDMCtDMC

C
tDMAtDMA

A

tDMLtDMLL

Figure 6.6: Example of structure of Session Descriptor

Parallelism. Lines 5-6 of Cs show how Rule bC|EQe can exchange the order
of execution of actions. The actions at Lines 5 and 6 regard different processes
(resp. a, s, and l) and the two instructions can swap along Rule bCS|ETAETAe of the
swap relation. A possible reduction of C, starting from Line 5 of Cs, can apply
Rule bC|EQe to swap Lines 5 and 6, reduce Line 6 with Rule bC|COMe to a partial
reception for process l, and swap back the two Lines. Next, either a delivers its
message with bC|SENDe or bC|EQe applies, letting l consume its message. Observe
that the swap is non-deterministic, allowing other possible executions.

Asynchrony. AC supports asynchronous communication with queues, however,
we need the swap relation to let a process send or receive a message asynchronously.
Consider Lines 4-5 of Cs. We can apply bC|COMe on Line 4 and let a send its mes-
sage to dm. This reduces Line 4 to a partial reception on dm. Then, we can apply
bC|EQe, swap the redex of Line 4 with Line 5, and let Line 5 execute with bC|SENDe.
Finally, we let dm consume its message with bC|RECVe on Line 4.

6.3 Typing
In this section we define our typing discipline for Applied Choreographies. Our
typing checks the behaviour of sessions against protocols, given as multiparty
session types [43, 105]. The main novelty of our type system is checking that the
evolution of a deployment (states for message correlation and queues for asyn-
chronous messaging) correctly implements the sessions described in a program,
ensuring absence of errors such as deadlocks. We detail this part in § 6.3.3.

6.3.1 Types and Type Projection
Global and Local types. As in standard multiparty session types, we use global
types to represent protocols from a global viewpoint and local types to describe
the behaviour of each participant. Our type system checks that the local types, that

92

6.3. Typing

abstract the behaviour of processes in a choreography, coherently follow a global
type. We report below the syntax of global types G and local types T .

G ::= A -> B.{oi(Ui);Gi}i
| rec t;G
| t
| end

T ::= α.{oi(Ui);Ti}i
| rec t;T
| t
| end

α ::= !A | ?B U ::= S{xi : Ui}i S ::= int | bool | str | . . .

A global type A -> B.{oi(Ui);Gi}i abstracts a communication, where A can send
to B a message on any of the operations oi and continue with the respective con-
tinuation Gi. A carried type U types the tree value exchanged in the message. A
tree type S{xi : Ui}i abstracts a tree with root value S (a basic type) and sub-
trees reachable from the root node by following xi with respective types Ui (our
notation recalls that for record types in [106]). In local types, !A.{oi(Ui);Ti}i ab-
stracts the sending of a message of type Ui to role A on one of the operations oi,
with continuation Ti. Dually, ?A.{oi(Ui);Ti}i abstracts the offering of an input
choice for all the operations oi, with continuation Ti. Other terms for recursion
and termination (end) are standard.

Type Projection. To relate global types to the behaviour of endpoints, we project
a global type G onto the local type of a single role. We report in Figure 6.7 the
projection of global types, defined following [14]. JGKA denotes the projection of
G onto the role A. Intuitively, JGKA gives an encoding of the local actions expected
by role A in the global type G. When projecting a communication we require the
local behaviour of all roles not involved in it to be merged with the merging oper-
ator t. Like in [14] T t T ′ is isomorphic to T and T ′ up to branching, where all
branches of T or T ′ with distinct operations are also included.

6.3.2 Type checking
We present our system that guarantees that sessions follow their types.

Environments. We define our typing environments Γ,Γ′, . . . as:

Γ ::= Γ, l̃ : G〈A|B̃|C̃〉 (service typing)
| Γ, k[A] : T (local typing)
| Γ, p : k[A] (ownership)

| Γ, p.x : U (variable typing)
| Γ, X : Γ (procedure typing)
| ∅ (empty env.)

A service typing l̃ : G〈A|B̃|C̃〉 types with G all sessions created by contacting the
services at the locations l̃. We explain the role annotations: A is the role that the

93

Chapter 6. Applied Choreographies

JtKA=t JendKA=end Jrec t;GKA=

{
rec t; JGKA if A ∈ G
end otherwise

JA -> B.{oi(Ui);Gi}iKC =

!B.{oi(Ui); JGiKC}i if C = A

?A.{oi(Ui); JGiKC}i if C = B⊔
i JGiKA otherwise

Figure 6.7: Choreography Calculus - Global Type Projection

active process (the starter) should play; roles B̃ are the roles respectively played
by each l in l̃ (each l plays one role, so the length of B̃ is the same as the length
of l̃); finally, C̃ (where C̃ ⊆ B̃) are the roles implemented by the choreography
that we are typing. The annotation C̃ enables composition of choreographies yet
ensuring that only one choreography implements a specific role, as in [14]. When
we write Γ, l̃ : G〈A|B̃|C̃〉, we always assume that: i) {A, B̃} = roles(G), where
roles returns the set of roles in G; ii) the locations l̃ are ordered lexicographically;
and, iii) the locations in l do not appear in any other service typing in Γ. A local
typing k[A] : T states that role A in session k follows the local type T . We assume
that roles in a session are typed by a single local typing, as in standard multiparty
session types [43]. An ownership typing p : k[A] states that process p owns the
role A in session k: each process can participate in multiple sessions, but can play
only one role in each of such sessions. Hence, a process p may appear in more
than one ownership typings in a Γ, but never more than once per session. The
other typings for variables and recursive procedures are standard.

Typing Judgements and Rules. A judgement Γ ` C states that the choreogra-
phy C follows the specifications given in Γ. We report in Figure 6.8 some select
typing rules to derive valid typing judgements and comment the rules below. We
report the full typing rules in Appendix D.2.

Rule bT|STARTe types a session start. In the first premise, the service typing
l̃ : G〈A|B̃|B̃〉 checks that the continuation implements all the roles in protocol
G. The auxiliary function init7 intuitively returns an environment containing all
the ownerships and local typings to correctly type a freshly-started session. The
type of each process is the local type projection of the global type G on the role

7Formally init
(
p̃[A], k,G

)
= {q : k[B], k[B] : JGKB | q[B] ∈ p̃[A]}.

94

6.3. Typing

j ∈ I Γ ` p : k[A], q : k[B] Γ ` p.e : Uj Γ, q.x : Uj , k[A] : Tj , k[B] : T ′j ` C
Γ, k[A] : !B.{oi(Ui);Ti}i∈I , k[B] : ?A.{oi(Ui);T ′i}i∈I ` k : p[A].e -> q[B].oj(x);C

bT|COMe

j ∈ I Γ ` p : k[A] Γ ` p.e : Uj Γ, k[A] : Tj ` C
Γ, k[A] : !B.{oi(Ui);Ti}i∈I ` k : p[A].e -> B.oj ;C

bT|SENDe

Γ ` q : k[B] ∀j ∈ I. Γ, q.xj : Uj , k[B] : Tj ` Cj
Γ, k[B] : ?A.{oi(Ui);Ti}i∈I ` k : A -> q[B].{oj(xj);Cj}j∈I∪J

bT|RECVe

Γ, l̃ : G〈A|B̃|B̃〉, init
(
r̃[C], k,G

)
` C r̃[C] = p[A], q̃[B] q̃ 6∈ Γ

Γ, l̃ : G〈A|B̃|B̃〉 ` start k : p[A] <=> l̃.q[B];C
bT|STARTe

Γi ` Ci Γ2 ` C2

Γ1 ◦ Γ2 ` C1 | C2

bT|PARe
Γ, p : k[A], k[A] : JGKA ` C Γ ` l̃ : G〈A|B̃|∅〉

Γ ` req k : p[A] <=> l̃.B;C
bT|REQe

end(Γ) Γ′′ ⊆ Γ′

Γ,Γ′′, X〈p̃〉 : Γ′ ` X〈p̃〉
bT|CALLe

l̃ ⊆ l̃′ Γ, l̃′ : G〈A|B̃|∅〉, init
(
q̃[C], k,G

)
` C

Γ, l̃′ : G〈A|B̃|C̃〉 ` acc k : l̃.q[C];C
bT|ACCe

Figure 6.8: Choreography Calculus - Typing Rules (selected)

owned by the process in the session. Similar to bT|STARTe, Rule bT|REQe performs
the checks only for the process requesting the creation of a new session. Dually,
bT|ACCe checks that the processes created after a request correctly implement their
expected behaviour.

Rule bT|COMe types a complete communication, checking that: i) the chosen
operation oj is among the ones that the sender can select according to its local
type; ii) similarly, oj is among the ones offered by the receiver according to its
local type; iii) the sender and the receiver processes own their respective roles in
the session; iv) the expression of the sender (e) has the type8 Uj expected by the
protocol; v) the receiver uses the reception variable accordingly in the continua-
tion C; and vi) processes p and q proceed according to their respective types in
Γ. Similar to rule bT|COMe, bT|SENDe and bT|RECVe respectively check (send) and
(recv) actions.

Rule bT|PARe uses the role distribution operator Γ1 ◦ Γ2, from [14], to merge
service typings and to check that choreographies executing in parallel do not im-
plement overlapping roles at locations. Formally, Γ1 ◦ Γ2 is defined if Γ1 and Γ2

type different processes9 and for Γi = Γ′i,Γ
l
i, i ∈ {1, 2} where Γli contains only

8The judgement ` t : U reads as “tree t has type U”.
9Formally, we can write Γ1 ◦ Γ2 if pn(Γ1) ∩ pn(Γ2) = ∅ for pn(Γ) = {p | p : k[A] ∈ Γ}.

95

Chapter 6. Applied Choreographies

service typings

Γ1 ◦ Γ2 = Γ′1 , Γ′2 , Γl1 ◦ Γl2

Γl1 ◦ Γl2 =
{
l̃ : G〈A|B̃|C̃〉 | l̃ : G〈A|B̃|D̃〉 ∈ Γl1 ∧ l̃ : G〈A|B̃|Ẽ〉 ∈ Γl2 ∧ D̃] Ẽ = C̃

}
All the other typing rules are standard.

6.3.3 Runtime Typing
To prove that well-typed AC programs never go wrong, we need to pay attention
to how their deployments evolve at runtime. For example, in Rule bC|COMe the
sender needs the necessary information in its state to “find” the receiver through
correlation: a remarkable difference wrt previous works on choreographies, where
such conditions do not exist and choreographies can always continue execution
(see, e.g., [10, 107, 96, 13]). To address this issue, we extend our typing discipline
to check runtime states.

Wrong Deployments. We need to prevent deployments from “going wrong”
during execution. Intuitively, we say that a deployment is wrong wrt a choreogra-
phy if any of these conditions holds:

• (uninitialised variables) processes have undefined variables;
• (incompatible session descriptors) processes in a session store different lo-

cations or keys for the same session descriptor;
• (correlation race) a correlation key is used for more than one queue at a

location;
• (protocol violations) a message queue does not contain messages as ex-

pected by the protocol of the session in which it is used.

Wrong deployments may cause unpredictable executions or undesired behaviours,
e.g., deadlocks. We illustrate the consequences of having wrong deployments with
this simple running choreography: D, k : p[A].y -> q[B].x;0.

The only way this choreography can reduce is to apply Rule bC|COMe in a re-
duction derivation. The second premise of Rule bC|COMe requires a deployment
reduction of the form D, k : p[A].y -> B I D′ for some D′. Hence, the deploy-
ment D must respect the conditions given in Rule bD|SENDe. Let us see how a
wrong deployment D may cause problems, following the above list:

• (uninitialised variables) Assume that D is such that D(p).st is a tree with
no node under path y; then the condition eval(y, D(p).st) given in bD|SENDe
is undefined and bC|COMe cannot be applied, causing the choreography to get
stuck.

96

6.3. Typing

• (incompatible session descriptors) Assume q ∈ D(l′) for l 6= l′ and
k.B.l(D(p).st) = l. Again, bD|SENDe cannot apply and we have a deadlock,
caused by the sender “pointing” at the wrong receiving service. A similar
case happens if t 6∈ dom(D(q).que) and k.A.B(D(p).st) = t because we
cannot find the queue of the addressee.

• (correlation race) Assume D is such that D(l) = {q, r} (r and q are at the
same location). Assume also D(q).que = D(r).que = M for some M such
that k.A.B(D(p).st) ∈ M , i.e., both q and r have a queue correlating with
the key that p uses to send its message. Since bD|SENDe guesses the receiver
from its location and correlation key, p non-deterministically delivers its
message to either q or r. In the second case, we get:

D, k : p[A].y -> q[B].o(x);0 → D′, k : A -> q[B].x;0

where in D′ the queue of r contains the message received from p. The
choreography is now deadlocked because q cannot consume the expected
message from p.

• (protocol violations) Assume that D(q).que = M for some
M(k.A.B(D(p).st)) = (o′, t′) where o 6= o′, i.e., q has a message in
the queue used by p. If we let the choreography reduce like at the previ-
ous point, it ends up deadlocked. After the reduction, the queue used by p
contains in its head the message (o′, t′) and Rule bC|RECVe cannot apply as it
expects to find a message for o at that position.

Below we extend our type system to prove that, given a well-typed choreogra-
phy, our semantics never produces wrong deployments (provided that we do not
start from a wrong deployment). Observe that this development is transparent to
programmers, since default deployments are never wrong.

Runtime Global Types. We extend the syntax of global types to capture partial
runtime states, following the idea presented in [108]:

G ::= · · · | A B.o(U);G

where the new term A B.o(U) means that the sender A has sent the message
but the receiver B has still to consume it.

Semantics of Global Types. To express the (abstract) execution of protocols,
we give a semantics for global types. Formally, G → G′ is the smallest relation

97

Chapter 6. Applied Choreographies

on the recursion-unfolding of global types satisfying the rules below

bG|SENDe j ∈ I ⇒ A -> B.{oi(Ui);Gi} → A B.oj(Uj);Gj

bG|RECVe A B.o(U);G→ G

bG|RECe G[rec t;G/t]→ G′ ⇒ rec t;G→ G′

bG|SWAPe G1 'G G2 ∧G2 → G′2 ∧G′2 'G G
′
1 ⇒ G1 → G′1

The rules are similar to those for AC. Rule bG|SENDe allows a sender role to proceed
before the corresponding receiver has actually received the message. Based on
the selected operation, e.g., oj , the Rule reduces the type to a reception followed
by the respective continuation (Gj). The reception is executed in Rule bG|RECVe.
In bG|SWAPe, we model parallelism with the relation for global types 'G, which
follows the same intuition of 'C. Swapping allows us to model asynchrony in
global types as done in AC. We report the rules of 'G in Appendix D.3. As an
example, consider the swap between a reception and a complete communication:

bGS|COMRECVe {A, B} ∩ {D} = ∅ ⇒ A -> B.{oi(Ui); C D.o(U);Gi}
'G C D.o(U); A -> B.{oi(Ui);Gi}

Runtime Type checking and Typing Rules. We extend the typing rules given
in the previous section to check runtime terms. The extension consists in i) new
terms for Γ, and ii) the introduction of rule bT|DCe to type runtime choreographies.
We extend the grammar of typing environments Γ as follows:

Γ ::= . . .
| Γ, p@l (location)
| Γ, b[k]AB : T (buffer typing)

Γ, p@l states that process p runs at location l. A buffer typing b[k]AB : T types
the messages in the queue where the process implementing role B in session k
receives messages from role A. To relate the typings of queues (see Definition 18)
to the buffer types expected by the protocol of sessions, we define the buffer type
projection JGKAB, which returns the expected buffer type of role B from A in G.
JGKAB extracts from G the partial receptions of the form A B.o(U), translating
it to a local type ?A.o(U). Below we report the definition of JGKAB for the only
interesting case of receptions. The full definition is reported in Appendix D.4.

JC D.o(U);GKAB =

{
?A.o(U); JGKAB if C = A ∧ D = B

JGKAB otherwise

We also extend type projection to handle receptions:

JA B.o(U);GKC =

{
?A.o(U); JGKC if C = B

JGKC otherwise

98

6.3. Typing

We now proceed defining the partial coherence predicate pco(Γ), which holds if
and only if for all sessions k, the local and buffer typings of k follow (are projec-
tion of) the same global type G. The idea is that, since D is a global deployment,
we can check for partial coherence of all sessions in Rule bT|DCe.

Definition 17 (Partial Coherence). We write pco(Γ) when, for all sessions k in Γ,
there exists a global type G such that,

∀ k[B] : T ∈ Γ⇒ T = JGKB ∧ ∀ A ∈ roles(G)/{B} ⇒ Γ ` b[k]AB : JGKAB

Finally, we define the Rule to type a running choreography:

pco(Γ) Γ ` D Γ ` C
Γ ` D,C bT|DCe

A judgement Γ ` D,C states that C and D are coherent according to Γ and all
sessions in Γ are coherent. Γ is an abstraction between D and C and guarantees
D to not go wrong. Γ ` D checks D to be well-typed (not wrong) wrt to Γ.
Formally:

Definition 18 (Deployment Judgements).

Γ ` D ⇐⇒

∀ l ∈ D, ∀ {p, q} ⊆ D(l), dom(D(p).que) ∩ dom(D(q).que) = ∅
∀ p.x : U ∈ Γ, ` x(D(p).st) : U

∀ {p : k[A], q : k[B]} ⊆ Γ, k(D(p).st) = k(D(q).st)

∀ p : k[A] ∈ Γ,Γ ` p@l ∧ p ∈ D(l) ∧ k.A.l(D(p).st) = l

∀ p : k[A] ∈ Γ ∧ ∀ b[k]BA : T ∈ Γ, bte(B, D(p).que(k.B.A(D(p).st))) = T

We comment, from top to bottom, the checks performed by Γ ` D :

• locations must have unique keys: for all locations in D and for all pairs
of processes in that location, the queue maps of the two processes have no
common correlation key (i.e., the domain of their queue maps are distinct).

• Γ and D must agree on the type of variables: for each typing p.x : U in Γ,
D must associate x, in the state of process p, to a value of type U ;

• session descriptors must match: for all couples of processes p and q, playing
the respective roles A and B in a session k in Γ, the session descriptors for k
stored by p and q are the same;

• Γ andD must agree on the location of all processes: for each process within
a session k: i) its location according to Γ, ii) its location according to D,
and iii) its location in the session descriptor of k must coincide;

• Γ and D must agree on the state of all queues: for each process p playing
role A in a session k in Γ and for each role B such that the buffer type

99

Chapter 6. Applied Choreographies

Gd = C -> A.get

({
creds : str,
rsc : str

})
;

A -> DM.

 ko(str); A -> C.ko(); DM -> L.log(str),

ok(str); A -> C.ok(); DM -> L.log(str); rec t; DM -> C.

{
pkt(bytes); t,
chksum(str)

}
Gs = U -> F.create(str); rec s; U -> F.

 append(bytes); s,

check(str); F -> U.

{
saved(),
discarded()

}
Figure 6.9: Protocols example

b[k]BA : T ∈ Γ, the extracted buffer type of k.A.B(D(p).st) must be equal
T . To check this last requirement, we define the buffer typing extractor
bte(B, m̃) which, given a queue m̃ and a sender role B, returns the buffer
type of m̃10.

Typing Example

We show, in Figure 6.9, how we can write the protocols that types the example
choreographies in § 6.5. Notably, we define two independent protocols that are
implemented, composed, and interleaved at runtime by the choreographies they
type. The first protocol, called Gd, specifies the interaction of the system that
allows a Client to authenticate on a Server, download a file from it, and verify its
integrity, also logging all requests. The roles in the protocol are the same used in
§ 6.5, i.e., C for the Client, DM for the download manager, A for the access manager
and L for the logger.

Following Gd, C asks to A to get a file with a message that must contain two
values of type str: creds for the credentials of C and rsc for the resource identifier
of the file (e.g., a URL). A notifies DM whether the credentials and the resource
identifier are valid or not:

• If they are not valid, A forwards to DM the outcome of the validation (str)
on operation ko. A also sends an empty message11 to C on operation ko as
response to the failed attempt. Finally, DM ends the branch forwarding to L,
on log, the error received from A.

• If they are valid, A sends to DM the identifier of the file on operation ok. A

confirms the request to C with an empty message on operation ok. DM asks

10Formally, let ` t1 : U1, · · · ,` tn : Un, and m̃ = (o1, t1) :: · · · :: (on, tn) then
bte(A, m̃) = ?A.o1(U1); · · · ; ?A.on(Un).

11empty parentheses are a short-cut for type unit

100

6.3. Typing

to log the request of the file (str) to L. The protocol continues with the
definition of procedure rec t where DM sends to C either: i) a chunk (packet)
of bytes of the file, on pkt, and repeats t, or ii) the checksum of the file, on
chksum, if there are no more packets, ending the protocol.

The second protocol, Gs, defines the interaction between the User U of an op-
erative system and a process F that accesses the filesystem. In Gs, U asks to F to
create a new file (str). Then the protocol defines the procedure rec s. U can either
ask F to i) append a new packet of bytes to the file, repeating s or ii) check the
file against its checksum (str). Based on the outcome of the checksum, F either
notifies U that it saved the file, or discarded it.

6.3.4 Properties
We close this section with the main guarantees of our type system.

First, our semantics preserves well-typedness:

Theorem 3 (Subject Reduction). Γ ` D,C and D,C → D′, C ′ imply Γ′ `
D′, C ′ for some Γ′.

We now relate the behaviour of sessions in a well-typed choreography to their
respective global types. We denote JGKk the projection of a global type G for a
session k and let JGKk be the set of local and buffer typings as obtained by the
projection of G on each of its roles:

Definition 19 (Global Type Projection).

JGKk =
{k[A] : JGKA | A ∈ roles(G)} ,{

b[k]AB : JGKAB | A ∈ roles(G), B ∈ roles(G)/{A}
}

We say that a reduction is “at session k” if it is obtained by consuming a com-
munication term for session k (as in [43]), and we write k 6∈ Γ when k does not
appear in any local typing in Γ. Then we have:

Theorem 4 (Session Fidelity). Let Γ,Γk ` D,C , k 6∈ Γ. Then, D,C → D′, C ′

with a redex at session k implies that, for some G and Γ′, k 6∈ Γ′, (i) Γk ⊆ JGKk,
(ii) G→ G′, (iii) Γ′k ⊆ JG′Kk, and (iv) Γ′,Γ′k ` D′, C ′ .

Theorem 4 states that all communications on sessions follow the expected pro-
tocols (Γ′ may differ from Γ for the instantiation of a new variable).

We report the full proof of Theorem 3 and that of Theorem 4 (below) in Ap-
pendix E.1.

We can now present one of our major results: well-typed applied choreogra-
phies never deadlock when all the necessary participants are defined. Let the
coherence predicate co be defined as follows:

101

Chapter 6. Applied Choreographies

Definition 20 (Coherence). co(Γ) holds iff ∀ k ∈ Γ , ∃ G s.t.

• l̃ : G〈A|B̃|C̃〉 ∈ Γ ∧ C̃ = B̃ and

• ∀ A ∈ roles(G), k[A] : T ∈ Γ ∧ T = JGKA ∧ ∀ B ∈ roles(G)/{A}, b[k]BA =
JGKBA

Coherence extends partial coherence to check that i) all needed services to start
new sessions are present and ii) all the roles in every open session are correctly
implemented by some processes. Coherent and well-typed systems are deadlock-
free:

Theorem 5 (Deadlock-freedom). Γ ` D,C and co(Γ) imply that either (i)C ≡ 0
or (ii) there exist D′ and C ′ such that D,C → D′, C ′.

We report the full proof of Theorem 5 in Appendix E.2.

6.4 Endpoint Projection
We now present the Endpoint Projection and its properties. The EPP returns a
correct composition12 of endpoint choreographies that implements the behaviour
of a given choreography. Intuitively, an endpoint (applied) choreography is an
applied choreography that does not contain complete actions. Formally, let fp(C)
return the set of free processes in a choreography C:

Definition 21 (Endpoint Choreography [14]). We say that a choreography C is
an endpoint choreography if C does not contain complete actions and one of the
two following conditions holds:

i) C = acc k : l.q[B];C ′ ∧ {q} = fp(C ′); ii) fp(C) = {p}

An endpoint choreography defines the identity of only one process: either i) a
service process or ii) an active process. Notably, our definition of EPP captures
the description of the behaviour of single endpoints up to complete choreogra-
phies.

To give the definition of the EPP of a choreography, we first define the notion of
process projection, which defines the behaviour of a single process p in a chore-
ography C, written JCKp. We report the formalisation of JCKp in Appendix D.6.
Intuitively, the process projection follows the structure of the originating chore-
ography. A (start) projects to a (req) on the active process and a set of (acc)
terms on the service processes. Likewise, a (com) projects to a partial (send) for

12Here and in the following “composition” means “parallel composition”.

102

6.4. Endpoint Projection

the sender and a partial (recv) for the receiver. Any partial term is projected as
it is for its respective process, following the structure of the choreography. We
report below the projections of (recv) and (cond) terms which use the merging
partial operator t [96] (reported in Appendix D.7) to merge the behaviour of all
processes in their branches.

Jk : p[A].e -> q[B].o(x);CKr =

k : p[A].e -> B.o; JCKr if r = p

k : A -> q[B].o(x); JCKr if r = q

JCKr otherwise

Jif p.e {C1} else {C2}Kr =

{
if p.e {JC1Kr} else {JC2Kr} if r = p

JC1Kr t JC2Kr otherwise

C t C ′ is defined only for endpoint choreographies and returns an endpoint
choreography isomorphic to C and C ′ up to branching, i.e., with all branches on
distinct operations. We show the only special rule of t for merging (recv) terms.

k : A -> p[B]. {oi(xi);Ci}i∈I t k : A -> q[B].
{
oj(xj);C

′
j

}
j∈J =

k : A -> p[B].

{
{ oi(xi);Ci }i∈I/J ∪ { oi(xi);C ′i }i∈J/I

∪ {oi(xi);Ci t C ′i}i∈I∩J

}
On the definition of process projection, we define the EPP of a whole system.

Here, and in the following, bCcl is the grouping operator that returns the set of
grouped (bound) service processes at the same location. We show only the rules
(reported in full in Appendix D.8) of bCcl for (start) and (acc) as the other rules
are trivially recursive applications.⌊

start k : p[D] <=> l̃.q[B];C
⌋
l
=
⌊

acc k : l̃.q[B];C
⌋
l⌊

acc k : l̃.q[B];C
⌋
l
=

{
{r} ∪ bCcl if l.r[A] ∈ l̃.q[B]

bCcl otherwise

Definition 22 (Endpoint Projection). Let C be a term of AC. The endpoint projec-
tion of C, denoted by JCK, is defined as:

JCK =
∏

p ∈ fp(C)

JCKp |
∏
l

 ⊔
p ∈ bCcl

JCKp

The EPP of a choreography C is the composition of the projections of all active

processes and the merged projections of the service processes in C.

103

Chapter 6. Applied Choreographies

6.4.1 Projection Example

JCKa =

1. acc kd : lA.a[A];
2. kd : C -> a[A].get(req);
3. if a.isV alid(req) {
4. kd : a[A].req.rsc -> S.ok;
5. kd : a[A] -> C.ok
6. } else {
7. kd : a[A].req.rsc -> S.ko;
8. kd : a[A] -> C.ko
9. }

JCKdm =

1. acc kd : lS.dm[DM];
2. kd : A -> dm[DM].{
3. ok(rsc);
4. kd : dm[DM].logok(req) -> L.log;
5. · · · ,
6. ko(rsc);
7. kd : dm[DM].logko(req) -> L.log
8. }

JCKl =
{

1. acc kd : lL.l[L]; 2. kd : S -> l[L].log(log);

Figure 6.10: EPPs of Cc | Cs. Projection on a, dm (excepts), and l.

As an example, we project the choreography C = Cc | Cs presented in § 6.2.3.
Applying the definition of EPP to C we obtain

JCK = JCKc | JCKf | JCKa | JCKdm | JCKl
Figure 6.10 reports some excerpts of JCK, i.e., JCKa, JCKdm, and JCKl. We illus-
trate how JCK implements the same behaviour of C.

Start. The start of a new session, like the one at Lines 1 of Cc and Cs, applies
the same effect in the projection. Let JCK′p be the continuation of the process pro-
jection of C on p after Line 1. The execution of Lines 1 of the process projections
composing JCK is:

D,
req kd : c[C] <=> lA.a[A], lDM.dm[DM], lL.l[L]; JCK′c
| acc kd : lA.a[A]; JCK′a | acc kd : lDM.dm[DM]; JCK′s
| acc kd : lL.l[L]; JCK′l | JCKf

→ D′, JCK′c | JCK′a | JCK′dm | JCK′l | JCKf

Let the location of process c be lC in D. The effect of the start is δ = start kd :
lC.c[C], lA.a[A], lDM.dm[DM], lL.l[L] which can generate the same D′ as the start at
Lines 1 of Cc and Cs.

Communications. The EPP projects a complete communication to a partial
send for the sender and a partial receive for the receiver. Line 6 of Cs is
kd : dm[DM].logok(rsc) -> l[L].log(log) and in JCK it is projected into a partial
send for dm (at Line 4 of JCKdm) and a partial receive for l (at Line 2 of JCKl). The
semantics of Line 6 of Cs and that of Line 4 of JCKdm and Line 2 of JCKl is equal

104

6.4. Endpoint Projection

as the complete action breaks into a partial send, equal to the effect of Line 4 of
JCKdm, and continues as a partial receive, equal to JCKl.

Conditionals. The EPP of a conditional merges the behaviour of all processes
in its branches as branched receptions. For example, at Line 3 of Cs, process a
evaluates a condition that either branches in the behaviour described at Lines 4–
15 or at Lines 17–19. At Line 3 of JCKa the conditional is preserved verbatim.
For the other processes present in the branches of the conditional, the EPP merges
their behaviours on a branched reception: JCKdm projects the conditional on the
branches guarded by operations ok or ko (resp. at Lines 3 and 6). JCKl merges the
branches of the conditional into a single branch on operation log, at Line 2.

6.4.2 Properties
We present the properties of EPP. We prove that the EPP implements the same
behaviour of its originating choreography, we build on the foundation that the
EPP of a choreography is still typable and then we establish a bisimilarity relation
between the semantics of the EPP and the originating choreography.

First we state our type preservation result using the minimal typing of chore-
ographies `min, which types the branches in rules bT|SENDe and bT|RECVe using the
respective minimal branch types. As in [13], `min (defined in Appendix E.3.1)
takes into account that, due to merging, the EPP of a complete choreography may
still offer branches that the originating choreography discarded with a conditional.
Thus we have:

Theorem 6 (EPP Typing Preservation). Γ `min D,C implies JΓK `min D, JCK

Where JΓK, defined in Appendix E.3.2, replaces the typings of recursive proce-
dures in Γ with the typing of each procedure for each endpoint process taking part
in it.

Combining the above Theorem with Theorem 4 we can prove:

Theorem 7 (EPP Operational Correspondence). Let D,C be well-typed. Then,

1. (Completeness) D,C → D′, C ′ implies D, JCK → D′, C ′′ and JC ′K ≺ C ′′.

2. (Soundness) D, JCK → D′, C ′ implies D,C → D′, C ′′ and JC ′′K ≺ C ′.

In the theorem above C ≺ C ′ is the pruning relation (see Appendix E.3.4), a
strong typed bisimilarity [96] such that C has some unused branches and always-
available accepts.

We report the full proofs of Theorem 6 and Theorem 7 in Appendix E.3.

105

Chapter 6. Applied Choreographies

6.5 Dynamic Correlation Calculus Language
We introduce the Dynamic Correlation Calculus (DCC), the target language of
our compilation, modelled on the Correlation Calculus [98] (CC) and extended
to support the dynamic creation of queues. The reason to target CC is that it is
the formal model of the executable language Jolie [92]. In this way, our results
are immediately applicable to an actual implemented language, yet preserving the
formality and simplicity of a theoretical approach. Moreover, the semantics of
CC formalises message correlation à-la SOC, as in the standard service-oriented
language BPEL [36], by following similar concepts to those that we used in our
semantics for AC. However, it is complex to implement multiparty sessions in CC
because processes are statically linked to a single queue and, through it, to a single
correlation key. For these reasons, we extend CC to DCC by enabling processes
to create queues at runtime and selectively read messages from them.

S ::= 〈Bs, P 〉l (service)
| S | S ′ (network)

Bs ::= !(x);B (accept)
| 0 (inact)

B ::= ?@e1(e2);B (request)

| o(x) from e;B (input)

| if e {B1} else {B2} (cond)

| def X = B′ in B (def)

| cq(x);B (cqueue)

|
∑

i [oi(xi) from e] {Bi} (choice)

| o@e1(e2) to e3;B (output)

| X (call)

| x = e;B (assign)

| 0 (inact)

Figure 6.11: Dynamic Correlation Calculus, syntax

Syntax. The syntax of DCC (in Figure 6.11) is divided in two layers: services,
ranged over by S, and processes, ranged over by P . The term (service) describes
a service, located at l, as a container of a start behaviour Bs and a (system of)
processes P . A start behaviour creates new processes on request: following the
syntax of Bs, a service can spawn a new process that stores the message of the
request under the bound variable x and implements the behaviour B (see below).
The term (network) supports interactions among services. The process layer P
defines the structure of processes, which run inside services, and their composi-
tion. In the syntax, a process is the association of a behaviour B, a state t, and
a queue map M . The state t and the map M are defined exactly like the states
and queue maps found in AC (§ 6.2). Still from AC, we also make use of names
for operations (o), procedures (X), and variables (x, which we recall are paths).
Expressions, ranged over by e, are evaluated at runtime on the state of the re-

106

6.6. Compiler from AC to DCC and Properties

lated process. Terms (input) and (output) model communications. In (input)
the process stores in x a message from the head of the queue correlating with
e and expectedly received on operation o. Dually, (output) models the delivery
of a message on operation o with content e2; e1 defines the location of the ser-
vice where the addressee (process) is running, whilst e3 is the key that correlates
with the receiving queue of the addressee. The term (choice) models a branching
input-choice. The argument of the choice is modelled after (input). If one of the
inputs can execute — receiving a message from the queue correlating with e on
operation oi — it discards all other receptions and executes the related behaviour
Bi. Term (request) is the dual of (accept) and asks the service located at e1 to
spawn a new process, passing to it the message in e2. Finally (cqueue) models
the creation of a new queue. After the creation, variable x contains the key that
correlates with the new queue. All other terms of the syntax are standard.

Semantics. In Figure 6.12 we report the semantics of DCC, given as rules for
a reduction relation →. Relation → is closed under a structural congruence ≡
defined in the standard way (reported in Appendix D.9); in particular, it supports
commutativity and associativity for parallel composition. We comment the rules.
Rule bDCC|RECVe models the reception of messages: if the queue correlating with
e has a message on operation o then the message is removed from the queue and
its content is assigned to the variable x in the state of the process. Rule bDCC|CQe
adds to M an empty queue (ε) correlating with a fresh key, stored in x. The key
is unique within the service of the process, to avoid ambiguity, but we impose
no requirements on its structure (it can be any tree as long as it is unique in the
enclosing service). Rule bDCC|SENDe models the delivery of a message between
processes in different services. In the Rule, the message from the sender is added
to (the end of) the correlating queue of the receiver. Similarly, Rule bDCC|STARTe
models the matching of a request to create a new process with the service that
accepts it. The newly created process has B as its behaviour, a state initialised
with the content of the request message, and an empty queue map.

6.6 Compiler from AC to DCC and Properties
We present our main result: a formally-correct compiler from AC to DCC that
models how applied choreographies can be implemented in real-world languages.

6.6.1 Compiler
D,C Γdenotes the compilation of a well-typed running choreography D,C into
an operationally-equivalent network of DCC services. Before giving the formal

107

Chapter 6. Applied Choreographies

tc = eval(e, t) M(tc) = (o, t′) :: m̃

o(x) from e;B . t .M → B . t / (x, t′) .M [tc 7→ m̃]
bDCC|RECVe

B . t .M → B′ . t′ .M ′
def X = B1 in B . t .M → def X = B1 in B′ . t′ .M ′ b

DCC|CTXe

i = 1 if eval(e, t) = true, i = 2 otherwise
if e {B1} else {B2} . t .M → Bi . t .M

bDCC|CONDe

j ∈ I tc = eval(e, t) M(tc) = (oj , t
′) :: m̃∑

i∈I [oi(xi) from e] {Bi} . t .M → Bj . t / (xj , t
′) .M [tc 7→ m̃]

bDCC|CHOICEe

t′ = eval(e, t)

x = e;B . t .M → B . t / (x, t′) .M bDCC|ASSIGNe

P → P ′

〈Bs, P | P1〉l → 〈Bs, P ′ | P1〉l
bDCC|PPARe

P = cq(x);B . t .M tc 6∈
⋃
i dom(Mi) ∪ dom(M) t′ = t / (x, tc)

〈Bs, P |
∏
iBi . ti .Mi〉l → 〈Bs, B . t′ .M [tc 7→ ε] |

∏
iBi . ti .Mi〉l

bDCC|CQe

P = o@e1(e2) to e3;B . t .M eval(e1, t) = l eval(e3, t) = tc
eval(e2, t) = tm M ′′ = M ′[tc 7→M ′(tc) :: (o, tm)]

〈Bs, P | B′ . t′ .M ′ | P1〉l → 〈Bs, B . t .M | B′ . t′ .M ′′ | P1〉l
bDCC|INSENDe

P = o@e1(e2) to e3;B . t .M eval(e1, t) = l′ eval(e3, t) = tc
eval(e2, t) = tm M ′′ = M ′[tc 7→M ′(tc) :: (o, tm)]

〈Bs, P | P1〉l | 〈B′s, B′ . t′ .M ′ | P2〉l′
→ 〈Bs, B . t .M | P1〉l | 〈B′s, B′ . t′ .M ′′ | P2〉l′

bDCC|SENDe

P1 =?@e1(e2);B1
. t1 .M1 eval(e1, t1) = l Q = B . t⊥ / (x, eval(e2, t1)) . ∅

〈!(x);B, P 〉l | 〈B′s, P1 | P2〉l′ → 〈!(x);B, Q | P 〉l | 〈B′s, B1
. t1 .M1 | P2〉l′

bDCC|STARTe

P =?@e1(e2);B . t .M eval(e1, t) = l Q = B . t⊥ / (x, eval(e2, t)) . ∅
〈!(x);B′, P | P1〉l → 〈!(x);B′, Q | B . t .M | P1〉l

bDCC|INSTARTe

S ≡ S1 S1 → S′1 S′1 ≡ S′

S → S′
bDCC|EQe

S1 → S′1
S1 | S → S′1 | S

bDCC|SPARe

Figure 6.12: Correlation Calculus, semantics

108

6.6. Compiler from AC to DCC and Properties

definition of D,C Γ, we need to introduce some additional notation. Let C[·] be an
AC context defined as usual: C[·] ::= · | C[·] | C | C | C[·]. We then formalise
the filtering operators C|l and C|p as follows:

C|l = C ′ if C = C[C ′] and C ′ = acc k : l.p[A];C ′′, 0 otherwise
C|p = C ′ if C = C[C ′] and {p} = fp(C ′), 0 otherwise

Intuitively, C|l returns the accept term at location l in C and C|p returns the end-
point choreography of process p in C. Next, we denote with C Γthe compilation
of a process projection defined on the rules reported in Figure 6.13 (and com-
mented below). Below, we define our compiler abusing the notation l ∈ Γ to say
that p@l ∈ Γ for some p or that there is a service typing in Γ containing l.

109

Chapter 6. Applied Choreographies

req k : p[A] <=> l̃.B;C
Γ

=

start(k, l′.A, l̃.B); C Γ, p@l′ ∈ Γ

k : p[A].e -> B.o;C Γ=

o@k.B.l(e) to k.A.B; C Γ

def X = C ′ in C Γ=

def X = C ′ Γin C Γ

X Γ= X

acc k : l.q[B];C Γ=

accept(k, B,Γ(l̃)); C Γ, l ∈ l̃, l̃ ∈ Γ

k : A -> q[B].{oi(xi);Ci}i∈I Γ=∑
i∈I

[oi(xi) from k.A.B]
{
Ci Γ

}
if p.e {C1} else {C2} Γ=

if e {C1
Γ} else {C2

Γ}
0 Γ= 0

start(k, lA.A, l̃B.B) =

�
I∈{A,B̃}

k.I.l = lI ;

︸ ︷︷ ︸
(s1) locations

�
I∈{B̃}

((s2.1)︷ ︸︸ ︷
cq(k.I.A);

(s2.2)︷ ︸︸ ︷
?@k.I.l(k);

(s2.3)︷ ︸︸ ︷
sync(k) from k.I.A

)
;

︸ ︷︷ ︸
(s2) creation of correlation keys and service processes

�
I∈{B̃}

start@k.I.l(k) to k.A.I

︸ ︷︷ ︸
(s3) session start

accept(k, B, G〈A|C̃|D̃〉) =

!(k)

︸︷︷︸
(a1)

; �
I∈{A,C̃}/{B}

(
cq(k.I.B)

)
︸ ︷︷ ︸

(a2)

; sync@k.A.l(k) to k.B.A

︸ ︷︷ ︸
(a3)

; start(k) from k.A.B

︸ ︷︷ ︸
(a4)

Figure 6.13: Compiler from AC to DCC.

Definition 23 (Compilation). Let C be a parallel composition of endpoint chore-
ographies and let Γ ` D,C for some Γ and D. The compilation D,C Γis:

D,C Γ=
∏
l ∈ Γ

〈
C|l Γ,

∏
p ∈ D(l)

C|p Γ.D(p).st .D(p).que

〉
l

Intuitively, for each service 〈Bs, P 〉l in the compiled network: i) the start be-
haviourBs is the compilation of the endpoint choreography inC accepting the cre-
ation of processes at location l; ii) P is the parallel composition of the compilation
of all active processes located at l, equipped with their respective states and queue
maps according to D. Let us now comment the rules in Figure 6.13. We use the
auxiliary notation� for DCC behaviours, defined as �

i∈[1,n]

(Bi) = B1; . . . ;Bn.

Requests. Function start defines the compilation of (req) terms. start compiles
(req) terms to create the queues and a part of the session descriptor of a valid
session support (see Definition 16) for the starter. Given a session identifier k,
the located role of the starter (lA.A), and the other located roles in the session

110

6.6. Compiler from AC to DCC and Properties

(l̃B.B), start returns DCC code that: (s1) includes in the session descriptor all the
locations of the processes involved in the session and (s2.1) all the keys correlating
with the queues of the starter for the session. Then, (s2.2) it requests the creation
of all the service processes for the session, (s2.3) waits for them to be ready using
the reserved operation sync and, finally, (s3) sends them the complete session
descriptor obtained after receiving from all processes their correlation keys (in the
sync step).

Accepts. (acc) terms define the start behaviour of the service accepting the cre-
ation of processes at a location. Given a session identifier k, the role B of the
service process, and the service typing G〈A|C̃|D̃〉 of the location, function accept
defines the compilation of (acc) terms. accept complements function start by
compiling the code that (a1) accepts the spawn of a new process which, in turn,
(a2) creates its queues (including their keys in the session descriptor passed by
the starter), (a3) returns the session descriptor to the starter, and (a4) waits for the
signal to start the session.

Other terms. We compile (send) terms to (output) terms. Notably, the com-
piled code contains the same elements used by the semantics of AC to implement
correlation, i.e., the location of the receiver (k.B.l) and the key that correlates with
its queue (k.A.B). (recv) compiles to (choice), which defines the path (k.A.B)
of the key correlating with the receiving queue, used also in the semantics of AC.
Terms (def), (cond), (call), and (inact) compile to the relative terms in DCC.

6.6.2 Example of Compilation
We report in Figure 6.14 the compilation of the example in § 6.2.3.

We associate a default deployment D to JCK such that for some Γ and D i)
Γ ` D, JCK holds; ii) the location of process c is lC. lC is also the location of the
service process f, which lets us to show how the compilation of active and service
processes work. Figure 6.14 reports the result of the compilation D, JCK Γwhere,
on top it shows the composition of compiled services and below it, from left to
right, the compiled behaviours of processes c, a, and l.

Compiled Services. The network of compiled services, on top of Figure 6.14,
shows that there is a compiled service for all locations (lC, lA, lDM, and lL) in C.
In particular, Sc, the service located at lC, contains i) as its start behaviour the
compilation of the process projection of f (which accepts requests on lC in C) and
ii) a running process whose behaviour is the compilation of the process projection
of c, and whose state and queue map are those of c in D.

111

Chapter 6. Applied Choreographies

Sc︷ ︸︸ ︷〈
JCKf Γ, JCKc Γ.D(c).st .D(c).que

〉
lC
|

Sa︷ ︸︸ ︷〈
JCKa Γ,0

〉
lA
|

Sdm︷ ︸︸ ︷〈
JCKdm Γ,0

〉
lDM
|

Sl︷ ︸︸ ︷〈
JCKl Γ,0

〉
lL

JCKc Γ=

1. kd.C.l = lC;
2. kd.A.l = lA;
3. kd.DM.l = lDM;
4. kd.L.l = lL;
5. cq(kd.A.C);
6. ?@kd.A.l(kd);
7. sync(kd) from kd.A.C;
8. . . .
9. . . .

10. start@kd.A.l(kd) to kd.C.A;
11. start@kd.S.l(kd) to kd.C.S;
12. start@kd.C.l(kd) to kd.C.L;
13. get@kd.A.l(mkReq()) to kd.C.A;
14. . . .

JCKa Γ=

1. !(kd);
2. cq(kd.C.A);
3. cq(kd.S.A);
4. cq(kd.L.A);
5. sync@kd.C.l(kd) to kd.A.C;
6. start(kd) from kd.C.A;
7. get(req) from kd.C.A;

8. if isV alid(req) {
9. ok@kd.S.l(req.rsc) to kd.A.S;

10. ok@kd.C.l() to kd.A.C
11. } else {
12. ko@kd.S.l(req.rsc) to kd.A.S;

13. ko@kd.C.l() to kd.A.C
14. }

JCKl Γ=

{
1. !(kd); 2. cq(kd.C.L); 3. cq(kd.A.L); 4. cq(kd.S.L); 5. sync@k.C.l(kd) to kd.L.C;
6. start(kd) from kd.C.L; 7. log(log) from kd.S.L

Figure 6.14: Compilation of C = Cc | Cs, behaviours of c (excepts), a, and l.

Starting a new session. Lines 1-/12 of JCKc
Γshow an excerpt of the compiled

code of the request to start session kd for process c: req kd : c[C] <=> lA.A, lDM.DM, lL.L.
As defined by function start, at Lines 1-4 the process sets the locations of all in-
volved roles in the Session Descriptor, rooted in kd. Lines 5/-7 define the inter-
action to start the process playing role A: line-wise, the process creates the queue
to received from role A, it requests the creation of a new process at the relative
location kd.A.l, passing to it the Session Descriptor, and, it waits for the process
to return the updated Session Descriptor. Lines 10-/12 signal the start of the ses-
sion to all the started processes. Lines 1-/6 of JCKa

Γand JCKl
Γshow the code that

complements the start. At the end of the procedure, D, JCK and D, JCK Γproperly
set a Session Support for session kd.

In-session message passing. We show that the originating choreography and
its compilation handle communications similarly. We compare the execution of
Lines 2 of JCKc

13 and JCKa with that of Line 13 of JCKc
Γand Line 7 of JCKa

Γ.
Let D be the deployment associated with JCK′, reduction of JCK to the considered
Lines. D, JCK′ → D′, JCK′′ applying Rule bC|SENDe on Line 2 of JCKc. In D′

the queue in which a receives from c contains the sent message: D′(a).que(tc) =
(get, tm), tc correlation key rooted at kd.C.A in the state of c and tm evaluation

13Although not shown here, Line 2 of JCKc corresponds to Line 2 of Cc as partial actions are
projected verbatim on their process by the EPP.

112

6.6. Compiler from AC to DCC and Properties

of function mkReq(). Similarly, Line 13 of JCKc
Γreduces with Rule bDCC|SENDe.

The Rule delivers the message on operation get, carrying the evaluation of e, to
the service located at kd.A.l, which contains all service processes compilation of
a, and in the queue correlating with kd.A.C. By the compilation, the compiled
process relative to c has the state of c, hence, the value rooted at kd.A.C is
equal to tc, kd.A.l is equal to the location of A, and the evaluation of e is equal
to tm. Moreover, since the network has just started (at Line 13 of JCKc

Γ and
correspondent), we know that the receiving process had no message in the queue
correlating with kd.A.C, thus, after the reduction, it only has message (get, tm).
The state of D′, JCK′′ corresponds to the state of D′, JCK′′ Γ. On this result, if
D′, JCK′′ reduces with Rule bC|RECVe, D′, JCK′′ Γ can apply Rule bDCC|RECVe and
we are sure that i) the consumed message by the receiver (a and its compiled
correspondent) is (get, tm), ii) the relative queues are now empty, and iii) the
receiver included in its state tm under path req.

6.6.3 Properties
We present our main result: the operational correspondence between the seman-
tics of a well-typed running Applied Choreography and the semantics of its com-
pilation.

Theorem 8 (Compilation Operational Correspondence). Let C be a composition
of endpoint choreographies such that Γ ` D,C . Then we have that:

1. (Completeness) D,C → D′, C ′ implies D,C Γ →+ D′, C ′
Γ′ for some Γ′

such that Γ′ ` D′, C ′ .
2. (Soundness) D,C

Γ →∗ S implies (i) D,C →∗ D′, C ′ and (ii) S →∗

D′, C ′
Γ′ for some D′, C ′ and Γ′ such that Γ′ ` D′, C ′ .

We report the full proof of Theorem 8 in Appendix E.4.
Definition 23 is defined only for endpoint choreographies, however, using EPP,

we can always reconduce a choreography to this case.

Lemma 2. Let Γ ` C then JCK is a composition of endpoint choreographies.

Proof. Trivial from Definition 21 and Definition 23.

113

Chapter 6. Applied Choreographies

We conclude by answering our research question. The compilation of the EPP
of an Applied Choreography is always a correct implementation.

Corollary 5 (Applied Choreographies). Let Γ ` D,C . Then we have that:
1. (Completeness) D,C → D′, C ′ implies JD,CK Γ →+ JD′, C ′K Γ′

for some
Γ′ such that Γ′ ` D′, C ′ .

2. (Soundness) JD,CK Γ →∗ S implies (i) D,C →∗ D′, C ′ and (ii) S →∗

JD′, C ′K Γ′
for some D′, C ′ and Γ′ such that Γ′ ` D′, C ′ .

Proof. Trivial from the application of Theorem 8 and Lemma 2.

114

Part IV

Conclusion

115

116

CHAPTER 7

Conclusion

In this final chapter we summarise the presented contributions, we discuss how
they compare with related work, and define some direction of future investigation.

7.1 Adaptable Choreographies
In Chapters 4 and 5 we presented our theory for the safe dynamic update of dis-
tributed applications. Our model guarantees the absence of communication dead-
locks and races by construction for the running distributed application, even in
presence of updates that were unknown when the application was started. We
build on the strong theoretical results of our model and develop AIOCJ, a pro-
gramming framework that offers the minimality and conciseness of the choreo-
graphic approach yet compiling choreographic specifications to executable dis-
tributed programs that can adapt in a consistent and coherent way at runtime.

The two approaches closest to ours we are aware of are in the area of multiparty
session types [43, 13, 78], and deal with dynamic software updates [17] and with
monitoring of self-adaptive systems [109]. The main difference between [17] and
our approach is that [17] targets concurrent applications which are not distributed
and it relies on a check on the global state of the application to ensure that the
update is safe. Such a check cannot be done by a single role, thus is impractical in
a distributed setting. Furthermore, the language in [17] is much more constrained
than ours, e.g., requiring each pair of participants to interact on a dedicated pair of
channels, and assuming that all the roles not involved in a choice behave the same
in the two branches. The approach in [109] is very different from ours, too. In
particular, in [109] all the possible behaviours are available since the very begin-
ning, both at the level of types and of processes, and a fixed adaptation function
is used to switch between them. This difference derives from the distinction be-
tween self-adaptive applications, as they discuss, and applications updated from
the outside, as in our case.

We also recall [110], which uses types to ensure safe adaptation. However,

117

Chapter 7. Conclusion

[110] allows updates only when no session is active, while we change the be-
haviour of running DIOCs. Our work shares with [14] the interest in choreogra-
phies composition. However, [14] uses multiparty session types and only allows
static parallel composition, while we replace a term inside an arbitrary context at
runtime.

Extensions of multiparty session types with error handling [16, 111] share with
us the difficulties in coordinating the transition from the expected pattern to an
alternative pattern, but in their case the error recovery pattern is known since the
very beginning, thus considerably simplifying the analysis.

We briefly compare some works that exploit choreographic descriptions for
adaptation, but with very different aims. For instance, [112] defines rules for
adapting the specification of the initial requirements for a choreography, thus
keeping the requirements up-to-date in presence of run-time changes. Our ap-
proach is in the opposite direction: we are not interested in updating the system
specification tracking system updates, but in programming and ensuring correct-
ness of adaptation itself.

Other formal approaches to adaptation represent choreographies as annotated
finite state automata. In [113] choreographies are used to propagate protocol
changes to the other peers, while [114] presents a test to check whether a set
of peers obtained from a choreography can be reconfigured to match a second
one. Differently from ours, these works only provide change recommendations
for adding and removing message sequences.

In principle, our update mechanism can be used to inject guarantees of freedom
from deadlocks and races into existing approaches to adaptation (cf. Chapter 3).
However, this task is cumbersome, due to the huge number and heterogeneity
of those approaches. For each of them the integration with our techniques is
far from trivial. Nevertheless, we already started it. Indeed, AIOCJ, we apply
our technique to the adaptation mechanism described in [82]. While applications
in [82] are not distributed and there are no guarantees on the correctness of the
application after adaptation, applications in AIOCJ, based on the same adaptation
mechanisms, are distributed and free from deadlocks and races by construction.

Furthermore, on the website [89], we give examples of how to integrate our
approach with distributed [70] and dynamic [87] Aspect-Oriented Programming
(AOP) and with Context-Oriented Programming (COP) (cf. § 3.1.2). We re-
port in Appendix C two examples which respectively model Aspect- and Context-
Oriented Programming. In general, we can deal with cross-cutting concerns like
logging and authentication, typical of AOP, viewing pointcuts as empty scopes
and advices as updates. Layers, typical of COP, can instead be defined by updates
which can fire according to contextual conditions. We are also planning to apply
our techniques to multiparty session types [43, 13, 78]. The main challenge here
is to deal with multiple interleaved sessions. An initial analysis of the problem is

118

7.2. Applied Choreographies

presented in [115].

7.1.1 Adaptable Choreographies and their degree of flexibility
In Table 7.1, we report in § 3.1.3 how our solution of Adaptable Choreographies,
as instantiated in AIOCJ, fits against the attributed of PAIS.

In summation, being a language-level solution, AIOCJ can implement the most
part of decision deferral patterns, as reported in Table 3.1, from Fully pre-specified
processes to Ad-hoc composition.

7.2 Applied Choreographies
In Chapter 6 we tackled the issue of formalising the implementation of choreog-
raphy models. Our solution comprises i) a model of Applied Choreographies, ii)
a type system to check AC against multiparty protocol specifications, and iii) a
formally-correct compiler to obtain executable programs from choreographies.

The main novelty of AC regards its original semantics that abstracts the fea-
tures of choreographies (message passing, creation of new sessions and processes)
from their implementation. To this end we i) equip choreographies with a global
deployment and ii) define a separate semantics of effects on deployments. In-
terestingly, deployments and effects hide the complexity of the implementation
away from the semantics of choreographies. This means that we can preserve
the semantics of choreographies and compose it with other definitions of deploy-
ment and semantics of effects to model different communication semantics (e.g.,
synchronous, asynchronous with buffers) and implementations (e.g., distributed
objects [101]).

Deployments let us formalise how choreographies can go wrong (see §6.3.3)
and prove that the theory of session types is useful not only to type communi-
cations on choreographies (like in [13, 14]) but also to check the correctness of
deployments. We highlight that, except for the declaration of locations, AC has the
same types and syntax from previous works [13, 14], i.e., developers only spec-
ify protocols and choreographies and do not deal with deployment information or
correlation data.

Implementation Model. To the best of our knowledge, this is the first formal
work on a compiler and an execution model for choreographies. All previous
works on formal choreography languages only specify an EPP procedure towards
a calculus based on name synchronisation, leaving the design of its concrete sup-
port to implementors.

Chor [99] and AIOCJ (cf. Chapter 5) are the only projects (that we are aware of)
that aim at providing choreography languages with strong safety guarantees (e.g.,

119

Chapter 7. Conclusion

Attribute Degree/type Description

Freedom
modelling and
composition

Updates can be introduced at runtime and
they are not bound to a pre-specified set of

behaviours. Moreover, updates can compose
other updates, e.g., using scope properties.

Planning
approach

plan-driven,
iterative and

continuous, and
ad-hoc

It is possible to implement all planning
approaches by controlling which updates are

available during the execution. The
plan-driven approach provides only those
updates that belong to the pre-specified

model, the iterative and continuous
approach changes the updates at runtime to

adapt a coarse plan (implemented in the
choreography) to upcoming requirements,
and the ad-hoc approach do not constrain

the presence of updates wrt a plan.

Scope
regions and

entire processes

The basic usage of scopes is to enclose a
region of a choreography, yet it is possible
to update the whole process by enclosing

the whole choreography into a scope.

Process
perspective

behaviours, data,
functions,

operational
decisions, time,

and, actors
(limited)

Updates can bring into the original
choreography new behaviours, use different

data, introduce new functions (which are
liked to their implementations) and thanks
to the presence of the Environment, it is

also possible to encode time-triggered
events. It is possible to change which actors
perform tasks, yet they are limited to those
that belonged to the original choreography.

Making and
support of
decision

goal-based,
rule-based,
experience-

based, and user
decision

AIOCJ implements the application of
updates on rules. Updates can encode

goal-based decisions by sharing a property
that is common to the same goal. It is also

possible to implement experience-based and
user decision systems by e.g., letting

experience systems and users change the
values of environmental variables.

Degree of
automation

automation,
system-

supported, and
manual

It is possible to either let the framework
apply updates in an automatic way or

require (different degrees of) interaction
with the user.

Table 7.1: Attributes of flexibility as implemented in AIOCJ.

120

7.2. Applied Choreographies

deadlock-freedom). The languages respectively implement the formal models pre-
sented in [13] and Chapter 4. However, both implementations depart significantly
from their respective formal models as they generate code based on message cor-
relation whilst their formalisations of EPP use synchronisations on names. This
gap between theoretical models and their implementations has two consequences:
i) it breaks the correctness-by-construction guarantee of choreographies — there
is no proof that the implementation correctly supports synchronisation on names
— and ii) users must look into the complexity of the compilers to understand how
the generated code implements the originating choreography. Implementations of
other frameworks based on sessions share similar issues and follow different cus-
tom practices to implement the semantics of name synchronisation [52, 53, 54].
Thus, our work is a useful reference to formalise the implementation of session-
based languages in general.

Choreography Language and Deployment. The fragment of endpoint chore-
ographies in AC is remarkably similar to standard process languages based on
sessions, e.g., those used in [44, 116, 43, 96]. Moreover, the syntax of AC re-
sembles that of Compositional Choreographies [14], which introduced a notion of
compositionality in choreographies. This similarity is intentional: our aim is to
show that it is possible to provide a suitable implementation model for this kind
of languages.

Notably, our semantics easily captures asynchronous message passing through
the interplay of the swapping relation 'C, partial choreographies, and message
queues. By contrast, previous works [13, 14] simulate asynchrony with encumber-
ing ad-hoc rules that check if actions guarded by communications in continuations
are allowed.

Several works have already analysed the behavioural expressiveness of choreo-
graphic descriptions as protocols (e.g., multiparty session types [108]) but, to the
best of our knowledge, there are none on the expressiveness of choreographies
meant as implementation languages. We leave this investigation as an interesting
future work.

Integrating Dynamic Choreographies in Applied Choreographies. By in-
tegrating our theory of Dynamic Choreographies into that of Applied Choreogra-
phies we can proceed in the realisation of a formally proven programming frame-
work for adaptable distributed systems. However, merging the two theoretical
approaches constitutes a formidable challenge because we need to put together
the typical static approach of typed sessions of ACs with dynamic distributed be-
haviours of Dynamic Choreographies. Some already-cited works in this direction
are [43, 13, 78, 16, 111] whilst [117] discusses the main issues of integrating typed
sessions that can update at runtime.

Delegation. Delegation is a standard feature of session-typed choreography
models [13, 14] and enables to transfer the responsibility to continue a session

121

Chapter 7. Conclusion

from a process to another. We can support delegation in AC by adding a rule
that atomically updates the session descriptors of all processes involved in a ses-
sion when there is a delegation. However, we leave delegation to future work,
as its introduction would bring more complexity in our compiler; specifically, we
would have to compile appropriate communications to update the local session
descriptors of the involved DCC processes. This is a renowned issue of imple-
menting delegation that we plan to address by formalising the techniques proposed
in [52, 13].

Correlation keys. In the semantics of AC, we abstract how correlation keys
are generated. With this loose definition we can capture several implementations,
provided they satisfy the requirement of unicity of keys (wrt to locations). As
future work, we plan to implement a language, based on AC, able to support cus-
tom procedures for the generation of correlation keys (e.g., from database queries,
cookies, etc.).

122

Bibliography

[1] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C.
Lynch, J. B. Postel, L. G. Roberts, and S. S. Wolff, “A brief history of the
internet,” CoRR, vol. cs.NI/9901011, 1999. (Cited on pages 1 and 9.)

[2] G. F. Coulouris and J. Dollimore, Distributed Systems: Concepts and De-
sign. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1988. (Cited on pages 1 and 9.)

[3] E. G. Coffman, M. Elphick, and A. Shoshani, “System deadlocks,” ACM
Comput. Surv., vol. 3, pp. 67–78, June 1971. (Cited on pages 1 and 11.)

[4] R. H. B. Netzer and B. P. Miller, “What are race conditions?: Some issues
and formalizations,” ACM Lett. Program. Lang. Syst., vol. 1, pp. 74–88,
Mar. 1992. (Cited on pages 1 and 11.)

[5] D. Sangiorgi and D. Walker, The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001. (Cited on pages 2, 19, 20, 41, and 79.)

[6] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: a compre-
hensive study on real world concurrency bug characteristics,” in ASPLOS,
pp. 329–339, ACM, 2008. (Cited on page 2.)

[7] C. Peltz, “Web services orchestration and choreography,” Computer,
vol. 36, pp. 46–52, Oct 2003. (Cited on pages 2 and 14.)

[8] W3C WS-CDL Working Group, “Web services choreography description
language version 1.0.” http://www.w3.org/TR/ws-cdl-10/, 2004. (Cited on
pages 2, 16, and 80.)

123

Bibliography

[9] “Business Process Model and Notation.” http://www.omg.org/spec/
BPMN/2.0/. (Cited on pages 2 and 16.)

[10] Z. Qiu, X. Zhao, C. Cai, and H. Yang, “Towards the theoretical foundation
of choreography,” in WWW, (United States), pp. 973–982, IEEE Computer
Society Press, 2007. (Cited on pages 2, 19, 79, 81, and 96.)

[11] M. Carbone, K. Honda, and N. Yoshida, “Structured communication-
centred programming for web services,” in Proc. of ESOP, vol. 4421 of
LNCS, pp. 2–17, Springer-Verlag, 2007. (Cited on pages 2, 19, 32, and 58.)

[12] I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro, “Bridging the gap
between interaction-and process-oriented choreographies,” in SEFM’08,
pp. 323–332, IEEE, 2008. (Cited on pages 2, 17, 19, 32, 79, and 81.)

[13] M. Carbone and F. Montesi, “Deadlock-freedom-by-design: multiparty
asynchronous global programming,” in POPL, pp. 263–274, 2013. (Cited
on pages 2, 19, 20, 32, 79, 81, 83, 89, 96, 105, 117, 118, 119, 121, 122,
and 203.)

[14] F. Montesi and N. Yoshida, “Compositional choreographies,” in CONCUR,
pp. 425–439, 2013. (Cited on pages 2, 19, 21, 81, 82, 83, 93, 94, 95, 102,
118, 119, 121, 189, 203, 205, and 216.)

[15] F. Montesi, “Kickstarting choreographic programming,” CoRR,
vol. abs/1502.02519, 2015. (Cited on page 2.)

[16] M. Carbone, K. Honda, and N. Yoshida, “Structured Interactional Excep-
tions in Session Types,” in Proc. of CONCUR’08, vol. 5201 of LNCS,
pp. 402–417, Springer, 2008. (Cited on pages 2, 118, and 121.)

[17] G. Anderson and J. Rathke, “Dynamic software update for message passing
programs,” in APLAS, vol. 7705 of LNCS, pp. 207–222, Springer, 2012.
(Cited on pages 2 and 117.)

[18] F. E. Heart, R. E. Kahn, S. M. Ornstein, W. R. Crowther, and D. C. Walden,
“The interface message processor for the arpa computer network,” in Pro-
ceedings of the May 5-7, 1970, Spring Joint Computer Conference, AFIPS
’70 (Spring), (New York, NY, USA), pp. 551–567, ACM, 1970. (Cited on
page 9.)

[19] R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed packet switching
for local computer networks,” Commun. ACM, vol. 19, pp. 395–404, July
1976. (Cited on page 9.)

124

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

Bibliography

[20] M. Weiser, “The computer for the 21st century,” SIGMOBILE Mob. Com-
put. Commun. Rev., vol. 3, pp. 3–11, July 1999. (Cited on page 9.)

[21] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, pp. 50–58, Apr. 2010. (Cited
on page 9.)

[22] ITU-T, Geneva, “120: Message sequence chart (MSC),” 1996. (Cited on
page 11.)

[23] G. Booch, The unified modeling language user guide. Pearson Education
India, 2005. (Cited on page 11.)

[24] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Secret,
“The world-wide web,” Commun. ACM, vol. 37, pp. 76–82, Aug. 1994.
(Cited on page 12.)

[25] T. Berners-Lee, L. Masinter, M. McCahill, et al., “Uniform resource loca-
tors (url),” 1994. (Cited on page 12.)

[26] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext transfer protocol–http/1.1,” 1999. (Cited on
page 12.)

[27] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible markup language (xml),” World Wide Web Consortium Rec-
ommendation REC-xml-19980210. http://www. w3. org/TR/1998/REC-xml-
19980210, 1998. (Cited on pages 12 and 84.)

[28] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Fer-
ris, and D. Orchard, “Web services architecture, w3c working group note,
11 february 2004,” World Wide Web Consortium, article available from:
http://www. w3. org/TR/ws-arch, 2004. (Cited on page 13.)

[29] E. Christensen, F. Curbera, and G. Meredith, “Web services descrip-
tion language (WSDL) 1.1. w3c,” tech. rep., Note 15, 2001, www. w3.
org/TR/wsdl, 2001. (Cited on page 13.)

[30] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F. Nielsen,
“SOAP version 1.2 part 1: Messaging framework. w3c recommendation 24
june 2003,” Retrieved from http://www. w, vol. 3, 2003. (Cited on page 13.)

[31] M. P. Papazoglou, “Service-oriented computing: Concepts, characteristics
and directions,” in WISE 2003, pp. 3–12, IEEE, 2003. (Cited on page 13.)

125

Bibliography

[32] Red Hat, “D-bus website.” http://www.freedesktop.org/wiki/
Software/dbus/, 2014. (Cited on page 13.)

[33] E. Frank and I. Redmond, “Dcom: Microsoft distributed component object
model,” Redmond III November, 1997. (Cited on page 13.)

[34] D. A. Chappell, Enterprise service bus. " O’Reilly Media, Inc.", 2004.
(Cited on page 13.)

[35] SAP, “Sap remote function call.” http://help.sap.com/saphelp_nw04/
helpdata/en/6f/1bd5b6a85b11d6b28500508b5d5211/content.htm,
2014. (Cited on page 14.)

[36] OASIS, “Web Services Business Process Execution Language.” http:
//docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html. (Cited on
pages 15, 32, 79, 80, 84, and 106.)

[37] D. Recordon and D. Reed, “Openid 2.0: a platform for user-centric iden-
tity management,” in Proceedings of the second ACM workshop on Digital
identity management, pp. 11–16, ACM, 2006. (Cited on page 16.)

[38] G. Decker, O. Kopp, F. Leymann, and M. Weske, “Bpel4chor: Extending
bpel for modeling choreographies,” in Web Services, 2007. ICWS 2007.
IEEE International Conference on, pp. 296–303, IEEE, 2007. (Cited on
page 17.)

[39] R. M. Needham and M. D. Schroeder, “Using encryption for authentication
in large networks of computers,” Commun. ACM, vol. 21, pp. 993–999,
Dec. 1978. (Cited on page 18.)

[40] M. Bravetti and G. Zavattaro, “Towards a unifying theory for choreogra-
phy conformance and contract compliance,” in Proc. of SC’07, vol. 4829,
pp. 34–50, 2007. (Cited on pages 19 and 32.)

[41] S. Carpineti and C. Laneve, “A basic contract language for web services.,”
in ESOP’06, LNCS, pp. 197–213, 2006. (Cited on page 19.)

[42] F. Montesi, Choreographic Programming. Ph.D. thesis, IT Univer-
sity of Copenhagen, 2013. http://www.fabriziomontesi.com/files/
choreographic_programming.pdf. (Cited on page 19.)

[43] K. Honda, N. Yoshida, and M. Carbone, “Multiparty asynchronous session
types,” in Proc. of POPL, vol. 43(1), pp. 273–284, ACM, 2008. (Cited on
pages 19, 32, 79, 81, 82, 92, 94, 101, 117, 118, and 121.)

126

http://www.freedesktop.org/wiki/Software/dbus/
http://www.freedesktop.org/wiki/Software/dbus/
http://help.sap.com/saphelp_nw04/helpdata/en/6f/1bd5b6a85b11d6b28500508b5d5211/content.htm
http://help.sap.com/saphelp_nw04/helpdata/en/6f/1bd5b6a85b11d6b28500508b5d5211/content.htm
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.fabriziomontesi.com/files/choreographic_programming.pdf
http://www.fabriziomontesi.com/files/choreographic_programming.pdf

Bibliography

[44] K. Honda, V. Vasconcelos, and M. Kubo, “Language primitives and
type disciplines for structured communication-based programming,” in
ESOP’98, vol. 1381 of LNCS, (Heidelberg, Germany), pp. 22–138,
Springer-Verlag, 1998. (Cited on pages 19, 83, and 121.)

[45] K. Honda, A. Mukhamedov, G. Brown, T.-C. Chen, and N. Yoshida, “Scrib-
bling interactions with a formal foundation,” in Proc. of ICDCIT, vol. 6536
of LNCS, pp. 55–75, Springer, 2011. (Cited on page 19.)

[46] PI4SOA, “http://www.pi4soa.org,” 2008. (Cited on page 19.)

[47] Savara, “JBoss Community.” http://www.jboss.org/savara/. (Cited
on page 19.)

[48] F. Montesi, “Chor language website.” http://www.chor-lang.org, 2014.
(Cited on page 20.)

[49] R. Milner, A Calculus of Communicating Systems, vol. 92 of Lecture Notes
in Computer Science. Springer, 1980. (Cited on pages 20 and 79.)

[50] F. Montesi, C. Guidi, and G. Zavattaro, “Service-oriented programming
with jolie,” in Web Services Foundations, pp. 81–107, Springer, 2014.
(Cited on pages 20 and 79.)

[51] M. A. Hiltunen and R. D. Schlichting, “Adaptive distributed and fault-
tolerant systems,” International Journal of Computer Systems Science and
Engineering, vol. 11, pp. 125–133, 1995. (Cited on page 20.)

[52] R. Hu, N. Yoshida, and K. Honda, “Session-based distributed programming
in java,” in ECOOP, pp. 516–541, 2008. (Cited on pages 21, 79, 121,
and 122.)

[53] R. Hu, R. Neykova, N. Yoshida, R. Demangeon, and K. Honda, “Practical
interruptible conversations - distributed dynamic verification with session
types and python,” in RV, pp. 130–148, 2013. (Cited on pages 21 and 121.)

[54] R. Neykova and N. Yoshida, “Multiparty session actors,” in COORDINA-
TION 2014, Proceedings, pp. 131–146, 2014. (Cited on pages 21 and 121.)

[55] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003. (Cited on pages 25 and 65.)

[56] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and re-
search challenges,” ACM Transactions on Autonomous and Adaptive Sys-
tems (TAAS), vol. 4, no. 2, p. 14, 2009. (Cited on page 25.)

127

http://www.jboss.org/savara/
http://www.chor-lang.org

Bibliography

[57] G. Salvaneschi, C. Ghezzi, and M. Pradella, “An analysis of language-level
support for self-adaptive software,” ACM Trans. Auton. Adapt. Syst., vol. 8,
pp. 7:1–7:29, July 2013. (Cited on pages 25 and 26.)

[58] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-based runtime
software evolution,” in Proceedings of the 20th international conference on
Software engineering, pp. 177–186, IEEE Computer Society, 1998. (Cited
on page 26.)

[59] J. Kramer and J. Magee, “Self-managed systems: an architectural chal-
lenge,” in Future of Software Engineering, 2007. FOSE’07, pp. 259–268,
IEEE, 2007. (Cited on page 26.)

[60] S. R. White, D. M. Chess, J. O. Kephart, J. E. Hanson, and I. Whalley, “An
architectural approach to autonomic computing,” in Autonomic Comput-
ing, International Conference on, pp. 2–9, IEEE Computer Society, 2004.
(Cited on page 26.)

[61] C. Ghezzi, M. Pradella, and G. Salvaneschi, “An Evaluation of the Adap-
tation Capabilities in Programming Languages,” in Proc. of SEAMS 2011,
pp. 50–59, ACM, 2011. (Cited on pages 26 and 32.)

[62] P. Maes, “Concepts and experiments in computational reflection,” in ACM
Sigplan Notices, vol. 22, pp. 147–155, ACM, 1987. (Cited on page 27.)

[63] J. McCarthy, LISP 1.5 programmer’s manual. MIT press, 1965. (Cited on
page 27.)

[64] T. Ledoux, “Implementing proxy objects in a reflective orb,” in Proc.
ECOOP, vol. 97, Citeseer, 1997. (Cited on page 27.)

[65] J. Dowling, T. Schäfer, V. Cahill, P. Haraszti, and B. Redmond, “Using
reflection to support dynamic adaptation of system software: A case study
driven evaluation,” in Reflection and Software Engineering, pp. 169–188,
Springer, 2000. (Cited on page 27.)

[66] J. Xu, B. Randell, and A. F. Zorzo, “Implementing software-fault tolerance
in c++ and open c++: An object-oriented and reflective approach,” Proc.
CADTED, vol. 96, pp. 224–229, 1996. (Cited on pages 27 and 28.)

[67] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, and J. Irwin, Aspect-oriented programming. Springer, 1997. (Cited
on page 28.)

128

Bibliography

[68] A. Popovici, T. Gross, and G. Alonso, “Dynamic weaving for aspect-
oriented programming,” in Proceedings of the 1st international confer-
ence on Aspect-oriented software development, pp. 141–147, ACM, 2002.
(Cited on page 28.)

[69] R. Pawlak, L. Duchien, G. Florin, and L. Seinturier, “JAC: A flexible so-
lution for aspect-oriented programming in java,” in Metalevel architectures
and separation of crosscutting concerns, pp. 1–24, Springer, 2001. (Cited
on page 28.)

[70] R. Pawlak, L. Seinturier, L. Duchien, G. Florin, F. Legond-Aubry, and
L. Martelli, “JAC: an aspect-based distributed dynamic framework,” Soft-
ware: Practice and Experience, vol. 34, no. 12, pp. 1119–1148, 2004.
(Cited on pages 28 and 118.)

[71] R. Hirschfeld, P. Costanza, and O. Nierstrasz, “Context-oriented program-
ming,” Journal of Object Technology, vol. 7, no. 3, 2008. (Cited on
page 29.)

[72] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and M. Perscheid, “A
comparison of context-oriented programming languages,” in International
Workshop on Context-Oriented Programming, p. 6, ACM, 2009. (Cited on
page 29.)

[73] C. Ghezzi, M. Pradella, and G. Salvaneschi, “Programming language sup-
port to context-aware adaptation: a case-study with erlang,” in ICSE,
pp. 59–68, ACM, 2010. (Cited on pages 29 and 172.)

[74] M. Weske, Business process management: concepts, languages, architec-
tures. Springer Science & Business Media, 2012. (Cited on page 30.)

[75] M. Dumas, W. M. Van der Aalst, and A. H. Ter Hofstede, Process-aware
information systems: bridging people and software through process tech-
nology. John Wiley & Sons, 2005. (Cited on page 30.)

[76] M. Reichert and B. Weber, Enabling flexibility in process-aware informa-
tion systems: challenges, methods, technologies. Springer Science & Busi-
ness Media, 2012. (Cited on pages 30 and 31.)

[77] A. Charfi and M. Mezini, “Aspect-oriented web service composition with
ao4bpel,” in Web Services, pp. 168–182, Springer, 2004. (Cited on
page 32.)

129

Bibliography

[78] G. Castagna, M. Dezani-Ciancaglini, and L. Padovani, “On global types
and multi-party session,” Logical Methods in Computer Science, vol. 8,
no. 1, 2012. (Cited on pages 32, 117, 118, and 121.)

[79] J. A. Bergstra and P. Klint, “The discrete time TOOLBUS - A software co-
ordination architecture,” Sci. Comput. Program., vol. 31, no. 2-3, pp. 205–
229, 1998. (Cited on page 32.)

[80] A. Bucchiarone, A. Marconi, M. Pistore, and H. Raik, “Dynamic Adapta-
tion of Fragment-Based and Context-Aware Business Processes,” in Proc.
of ICWS 2012, pp. 33–41, 2012. (Cited on page 32.)

[81] W.-K. Chen, M. A. Hiltunen, and R. D. Schlichting, “Constructing Adap-
tive Software in Distributed Systems,” in Proc. of ICDCS’01, vol. 6084,
pp. 635–643, 2001. (Cited on page 32.)

[82] I. Lanese, A. Bucchiarone, and F. Montesi, “A Framework for Rule-Based
Dynamic Adaptation,” in Proc. of TGC 2010, vol. 6084, pp. 284–300, 2010.
(Cited on pages 32 and 118.)

[83] J. Zhang, H. Goldsby, and B. H. C. Cheng, “Modular Verification of Dy-
namically Adaptive Systems,” in Proc. of AOSD’09, pp. 161–172, ACM,
2009. (Cited on page 32.)

[84] L. Leite, G. Ansaldi Oliva, G. Nogueira, M. Gerosa, F. Kon, and D. Milo-
jicic, “A systematic literature review of service choreography adaptation,”
Service Oriented Computing and Applications, pp. 1–18, 2012. (Cited on
page 32.)

[85] S. González, K. Mens, M. Colacioiu, and W. Cazzola, “Context traits:
dynamic behaviour adaptation through run-time trait recomposition,” in
AOSD, pp. 209–220, 2013. (Cited on page 32.)

[86] S. Goetz and I. Savga, “Exploring Role Based Adaptation,” in RAM-SE,
pp. 21–26, Fakultät für Informatik, Universität Magdeburg, 2008. (Cited
on page 32.)

[87] Z. Yang, B. H. C. Cheng, R. E. K. Stirewalt, J. Sowell, S. M. Sadjadi, and
P. K. McKinley, “An aspect-oriented approach to dynamic adaptation,” in
WOSS, pp. 85–92, ACM, 2002. (Cited on pages 32 and 118.)

[88] F. Montesi, C. Guidi, and G. Zavattaro, “Service-oriented programming
with jolie,” in Web Services Foundations, pp. 81–107, 2014. (Cited on
page 42.)

130

Bibliography

[89] “AIOCJ website.” http://www.cs.unibo.it/projects/jolie/aiocj.
html. (Cited on pages 58 and 118.)

[90] M. Carbone and F. Montesi, “Deadlock-Freedom-by-Design: Multiparty
Asynchronous Global Programming,” in POPL, pp. 263–274, ACM, 2013.
(Cited on page 58.)

[91] I. Lanese, F. Montesi, and G. Zavattaro, “Amending choreographies,” in
WWV, vol. 123, pp. 34–48, EPTCS, 2013. (Cited on page 58.)

[92] Jolie, “Programming Language.” http://www.jolie-lang.org/. (Cited
on pages 66, 79, and 106.)

[93] J. W. Backus, “The syntax and semantics of the proposed international alge-
braic language of the zurich ACM-GAMM conference,” in IFIP Congress,
pp. 125–131, 1959. (Cited on page 67.)

[94] I. Eclipse, “The eclipse foundation,” 2007. (Cited on page 71.)

[95] “Xtext website.” http://www.eclipse.org/Xtext/. (Cited on page 71.)

[96] M. Carbone, K. Honda, and N. Yoshida, “Structured communication-
centered programming for web services,” ACM Trans. Program. Lang.
Syst., vol. 34, no. 2, p. 8, 2012. (Cited on pages 79, 81, 83, 96, 103, 105,
121, 189, and 216.)

[97] M. Carbone, F. Montesi, and C. Schürmann, “Choreographies, logically,”
in CONCUR, pp. 47–62, 2014. (Cited on pages 79 and 83.)

[98] F. Montesi and M. Carbone, “Programming services with correlation sets,”
in ICSOC, pp. 125–141, 2011. (Cited on pages 79, 81, 84, and 106.)

[99] Chor, “Programming Language.” http://www.chor-lang.org/. (Cited
on pages 79 and 119.)

[100] S. Carpineti, C. Laneve, and P. Milazzo, “Bopi - A distributed machine for
experimenting web services technologies,” in ACSD 2005, 6-9 June 2005,
St. Malo, France, pp. 202–211, 2005. (Cited on page 79.)

[101] R. S. Chin and S. T. Chanson, “Distributed object-based programming sys-
tems,” ACM Comput. Surv., vol. 23, no. 1, pp. 91–124, 1991. (Cited on
pages 80 and 119.)

[102] S. Basu, T. Bultan, and M. Ouederni, “Deciding choreography realizabil-
ity,” in POPL, pp. 191–202, 2012. (Cited on page 81.)

131

http://www.cs.unibo.it/projects/jolie/aiocj.html
http://www.cs.unibo.it/projects/jolie/aiocj.html
http://www.jolie-lang.org/
http://www.eclipse.org/Xtext/
http://www.chor-lang.org/

Bibliography

[103] T. Bray, “The javascript object notation (json) data interchange format,”
2014. (Cited on page 84.)

[104] L. Bettini, M. Coppo, L. D’Antoni, M. D. Luca, M. Dezani-Ciancaglini,
and N. Yoshida, “Global progress in dynamically interleaved multiparty
sessions,” in CONCUR, vol. 5201 of LNCS, pp. 418–433, Springer, 2008.
(Cited on page 88.)

[105] M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, and L. Padovani, “Global
progress for dynamically interleaved multiparty sessions,” MSCS, vol. 760,
pp. 1–65, 2015. (Cited on page 92.)

[106] B. C. Pierce, Types and Programming Languages. MA, USA: MIT Press,
2002. (Cited on page 93.)

[107] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “Choreog-
raphy and orchestration conformance for system design,” in COORDINA-
TION’06, vol. 4038 of LNCS, (Heidelberg, Germany), pp. 63–81, Springer-
Verlag, 2006. (Cited on page 96.)

[108] P. Deniélou and N. Yoshida, “Multiparty compatibility in communicat-
ing automata: Characterisation and synthesis of global session types,” in
ICALP 2013, Proceedings, Part II, pp. 174–186, Springer, 2013. (Cited on
pages 97 and 121.)

[109] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri, “Self-adaptive multi-
party sessions,” Service Oriented Computing and Applications, pp. 1–20,
2014. (Cited on page 117.)

[110] C. Di Giusto and J. A. Pérez, “Disciplined structured communications with
consistent runtime adaptation,” in SAC, pp. 1913–1918, ACM, 2013. (Cited
on pages 117 and 118.)

[111] S. Capecchi, E. Giachino, and N. Yoshida, “Global Escape in Multiparty
Sessions,” in Proc. of FSTTCS 2010, vol. 8 of LIPIcs, pp. 338–351, Schloss
Dagstuhl, 2010. (Cited on pages 118 and 121.)

[112] I. Jureta, S. Faulkner, and P. Thiran, “Dynamic requirements specification
for adaptable and open service-oriented systems,” in ICSOC, vol. 4749 of
LNCS, pp. 270–282, Springer, 2007. (Cited on page 118.)

[113] S. Rinderle, A. Wombacher, and M. Reichert, “Evolution of process chore-
ographies in dychor,” in OTM Conferences (1), vol. 4275 of LNCS, pp. 273–
290, Springer, 2006. (Cited on page 118.)

132

Bibliography

[114] A. Wombacher, “Alignment of choreography changes in BPEL processes,”
in IEEE SCC, pp. 1–8, IEEE, 2009. (Cited on page 118.)

[115] M. Bravetti et al., “Towards global and local types for adaptation,” in
SEFM Workshops, vol. 8368 of LNCS, pp. 3–14, Springer, 2013. (Cited
on page 119.)

[116] S. Gay and M. Hole, “Subtyping for session types in the pi calculus,”
Acta Informatica, vol. 42, pp. 191–225, Nov. 2005. (Cited on pages 121
and 189.)

[117] M. Bravetti, M. Carbone, T. T. Hildebrandt, I. Lanese, J. Mauro, J. A. Pérez,
and G. Zavattaro, “Towards global and local types for adaptation,” in Soft-
ware Engineering and Formal Methods - SEFM 2013 Collocated Work-
shops: BEAT2, WS-FMDS, FM-RAIL-Bok, MoKMaSD, and OpenCert,
Madrid, Spain, September 23-24, 2013, Revised Selected Papers, pp. 3–
14, Springer, 2013. (Cited on page 121.)

[118] R. Pawlak et al., “JAC: an aspect-based distributed dynamic framework,”
Softw., Pract. Exper., vol. 34, no. 12, pp. 1119–1148, 2004. (Cited on
page 167.)

133

Bibliography

134

Part V

Appendix

135

136

APPENDIX A

Adaptable Choreographies: Proofs

A.1 Proof of Theorem 1
In order to prove the bound on the complexity of the connectedness check we use
the lemma below, showing that the checks to verify the connectedness for a single
sequence operator can be performed in linear time on the size of the sets generated
by transI and transF.

Lemma 3. Given S, S ′ sets of multisets of two elements, checking if ∀ s ∈ S . ∀s′ ∈
S ′ . s∩ s′ 6= ∅ can be done in O(n) steps, where n is the maximum of |S| and |S ′|.

Proof. Without loss of generality, we can assume that |S| ≤ |S ′|. If |S| ≤ 9
then the check can be performed in O(n) by comparing all the elements in S
with all the elements in S ′. If |S| > 9 then at least 4 distinct elements appear
in the multisets in S since the maximum number of multisets with cardinality 2
obtained by 3 distinct elements is 9. In this case the following cases cover all the
possibilities:

• there exist distinct elements a, b, c, d s.t. {a, b}, {a, c}, and {a, d} belong to
S. In this case for the check to succeed all the multisets in S ′ must contain a,
otherwise the intersection of the multiset not containing a with one among
the multisets {a, b}, {a, c}, and {a, d} is empty. Similarly, since |S ′| > 9,
for the check to succeed all the multisets in S must contain a. Hence, if
{a, b}, {a, c}, and {a, d} belong to S then the check succeeds iff a belongs
to all the multisets in S and in S ′.

• there exist distinct elements a, b, c, d s.t. {a, b} and {c, d} belong to S. In
this case the check succeeds only if S ′ is a subset of {{a, c}, {a, d}, {b, c}, {b, d}}.
Since |S ′| > 9 the check can never succeed.

• there exist distinct elements a, b, c s.t. {a, a} and {b, c} belong to S. In this
case the check succeeds only if S ′ is a subset of {{a, b}, {a, c}}. Since
|S ′| > 9 the check can never succeed.

137

Appendix A. Adaptable Choreographies: Proofs

• there exist distinct elements a, b s.t. {a, a} and {b, b} belong to S. In this
case the check succeeds only if S ′ is a subset of {{a, b}}. Since |S ′| > 9
the check can never succeed.

Summarising, if |S| > 9 the check can succeed iff all the multisets in S and in
S ′ share a common element. The existence of such an element can be verified in
time O(n).

Theorem 1 (Connectedness-check complexity).
The connectedness of a DIOC process I can be checked in time O(n2 log(n)),
where n is the number of nodes in the abstract syntax tree of I.

Proof. To check the connectedness of I we first compute the values of the func-
tions transI and transF for each node of the abstract syntax tree (AST). We then
check for each sequence operator whether connectedness holds.

The functions transI and transF associate to each node a set of pairs of roles.
Assuming an implementation of the data set structure based on balanced trees
(with pointers), transI and transF can be computed in constant time for interac-
tions, assignments, 1, 0, and sequence constructs. For while and scope constructs
computing transF(I ′) requires the creation of balanced trees having an element
for every role of I ′. Since the roles are O(n), transF(I ′) can be computed in
O(n log(n)). For parallel and if constructs a union of sets is needed. The union
costs O(n log(n)) since each set generated by transI and transF contains at maxi-
mum n elements.

Since the AST contains n nodes, the computation of the sets generated by transI
and transF can be performed in O(n2 log(n)).

To check connectedness we have to verify that for each node I ′; I ′′ of the AST
∀R1 → R2 ∈ transF(I ′),∀S1 → S2 ∈ transI(I ′′) . {R1, R2} ∩ {S1, S2} 6= ∅. Since
transF(I ′) and transI(I ′′) have O(n) elements, thanks to Lemma 3, checking if
I ′; I ′′ is connected costs O(n). Since in the AST there are less than n sequence
operators, checking the connectedness on the whole AST costs O(n2).

The complexity of checking the connectedness of the entire AST is therefore
limited by the cost of computing functions transI and transF and of checking the
connectedness. All these activities have a complexity of O(n2 log(n)).

A.2 Proof of Theorem 2
Before entering into the details of the proof, we recall the proof strategy that
we described in § 4.7, which consists in defining a notion of bisimulation which
implies weak trace equivalence. We report below the definition of bisimulation.

138

A.2. Proof of Theorem 2

Definition 12 (Weak System Bisimulation). A weak system bisimulation is a rela-
tionR between DIOC systems and DPOC systems such that if (〈Σ, I, I〉 , 〈I′,N〉) ∈
R then:

• if 〈Σ, I, I〉 µ−→ 〈Σ′′, I′′, I ′′〉 then 〈I′,N〉 η1−→, . . . , ηk−→ µ−→ 〈I′′′,N ′′′〉 with
∀ i ∈ [1 . . . k], ηi ∈ {o∗ : R1(v)→ R2(x); o∗ : R1(X)→ R2(); τ} and
(〈Σ′′, I′′, I ′′〉 , 〈I′′′,N ′′′〉) ∈ R;

• if 〈I′,N〉 η−→ 〈I′′′,N ′′′〉 with η ∈ {o? : R1(v) → R2(x); o∗ : R1(X) →
R2();

√
; I; no-up; I′′′, τ} then one of the following two conditions holds:

– 〈Σ, I, I〉 η−→ 〈Σ′′, I′, I ′′〉 and (〈Σ′′, I′′, I ′′〉 , 〈I′′′,N ′′′〉) ∈ R or

– η ∈ {o∗ : R1(v) → R2(x), o∗ : R1(X) → R2(), τ} and (〈Σ, I, I〉 ,
〈I′′′,N ′′′)〉 ∈ R

In the proof, we provide a relation R which relates each well-annotated con-
nected DIOC system with its projection and show that it is a bisimulation. Such
a relation is not trivial since events that are atomic in the DIOC, (e.g., the evalua-
tion of the guard of a conditional, including the removal of the discarded branch),
are not atomic at DPOC level. In the case of conditional, the DIOC transition is
mimicked by a conditional performed by the role evaluating the guard, a set of
auxiliary communications sending the value of the guard to the other roles, and
local conditionals based on the received value. These mismatches are taken care
by function upd (Definition 31). This function needs also to remove the auxil-
iary communications used to synchronise the termination of scopes, which have
no counterpart after the DIOC scope has been consumed. However, we have to
record the impact of the mentioned auxiliary communications on the possible ex-
ecutions. Thus we define an event structure for DIOC (Definition 25) and one for
DPOC (Definition 26) and we show that the two are related (Lemma 5).

Thanks to the existence of a bisimulation relating each well-annotated con-
nected DIOC system with its projection, we can prove that the projection is cor-
rect.

In our proof strategy we rely on the uniqueness of indexes that unfortunately
it is not preserved by transitions due to while unfolding. Indeed, as an example,
consider the DIOC i : while b@R {j : x@R = e}. If the condition b evaluates to
true, in one step the application of Rule bDPOC |WHILE-UNFOLDe produces the DIOC
j: x@R = e; i: while b@R {j: x@R = e} where the index j is used twice.

To solve this problem, instead of using indexes, we rely on global indexes built
on top of indexes. Global indexes can be used both at the DIOC level and at the
DPOC level and their uniqueness is preserved by transitions.

139

Appendix A. Adaptable Choreographies: Proofs

Definition 24 (Global index). Given an annotated DIOC process I, or an anno-
tated DPOC network N , for each annotated construct with index ι we define its
global index ξ as follows:

• if the construct is not in the body of a while then ξ = ι;

• if the innermost while construct that contains the considered construct has
global index ξ′ then the considered construct has global index ξ = ξ′ : ι.

Lemma 4 (Distinctness of Global Indexes). Given a well-annotated DIOC I, a
global state Σ, and a set of updates I, if 〈Σ, I, I〉 η1−→ . . .

ηn−→ 〈Σ′, I′, I ′〉 then all
global indexes are distinct.

Proof. The proof is by induction on the number n of transitions, using a stronger
inductive hypothesis: indexes are distinct but, possibly, inside DIOC subterms of
the form I; i : while b@R {I ′}. In this last case, the same index can occur both
in I and in I ′, in constructs with different global indexes. The statement of the
Lemma follows directly since distinct indexes imply distinct global indexes.

In the base case (n = 0), thanks to well annotatedness, indexes are always dis-
tinct. The inductive case follows directly by induction for transitions with label

√
.

Otherwise, we have a case analysis on the only axiom which derives a transition
with label different from

√
.

The only difficult cases are bDIOC |WHILE-UNFOLDe and bDIOC |UPe.
In the case of Rule bDIOC |WHILE-UNFOLDe, note that the while is enabled, hence

it cannot be part of a term of the form I; i : while b@R {I ′}. Hence, indexes
of the body of the while loop do not occur elsewhere. As a consequence, after
the transition no clashes are possible with indexes in the context. Note also that
indexes of the body of the loop are duplicated, but the resulting term has the form
I; i: while b@R {I ′}, thus global indexes are distinct by construction.

The case bDIOC |UPe follows thanks to the condition freshIndexes(I ′).

Using global indexes we can now define event structures corresponding to the
execution of DIOCs and DPOCs. We start by defining DIOC events. Some events
correspond to transitions of the DIOC, and we say that they are enabled when the
corresponding transition is enabled, executed when the corresponding transition
is executed.

Definition 25 (DIOC events). We use ε to range over events, and we write [ε]R to
highlight that event ε is performed by role R. An annotated DIOC I contains the
following events:

Communication events: a sending event ξ : o@R2 in role R1 and a receiving
event ξ : o@R1 in role R2 for each interaction i : o : R1(e) → R2(x) with global

140

A.2. Proof of Theorem 2

index ξ; we also denote the sending event as fξ or [fξ]R1 and the receiving event as
tξ or [tξ]R2 . Sending and receiving events correspond to the transition executing
the interaction.

Assignment events: an assignment event εξ in role R for each assignment i :
x@R = e with global index ξ; the event corresponds to the transition executing
the assignment.

Scope events: a scope initialisation event ↑ξ and a scope termination event
↓ξ for each scope i : scope @R {I} with global index ξ. Both these events be-
long to all the roles in roles(I). The scope initialisation event corresponds to the
transition performing or not performing an update on the given scope. The scope
termination event is just an auxiliary event (related to the auxiliary interactions
implementing the scope termination).

If events: a guard if-event εξ in role R for each construct i: if b@R {I} else {I ′}
with global index ξ; the guard-if event corresponds to the transition evaluating the
guard of the condition.

While events: a guard while-event εξ in role R for each construct i: while b@R {I}
with global index ξ; the guard-while event corresponds to the transition evaluat-
ing the guard of the while loop.

Function events(I) denotes the set of events of the annotated DIOC I. A send-
ing and a receiving event with the same global index ξ are called matching events.
We denote with ε an event matching event ε. A communication event is either a
sending event or a receiving event. A communication event is unmatched if there
is no event matching it.

As a corollary of Lemma 4 events have distinct names. Note also that, for each
while loop, there are events corresponding to the execution of just one loop. If
unfolding is performed, new events are created.

Similarly to what we did for DIOC, we can define events for DPOC as follows.

Definition 26 (DPOC events). An annotated DPOC network N contains the fol-
lowing events:

Communication events a sending event ξ : o?@R2 in role R1 for each send ι :
i.o? : e to R2 with global index ξ in role R1; and a receiving event ξ : o?@R1

in role R2 for each receive ι : i.o? : x from R1 with global index ξ in role R2;
we also denote the sending event as fξ or [fξ]R1; and the receiving event as tξ or
[tξ]R2 . Sending and receiving events correspond to the transitions executing the
corresponding communication.

Assignment events an assignment event εξ in role R for each assignment i: x = e
with global index ξ; the event corresponds to the transition executing the assign-
ment.

141

Appendix A. Adaptable Choreographies: Proofs

Scope events a scope initialisation event ↑ξ and a scope termination event ↓ξ for
each i : scope @R {P} roles {S} or i : scope @R {P} with global index
ξ. Scope events with the same global index coincide, and thus the same event
may belong to different roles; the scope initialisation event corresponds to the
transition performing or not performing an update on the given scope for the
role leading the update. The scope termination event is just an auxiliary event
(related to the auxiliary interactions implementing the scope termination).

If events a guard if-event εξ in role R for each construct i: if b {P} else {P ′}
with global index ξ; the guard-if event corresponds to the transition evaluating
the guard of the condition.

While events a guard while-event εξ in role R for each construct i: while b {P}
with global index ξ; the guard-while event corresponds to the transition evaluat-
ing the guard of the while loop.

Let events(N) denote the set of events of the network N . A sending and a receiv-
ing event with either the same global index ξ or with global indexes differing only
for replacing index i? with iT or iF are called matching events. We denote with ε
an event matching event ε.

With a slight abuse of notation, we write events(P) to denote events originated
by constructs in process P , assuming the networkN to be understood. We use the
same syntax for events of DIOCs and of DPOCs. Indeed, the two kinds of events
are strongly related (cf. Lemma 5).

The relation below defines a causality relation DIOC among events based on
the constraints given by the semantics on the execution of the corresponding tran-
sitions.

Definition 27 (DIOC causality relation). Let us consider an annotated DIOC I.
A causality relation ≤DIOC ⊆ events(I) × events(I) is a partial order among
events in I. We define ≤DIOC as the minimum partial order satisfying:

Sequentiality: let I ′; I ′′ be a subterm of DIOC I. If ε′ is an event in I ′ and ε′′

is an event in I ′′, then ε′ ≤DIOC ε′′.
Scope: let i : scope @R {I ′} be a subterm of DIOC I. If ε′ is an event in I ′

then ↑ξ≤DIOC ε′ ≤DIOC↓ξ.
Synchronisation: for each interaction the sending event precedes the receiving

event.
If: let i : if b@R {I} else {I ′} be a subterm of DIOC I, let εξ be the guard

if-event in role R, then for every event ε in I and for every event ε′ in I ′ we have
εξ ≤DIOC ε and εξ ≤DIOC ε′.

While: let i : while b@R {I} be a subterm of DIOC I, let εξ be the guard
while-event in role R, then for every event ε in I ′ we have εξ ≤DIOC ε.

142

A.2. Proof of Theorem 2

Similarly for DPOC:

Definition 28 (DPOC causality relation). Let us consider an annotated DPOC
network N . A causality relation ≤DPOC ⊆ events(N) × events(N) is a par-
tial order among events in N . We define ≤DPOC as the minimum partial order
satisfying:

Sequentiality: Let P ′;P ′′ be a subterm of DPOC network N . If ε′ is an event
in P ′ and ε′′ is an event in P ′′ then ε′ ≤DPOC ε′′.

Scope: Let i: scope @R {P} roles {S} or i: scope @R {P} be a subterm of
DPOC N with global index ξ. If ε′ is an event in P then ↑ξ≤DPOC ε′ ≤DPOC↓ξ.

Synchronisation: For each pair of events ε and ε′, ε ≤ ε′ implies ε ≤DPOC ε′.
If: Let i: if b {P} else {P ′} be a subterm of DPOC network N with global

index ξ, let εξ be the guard if-event, then for every event ε in P and for every event
ε′ in P ′ we have εξ ≤DPOC ε and εξ ≤DPOC ε′.

While: Let i : while b {P} be a subterm of DPOC network N with global
index ξ, let εξ be the guard while-event, then for every event ε in P we have
εξ ≤DPOC ε.

Thanks to the definition above, we have that the events and causality relation
are preserved by projection.

Lemma 5. Given a DIOC process I and for each state Σ the DPOC network
proj(I,Σ) is such that:

1. events(I) ⊆ events(proj(I,Σ));

2. ∀ ε1, ε2 ∈ events(I).ε1 ≤DIOC ε2 ⇒ ε1 ≤DPOC ε2 ∨ ε1 ≤DPOC ε2

Proof. 1. By definition of projection.

2. Let ε1 ≤DIOC ε2. We have a case analysis on the condition used to derive
the dependency.

Sequentiality Consider I = I ′; I ′′. If events are in the same role the im-
plication follows from the sequentiality of the ≤DPOC .
Let us show that there exists an event ε′′ in an initial interaction of I ′′
such that either ε′′ ≤DPOC ε2 or ε′′ ≤DPOC ε2. The proof is by induction
on the structure of I ′′. The only difficult case is sequential composition.
Assume I ′′ = I1; I2. If ε2 ∈ events(I1) the thesis follows from inductive
hypothesis. If ε2 ∈ events(I2) then by induction there exists an event ε3

in an initial interaction of I2 such that ε3 ≤DPOC ε2 or ε3 ≤DPOC ε2. By
synchronisation (Definition 28) we have that ε3 ≤DPOC ε2 or ε3 ≤DPOC
ε2. By connectedness we have that ε3 or ε3 are in the same role of an

143

Appendix A. Adaptable Choreographies: Proofs

event ε4 in I ′. By sequentiality (Definition 28) we have that ε4 ≤DPOC
ε3 or ε4 ≤DPOC ε3. By synchronisation we have that ε4 ≤DPOC ε3 or
ε4 ≤DPOC ε3. The thesis follows from the inductive hypothesis on ε4 and
by transitivity of ≤DPOC .
Let us also show that there exists a final event ε′′′ ∈ events(I ′) such that
ε1 ≤DPOC ε′′′ or ε1 ≤DPOC ε′′′. The proof is by induction on the structure
of I ′. The only difficult case is sequential composition. Assume I ′ =
I1; I2. If ε1 ∈ events(I2) the thesis follows from inductive hypothesis. If
ε1 ∈ events(I1) then the proof is similar to the one above, finding a final
event in I1 and applying sequentiality, synchronisation, and transitivity.
The thesis follows from the two results above again by sequentiality, syn-
chronisation, and transitivity.

Scope it means that either (a) ε1 =↑ξ and ε2 is an event in the scope or (b)
ε1 =↑ξ and ε2 =↓ξ, or (c) ε1 is an event in the scope and ε2 =↓ξ. We
consider case (a) since case (c) is analogous and case (b) follows by tran-
sitivity. If ε2 is in the coordinator then the thesis follows easily. Otherwise
it follows thanks to the auxiliary synchronisations with a reasoning similar
to the one for sequentiality.

Synchronisation it means that ε1 is a sending event and ε2 is the corre-
sponding receiving event, namely ε1 = ε2 . Thus, since ε2 ≤DPOC ε2 then
ε2 ≤DPOC ε2.

If it means that ε1 is the evaluation of the guard and ε2 is an event in one of
the two branches. Thus, if ε2 is in the coordinator then the thesis follows
easily. Otherwise it follows thanks to the auxiliary synchronisations with
a reasoning similar to the one for sequentiality.

While it means that ε1 is the evaluation of the guard and ε2 is in the body
of the while loop. Thus, if ε2 is in the coordinator then the thesis follows
easily. Otherwise it follows thanks to the auxiliary synchronisations with
a reasoning similar to the one for sequentiality.

To complete the definition of our event structure we now define a notion of conflict
between (DIOC and DPOC) events, relating events which are in different branches
of the same conditional.

Definition 29 (Conflicting events). Given a DIOC process I, two events ε, ε′ ∈
events(I) are conflicting if they belong to different branches of the same condi-
tional, i.e., there exists a subprocess i : if b@R {I ′} else {I ′′} of I such that
ε ∈ events(I ′) ∧ ε′ ∈ events(I ′′) or ε′ ∈ events(I ′) ∧ ε ∈ events(I ′′).

144

A.2. Proof of Theorem 2

Similarly, given a DPOC network N , we say that two events ε, ε′ ∈ events(N)
are conflicting if they belong to different branches of the same conditional, i.e.,
there exists a subprocess i: if b {P} else {P ′} of N such that ε ∈ events(P) ∧
ε′ ∈ events(P ′) or ε′ ∈ events(P) ∧ ε ∈ events(P ′).

Similarly to what we did for DIOCs, we define below well-annotated DPOCs.
Well-annotated DPOCs include all DPOCs obtained by projecting a well-annotated
DIOC and executing the resulting network. They enjoy various properties useful
for our proofs.

Definition 30 (Well-annotated DPOC). An annotated DPOC network N is well
annotated for its causality relation ≤DPOC if the following conditions hold:

C1 for each global index ξ there are at most two communication events on public
operations with global index ξ and, in this case, they are matching events;

C2 only events which are minimal according to ≤DPOC may correspond to en-
abled transitions;

C3 for each pair of non-conflicting sending events [fξ]R1 and [fξ′]R1 on the same
operation i.o? with the same target R2 such that ξ 6= ξ′ we have [fξ]R1 ≤DPOC
[fξ′]R1 or [fξ′]R1 ≤DPOC [fξ]R1;

C4 for each pair of non-conflicting receiving events [tξ]R2 and [tξ′]R2 on the same
operation i.o? with the same sender R1 such that ξ 6= ξ′ we have [tξ]R2 ≤ [tξ′]R2
or [tξ′]R2 ≤ [tξ]R2;

C5 if ε is an event inside a scope with global index ξ then its matching events ε
(if they exist) are inside a scope with the same global index.

C6 if two events have the same index but different global indexes then one of
them, let us call it ε1, is inside the body of a while loop with global index ξ1

and the other, ε2, is not. Furthermore, ε2 ≤DPOC εξ1 where εξ1 is the guarding
while-event of the while loop with global index ξ1.

Since scope update, conditional, and iteration at the DIOC level happen in one
step, while they correspond to many steps of the projected DPOC, we introduce
a function, denoted upd, that bridges this gap. More precisely, function upd is
obtained as the composition of two functions, a function compl that completes the
execution of DIOC actions which have already started, and a function clean that
eliminates all the auxiliary closing communications of scopes (scope execution
introduces in the DPOC auxiliary communications which have no correspondence
in the DIOC).

145

Appendix A. Adaptable Choreographies: Proofs

Definition 31 (upd function). Let N be an annotated DPOC (we drop indexes if
not relevant). The upd function is defined as the composition of a function compl
and a function clean. Thus, upd(N) = clean(compl(N)). Network compl(N) is
obtained from N by repeating the following operations while possible.

1. Performing the reception of the positive evaluation of the guard of a while
loop, by replacing for every i.wb∗i : true to R′ enabled, all the terms

i.wb∗i : xi from R; while xi {P ; i.we∗i : ok to R; i.wb∗i : xi from R}

not inside another while construct, with

P ; i.we∗i : ok to R; i.wb∗i : xi from R; while xi {
P ; i.we∗i : ok to R;
i.wb∗i : xi from R

}

and replace i.wb∗i : true to R′ with 1.

2. Performing the reception of the negative evaluation of the guard of a while
loop by replacing, for every i.wb∗i : false to R′ enabled, all the terms

i.wb∗i : xi from R; while xi {P ; i.we∗i : ok to R; i.wb∗i : xi from R}

not inside another while construct, with 1, and replace i.wb∗i : false to R′

with 1.

3. Performing the unfolding of a while loop by replacing every

while xi {P ; i.we∗i : ok to R; i.wb∗i : xi from R}

enabled not inside another while construct, such that xi evaluates to true
in the local state, with

P ; i.we∗i : ok to R; i.wb∗i : xi from R; while xi {
P ; i.we∗i : ok to R;
i.we∗i : xi from R

}

4. Performing the termination of while loop by replacing every

while xi {P ; i.we∗i : ok to R; i.wb∗i : xi from R}

enabled not inside another while construct, such that xi evaluates to false
in the local state, with 1.

5. Performing the reception of the positive evaluation of the guard of a condi-
tional by replacing, for every i.cnd∗i : true to R′ enabled, all the terms

i.cnd∗i : xi from R; if xi {P ′} else {P ′′}

not inside a while construct with P ′, and replace i.cnd∗i : true to R′ with
1.

146

A.2. Proof of Theorem 2

6. Performing the reception of the negative evaluation of the guard of a condi-
tional by replacing, for every i.cnd∗i : false to R′ enabled, all the terms

i.cnd∗i : xi from R; if xi {P ′} else {P ′′}

not inside a while construct, with P ′′, and replace i.cnd∗i : false to R′ with
1.

7. Performing the selection of the “then” branch by replacing every

if xi {P ′} else {P ′′}

enabled, such that xi evaluates to true in the local state, with P ′.

8. Performing the selection of the “else” branch by replacing every

if xi {P ′} else {P ′′}

enabled, such that xi evaluates to false in the local state, with P ′′.

9. Performing the communication of the updated code by replacing, for every
i.sb∗i : P to S enabled, all the terms

i: scope @R {P ′}

in role S not inside a while construct with P , and replace i.sb∗i : P to S

with 1.

10. Performing the communication that no update is needed by replacing, for
each
i.sb∗i : no to S enabled, all the terms

i: scope @R {P ′}

in role S not inside a while construct with P ′, and replace i.sb∗i : P to S

with 1.

Network clean(N) is obtained fromN by repeating the following operations while
possible:

• Removing the auxiliary communications for end of scope and end of while
loop synchronisation by replacing each

i.se∗i : ok to R iC: i.we
∗
i : ok to R

i.se∗i : _ from R iC: i.we
∗
i : _ from R

not inside a while construct with 1.

147

Appendix A. Adaptable Choreographies: Proofs

Furthermore clean may apply 0 or more times the following operation:

• replace a subterm 1;P by P or a subterm 1 | P by P .

Note that function compl does not reduce terms inside a while construct. As-
sume, for instance, to have an auxiliary send targeting a receive inside the body
of a while loop. These two communications should not interact since they have
different global indexes. This explains why we exclude terms inside the body of
while loops.

We proceed now to prove some of the proprieties of DIOC and DPOC. The
first result states that in a well-annotated DPOC only transitions corresponding to
events minimal with respect to the causality relation ≤DPOC may be enabled.

Lemma 6. IfN is a DPOC,≤DPOC its causality relation and ε is an event corre-
sponding to a transition enabled in N then ε is minimal with respect to ≤DPOC .

Proof. The proof is by contradiction. Suppose ε is enabled but not minimal, i.e.
there exists ε′ such that ε′ ≤DPOC ε. If there is more than one such ε′ consider
the one such that the length of the derivation of ε′ ≤DPOC ε is minimal. This
derivation should have length one, and following Definition 28 it may result from
one of the following cases:

• Sequentiality: ε′ ≤DPOC ε means that ε′ ∈ events(P ′), ε ∈ events(P ′′),
and P ′;P ′′ is a subterm of N . Because of the semantics of sequential com-
position ε cannot be enabled.

• Scope: let i: scope @R {P} roles {S} or i: scope @R {P} be a subpro-
cess of N with global index ξ. We have the following cases:

– ε′ =↑ξ and ε ∈ events(P), and this implies that ε cannot be enabled
since if ε′ is enabled then the Rules bDPOC |UPe or bDPOC |NOUPe for start-
ing the execution of the scope have not been applied yet;

– ε′ =↑ξ and ε =↓ξ, or ε′ ∈ events(P) and ε =↓ξ: this is trivial, since ↓ξ
is an auxiliary event and no transition corresponds to it;

• If: ε′ ≤DPOC ε means that ε′ is the evaluation of the guard of a subterm
i: if xi {P ′} else {P ′′} and ε ∈ events(P ′)∪ events(P ′′). Event ε cannot
be enabled because of the semantics of conditionals.

• While: ε′ ≤DPOC ε means that ε′ is the evaluation of the guard of a subterm
i: while xi {P} and ε ∈ events(P). Event ε cannot be enabled because of
the semantics of the while loop.

148

A.2. Proof of Theorem 2

We now prove that all the DPOCs obtained as projection of well-annotated
connected DIOCs are well-annotated.

Lemma 7. Let I be a well-annotated connected DIOC process and Σ a state.
Then the projection N = proj(I,Σ) is a well-annotated DPOC network with
respect to ≤DPOC .

Proof. We have to prove that proj(I,Σ) satisfies the conditions of Definition 30
of well-annotated DPOC:

C1 For each global index ξ there are at most two communication events on public
operations with global index ξ and, in this case, they are matching events. The
condition follows by the definition of the projection function, observing that in
well-annotated DIOCs, each interaction has its own index, and different indexes
are mapped to different global indexes.

C2 Only events which are minimal according to ≤DPOC may correspond to en-
abled transitions. This condition follows from Lemma 6.

C3 For each pair of non-conflicting sending events [fξ]R and [fξ′]R on the same
operation o? and with the same target R′ such that ξ 6= ξ′ we have [fξ]R ≤DPOC
[fξ′]R or [fξ′]R ≤DPOC [fξ]R. Note that the two events are in the same role R, thus
without loss of generality we can assume that there exist two processes P, P ′

such that [fξ]R ∈ events(P) and [fξ′]R ∈ events(P ′) and there is a subprocess of
N of one of the following forms:

• P ;P ′: the thesis follows by sequentiality (Definition 28);

• P |P ′: this case can never happen for the reasons below. For events on pub-
lic operations this follow by the definition of projection, since the prefixes
of the names of operations are different. For events on private operations
originated by the same construct this follows since all the targets are differ-
ent. For events on private operations originated by different constructs this
follows since the prefixes of the names of the operations are different.

• if b {P} else {P ′}: this case can never happen since the events are
non-conflicting (Definition 29).

C4 Similar to the previous case, with receiving events instead of sending events.

C5 If ε is an event inside a scope with global index ξ then its matching events ε
(if they exist) are inside a scope with the same global index. This case holds by
definition of the projection function.

149

Appendix A. Adaptable Choreographies: Proofs

C6 If two events have the same index but different global indexes then one of
them, let us call it ε1, is inside the body of a while loop with global index ξ1 and
the other, ε2, is not. Furthermore, ε2 ≤DPOC εξ1 where εξ1 is the guarding while-
event of the while loop with global index ξ1. By definition of well-annotated
DIOC and of projection the only case where there are two events with the same
index and different global indexes is for the auxiliary communications in the
projection of the while construct, where the conditions hold by construction.

The next lemma shows that for every starting set of updates I the DPOCN and
upd(N) have the same set of weak traces.

Lemma 8. Let N be a DPOC. The following properties hold:

1. if 〈I, upd(N)〉 η−→ 〈I′,N ′〉 with η ∈ {o? : R1(v) → R2(x), o∗ : R1(X) →
R2(), I′,

√
, I,

no-up, τ} then there exists N ′′ s.t. 〈I,N〉 η1−→ . . .
ηk−→ η−→ 〈I′,N ′′〉 where

ηi ∈ {o∗ : R1(v) → R2(x), o∗ : R1(X) → R2(), τ} for each i ∈ {1, . . . , k}
and upd(N ′′) = upd(N ′).

2. if 〈I,N〉 η−→ 〈I′,N ′〉 for η ∈
{
o? : R1(v)→ R2(x), o∗ : R1(X)→ R2(),

I′,
√
, I, no-up, τ

}
,

then one of the following holds:

(a) upd(N) = upd(N ′) and η ∈ {o∗ : R1(v) → R2(x), o∗ : R1(X) →
R2(), τ}, or

(b) 〈I, upd(N)〉 η−→ 〈I′,N ′′〉 such that upd(N ′) = upd(N ′′).

Proof.

1. Applying the upd function corresponds to perform weak transitions, namely
transitions with labels in {o∗ : R1(v) → R2(x), o∗ : R1(X) → R2(), τ}.
Some of such transitions may not be enabled yet. Hence, N may perform
the subset of the weak transitions above which are enabled, reducing to
someN ′′′. Then, η is enabled also inN ′′′ and we have 〈I,N ′′′〉 η−→ 〈I′,N ′′〉.
At this point we have that N ′′ and N ′ may differ only for the weak transi-
tions that were not enabled, which can be executed by upd.

2. There are two cases. In the first case the transition with label η is one of the
transitions executed by function upd. In this case the condition 2a holds. In
the second case, the transition with label η is not one of the transitions exe-
cuted by function upd. In this case the transition with label η is still enabled

150

A.2. Proof of Theorem 2

in upd(N) and can be executed. This leads to a network that differs from
N ′ only because of transitions executed by the upd function and case 2b
holds.

We now prove a few properties of transitions with label
√

.

Lemma 9. For each DIOC system 〈Σ, I, I〉 that reduces with a transition labelled√
then, for each role R ∈ roles(I), the DPOC role (π(I, R),ΣR)R can reduce with

a transition labelled
√

and vice versa.

Proof. Note that a DIOC can perform a transition with label
√

only if it is a term
obtained using sequential and/or parallel composition starting from 1 constructs.
The projection has the same shape, hence it can perform the desired transition.
The other direction is similar.

The next lemma shows that if two matching events are enabled in the projection
of a DIOC, then the corresponding interaction is enabled in the DIOC.

Lemma 10. Let I be a DIOC obtained from a well-annotated connected DIOC
via 0 or more transitions and i : o : R1(e) → R2(x) be an interaction in I. If
i: i.o : e to R2 and i: i.o : x from R1 are matching events and are both enabled in
proj(I,Σ) then i: o : R1(e)→ R2(x) is enabled.

Proof. Note that well-annotatedness in preserved under reduction, hence I is
well-annotated.

If I is connected for sequence, then the proof is by structural induction on I.
The cases for 1, 0, scopes, conditionals, and while loops are trivial. For parallel
composition consider that, since the two events are matching, then they have the
same global index. As a consequence, they are from the same component, and the
thesis follows by inductive hypothesis. Let us consider sequential composition.
Suppose I = I ′; I ′′. If i : o : R1(e) → R2(x) ∈ I ′ then the thesis follows by
inductive hypothesis. Otherwise, by inductive hypothesis i : o : R1(e) → R2(x)
is enabled in I ′′. Thus, R1 → R2 ∈ transI(I ′′). From connectedness, for each
S1 → S2 ∈ transF(I ′) we have {R1, R2} ∩ {S1, S2} 6= ∅. This is not possible since
otherwise at least one of the events i : i.o : e to R2 and i : i.o : x from R1 would
not be enabled. Thus, the only possibility is transF(I ′) = ∅. This implies that I ′
has a transition with label

√
. Thus, i: o : R1(e)→ R2(x) is enabled in I.

Let us now consider the case in which I is not connected for sequence. This
can happen only if I = I ′; I ′′ and I ′ contained a scope which has been updated.
Assume the scope has coordinator R and involves roles {Ri}i∈I . The only tricky
case is when i : o : R1(e) → R2(x) is an initial interaction in I ′′. Since the term

151

Appendix A. Adaptable Choreographies: Proofs

was connected for sequence before the update was performed, we know that for
each Ri, i ∈ I , {Ri, R} ∩ {R1, R2} 6= ∅. We have two cases: either R1 = R ∨ R2 = R

or {Ri}i∈I ⊆ {R1, R2}.
In the first case, let us assume that R1 = R (the other case is analogous). Since

inside the process of R1 the send primitive i : i.o : e to R2 is enabled, all the
auxiliary communications closing the scope have been performed, and so also the
execution of the body of the scope has been completed.

The second case is analogous and follows from the fact that since the send
primitive for R1 and the receive primitive for R2 are enabled, then it is not possible
that either R1 or R2 (or both) is sending an auxiliary communication to R for closing
the scope.

The following result states that weak system bisimilarity implies weak trace
equivalence.

Lemma 11. Let 〈Σ, I, I〉 be a DIOC system and 〈I′,N〉 a DPOC system.
If 〈Σ, I, I〉∼ 〈I′,N〉 then the DIOC system 〈Σ, I, I〉 and the DPOC system 〈I′,N〉
are weak trace equivalent.

Proof. The proof is by coinduction. Take a DIOC trace µ1, µ2, . . . of the DIOC
system. From bisimilarity, the DPOC system has a sequence of transitions with
labels η1, . . . , ηk, µ1 where η1, . . . , ηk are weak transitions. Hence, the first label
in the weak trace is µ1. After the transition with label µ1, the DIOC system and the
DPOC system are again bisimilar. By coinductive hypothesis, the DPOC system
has a weak trace µ2, By composition the DPOC system has a trace µ1, µ2, . . .
as desired. The opposite direction is similar.

We can now prove our main theorem (Theorem 2, restated below) for which,
given a connected well-annotated DIOC process I and a state Σ, the DPOC net-
work obtained as its projection has the same behaviours of I.

Theorem 2 (Correctness). For each initial, connected DIOC process I, each
state Σ, each set of updates I, the DIOC system 〈Σ, I, I〉 and the DPOC system
〈I, proj(I,Σ)〉 are weak trace equivalent.

Proof. We prove that the relation R below is a weak system bisimulation. This
implies weak trace equivalence by Lemma 11.

R =

 (〈Σ, I, I〉 , 〈I,N〉)

∣∣∣∣∣∣∣∣
upd(N) = proj(I,Σ),
events(I) ⊆ events(compl(N)),
∀ ε1, ε2 ∈ events(I) .
ε1 ≤DIOC ε2 ⇒ ε1 ≤DPOC ε2 ∨ ε1 ≤DPOC ε2

152

A.2. Proof of Theorem 2

where I is obtained from a well-annotated connected DIOC via 0 or more tran-
sitions and upd(N) is a well-annotated DPOC.

To ensure that proving that the relation above is a bisimulation implies our
thesis, let us show that the pair (〈Σ, I, I〉 , 〈I, proj(I,Σ)〉) from the theorem state-
ment belongs to R. Note that here I is well-annotated and connected, and for
each such I we have upd(proj(I,Σ)) = proj(I,Σ). From Lemma 7 proj(I,Σ)
is well-annotated, thus upd(proj(I,Σ)) is well-annotated. Observe that compl
is the identity on proj(I,Σ), thus from Lemma 5 we have that the conditions
events(I) ⊆ events(compl(N)) and ∀ε1, ε2 ∈ events(I) . ε1 ≤DIOC ε2 ⇒
ε1 ≤DPOC ε2 ∨ ε1 ≤DPOC ε2 are satisfied.

We now prove that R is a weak system bisimulation. To prove it, we show
below that it is enough to consider only the case in which N (and not upd(N)) is
equal to proj(I,Σ). Furthermore, in this case the transition of 〈Σ, I, I〉 is matched
by the first transition of 〈I, proj(I,Σ)〉.

Formally, for each (〈Σ, I, I〉 , 〈I,N〉) where N = proj(I,Σ) we have to prove
the following simplified bisimulation clauses.

• if 〈Σ, I, I〉 µ−→ 〈Σ′′, I′′, I ′′〉 then 〈I,N〉 µ−→ 〈I′′,N ′′′〉 with
(〈Σ′′, I′′, I ′′〉 , 〈I′′,N ′′′〉) ∈ R;

• if 〈I,N〉 η−→ 〈I′′,N ′′′〉 with η ∈ {o : R1(v) → R2(x);
√

; I; no-up; I′′; τ}
then
〈Σ, I, I〉 η−→ 〈Σ′′, I′′, I ′′〉 and (〈Σ′′, I′′, I ′′〉 , 〈I′′,N ′′′〉) ∈ R.

In fact, consider a general networkNg with upd(Ng) = proj(I,Σ). If 〈Σ, I, I〉 µ−→
〈Σ′′, I′′, I ′′〉, then by hypothesis 〈I, upd(Ng)〉

µ−→ 〈I′′,N ′′′〉. From Lemma 8
case 1 there exists N ′′ s.t. 〈I,Ng〉

η1−→ . . .
ηk−→ µ−→ 〈I′′,N ′′〉 where ηi ∈ {o∗ :

R1(v) → R2(x), o∗ : R1(X) → R2(), τ} for each i ∈ {1, . . . , k} and upd(N ′′) =
upd(N ′′′). By hypothesis (〈Σ′′, I′′, I ′′〉 , 〈I′′,N ′′′〉) ∈ R, hence, by Definition of
R, upd(N ′′′) = proj(I ′′,Σ′′), and therefore also upd(N ′′) = proj(I ′′,Σ′′). The
conditions on events hold by hypothesis since function upd has no effect on DPOC
events corresponding to DIOC events. Furthermore, only enabled interactions
have been executed, hence dependencies between DPOC events corresponding to
DIOC events are untouched.

If instead 〈I,Ng〉
η−→ 〈I′′,N ′′′〉 with η ∈ {o? : R1(v) → R2(x), o∗ : R1(X) →

R2(),
√
, I, no-up, I′′, τ} then thanks to Lemma 8 we have one of the following:

(2a) upd(Ng) = upd(N ′′′) and η ∈ {o∗ : R1(v) → R2(x), o∗ : R1(X) → R2(), τ},
or (2b) 〈I, upd(Ng)〉

η−→ 〈I′′,N ′′〉 such that upd(N ′′′) = upd(N ′′). In case (2b)
we have 〈I, upd(Ng)〉

η−→ 〈I′′,N ′′〉. Then, by hypothesis, we have 〈Σ, I, I〉 η−→

153

Appendix A. Adaptable Choreographies: Proofs

〈Σ′′, I′′, I ′′〉 and (〈Σ′′, I′′, I ′′〉 , 〈I′′,N ′′〉) ∈ R. To deduce that (〈Σ′′, I′′, I ′′〉 ,
〈I′′,N ′′′〉) ∈ R, one can proceed using the same strategy as the case of the chal-
lenge from the DIOC above. In case (2a) the step is matched by the DIOC by
staying idle, following the second option in the definition of weak system bisimi-
larity. The proof is similar to the one above.

Thus, we have to prove the two simplified bisimulation clauses above. The
proof is by structural induction on the DIOC I. All the subterms of a well-
annotated connected DIOC are well-annotated and connected, thus the induction
can be performed. We consider both challenges from the DIOC (→) and from the
DPOC (←). The case for label

√
follows from Lemma 9. The case for labels I is

trivial. Let us consider the other labels o : R1(v)→ R2(x), I, no-up, and τ .
Note that no transition (at the DIOC or at the DPOC level) with one of these

labels can change the set of updates I. Thus, in the following, we will not write
it. Essentially, we will use DIOC processes and DPOC networks instead of DIOC
systems and DPOC systems, respectively. Note that DPOC networks also include
the state, while this is not the case for DIOC processes. For DIOC processes, we
assume to associate to them the state Σ, and comment on its changes whenever
needed.

Case 1, 0 trivial.

Case i: x@R = e the assignment changes the global state in the DIOC, and its
projection on the role R changes the local state of the role in the DPOC in a
corresponding way.

Case i: o : R1(e)→ R2(x) trivial. Just note that at the DPOC level the interaction
gives rise to one send and one receive on the same prefix. Synchronisation be-
tween send and receive is performed by Rule bDPOC |SYNCHe that also removes the
prefix from the label.

Case I; I ′ from the definition of the projection function we have that
N =‖

R∈roles(I;I′) (π(I, R);π(I ′, R),ΣR)R.

→ Assume that I; I ′ µ−→ I ′′ with µ ∈ {o : R1(v) → R2(x); I; no-up, τ}. There
are two possibilities: either (i) I µ−→ I ′′′ and I ′′ = I ′′′; I ′ or (ii) I has a transi-
tion with label

√
and I ′ µ−→ I ′′.

In case (i) by inductive hypothesis

‖
R∈roles(I)

(π(I, R),ΣR)R
µ−→ N ′′′ and upd(N ′′′) =‖

R∈roles(I)
(π(I ′′′, R),Σ′R)R

Thus
‖
R∈roles(I)

(π(I, R); π(I ′, R),ΣR)R
µ−→ N and

154

A.2. Proof of Theorem 2

upd(N) =‖
R∈roles(I)

(π(I ′′′, R);π(I ′, R),Σ′R)R

If roles(I ′) ⊆ roles(I) then the thesis follows. If roles(I ′) 6⊆ roles(I) then at
the DPOC level the processes in the roles in roles(I ′)\ roles(I) are not affected
by the transition. Note however that the projection of I on these roles is a term
composed only by 1s, and the ones corresponding to parts of I that have been
consumed can be removed by the clean part of function upd.
In case (ii), I has a transition with label

√
and I ′ µ−→ I ′′. By inductive hypoth-

esis proj(I ′,Σ)
µ−→ N ′′ and upd(N ′′) = proj(I ′′,Σ′). The thesis follows since,

thanks to Lemma 9, proj(I; I ′,Σ)
µ−→ N and upd(N) = proj(I ′′,Σ′), possibly

using the clean part of function upd to remove the 1s which are no more needed.
Note that, in both the cases, conditions on events follow by inductive hypothe-
sis.

← Assume that

N =‖
R∈roles(I;I′) (π(I, R);π(I ′, R),ΣR)R

η−→‖
R∈roles(I;I′) (PR,Σ

′
R)R

with η ∈ {o : R1(v)→ R2(x), I, no-up, τ}. We have a case analysis on η.
If η = o : R1(v)→ R2(x) then

(π(I; I ′, R1),ΣR1)R1
i.o〈v〉@R2:R1−−−−−−−→ (PR1 ,ΣR1)R1 and

(π(I; I ′, R2),ΣR2)R2
i.o(x←v)@R1:R2−−−−−−−−−→ (PR2 ,ΣR2)R2

The two events have the same global index since they have the same index i
(otherwise they could not synchronise) and they are both outside of any while
loop (since they are enabled), hence the global index coincides with the index.
Thus, they are either both from I or both from I ′.
In the first case we have also

‖
R∈roles(I;I′) (π(I, R),ΣR)R

o:R1(v)→R2(x)−−−−−−−−→‖
R∈roles(I;I′) (P ′′R ,ΣR)R

with PR = P ′′R ; π(I ′, R). Thus, by inductive hypothesis, I o:R1(v)→R2(x)−−−−−−−−→ I ′′ and
upd(‖

R∈roles I;I′ (P ′′R ,ΣR)R) = proj(I ′′,Σ). Hence, we have that

I; I ′ o:R1(v)→R2(x)−−−−−−−−→ I ′′; I ′ and the
upd(‖

R∈roles I;I′ (P ′′R ; π(I ′, R),ΣR)R) = proj(I ′′; I ′,Σ). The thesis follows.

In the second case, we need to show that the interaction o : R1(v) → R2(x) is
enabled. Assume that this is not the case. This means that there is a DIOC event
ε corresponding to some construct in I. Because of the definition ofR ε is also
a DPOC event and ε ≤DPOC ξ : o@R2 ∨ ε ≤DPOC ξ : o@R1. Hence, at least

155

Appendix A. Adaptable Choreographies: Proofs

one of the two events is not minimal and the corresponding transition cannot be
enabled, against our hypothesis. Therefore the interaction o : R1(v)→ R2(x) is

enabled. Thus, I has a transition with label
√

and I ′ o:R1(v)→R2(x)−−−−−−−−→ I ′′. Thanks
to Lemma 9 then both (π(I, R1),ΣR1)R1 and (π(I, R2),ΣR2)R2 have a transition
with label

√
. Thus, we have

(π(I ′, R1),ΣR1)R1
i.o〈v〉@R2:R1−−−−−−−→ (PR1 ,ΣR1)R1

(π(I ′, R2),ΣR2)R2
i.o(x←v)@R1:R2−−−−−−−−−→ (PR2 ,ΣR2)R2 and thus

proj(I ′,Σ)
o:R1(v)→R2(x)−−−−−−−−→‖

R∈roles(I′) (PR,ΣR)R

The thesis follows by inductive hypothesis.

For the other cases of η, all the roles but one are unchanged. The proof of these
cases is similar to the one for interaction, but simpler.

Note that in all the above cases, conditions on events follow by inductive hy-
pothesis.

Case I|I ′ from the definition of the projection function we have

N =‖
R∈roles(I;I′) (π(I, R) | π(I ′, R),ΣR)R

→ We have a case analysis on the rule used to derive the transition. If the transi-
tion is derived using Rule bDIOC |PARALLELe and I|I ′ can perform a transition with
label µ then one of its two components can perform a transition with the same
label µ and the thesis follows by inductive hypothesis. Additional roles not oc-
curring in the term performing the transition are dealt with by the clean part of
function upd. If instead the transition is derived using Rule bDIOC |PAR-ENDe then
the thesis follows from Lemma 9.

← We have a case analysis on the label η of the transition. If η = o? : R1(v)→
R2(x) then a send and a receive on the same operation are enabled. The two
events have the same global index since they have the same index i (otherwise
they could not synchronise) and they are both outside of any while loop (since
they are enabled), hence the global index coincides with the index. Thus, they
are either both from I or both from I ′. The thesis follows by inductive hypoth-
esis. For the other cases of η, only the process of one role changes. The thesis
follows by inductive hypothesis. In all the cases, roles not occurring in the term
performing the transition are dealt with by function upd.

156

A.2. Proof of Theorem 2

Case i: if b@R {I} else {I ′} from the definition of projection

N =

(
‖
S∈roles(I,I′)r{R}

(i?: i.cnd∗i : xi from R;
i: if xi {π(I, S)} else {π(I ′, S)},ΣS

)
S

)
‖(

i: if b

 ∏

R′∈roles(I,I′)r{R}

iT: i.cnd
∗
i : true to R′

 ; π(I, R)

else

 ∏

R′∈roles(I,I′)r{R}

iF: i.cnd
∗
i : false to R′

 ; π(I ′, R)

 ,ΣR

)
R

Let us consider the case when the guard is true (the other one is analogous).

→ The only possible transition from the DIOC is i: if b@R {I} else {I ′} τ−→
I. The DPOC can match this transition by reducing to

N ′ =
(
‖
S∈roles(I,I′)r{R}

(
i?: i.cnd∗i : xi from R;
i: if xi {π(I, S)} else {π(I ′, S)} ,ΣS

)
S

)
‖ ∏

R′∈roles(I,I′)r{R}

iT: i.cnd
∗
i : true to R′

 ; π(I, R),ΣR

R

By applying function upd we get

upd(N ′) =
(
‖
S∈roles(I,I′)r{R} (π(I, S),ΣS)S

)
‖ (π(I, R),ΣR)R

Concerning events, at the DIOC level events corresponding to the guard and
to the discarded branch are removed. The same holds at the DPOC level, thus
conditions on the remaining events are inherited. This concludes the proof.

← The only possible transition from the DPOC is the evaluation of the guard
from the coordinator. This reduces N to N ′ above and the thesis follows from
the same reasoning.

157

Appendix A. Adaptable Choreographies: Proofs

Case i: while b@R {I} from the definition of projection

N =

(
‖
S∈roles(I)r{R}

(
i?: i.wb∗i : xi from R; i: while xi {π(I, S);
iC: i.we

∗
i : ok to R; i?: i.wb∗i : xi from R} ,ΣS

)
S

)
‖

i: while b

(∏
R′∈roles(I)r{R}

iT: i.wb
∗
i : true to R′

)
; π(I, R);

∏
R′∈roles(I)r{R}

iC: i.we
∗
i : _ from R′

 ;

∏
R′∈roles(I)r{R}

iF: i.wb
∗
i : false to R′,ΣR

R

→ Let us consider the case when the guard is true. The only possible transition
from the DIOC is i: while b@R {I} τ−→ I; i: while b@R {I}. The DPOC can
match this transition by reducing to

N ′ =‖
S∈roles(I)r{R}

(
i?: i.wb∗i : xi from R; i: while xi {π(I, S);
iC: i.we

∗
i : ok to R; i?: i.wb∗i : xi from R} ,ΣS

)
S

‖

(∏
R′∈roles(I)r{R}

iT: i.wb
∗
i : true to R′

)
; π(I, R);(∏

R′∈roles(I)r{R}
iC: i.we

∗
i : _ from R′

)
;

i: while b

(∏

R′∈roles(I)r{R}
iT: i.wb

∗
i : true to R′

)
; π(I, R);∏

R′∈roles(I)r{R}
iC: i.we

∗
i : _ from R′

 ;

∏
R′∈roles(I)r{R}

iF: i.wb
∗
i : false to R′,ΣR

R

158

A.2. Proof of Theorem 2

By applying function upd we get

upd(N ′) =

 ‖S∈roles(I)r{R}

π(I, S); i?: i.wb∗i : xi from R;
i: while xi {π(I, S);

iC: i.we
∗
i : ok to R;

i?: i.wb∗i : xi from R}

,ΣS

S

 ‖

π(I, R);

i: while b

(∏

R′∈roles(I)r{R}
iT: i.wb

∗
i : true to R′

)
; π(I, R);∏

R′∈roles(I)r{R}
iC: i.we

∗
i : _ from R′

 ;

∏
R′∈roles(I)r{R}

iF: i.wb
∗
i : false to R′

,ΣR

R

exactly the projection of I; i: while b@R {I}.
As far as events are concerned, in compl(N ′) we have all the needed events
since, in particular, we have already done the unfolding of the while in all the
roles. Concerning the ordering, at the DIOC level, we have two kinds of causal
dependencies: (1) events in the unfolded process precede the guard event; (2)
the guard event precedes the events in the body. The first kind of causal depen-
dency is matched at the DPOC level thanks to the auxiliary synchronisations
that close the unfolded body (which are not removed by compl) using synchro-
nisation and sequentiality. The second kind of causal dependency is matched
thanks to the auxiliary synchronisations that start the following iteration using
synchronisation, sequentiality and while.
The case when the guard evaluates to false is simpler.

← The only possible transition from the DPOC is the evaluation of the guard
from the coordinator. This reduces N to N ′ above and the thesis follows from
the same reasoning.

Case i: scope @R {I} from the definition of the projection

N =
(
‖
R′∈roles(I)r{R} (i: scope @R {π(I, R′)},ΣR′)R′

)
‖

(i: scope @R {π(I, R)} roles {roles(I)},ΣR)R

→ Let us consider the case when the scope is updated. At the DIOC level all the
possible transitions have label of the form I ′ and are obtained by applying Rule
bDIOC |UPe. Correspondingly, at the DPOC level one applies Rule bDPOC |LEAD-UPe

159

Appendix A. Adaptable Choreographies: Proofs

to the coordinator of the update, obtaining

N ′ =
(
‖
R′∈roles(I)r{R} (i: scope @R {π(I, R′)},ΣR′)R′

)
‖

(∏
R′∈roles(I)r{R}

i.sb∗i : π(I ′, R′) to R′

)
;

π(I ′, R);∏
R′∈roles(I)r{R}

i.se∗i : _ from R′

,ΣR

R

By applying the upd function we get:

upd(N ′) =
(
‖
R′∈roles(I)r{R} (π(I ′, R′),ΣR′)R′

)
‖ (π(I ′, R),ΣR)R

This is exactly the projection of the DIOC obtained after applying the rule
bDIOC |UPe. The conditions on events are inherited. Observe that the closing
event of the scope is replaced by events corresponding to the auxiliary interac-
tions closing the scope. This allows us to preserve the causality dependencies
also when the scope is inserted in a context.
The case of Rule bDIOC |NOUPe is simpler.

← The only possible transitions from the DPOC are the ones of the coordinator
of the update checking whether to apply an update or not. This reduces N to
N ′ above and the thesis follows from the same reasoning.

160

APPENDIX B

Adaptable Choreographies: Test Code

B.1 Code used for validation

B.1.1 Pipe and fork-join code

In this section, we provide the code of the AIOCJ programs used in Section 5.4.
For simplicity, we show the programs fixing the number of tasks n = 5, and
showing just two adaptation rules per scenario.
Pipe scenario. In the pipe scenario each task computes the increment function,
passing the output of its computation as input to the next task.

1 include startTimer , endTimer from "socket :// localhost :8000"

2 preamble{ starter: a }

3
4 aioc {

5 { x@a = 0 | x@b = 0 };

6 _r@a = startTimer(n);
7 x@a = 1 + x; pass: a(x) -> b(x);

8 x@b = 1 + x; pass: b(x) -> a(x);

9 x@a = 1 + x; pass: a(x) -> b(x);

10 x@b = 1 + x; pass: b(x) -> a(x);

11 x@a = 1 + x; pass: a(x) -> b(x);

12 _r@a = stopTimer(n)

13 }

Listing B.1: Pipe scenario without scopes.

Listing B.1 shows the 5 tasks that increment variable x. After each increment
the variable is sent from role a to role b or vice versa. Lines 6 and 12 are calls to
the Timer service (Line 1), used to log the times of execution.

161

Appendix B. Adaptable Choreographies: Test Code

1 include startTimer , endTimer from "socket :// localhost :8000"

2 preamble{ starter: a }

3
4 aioc {

5 { x@a = 0 | x@b = 0 };

6 _r@a = startTimer(n);
7 scope @a {x@a = 1 + x; pass: a(x) -> b(x)} prop {N.x = 1};

8 scope @b {x@b = 1 + x; pass: b(x) -> a(x)} prop {N.x = 2};

9 scope @a {x@a = 1 + x; pass: a(x) -> b(x)} prop {N.x = 3};

10 scope @b {x@b = 1 + x; pass: b(x) -> a(x)} prop {N.x = 4};

11 scope @a {x@a = 1 + x; pass: a(x) -> b(x)} prop {N.x = 5};

12 _r@a = stopTimer(n)

13 }

Listing B.2: Pipe scenario with scopes.

Listing B.2 shows the 5 scopes enclosing the tasks of Listing B.1. Notably, each
scope has a unique property N.x assigned incrementally. This property is used to
identify uniquely each scope.
Rules of the pipe scenario. Listing B.3 shows two rules used in the pipe scenario.
The adapted behaviour increments the variable x by 2. In particular, the rule at
Lines 1-4 applies to the scope at Line 7 in Listing B.2, while the subsequent rule
(Lines 5-8) applies to the scope at Line 8.

1 rule {

2 on { N.x == 1 }

3 do { x@a = 2 + x; pass: a(x) -> b(x) }

4 }

5 rule {

6 on { N.x == 2 }
7 do { x@b = 2 + x; pass: b(x) -> a(x) }

8 }

Listing B.3: Rules for pipe scenario.

Fork-join scenario. In the fork-join scenario tasks run in parallel. Each task
takes one character of a message and replaces it with the next character in the
alphabet. The program makes use of an external service to retrieve the character
of the message, get the next letter, and store the new character in the message.

162

B.1. Code used for validation

1 include start , end from "socket :// localhost :8000"

2 include getNthChar , getNext , setNthChar from "socket :// localhost :8001"

3
4 preamble{ starter: a }

5
6 aioc {
7 _r@a = start(n);

8 {

9 { l0@a = getNthChar(0); l0@a = getNext(l0); _r@a = setNthChar(0, l0) }

10 | { l1@b = getNthChar(1); l1@b = getNext(l1); _r@b = setNthChar(1, l1) }

11 | { l2@a = getNthChar(2); l2@a = getNext(l2); _r@a = setNthChar(2, l2) }

12 | { l3@b = getNthChar(3); l3@b = getNext(l3); _r@b = setNthChar(3, l3) }

13 | { l4@a = getNthChar(4); l4@a = getNext(l4); _r@a = setNthChar(4, l4) }

14 };

15 _r@a = end(n)

16 }

Listing B.4: Fork-join scenario without scopes.

Listing B.4 shows the 5 tasks of the fork-join scenario. Each task uses a dedi-
cated variable (l0, l1, ..., ln) to ensure thread-safety of the computation.

1 include start , end from "socket :// localhost :8000"

2 include getNthChar , getNext , setNthChar from "socket :// localhost :8001"

3
4 preamble{ starter: a }

5
6 aioc {
7 _r@a = startTimer(n); {

8 scope @a {

9 l0@a = getNthChar(0); l0@a = getNext(l0); _r@a = setNthChar(0, l0) }

10 prop { N.char = 0 } |

11 scope @b {

12 l1@b = getNthChar(1); l1@b = getNext(l1); _r@b = setNthChar(1, l1) }

13 prop { N.char = 1 } |

14 scope @a {

15 l2@a = getNthChar(2); l2@a = getNext(l2); _r@a = setNthChar(2, l2) }

16 prop { N.char = 2 } |

17 scope @b {

18 l3@b = getNthChar(3); l3@b = getNext(l3); _r@b = setNthChar(3, l3) }

19 prop { N.char = 3 } |

20 scope @a {

21 l4@a = getNthChar(4); l4@a = getNext(l4); _r@a = setNthChar(4, l4) }

22 prop { N.char = 4 }

23 };

24 _r@a = stopTimer(n)

25 }

Listing B.5: Fork-join scenario with scopes.

Likewise the pipe scenario, the scopes in Listing B.5 enclose the tasks of List-

163

Appendix B. Adaptable Choreographies: Test Code

ing B.4. Also in this scenario each scope has a unique property N.char that iden-
tifies it uniquely.
Rules of the fork-join scenario. The adapted behaviour introduces the new func-
tion GetDoubleNext that gets a character and returns the character two positions
after it in the alphabet. Listing B.6 shows two rules used in the fork scenario. The
rule at Lines 1-6 applies to the scope at Lines 8-10 of Listing B.5, while the rule
at Lines 7-12 applies to the scope at Lines 11-13.

1 rule {

2 include getNthChar , getDoubleNext , setNthChar from "socket :// localhost :8001"

3 on { N.char == 0 }

4 do { l0@b = getNthChar(0); l0@b = getDoubleNext(l0);

5 _r@b = setNthChar(0, l0) }

6 }
7 rule {

8 include getNthChar , getDoubleNext , setNthChar from "socket :// localhost :8001"

9 on { N.char == 1 }

10 do { l1@b = getNthChar(1); l1@b = getDoubleNext(l1);

11 _r@b = setNthChar(1, l1) }

12 }

Listing B.6: Rules of pipe scenario.

B.1.2 AIOCJ programs used for benchmarking primitives

1 include start , end from "socket :// localhost :8000"

2 preamble { starter: a }

3 aioc {

4 _r@a = start("assignment");

5 x@a = 1;

6 _r@a = end("assignment");
7
8 _r@a = start("interaction");

9 pass: a(x) -> b(x);

10 _r@a = end("interaction");

11
12 _r@a = start("if statement");

13 if (x == 1)@a { skip };

14 _r@a = end("if statement")

15 }

Listing B.7: Code for benchmarking assignment, interaction, and the if statement.

1 include start , end

2 from "socket :// localhost :8000"

3

164

B.1. Code used for validation

4 preamble { starter: a }

5
6 aioc {
7 _r@a = start("scope");

8 scope @a{ skip }

9 prop { N.scope_name = "applicable"};

10 _r@a = end("scope")

11 }

Listing B.8: Code for benchmarking the scope primitive.

Listings B.7 and B.8 show the code used to measure the performances of prim-
itives of AIOCJ. We tested the performances of the scope (Listing B.8) under 7
contexts:

1. without adaptation servers;

2. with 1 adaptation server, but without rules;

3. with 1 adaptation server and 1 matching rule;

4. with 1 adaptation server, 50 rules but none matching;

5. with 1 adaptation server, 50 rules, and 1 matching;

6. with 1 adaptation server, 100 rules but none matching;

7. with 1 adaptation server, 100 rules, and 1 matching;

1 rule {

2 on { N.scope_name == "applicable" }

3 do { skip }

4 }

5 rule {

6 on { N.scope_name == "non -applicable" }
7 do { skip }

8 }

Listing B.9: Rules used for benchmarking scopes.

Listing B.9 shows the two kinds of rules used for testing performances of List-
ing B.8. The first one (Lines 1-4) is the matching rule used in contexts 3, 5, and
7. The second one (Lines 5-8) is a non matching rule present, in different copies,
in contexts 4, 5, 6, and 7.

165

Appendix B. Adaptable Choreographies: Test Code

166

APPENDIX C

Adaptable Choreographies: Models of Adaptation

To model in AIOCJ the advanced examples below, we introduce the keyword
roles for AIOC scopes. Consider the code below:

scope @Role1 {
/* code */

} roles { Role2 }

the keyword roles attached to the scope means that Role2 passively participates
to the scope, i.e., it has no interactions. At runtime, this feature enables the
application of updates that comprise Role2 among its roles. In this way, scopes
comprise passive roles that can play an important part in the updated code, e.g., a
Logger that is activated by an update.

This feature does not detach the implementation of AIOCJ from the theoretical
model of Dynamic Choreographies, yet it allows to model advanced behaviours
like the ones below.

C.1 A distributed adaptive document system
Here we provide an account of how we can model aspect orientation in AIOCs.

The example proposed here is taken from [118] and gives a pragmatic assess-
ment on the expressiveness of the AIOC language with respect to distributed dy-
namic aspect-oriented systems.

In the scenario proposed in [118], the authors describe the classic server-client
interaction in which the server serves documents to Clients. The server imple-
ments three “methods” to interact with documents, namely:

• Search, which allows a Client to search a certain string on a document;

• Read, which returns the content of a document;

• Write, which modifies the content of a document.

167

Appendix C. Adaptable Choreographies: Models of Adaptation

include search , read , write from "socket :// localhost :8002"

preamble {
starter: Client

}

aioc {
continue@Client = true;

while(continue)@Client{
r@Client = getInput("Select operation: (S)earch , " +

"(R)ead , (W)rite , or (E)xit");

if(r == "S")@Client{
s@Client = getInput("Insert search expression");
// for logging purposes
scope @Client{ skip } prop { N.scopename = "log" }
roles { Logger };
// adapt the search protocol
scope @Logger{

search: Client(s) -> Server(s);
res@Server = search(s);
response: Server(res) -> Client(res)

} prop{ N.scopename = "search" }
roles { Balancer , Rserver };
_r@Client = show(res)

};

if(r == "R")@Client{
s@Client = getInput("Insert the page to read");
// for logging purposes
scope @Client{ skip } prop { N.scopename = "log" }
roles { Logger };
// adapt the read protocol
scope @Logger{

read: Client(s) -> Server(s);
res@Server = read(s);
response: Server(res) -> Client(res)

} prop { N.scopename = "read" }
roles { Balancer , Rserver };
_r@Client = show(res)

};

if(r == "W")@Client{
s@Client = getInput("Insert the page and the " +

"content of the modification (page , content)");
scope @Client{ skip } prop { N.scopename = "log" }
roles { Logger };
scope @Logger{

168

C.1. A distributed adaptive document system

write: Client(s) -> Server(s);
res@Server = write(s);
response: Server(res) -> Client(res)

} prop{ N.scopename = "write" }
roles { Balancer , Rserver };
_r@Client = show(res)

};

if(r == "E")@Client{
continue@Client = false

};

if(r != "S" and r != "E" and
r != "R" and r != "W")@Client{
r@Client = show("Insert command not valid")

}
}

}

rule {
include log , getLoadBalancing from "socket :// localhost :8000"
on { N.scopename == "log" }
do {

log: Client(r) -> Logger(log);
_r@Logger = log(log);
if(log == "S")@Logger {

search_balance@Logger = getLoadBalancing(log)
};
if(log == "R")@Logger {

read_balance@Logger = getLoadBalancing(log)
}

}
}

rule {
include getServer from "socket :// localhost :8001"
include search from "socket :// localhost :8002"
include rSearch from "socket :// localhost :8003"
on { N.scopename == "search" and search_balance == true }
do {

ser@Balancer = getServer("S");
if(ser)@Balancer{

search: Client(s) -> Server(s);
res@Server = search(s);
response: Server(res) -> Client(res)

} else {
search: Client(s) -> Rserver(s);
res@Rserver = rSearch(s);
response: Rserver(res) -> Client(res)

169

Appendix C. Adaptable Choreographies: Models of Adaptation

}
}

}

rule {
include getServer from "socket :// localhost :8001"
include read from "socket :// localhost :8002"
include rRead from "socket :// localhost :8003"
on { N.scopename == "read" and read_balance == true }
do {

ser@Balancer = getServer("R");
if(ser)@Balancer{

read: Client(s) -> Server(s);
res@Server = read(s);
response: Server(res) -> Client(res)

} else {
read: Client(s) -> Rserver(s);
res@Rserver = rRead(s);
response: Rserver(res) -> Client(res)

}
}

}

rule {
include getServer from "socket :// localhost :8001"
include write from "socket :// localhost :8002"
include rWrite from "socket :// localhost :8003"
on {

N.scopename == "write" and
(read_balance == true or search_balance == true)

}
do {

write: Client(s) -> Server(s);
res@Server = write(s);
// propagates changes to Rserver
write: Server(s) -> Rserver(s);
res@Rserver = rWrite(s);
ok: Rserver () -> Server ();
res@Server = "[Synchronised] " + res;
response: Server(res) -> Client(res)

}
}

C.1.1 Pointcuts
First, we model one of the basic concepts of AOP which is pointcut. A pointcut
describes a set of join points. Each time the execution of a program reaches one of

170

C.1. A distributed adaptive document system

the join points relative to a pointcut, a piece of code associated with the pointcut is
executed. We implement pointcuts as empty scopes defined before each operation.
The empty scopes make use of the feature roles{...} that lets us to specify
additional roles in the scope. Additional roles do not take an active part in the
scope they are added in, but their behaviour relative to that scope can be changed
by an adaptation rule. In the example, if the adaptation rule N.scope_name = log
applies, we allow a Logger to count the number of interactions relative to search,
read, and write operations.

scope @Client{ skip }
prop { N.scopename = "log" }
roles { Logger };

rule {
include log , getLoadBalancing
from "socket :// localhost :8000"

on { N.scopename == "log" }
do {
log: Client(r) -> Logger(log);
_r@Logger = log(log);
if(log == "S")@Logger {
search_balance@Logger =
getLoadBalancing(log)

};
if(log == "R")@Logger {
read_balance@Logger =
getLoadBalancing(log)

}
}

}

C.1.2 Dynamic wrappers

Dynamic wrappers, as defined in JAC, are software entities that allow the modi-
fication or the enhancement of the semantics of some base objects. They provide
the ability to add code before, after, or around existing methods.

In the proposed example, the authors suggest to apply distributed aspects to
avoid the overload of a single server. Namely, they introduce aspects that manage
distribution of documents, load-balancing, and coherence among copies of the
same document.

As for pointcuts, we make use of the feature roles{...} to include in the in-
teraction of each operation a Balancer and an additional server (Rserver). Then, in
the adaptation rules the Balancer routes the operations between the two servers to
balance the load. Furthermore, in order to preserve coherence among documents,
each time a write operation is executed, the server that applied the modifications
notifies the other to synchronise the state of the copy of the document.

171

Appendix C. Adaptable Choreographies: Models of Adaptation

C.2 ContextChat
In this section we model context orientation in the AIOC language.

The scenario proposed here is taken from [73] in which the authors introduce
context-oriented programming within the actor model of the Erlang language. Be-
low we provide a pragmatic assessment on the expressiveness of the AIOC lan-
guage with respect to distributed dynamic context-oriented systems.

Context-oriented evolve from aspect-oriented programming by introducing mech-
anisms to enforce the coherent application of aspects.

In [73] the authors propose the example of ContextChat to highlight the features
of context-oriented programming applied to the Erlang actor model. In particu-
lar the authors introduce a fixed stack of adaptation procedures. The slots that
compose said stack describe the behaviour of adaptable procedures (also called
variations):

• activatable slots contain one variation which can be independently activated;

• switch slots contain several mutually exclusive variations;

• free slots contain an undefined single variation which can be acquired and
assigned from other programs.

In ContextChat connected clients exchange messages in real time. The system
implements advanced features as context variants:

• offline reception: if an user goes offline, other users can still send messages
to him. The system saves offline messages and shows them to the recipient
when s/he returns online. Offline and online statuses are described in a
switch slot, therefore mutually exclusive;

• backup feature: the user can activate (activatable slot) a backup mode that
saves all messages (sent and received) on a remote server;

• tracing feature: the system can activate (activatable slot) a tracing mode
that collects information on client communication to handle network com-
munication in a more efficient way (e.g., using internal messages in place
of network ones);

• text effects: users can submit (free slot) customisable filters to the messages
(e.g., for text emphasising, emoticons, etc.).

172

C.2. ContextChat

Modelling contexts with scopes

Let us analyse how the different behaviours described by activatable, switch, and
free slots map to AIOCJ scopes.

Activatable and free slots coalesce in the same type of scopes since in AIOCJ
the source of variations are rules that can be add and removed at runtime (i.e.,
the set of running Adaptation Servers, cf. § 5.1). Activation of such variations is
based on variables belonging to the environment (prefixed with E.), to the scope,
which are non-functional (prefixed with N.), and from the status of the coordinator
of the adaptation.

Switch slots require a choice in the design of the adaptation with respect to the
basic and the altered mutually exclusive behaviours.

Referring to the offline/online statuses of ContextChat, we assume that "on-
line" is the basic behaviour which alternates with the "offline" status following the
preferences of the User. Hence, the resulting AIOC contains the basic behaviour
(online) and, depending on the availability of Adaptation Servers and the User’s
status, mutually exclusive behaviours will overwrite the basic one. Since after
adaptation scope boundaries are removed, each time the basic behaviour adapts
only the matching rule overwrites its behaviour, excluding any other applicable
variant.

To keep the example simple and since activatable slots directly map to scopes,
we implement the example of ContextChat with the online/offline variants and the
free slot for text emphasising.

We report below the full code of the AIOC and the adaptation rules.

173

Appendix C. Adaptable Choreographies: Models of Adaptation

preamble { starter: User1 }

aioc {
{ name@User2 = "User2" | name@User1 = "User1"
| continue@User1 = true | continue@User2 = true
| status@User1 = "online" | status@User2 = "online"

};
{
while(continue == true)@User1{
scope @User1{
msg@User1 = getInput(name + ": insert a message")
} prop { N.scope_name = "get_msg" };
scope @User1{
send: User1(msg) -> User2(msg);
scope @User2{
_r@User2 = show(name + ": " + msg)

} prop { N.scope_name = "display_msg" }
|
c@User1 = getInput(name + ": do you want to continue [y/n]? ");
if(c == "n")@User1{
continue@User1 = false | continue@User2 = false

}
} prop { N.scope_name = "status_switch_user1" }
}
|
while(continue == true)@User2{
scope @User2 {
msg@User2 = getInput(name + ": insert a message")

} prop { N.scope_name = "get_msg" };
scope @User2{
send: User2(msg) -> User1(msg);
scope @User1{
_r@User1 = show(name + ": " + msg)

} prop { N.scope_name = "display_msg" }
|
c@User2 = getInput(name + ": do you want to continue [y/n]? ");
if(c == "n")@User2{
continue@User1 = false | continue@User2 = false
}

} prop { N.scope_name = "status_switch_user2" }
}

}
}

174

C.2. ContextChat

// the rule applies on any scope with
// property scope_name equal to "get_msg"
rule {
on { N.scope_name == "get_msg" }
do {
msg@User1 = getInput(name + ": insert a message or " +
"write ’exit ’ to go offline");

if(msg == "exit")@User1{ status@User1 = "offline" }
}

}

// the rule applies when the User is offline. It acts as a switch
// and , when the User returns online , displays the stored messages
rule {
on { status == "offline" and N.scope_name == "status_switch_user1" }
do {
_r@User1 = show(name + ": click ok to go online");
status@User1 = "online";
if(stored_msg_count > 0)@User1 {
_r@User1 = show(name + " received: " + stored_msg);
stored_msg@User1 = ""; stored_msg_count@User1 = 0

}
}

}

// the rule applies when the User is offline.
// It stores the message for future display
rule {
on { status == "offline" and N.scope_name == "display_msg" }
do {
if(stored_msg_count > 0)@User1{
stored_msg@User1 = stored_msg + "; " + msg

} else { stored_msg@User1 = msg };
stored_msg_count@User1 = stored_msg_count + 1

}
}

// the rule applies when the User is online. It adds text effects to
// the displayed message we apply text effect only on online display
rule {
on { status == "online" and N.scope_name == "display_msg" and

N.emph_effect != "applied" }
do {
msg@User1 = "*" + msg + "*";
scope @User1{
_r@User1 = show(msg)

} prop { N.scope_name = "display_msg", N.emph_effect = "applied" }
}

}

175

Appendix C. Adaptable Choreographies: Models of Adaptation

// Rules below mirror the ones above but apply only on User2
rule {
on { N.scope_name == "get_msg" }
do {
msg@User2 = getInput(name + ": insert a message or " +
"write ’exit ’ to go offline");

if(msg == "exit")@User2{
status@User2 = "offline"

}
}

}

rule {
on { status == "offline" and

N.scope_name == "status_switch_user2" }
do {
_r@User2 = show(name + ": click ok to go online");
status@User2 = "online";
if(stored_msg_count > 0)@User2 {
_r@User2 = show(name + " received: " + stored_msg);
stored_msg@User2 = "";
stored_msg_count@User2 = 0

}
}

}

rule {
on { status == "offline" and N.scope_name == "display_msg" }
do {
if(stored_msg_count > 0)@User2{
stored_msg@User2 = stored_msg + "; " + msg

} else {
stored_msg@User2 = msg

};
stored_msg_count@User2 = stored_msg_count + 1

}
}

rule {
on { status == "online" and N.scope_name == "display_msg"

and N.emph_effect != "applied" }
do {
msg@User2 = "*" + msg + "*";
scope @User2{
_r@User2 = show(msg)

} prop { N.scope_name = "display_msg",
N.emph_effect = "applied" }

}
}

176

C.2. ContextChat

C.2.1 Online/Offline switch
Since Online status is the basic behaviour, the choreography implements it as its
default. However, the programmer can specify that the procedure for acquire a
User’s message can be changed (below). In this case the rule always applies and
augments the functionality of the interaction with the User which can either send
a message or go offline by writing "exit".

scope @User1{
msg@User1 = getInput(name + ": insert a message")

} prop { N.scope_name = "get_msg" }

// rule applies on any scope with property
// scope_name equal to "get_msg"
rule {

on { N.scope_name == "get_msg" }
do { msg@User1 = getInput(name +

": write a message or ’exit ’ to go offline");
if(msg == "exit")@User1{

status@User1 = "offline"
}}}

Note that the scope, led and participated only by User1, indicates as
N.scope_name = "get_msg" its only non-functional property. User2 shows an
equivalent scope (with the non-functional property N.scope_name = "get_msg"),
yet the adaptation mechanisms of AIOCJ apply the corresponding rule to the right
scope as it checks applicability of rules on the participants to the scope. Since in
this case the leaders are also the only participants to the scope, no further proper-
ties are needed to ensure coherent application of adaptation.

Subsequently, the scope with N.scope_name = "status_switch_user1" over-
writes the sending procedure. The rules procedure waits for the user to return
online and displays the messages received in the meanwhile. Notably the rule
applies only if the status variable of the leaders is set to "offline".
scope @User1{
send: User1(msg) -> User2(msg);

{
scope @User2{
_r@User2 = show(name + ": " + msg)

} prop { N.scope_name = "display_msg" }
|
c@User1 = getInput(name + ": do you want to continue [y/n]? ");
if(c == "n")@User1{

continue@User1 = false | continue@User2 = false
}

}
}
prop { N.scope_name = "status_switch_user1" }

177

Appendix C. Adaptable Choreographies: Models of Adaptation

rule {
on { status == "offline" and
N.scope_name == "status_switch_user1" }
do { _r@User1 = show(name + ": click ok to go online");

status@User1 = "online";
if(stored_msg_count > 0)@User1 {

_r@User1 = show(name + " received: " + stored_msg);
stored_msg@User1 = "";
stored_msg_count@User1 = 0

}
}

}

Finally, if the user is online and sends a message, the addressee (User2, in
case of User1) enters the scope with N.scope_name = "display_msg". The
scope serves a twofold purpose: in case the addressee is offline, the overwrit-
ing rule (which is led and participated by User2) stores the message into a stor-
age variable for future visualisation, if otherwise User2 is online the text-effect
rule applies. Notably text-effects can stack as a the adaptation code of the rule
bears a nested scope with the same properties of the adapted scope, beside the
one N.emph_effect = "applied" which prevents the infinite application of the
same rule.
rule {
on { status == "offline" and N.scope_name == "display_msg" }
do {
if(stored_msg_count > 0)@User1{
stored_msg@User1 = stored_msg + "; " + msg

} else {
stored_msg@User1 = msg

};
stored_msg_count@User1 = stored_msg_count + 1

}
}

rule {
on { status == "online" and N.scope_name == "display_msg" and

N.emph_effect != "applied" }
do {

msg@User1 = "*" + msg + "*";
scope @User1{
_r@User1 = show(msg)

} prop { N.scope_name = "display_msg",
N.emph_effect = "applied" }

}
}

178

APPENDIX D

Applied Choreographies: Additional Material

D.1 Applied Choreographies

pn(η) ∩ pn(η′) = ∅
η; η′ 'C η

′; η
bCS|ETAETAe

p 6∈ pn(η)

if p.e {η;C1} else {η;C2}
'C η; if p.e {C1} else {C2}

bCS|ETACNDe

q 6∈ pn(η)

k : A -> q[B].{oi(xi); η;Ci}i∈I
'C η; k : A -> q[B].{oi(xi);Ci}i∈I

bCS|ETARCVe

p 6= q

k : A -> p[B].{oi(xi); k′ : C -> q[D].{o′ij(x′ij);Cij}j∈J}i∈I
'C k

′ : C -> q[D].{o′j(x′j); k : A -> p[B].{oij(xij);Cij}i∈I}j∈J

bCS|RCVRCVe

p 6= q

if p.e {if q.e′ {C1} else {C2}} else {if q.e′ {C ′1} else {C ′2}}
'C if q.e′ {if p.e {C1} else {C ′1}} else {if p.e {C2} else {C′2}}

bCS|CNDCNDe

p 6= q

k : A -> p[B].{oi(xi); if q.e {Ci1} else {Ci2}}i∈I 'C

if q.e {k : A -> p[B].{oi(xi);Ci1}i∈I} else {k : A -> p[B].{oi(xi);Ci2}i∈I}

bCS|RCVCNDe

Figure D.1: Choreography Calculus, swap relation 'C

179

Appendix D. Applied Choreographies: Additional Material

Γ, l̃ : G〈A|B̃|B̃〉, init
(
r̃[C], k, G

)
` C r̃[C] = p[A], q̃[B] q̃ 6∈ Γ

Γ, l̃ : G〈A|B̃|B̃〉 ` start k : p[A] <=> l̃.q[B];C
bT|STARTe

Γ, p : k[A], k[A] : JGKA ` C Γ ` l̃ : G〈A|B̃|∅〉

Γ ` req k : p[A] <=> l̃.B;C
bT|REQe

l̃ ⊆ l̃′ Γ, l̃′ : G〈A|B̃|∅〉, init
(
q̃[C], k, G

)
` C

Γ, l̃′ : G〈A|B̃|C̃〉 ` acc k : l̃.q[C];C
bT|ACCe

Γ ` p.e : bool Γ ` C1 Γ ` C2

Γ ` if p.e {C1} else {C2}
bT|CONDe

j ∈ I Γ ` p : k[A], q : k[B] Γ ` p.e : Uj Γ, q.x : Uj, k[A] : Tj, k[B] : T ′j ` C
Γ, k[A] : !B.{oi(Ui);Ti}i∈I , k[B] : ?A.{oi(Ui);T ′i}i∈I ` k : p[A].e -> q[B].oj(x);C

bT|COMe

j ∈ I Γ ` p : k[A] Γ ` p.e : Uj Γ, k[A] : Tj ` C
Γ, k[A] : !B.{oi(Ui);Ti}i∈I ` k : p[A].e -> B.oj;C

bT|SENDe

Γ ` q : k[B] ∀j ∈ I. Γ, q.xj : Uj, k[B] : Tj ` Cj
Γ, k[B] : ?A.{oi(Ui);Ti}i∈I ` k : A -> q[B].{oj(xj);Cj}j∈I∪J

bT|RECVe

Γ, X : Γ′ ` C Γ′, X : Γ′ ` C ′ Γ′|locs ⊆ Γ p̃ = pn(C ′)

Γ ` def X〈p̃〉 = C ′ in C
bT|DEFe

Γi ` Ci Γ2 ` C2

Γ1 ◦ Γ2 ` C1 | C2

bT|PARe
end(Γ)

Γ ` 0
bT|ENDe

end(Γ) Γ′′ ⊆ Γ′

Γ,Γ′′, X〈p̃〉 : Γ′ ` X〈p̃〉
bT|CALLe

Figure D.2: Choreography Calculus - Typing Rules

D.2 Typing
In addition to the description in § 6.3 we comment the additional rules in Fig-
ure D.2.

In Rule bT|ENDe end holds if the protocols for all sessions have terminated (i.e.,
all local typings have type end). In Rule bT|DEFe the condition Γ′|locs ⊆ Γ checks
that the body of the recursive procedure does not introduce unexpected services
(Γ′|locs returns all service typings in Γ′).

180

D.2. Typing

{A, B} ∩ {C, D} = ∅
A -> B.{oi(Ui); C -> D.{o′j(U ′j);Gij}j∈J}i∈I

'G C -> D.{o′j(U ′j); A -> B.{oi(Ui);Gij}i∈I}j∈J

bGS|COMCOMe

{A, B} ∩ {D} = ∅
A -> B.{oi(Ui); C D.o(U);Gi}
'G C D.o(U); A -> B.{oi(Ui);Gi}

bGS|COMRECVe

B 6= D

A B.o(U); C D.o′(U);G
'G C D.o′(U); A B.o(U);G

bGS|RECVRECVe

Figure D.3: Global types, Swap Relation 'G.

JC -> D.{oi(Ui);Gi}KAB =

{
end if C = A ∧ D = B⊔
i JGiK

A

B otherwise

JC D.o(U);GKAB =

{
?A.o(U); JGKAB if C = A ∧ D = B

JGKAB otherwise
JtKAB = end JendKAB = end Jrec t;GKAB = end

Figure D.4: Choreography Calculus - Buffer Type Projection

181

Appendix D. Applied Choreographies: Additional Material

D.3 Endpoint Projection

We report the complete definition of choreography annotation, process projection,
merging function, and grouping function, respectively in Figure D.5, Figure D.6,
Figure D.7, and Figure D.8.

@C = ∅@C

d@C =

η; d@C ′ if C = η;C ′

d@C1 | d@C2 if C = C1|C2

k : A -> q[B].{oi(xi); d@Ci)}i∈I if C = k : A -> q[B].{oi(xi);Ci}i∈I

def X〈p̃〉 = d′@C ′′ in d′@C ′ if

{
C = def X = C ′′ in C ′ ∧
p̃ = fp(C ′′) ∧ d′ = d ∪ (X,X〈p̃〉)

acc k : l̃.q[B]; d@C ′ if C = acc k : l̃.q[B];C ′

if p.e {d@C1} else {d@C2} if C = if p.e {C1} else {C2}
X〈p̃〉 if C = X ∧ (X,X〈p̃〉) ∈ d
0 if C = 0

Figure D.5: Choreography Calculus — Annotation operator

182

D.3. Endpoint Projection

r
start k : p[A] <=> l̃.q[B]

z

r
=

req k : p[A] <=> l̃.B; JCKr if r = p

acc k : l.r[C]; JCKr if l.r[C] ∈ {l̃.q[B]}
JCKr otherwise

r
acc k : l̃.q[B]

z

r
=

{
acc k : l.r[C]; JCKr if l.r[C] ∈ {l̃.q[B]}
JCKr otherwise

Jη;CKr , η ∈ {(req), (send)} =

{
η; JCKr if r ∈ fn(η)

JCKr otherwise

Jk : p[A].e -> q[B].o(x);CKr =

k : p[A].e -> B.o; JCKr if r = p

k : A -> q[B].o(x); JCKr if r = q

JCKr otherwise

Jk : A -> q[B].{oi(xi);Ci}i∈IKr =

{
k : A -> q[B].{oi(xi); JCiKr}i∈I if r = q⊔
i∈I JCiKr otherwise

Jif p.e {C1} else {C2}Kr =

{
if p.e {JC1Kr} else {JC2Kr} if r = p

JC1Kr t JC2Kr otherwise

Jdef X〈p̃〉 = C ′ in CKr =

{
def Xr = JC ′Kr in JCKr if r ∈ {p̃}
JCKr otherwise

JX〈p̃〉Kr =

{
Xr if r ∈ {p̃}
0 otherwise

JC1 | C2Kr = JC1Kr | JC2Kr

J0Kr = 0

Figure D.6: Choreography Calculus, process projection

183

Appendix D. Applied Choreographies: Additional Material

req k : p[A] <=> l̃.B;C1 t req k : q[A] <=> l̃.B;C2 = req k : p[A] <=> l̃.B; (C1 t C2)

acc k : l.p[A];C1 t acc k : l.q[A];C2 = acc k : l.p[A]; (C1 t C2)

k : p[A].e -> B.o;C1 t k : q[A].e -> B.o;C2 = k : p[A].e -> B.o; (C1 t C2)

k : A -> p[B]. {oi(xi);Ci}i∈I t k : A -> q[B].
{
oj(xj);C

′
j

}
j∈J =

k : A -> p[B].

{ oi(xi);Ci }i∈I/J

∪ { oi(xi);C ′i }i∈J/I
∪ {oi(xi);Ci t C ′i}i∈I∩J

if p.e {C1} else {C ′1} t if q.e {C2} else {C ′2} = if p.e {C1 t C2} else {C ′1 t C ′2}

def X = C ′1 in C1 t def X = C ′2 in C2 = def X = C ′1 t C ′2 in C1 t C2

X t X = X 0 t 0 = 0

Figure D.7: Merging Function

⌊
start k : p[D] <=> l̃.q[B];C

⌋
l

=
⌊

acc k : l̃.q[B];C
⌋
l⌊

acc k : l̃.q[B];C
⌋
l

=

{
{r} ∪ bCcl if l.r[A] ∈ l̃.q[B]

bCcl otherwise
bη;Ccl = bCcl if η 6= (start)

bif p.e {C1} else {C2}cl = bC1cl ∪ bC2cl
bdef X = C ′ in Ccl = bC ′cl ∪ bCcl
bXcl = ∅
b0cl = ∅
bC1 | C2cl = bC1cl ∪ bC2cl

Figure D.8: Service Grouping

184

D.4. Dynamic Correlation Calculus

D.4 Dynamic Correlation Calculus

def X = B′ in B[X] . t .M ≡ def X = B′ in B[B′] . t .M
P ≡ P | 0 . t . ∅ (P1 | P2) | P3 ≡ P1 | (P2 | P3)

P | P ′ ≡ P ′ | P S | S ′ ≡ S ′ | S
(S1 | S2) | S3 ≡ S1 | (S2 | S3)

Figure D.9: Correlation Calculus, structural congruence

185

Appendix D. Applied Choreographies: Additional Material

186

APPENDIX E

Applied Choreographies: Proofs

E.1 Proofs of Subject Reduction and Session Fidelity
We define the semantics of annotated ACs by marking transitions with the name
of the session whose term has reduced. We annotate other reductions as τ . We
range over annotated labels with

β ::= k : A -> B.o | k : A B.o(x) | τ

We report the annotated semantics of AC in Figure E.1.

187

Appendix E. Applied Choreographies: Proofs

η = k : p[A].e -> B.o D, η I D′

D, η;C
k: A -> B.o−−−−−−→ D′, C

bC|SENDe

j ∈ I D, k : A -> q[B].oj(xj) I D′

D, k : A -> q[B].{oi(xi);Ci}i∈I
k:A B.oj(xj)−−−−−−−−→ D′, Cj

bC|RECVe

η = k : p[A].e -> q[B].o(x) D, k : p[A].e -> B.o I D′

D, η;C
k: A -> B.o−−−−−−→ D′, k : A -> q[B].o(x);C

bC|COMe

#r̃ #k′ p ∈ D(l) δ = start k′ : l.p[A], ˜l.r[B] D, δ I D′

D, start k : p[A] <=> l̃.q[B];C
τ−→ D′, C[k′/k][̃r/q̃]

bC|STARTe

i ∈ {1, . . . , n} #k′ {l̃.B} =
⊎
i{l̃i.Bi} #r̃ {r̃} =

⋃
i{r̃i}

p ∈ D(l) δ = start k′ : l.p[A], ˜l1.r1[B1], . . . , ˜ln.rn[Bn] D, δ I D′

D, req k : p[A] <=> l̃.B;C |
∏

i

(
acc k : ˜li.qi[Bi];Ci

) τ−→
D′, C[k′/k] |

∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏

i

(
acc k : ˜li.qi[Bi];Ci

) bC|PSTARTe

i = 1 if eval(e,D(p).st) = true, i = 2 otherwise

D, if p.e {C1} else {C2}
τ−→ D, Ci

bC|CONDe

D,C1
β−→ D′, C ′1

D, def X = C2 in C1
β−→ D′, def X = C2 in C

′
1

bC|CTXe

D,C1
β−→ D′, C ′1

D,C1 | C2
β−→ D′, C ′1 | C2

bC|PARe

R ∈ {≡ , 'C } C1RC ′1 D,C ′1
β−→ D′, C ′2 C ′2RC2

D,C1
β−→ D′, C2

bC|EQe

Figure E.1: Choreography calculus, annotated semantics.

188

E.1. Proofs of Subject Reduction and Session Fidelity

We give a formal definition to k 6∈ Γ, which means that Γ has no local typing
and buffer types for session k, formally

k 6∈ Γ ⇐⇒ @ A, B s.t. k[A] : T ∈ Γ ∨ b[k]BA : T ′ ∈ Γ

E.1.1 Local and Typing Environment Subtyping

We define a subtyping relation on local types following [116, 96, 14]. We write
the subtyping relation as T ≺ T ′, which intuitively indicates that T is more con-
strained than T ′ in its behaviour. Note that, like in [96, 14], the input type is
covariant and the output type is contravariant for this relation.

Definition 32 (Local Subtyping). We define the subtyping relation between local
types as T ′ ≺ T , which is the smallest relation over closed and unfolded local
types, satisfying the rules below

T ′′ ≺ T ′ (T ≈ T ′′ ∨ T 'T T
′′)

T ≺ T ′
bSubT|EQe

J ⊆ I ∀ i ∈ J | Ti ≺ T ′i ∧ Ui ≺ U ′i
!A.{oi(Ui);Ti}i∈I ≺ !A.{oi(U ′i);T ′i}i∈J

bSubT|SENDe

I ⊆ J ∀ i ∈ I | Ti ≺ T ′i ∧ Ui ≺ U ′i
?A.{oi(Ui);Ti}i∈I ≺ ?A.{oi(U ′i);T ′i}i∈J

bSubT|RECVe

S ≺ S
bSubT|VALe

S ≺ S ′ ∀ i, Ui ≺ U ′i
S{xi : Ui}i ≺ S ′{xi : U ′i}i

bSubT|PATHe end ≈ T
end ≺ T

bSubT|ENDe

Above, T ≈ T ′ is the standard tree isomorphism on recursive types whilst T 'T

T ′ is the swap relation for local types. The swap relation for local types is the
smallest relation between local types that satisfies the Rule below. Let role(α) =
A if either α = !A or α = ?A.

role(α) 6= role(α′)

α.
{
oi(Ui);α

′.
{
o′j(U

′
j);Tij

}
j

}
i
'T α′.

{
o′j(U

′
j);α. {oi(Ui);Tij}i

}
j

bT|SWAPe

We also define a subtyping relation between Typing Environments. Intuitively
Γ ≺ Γ′ means that Γ and Γ′ are identical Typing Environments up to some local
types that are more constrained in Γ — i.e., subtypes of a correspondent local type
— than in Γ′.

189

Appendix E. Applied Choreographies: Proofs

Definition 33 (Typing Environment Subtyping). Let Γ and Γ′ be two typing envi-
ronments then

Γ′ ≺ Γ ⇐⇒

Γ = Γe,Γt s.t. @ k[A] : T ∈ Γe

Γ′ = Γe,Γ
′
t

dom(Γt) ∩ dom(Γ′t) = ∅
∀ k[A] : T ∈ Γ, T ≺ Γ′t(k[A])

In Lemma 12 we prove that if Γ′ ≺ Γ and Γ types a running choreographyD,C
also Γ′ types that choreography.

Lemma 12 (Subsumption). Let Γ′ ≺ Γ and Γ ` D,C for some D,C then Γ′ `
D,C .

Proof. Immediate by Definition 32 and Rules bT|RECVe and bT|COMe.

We annotate the reductions of global types with labels

γ ::= A -> B.o | A B.o

and report below the correspondent annotated semantics.

j ∈ I

A -> B.{oi(Ui);Gi}
A -> B.oj−−−−−→ A B.oj(Uj);Gj

bG|SENDe

A B.o(U);G
A B.o−−−−→ G

bG|RECVe
G[rec t;G/t]

γ−→ G′

rec t;G
γ−→ G′

bG|RECe

G1 'G G2 G2
γ−→ G′2 G′2 'G G

′
1

G1
γ−→ G′1

bG|SWAPe

In Lemma 13 we account for the fact that any output reduction at the level of
global types can constrain the projected local types of the roles not involved in the
reduction. Indeed, referring to Rule bG|SENDe, the output operation chooses one of
the available continuations Gj , j ∈ I and discards all the others. Therefore the
local types of the other roles not involved in the reduction can be constrained by
the removal of the other branches.

Lemma 13 (Projection Subtyping). Let T = JGKC, T
′ = JG′KC, and {A, B, C} ∈

roles(G), C 6∈ {A, B}, then G A -> B.o−−−−→ G′ implies T ′ ≺ T .

Proof. Easy by induction on the derivation of G
γ−→ G′.

190

E.1. Proofs of Subject Reduction and Session Fidelity

In Lemma 14 we prove that the typing of choreographies is invariant wrt buffer
types.

Lemma 14 (Buffer types invariance). Let Γ = Γ′,Γb where Γb contains only
buffer typings. If Γ′ ` C then Γ ` C .

Proof. Trivial as buffer typings do not affect the typing of choreographies.

Below we restate the definition of Deployment Judgements enriched with point-
ers of the kind (DX.Y) for a clearer referencing in the proofs.

Definition 18 (Deployment Judgements) Γ ` D ⇐⇒

(D18.1) ∀ l ∈ D, ∀ {p, q} ⊆ D(l), dom(D(p).que) ∩ dom(D(q).que) = ∅

(D18.2) ∀ p.x : U ∈ Γ, ` x(D(p).st) : U

(D18.3) ∀ {p : k[A], q : k[B]} ⊆ Γ, k(D(p).st) = k(D(q).st)

(D18.4) ∀ p : k[A] ∈ Γ,Γ ` p@l ∧ p ∈ D(l) ∧ k.A.l(D(p).st) = l

(D18.5) ∀ p : k[A] ∈ Γ ∧ ∀ b[k]BA : T ∈ Γ, bte(B, D(p).que(k.B.A(D(p).st))) = T

We define a reduction relation for typing environments of the form
Γ → Γ′ where → is the smallest closed under the rules below. Note that the
annotation labels are a subset of the labels used to annotate the semantics of AC,
ranged over by β.

k 6∈ Γ Γk ⊆ JGKk {k[A] : T, k[B] : T ′} ∈ Γk j ∈ I G
A -> B.oj−−−−−−→ G′

Γ,Γk
k: A -> B.oj−−−−−−−→ Γ, {k[C] : JG′KC | k[C] ∈ Γk}, {b[k]DC : JG′KDC | b[k]DC ∈ Γk}

bΓ|SENDe

k 6∈ Γ Γk ⊆ JGKk {k[A] : T, k[B] : T ′} ∈ Γk Γ ` q : k[B] G
A B.oj−−−−−−→ G′

Γ,Γk
k:A B.oj(x)−−−−−−−−−→ Γ, {k[C] : JG′KC | k[C] ∈ Γk}, {b[k]DC : JG′KDC | b[k]DC ∈ Γk}, q.x : Uj

bΓ|RECVe

We define the correspondence operator on label Gact(β) between β and γ

Gact(β) =

{
A -> B.o if β = k : A -> B.o

A B.o if β = k : A B.o(x).

In Lemma 15 we prove that if a typing environment Γ includes local types that
are projection of a global typeG, then if the global type can reduce also the typing
environment can reduce. The reduction preserves the correspondence between the
reduced global type and the reduced local types in Γ.

191

Appendix E. Applied Choreographies: Proofs

Lemma 15 (Type-Environment Fidelity). Let Γ = Γ∗, JGKk for some Γ∗, k 6∈ Γ∗,

and G
Gact(β)−−−−→ G′ then Γ

β−→ Γ′ and for some Γ′∗, k 6∈ Γ′∗, Γ′ = Γ′∗, JG′Kk.

Proof. Direct by cases on the derivation of Γ.

We also report Lemmas 16 and 17 that prove that typing is invariant wrt, re-
spectively, structural equivalence and swapping.

Lemma 16 (Subject Congruence). Γ ` D,C and C ≡ C ′ imply Γ ` D,C ′ (up
to α-renaming)

Proof. By induction on the rules that define ≡.

Lemma 17 (Subject Swap). Γ ` D,C and C 'C C
′ imply Γ ` D,C ′

Proof. By induction on the derivation of C 'C C
′.

Finally, we prove Theorem 3 by proving the stronger result below.

Theorem 2 (Typing Soundness). Let D,C be an annotated AC and (T2.1) Γ `
D,C for some Γ:

if (T2.2) β 6= τ and D,C
β−→ D′, C ′ then (T2.3) Γ

β−→ Γ′ and (T2.4) Γ′ ` D′, C ′ ;

if (T2.5) D,C τ−→ D′, C ′ then, for some Γ′, (T2.6) Γ′ ` D′, C ′ .

Proof. Proof by induction on the derivation of D,C
β−→ D′, C ′.

Case bC|SENDe
The case is:

η = k : p[A].e -> B.oj D, η I D′

D, η;C
k: A -> B.oj−−−−−−→ D′, C

bC|SENDe

Where (T2.2) has C ′ = C and D′ = D
[
q 7→ (D(q).st, D(q).que[tc 7→ m̃ ::

(oj, tm)])
]

by Rule bD|SENDe.
To prove (T2.3) we must prove Rule bΓ|SENDe to be applicable.

From (T2.1) we know that there exists a global type G for session k such that
pco(Γ) holds. We can partition Γ = Γ∗,Γk such that Γ∗ = Γ/JGKk and Γk =
Γ/Γ∗.

From (T2.1) we can write the derivation (with Γ = Γ1, k[A] : !B.{oi(Ui); JGiKA}i∈I ,
j ∈ I)

192

E.1. Proofs of Subject Reduction and Session Fidelity

pco(Γ) Γ ` D
j ∈ I Γ1 ` p : k[A] Γ1 ` p.e : Uj Γ1, k[A] : JGjKA ` C

Γ1, k[A] : !B.{oi(Ui); JGiKA}i∈I ` k : p[A].e -> B.oj;C
bT|SENDe

Γ ` D, k : p[A].e -> B.oj;C
bT|DCe

Since Γ ` k[A] : !B.{oi(Ui);Ti}i∈I , G must be swap-equivalent to type G∗ =
A -> B.{oi(Ui);Gi}i∈I , where ∀ i ∈ I , JGiKB = Ti. G∗ reduces with Rule
bG|SENDe

j ∈ I

A -> B.{oi(Ui);Gi}
A -> B.oj−−−−−→ A B.oj(Uj);Gj

bG|SENDe

and we can apply rule bΓ|SENDe where G′∗ = A B.oj(Uj);Gj and G′ 'G G
′
∗

G 'G G∗ G∗
A -> B.oj−−−−−→ G′∗ G′∗ 'G G

′

G
A -> B.oj−−−−−→ G′

bG|SWAPe

k 6∈ Γ∗ Γk ⊆ JGKk {k[A] : T, k[B] : T ′} ∈ Γk j ∈ I

Γ∗,Γk
k: A -> B.oj−−−−−−→ Γ∗, {k[C] : JG′KC | k[C] ∈ Γk}, {b[k]CD : JG′KDC | b[k]DC ∈ Γk}

bΓ|SENDe

Hence (T2.3) holds and Γ′ = Γ∗, {k[C] : JG′KC | k[C] ∈ Γk}, {b[k]DC : JG′KDC | b[k]DC ∈
Γk} .

We now prove (T2.4) by proving that Rule bT|DCe applies to Γ′ ` D′, C ′ .

pco(Γ′) Γ′ ` C ′ Γ′ ` D ′

Γ′ ` D′, C ′
bT|DCe

Hence we need to prove 1© pco(Γ′), 2© Γ′ ` C ′. and 3© Γ′ ` D ′

Proof of 1©. For all sessions k′ ∈ Γ∗, pco(Γ′) holds as pco(Γ) holds by (T2.1).
For session k, pco(Γ′) holds by construction.

Proof of 2©. From the derivation on Γ ` D, k : p[A].e -> B.oj;C we know that
Γ1, k[A] : JGjKA ` C . Let Γ′′ = Γ1, k[A] : JGjKA and Γ′k = Γ1/Γ∗ = Γk/{k[A] : JGKA}.
We can write Γ′′ = Γ∗,Γ

′
k, k[A] : JGjKA. Notably the application of Rule bT|SENDe

193

Appendix E. Applied Choreographies: Proofs

does not modify the buffer types in Γ and therefore Γ′′(b[k]AB) 6= Γ′(b[k]AB), how-
ever from Lemma 14 we know that we can omit to consider buffer types as they
are irrelevant for the typing of choreographies. For all sessions k′ 6= k in Γ′′

their local typings are the same in Γ′. For session k, the typing Γ′′(k[A]) =
Γ′(k[A]) = JGjKA. From Lemma 13, for all other k[C] ∈ Γ′′, C 6= A it holds that
Γ′′(k[C]) = JGKC, Γ′(k[C]) = JG′KC, and JG′KC ≺ JGKC. Therefore Γ′ ≺ Γ′′ and

2© holds by Lemma 12.

Proof of 3©. To prove Γ′ ` D′ we need to prove that the conditions of Defini-
tion 18 hold. (D18.1–D18.4) hold by the application of Rule bD|SENDe, by construc-
tion of Γ′, and by (T2.1). (D18.5) holds for all sessions k′ 6= k by application of
Rule bD|SENDe and the construction of Γ′. The same holds true for session k and
any process q : k[C] ∈ Γ′ | C 6= B.

Finally, let q : k[B] ∈ Γ, from bC|SENDe we know that

D′(q).que(k.A.B(D′(q).st)) = m̃ :: (oj, tm)

G does not contain any partial reception from A to B, hence m̃ must be empty

D′(q).que(k.A.B(D′(q).st)) = (oj, tm)

From the definition of type projection we have that Γ′(b[k]AB) =?A.oj(Uj).

From bT|SENDewe know that p.e ` Uj and from bC|SENDe that tm = eval(e,D(p).st),
thus tm has type Uj and bte(A, (oj, Uj)) =?A.oj(Uj).

Case bC|RECVe
The case is:

j ∈ I D, k : A -> q[B].oj(xj) I D′

D, k : A -> q[B].{oi(xi);Ci}i∈I
k:A B.oj(xj)−−−−−−−−→ D′, Cj

bC|RECVe

(T2.2) has C ′ = Cj and D′ = D
[
q 7→ (D(q).st / (x, tm), D(q).que[tc 7→ m̃])

]
by application of Rule bD|RECVe.
To prove (T2.3) we must prove that Rule bΓ|SENDe is applicable.

Since D,C reduces with bC|RECVe, the conditions of Rule bD|RECVe must hold,
i.e., tc = k.A.B(D(q).st) ∧ D(q).que(tc) = (oj, tm) :: m̃. Since (T2.1) holds
pco(Γ) and Γ ` D hold and therefore we know that, by (D18.5), Γ(b[k]AB) =
bte(A, (oj, tm) :: m̃).

194

E.1. Proofs of Subject Reduction and Session Fidelity

Let ` tm : Uj , then bte(A, (oj, tm) :: m̃) =?A.oj(Uj);T where T = bte(A, m̃)
by definition and Γ(b[k]AB) =?A.oj(Uj);T . Since pco(Γ) holds, there exists a
global type G for session k such that G is swap-equivalent to a type G∗ = A
B.oj(Uj);Gj where JGjK

A

B
= T .

G∗ reduces with Rule bG|RECVe

A B.o(U);G
A B.o(U)−−−−−−→ G

bG|RECVe

and we can apply Rule bΓ|RECVe with G′∗ = Gj and G′ 'G G
′
∗

We partition Γ = Γ∗,Γk such that Γ∗ = Γ/ JGKk and Γk = Γ/Γ∗.

G 'G G∗ G∗
A B.oj−−−−−−→ G′∗ G′∗ 'G G

′

G
A B.oj−−−−−−→ G′

bG|SWAPe

k 6∈ Γ∗ Γk ⊆ JGKk {k[A] : T, k[B] : T ′} ∈ Γk Γ∗ ` q : k[B]

Γ∗,Γk
k:A B.oj(x)−−−−−−−−−→ Γ∗, {k[C] : JG′KC | k[C] ∈ Γk}, {b[k]DC : JG′KDC | b[k]DC ∈ Γk}, q.x : Uj

bΓ|RECVe

Hence (T2.3) holds and Γ′ = Γ∗, {JG′KC | k[C] ∈ Γk}, q.x : Uj .

(T2.4) holds if we can apply Rule bT|DCe on Γ′ ` D′, C ′

pco(Γ′) Γ′ ` C ′ Γ′ ` D ′

Γ′ ` D′, C ′
bT|DCe

and we need to prove 1© pco(Γ′), 2© Γ′ ` C ′. and 3© Γ′ ` D ′

The proof of 1© for this case is similar to that of 1© for case bC|SENDe.

Proof of 2©. From (T2.1), partitioning Γ = Γ1, k[B] : ?A.oj(Uj); JGjKB and since
j ∈ I from Rule bC|RECVe, we can write the derivation

pco(Γ) Γ ` D
j ∈ I Γ1 ` q : k[B] Γ1, q.xj : Uj, k[B] : JGjKB ` Cj

Γ1, k[B] : ?A.oj(Uj); JGjKB ` k : A -> q[B].{oi(xi);Ci}i∈I
bT|RECVe

Γ ` D, k : A -> q[B].{oi(xi);Ci}i∈I
bT|DCe

hence we know that Γ1, q.xj : Uj, k[B] : JGjKB ` Cj .

Let Γ′′ = Γ1, q.xj : Uj, k[B] : JGjKB ` Cj and Γ′k = Γ1/Γ∗ = Γk/{k[B] : JGKB}.
We can write Γ′′ = Γ∗,Γ

′
k, k[B] : JGjKB. Similarly to the proof of 2© for case

195

Appendix E. Applied Choreographies: Proofs

bC|SENDe Γ′′(b[k]AB) 6= Γ′(b[k]AB), but we omit to consider buffer types as they are
irrelevant for the typing of choreographies by Lemma 14. For all sessions in Γ′′,
their local typings are the same as in Γ′. We consider in particular k on which
we applied the reduction for this case for which it holds

∀ k[C] ∈ Γ′′, Γ′′(k[C]) = Γ′(k[C]) = JG′KC

Proof of 3©. To prove Γ′ ` D′ we prove the conditions in Definition 18. (D18.1)
holds from the application of Rule bD|RECVe, (T2.1), and the construction of Γ′.
(D18.2) holds for all p.x from the application of Rule bD|RECVe, (T2.1), and the
construction of Γ′, except for q.xj which is not defined in Γ. However the condi-
tion holds by construction of Γ′ = Γ1, q.xj : Uj, k[B] : JGjKB. (D18.3–D18.4) hold
by application of Rule bD|RECVe and (T2.1). (D18.5) holds for all sessions k′ 6= k
by the application of Rule bD|RECVe and the construction of Γ′. The same holds
true for session k and any process p : k[C] ∈ Γ | C 6= B.

For q : k[B] and role A we know from the application of bC|SENDe that

D′(q).que(k.A.B(D′(q).st)) = m̃

Since we took G such that JGKAB =?A.oj(Uj);T , where T = bte(A, m̃) then
JG′KAB = T .

Case bC|COMe
The case is:

η = k : p[A].e -> q[B].oj(x) D, k : p[A].e -> B.oj I D′

D, η;C
k: A -> B.oj−−−−−−→ D′, k : A -> q[B].oj(x);C

bC|COMe

Where (T2.2) has C ′ = k : A -> q[B].o(x);C and
D′ = D

[
q 7→ (D(q).st, D(q).que[tc 7→ m̃ :: (oj, tm)])

]
by application of Rule

bD|SENDe .

To prove (T2.3) we must prove Rule bΓ|SENDe to be applicable.

Similarly to the proof of case bC|SENDe we know there exists a global type G for
session k such that pco(Γ) holds. Likewise, we partition Γ = Γ∗,Γk wrt JGKk.

Partitioning Γ = Γ1, k[A] : !B.{oi(Ui); JGiKA}i∈I , k[B] : ?A.{oi(Ui); JGiKB}i∈I we
can write the derivation

196

E.1. Proofs of Subject Reduction and Session Fidelity

pco(Γ) Γ ` D

j ∈ I Γ1 ` p : k[A], q : k[B] Γ1 ` p.e : Uj
Γ1, q.x : Uj , k[A] : JGjKA , k[B] : JGjKB ` C

Γ1, k[A] : !B.{oi(Ui); JGiKA}i, k[B] : ?A.{oi(Ui); JGiKB}i
` k : p[A].e -> q[B].oj(x);C

bT|COMe

Γ ` D, k : p[A].e -> q[B].oj(x);C
bT|DCe

Since Γ ` k[A] : !B.{oi(Ui); JGiKA}i and Γ ` k[B] : ?A.{oi(Ui); JGiKB}i, G must
be a swap-equivalent to type G∗ = A -> B.{oi(Ui);Gi}i, which reduces along
Rule bG|SENDe

j ∈ I
A -> B.{oi(Ui);Gi} → A B.oj(Uj);Gj

bG|SENDe

where G′∗ = A B.oj(Uj);Gj and G′∗ 'G G
′. Therefore we can apply Rule

bΓ|SENDe

G 'G G∗ G∗
A -> B.oj−−−−−→ G′∗ G′∗ 'G G

′

G
A -> B.oj−−−−−→ G′

bG|SWAPe

k 6∈ Γ∗ Γk ⊆ JGKk {k[A] : T, k[B] : T ′} ∈ Γk j ∈ I

Γ∗,Γk
k: A -> B.oj−−−−−−→ Γ∗, {k[C] : JG′KC | k[C] ∈ Γk}, {b[k]DC : JG′KDC | b[k]DC ∈ Γk}

bΓ|SENDe

We prove that for Γ′ = Γ∗, {JG′KC | k[C] ∈ Γk} (T2.4) holds, i.e., that Rule bT|DCe
is applicable on Γ′ ` D′, C ′ and therefore that 1© pco(Γ′), 2© Γ′ ` C ′ and 3©
Γ′ ` D′ hold.

The proof of 1© and 3© for this case is similar to those of, respectively, 1© and
3© for case bC|SENDe.

Proof of 2©. Let Γ′′ = Γ1, q.x : Uj, k[A] : JGjKA , k[B] : JGjKB, we know from the
derivation on Γ ` D, k : p[A].e -> q[B].oj(x);C that Γ′′ ` C .

We need to prove that Γ′ ` C ′ and therefore that Rule bT|RECVe applies. Γ′(k[B]) =
JG′KB =?A.oj(Uj); JGjKB by construction and thus we can write
Γ′ = Γ′1, k[B] : ?A.oj(Uj); JGjKB and apply Rule bT|RECVe

Γ′1 ` q : k[B] Γ′1, q.xj : Uj, k[B] : JGjKB ` C
Γ′1, k[B] : ?A.oj(Uj); JGjKB ` k : p[A].e -> q[B].oj(x);C

bT|RECVe

197

Appendix E. Applied Choreographies: Proofs

Again from the derivation of Γ ` D, k : p[A].e -> q[B].oj(x);C we know that

Γ1, q.x : Uj, k[A] : JGjKA , k[B] : JGjKB ` C

Similarly to the proof of 2© of case bC|SENDe, Γ′ ` C ′ since 1) we can omit to
consider buffer types as of Lemma 14, 2) for all session k′ 6= k its local typings
remain unchanged from Γ to Γ′, and 3) for session k, Γ′′(k[A]) = Γ′(k[A]) =
JGjKA and for all other local typings for C ∈ G̃/{A}, Γ′′(k[C]) = JGKC, Γ′(k[C]) =
JG′KC, and JG′KC ≺ JGKC. Hence, Γ′ ≺ Γ′′ and 2© holds by Lemma 12.

Case bC|STARTe
The case is:

#r̃ #k′ p ∈ D(l) δ = start k′ : l.p[A], ˜l.r[B] D, δ I D′

D, start k : p[A] <=> l̃.q[B];C
τ−→ D′, C[k′/k][̃r/q̃]

bC|STARTe

Where (T2.5) has C ′ = C[k′/k][̃r/q̃]. D′ is defined non-deterministically but
abides the requirements defined in Rule bD|STARTe. Let s̃[C] = p[A], r̃[B]. Since
(T2.1) holds, we can apply Rule bT|STARTe. We partition Γ = Γ1, l̃ : G〈A|B̃|B̃〉

Γ1, l̃ : G〈A|B̃|B̃〉, init
(
s̃′[C], k, G

)
` C s̃′[C] = p[A], q̃[B] q̃ 6∈ Γ1

Γ1, l̃ : G〈A|B̃|B̃〉 ` start k : p[A] <=> l̃.q[B];C
bT|STARTe

We take Γ′ = Γ, init
(
s̃[C], k′, G

)
and we prove the case by proving that we can

apply Rule bT|DCe on Γ′ ` D′, C ′ , i.e, that the following hold: 1© pco(Γ′), 2©
Γ′ ` C ′ and 3© Γ′ ` D′ .

Proof of 1©. 1© holds for all session k′′ ∈ Γ′, k′′ 6= k′ by (T2.1). For session k′

1© holds by construction.

Proof of 2©. By (T2.1) we could apply bT|STARTewhere Γ, init
(
s̃′[C], k, G

)
` C .

We apply α-renaming on k and q̃ along what done in Rule bC|STARTe and we
obtain that Γ, init

(
s̃′[C], k, G

)
[k′/k][̃r/q̃] ` C[k′/k][̃r/q̃].

Since Γ, init
(
s̃′[C], k, G

)
[k′/k][̃r/q̃] = Γ, init

(
s̃[C], k′, G

)
then 2© holds.

198

E.1. Proofs of Subject Reduction and Session Fidelity

Proof of 3©. To prove 3©we prove the conditions in Definition 18. (D18.1–D18.5)
hold by the application of Rule bD|STARTe and the construction of Γ′.

Case bC|PSTARTe
The case is:

i ∈ {1, . . . , n} #k′ {l̃.B} =
⊎
i{l̃i.Bi} #r̃ {r̃} =

⋃
i{r̃i}

p ∈ D(l) δ = start k′ : l.p[A], ˜l1.r1[B1], . . . , ˜ln.rn[Bn] D, δ I D′

D, req k : p[A] <=> l̃.B;C |
∏

i

(
acc k : ˜li.qi[Bi];Ci

) τ−→
D′, C[k′/k] |

∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏

i

(
acc k : ˜li.qi[Bi];Ci

) b
C|PSTARTe

Where (T2.5) hasC ′ = C[k′/k] |
∏

i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏

i

(
acc k : ˜li.qi[Bi];Ci

)
.

D′ is defined non-deterministically but abides the requirements defined in Rule
bD|STARTe.
We partition Γ such that:

• Γ = Γr ◦ Γa

• Γr ` l̃ : G〈A|B̃|∅〉
• Γa ` l̃ : G〈A|B̃|B̃〉
• Γa = Γ1, l̃ : G〈A|B̃|B̃1〉 ◦ · · · ◦ Γn, l̃ : G〈A|B̃|B̃n〉
• Γia = Γi, l̃ : G〈A|B̃|B̃i〉 ◦ · · · ◦ Γn, l̃ : G〈A|B̃|B̃n〉

and we can write the derivation

pco(Γ) Γ ` D

Γr, p : k[A], k[A] : JGKA ` C Γr ` l̃ : G〈A|B̃|∅〉

Γr ` req k : p[A] <=> l̃.B;C
bT|REQe

∆1

Γ ` req k : p[A] <=> l̃.B;C |
∏

i∈I
(
acc k : ˜li.qi[Bi];Ci

) bT|PARe

Γ ` D, req k : p[A] <=> l̃.B;C |
∏

i∈I
(
acc k : ˜li.qi[Bi];Ci

) bT|DCe

∆i =

l̃i ⊆ l̃ Γi, l̃ : G〈A|B̃|∅〉, init

(
q̃i[Bi], k, G

)
` Ci

Γi, l̃ : G〈A|B̃|B̃i〉 ` acc k : ˜li.qi[Bi];Ci
bT|ACCe

∆i+1

Γia ` acc k : ˜li.qi[Bi];Ci |
∏

j∈I/{1,··· ,i}
(
acc k : ˜lj.qj[Bj];Cj

) bT|PARe

199

Appendix E. Applied Choreographies: Proofs

Let s̃[C] = p[A], r̃1[B1], · · · , r̃n[Bn].

To prove (T2.6) we take

Γ′ = Γ, init
(
s̃[C], k′, G

)
= Γr ◦ Γa ◦ init

(
s̃[C], k′, G

)
By the definition of the merging operator ◦ we can partition init

(
s̃[C], k′, G

)
such that

Γ′ = Γ′r ◦ Γ′a ◦ Γa

Where

• Γ′r = Γr, init
(
p[A], k′, G

)
• Γ′a = Γ′1 ◦ · · · ◦ Γ′n

• Γ′i = Γi, l̃ : G〈A|B̃|∅〉, init
(
r̃i[Bi], k

′, G
)

To prove (T2.6) we must prove we can apply Rule bT|DCe on Γ′ ` D′, C ′ .

1© pco(Γ′)

3© Γ′ ` D′
2©

2a© Γ′r ` C[k′/k]

2b© Γ′a `
∏
i

(
Ci[k

′/k][̃ri/q̃i]
)

2c© Γa `
∏
i

(
acc k : ˜li.qi[Bi];Ci

)
Γ′a ◦ Γa

`
∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k : ˜li.qi[Bi];Ci

) bT|PARe

Γ′ ` C[k′/k] |
∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k : ˜li.qi[Bi];Ci

) bT|PARe

Γ′ ` D′, C ′
bT|DCe

1© holds by by construction.

Proof of 2©. 2© holds as

• 2a© holds by α-renaming (Γr, p : k[A], k[A] : JGKA)[k
′/k] ` C[k′/k] and by

omitting to consider buffer types as of Lemma 14;

• similarly to 2a©, 2b© holds by α-renaming on the derivation of

(Γi, l̃ : G〈A|B̃|∅〉, init
(
q̃i[Bi], k, G

)
)[k′/k][ri/qi] ` Ci[k′/k][ri/qi]

and by Lemma 14;

• 2c© holds by (T2.1).

200

E.1. Proofs of Subject Reduction and Session Fidelity

Proof of 3©. The proof of 3© of this case is similar to the proof of 3© for Case
bC|STARTe.

Case bC|CONDe
The case is:

i = 1 if eval(e,D(p).st) = true, i = 2 otherwise

D, if p.e {C1} else {C2}
τ−→ D, Ci

bC|CONDe

In (T2.5) D′ = D and we have two cases for C ′ = C1 or C ′ = C2.

From (T2.1) we can write

Γ ` p.e : bool Γ ` C1 Γ ` C2

Γ ` if p.e {C1} else {C2}
bT|CONDe

The proof of (T2.6) follows directly from the premises of the typing derivation as
Γ ` D = D′ and in both cases that C ′ = C1 or C ′ = C2 it holds that Γ ` C ′

from the premises of bT|CONDe.

Case bC|CTXe
The case is:

D,C1
β−→ D′, C ′1

D, def X = C2 in C1
β−→ D′, def X = C2 in C

′
1

bC|CTXe

From (T2.1) we know that, Γ = Γ1, X : Γx

pco(Γ)

Γ1, X : Γx ` C1 Γx, X : Γx ` C 2 Γx|locs ⊆ Γ

Γ ` def X = C2 in C1
bT|DEFe

Γ ` D
Γ ` D, def X = C2 in C1

bT|DCe

The proof is divided in two cases on the type of β.

Case β 6= τ
D,C1 reduces on some session k. By the induction hypothesis since Γ ` D,C1

201

Appendix E. Applied Choreographies: Proofs

we can find Γ′ such that (T2.3) holds. We prove (T2.4) by proving that we can ap-
ply bT|DCe on Γ′ ` D′, def X = C2 in C

′
1 and therefore that 1© pco(Γ′) holds,

2© Γ′ ` def X = C2 in C1 and 3© Γ′ ` D ′.
1© holds by the construction of Γ′ and 3© holds by the induction hypothesis.

To prove 2© we have to prove that Γ′ ` X : C2 and Γx|locs ⊆ Γ′.

From the induction hypothesis we have that Γ
β−→ Γ′ and Γ′ ` D′, C ′1 . By

construction of Γ′ it holds that Γ′ = Γ′∗,Γ
′
k where Γ′ ∩ Γ = Γ∗ such that

k 6∈ Γ∗ and Γ = Γ∗,Γk where Γk ⊆ JGKk for some G. Therefore it holds
that Γ∗ ` X : Γx and thus that Γ′ ` X : Γx. The same applies to Γx|locs ⊆ Γ∗
which proves Γx|locs ⊆ Γ′.

Case β = τ
from the induction hypothesis for any considered derivation we have Γ ⊆ Γ′.
We prove (T2.6) by proving that we can apply bT|DCe on Γ′ ` D′, def X = C2 in C

′
1 .

1©, 2©, and 3© hold by construction of Γ′.

Case bC|PARe
The case is:

D,C1
β−→ D′, C ′1

D,C1 | C2
β−→ D′, C ′1 | C2

bC|PARe

From (T2.1) we have the derivation below, with Γ partitioned as Γ = Γ1 ◦ Γ2

pco(Γ)

Γ1 ` C 1 Γ2 ` C 2

Γ ` C1 | C2

bT|PARe
Γ ` D

Γ ` D,C1 | C2

bT|DCe

The proof is divided in two cases on the type of β.

Case β 6= τ
D,C1 reduces on some session k. By the induction hypothesis and since Γ1 `
D,C1 we can find Γ′1 such that Γ1

β−→ Γ′1 and Γ′1 ` D′, C ′1 . Then we take
Γ′ = Γ′1 ◦ Γ2 which proves (T2.3) to hold. We prove (T2.4) by proving that
we can apply bT|DCe on Γ′ ` D′, C ′1 | C2 and therefore that 1© pco(Γ′), 2©
Γ′ ` C ′1 | C2 and 3© Γ′ ` D ′ hold. 1©, 2©, and 3© hold by construction and
the induction hypothesis.

Case β = τ
from the induction hypothesis, for any derivation we have that Γ′1 ` D′, C ′1 and
Γ1 ⊆ Γ′1. Also in this case we take Γ′ = Γ′1◦Γ2 and prove (T2.6) by proving that
we can apply bT|DCe on Γ′ ` D′, C ′1 | C2 . 1©, 2©, and 3© hold by construction
of Γ′ and the induction hypothesis.

202

E.2. Proof of Deadlock Freedom

Case bC|EQe
The case is:

R ∈ {≡ , 'C } C1RC ′1 D,C ′1
β−→ D′, C ′2 C ′2RC2

D,C1
β−→ D′, C2

bC|EQe

The proof is divided into two subcases on the type ofR.

CaseR = ≡
The case is proven by induction hypothesis and Lemma 16.

CaseR = 'C

The case is proven by induction hypothesis and Lemma 17.

The proof of Theorem 4 follows directly from the proof of Theorem 2 and
Lemma 15.

E.2 Proof of Deadlock Freedom
We report below the statement of Theorem 5 enriched with pointers for clearer
referencing the in the proof.
Theorem 5 (Deadlock-freedom) (D5.1) Γ ` D,C and (D5.2) co(Γ) imply that
either (D5.3) C ≡ 0 or (D5.4) there exist D′ and C ′ such that D,C → D′, C ′.

Like in [13, 14], our choreographies enjoy deadlock-freedom provided that they
i) do not contain free variable names and ii) are well-sorted, i.e., have no undefined
procedure calls. Notably, well-sortedness is guaranteed by the type system.

Proof. Proof by induction on the structure of C.

Case C ≡ 0
trivial.

Case C = k : p[A].e -> B.o;C1

from (D5.1) and (D5.2) we know that the requirements of bD|SENDe hold and we
can find D′ such that D, k : p[A].e -> B.o I D′. We can apply Rule bC|SENDe for
which C ′ = C1.

Case C = k : p[A].e -> q[B].o(x);C1

since (D5.1) holds both receiver and sender are typed by Γ. Similarly to the
previous case, we apply Rule bC|COMe for which C ′ = k : A -> q[B].o(x).

203

Appendix E. Applied Choreographies: Proofs

Case C = k : A -> q[B].{oi(xi);Ci}i∈I
from (D5.1) and (D5.2) we know that the requirements of Rule bD|RECVe hold and
D(q).que(k.A.B(D(q).st)) = (oj, tm) :: m̃ for some j ∈ I . We can find
D′ such that D, k : A -> q[B].oj(xj) I D′ and apply Rule bC|RECVe for which
C ′ = Cj .

Case C = start k : p[A] <=> l̃.q[B];C1

from (D5.1) and (D5.2) bD|STARTe applies and we can findD′ such thatD, start k′ :
l.p[A], ˜l.r[B] I D′ for some k′, r̃ fresh. We can apply Rule bC|STARTe for which
C ′ = C1[k′/k][̃r/q̃].

Case C = req k : p[A] <=> l̃.B;C |
∏n

i=1

(
acc k : ˜li.qi[Bi];Ci

)
similarly to the previous case the requirements of bD|STARTe hold and we can find

D′ such that D, start k′ : l.p[A], ˜l1.r1[B1], . . . , ˜ln.rn[Bn] I D′ for some k′ and
r̃1, · · · , r̃n fresh. We can apply Rule bC|PSTARTe for which

C ′ = C[k′/k] |
∏n

i=1 Ci[k
′/k][̃r1/q̃1] |

∏n
i=1

(
acc k : ˜li.qi[Bi];Ci

)
.

Case C = C1 | C2

we can apply the induction hypothesis and Rule bC|PARe such that D,C1 →
D1, C

′
1 and in (D5.4) D′ = D1 and C ′ = C ′1 | C2.

Case C = def X = C2 in C1

applies the induction hypothesis and Rule bC|CTXe for which D,C1 → D1, C1,
D′ = D1 and C ′ = def X = C2 in C

′
1.

Case def X = C2 in X;C1

applies Rule bC|EQe for def X = C2 in X;C1 ≡ def X = C2 in C2;C1

and by the induction hypothesis D,C2 → D2, C
′
2 and therefore D′ = D2 and

C ′ = def X = C2 in C
′
2;C1.

Case C = if p.e {C1} else {C2}
from (D5.1) we know that Γ ` p.e : bool and therefore we can apply Rule
bC|CONDe and, according to the evaluation of e we have C ′ = C1 or C ′ = C2.

E.3 Proof of Endpoint Projection
To prove our result on the Endpoint Projection we first define the minimal typing
system `min for AC.

204

E.3. Proof of Endpoint Projection

E.3.1 Minimal Typing
We take the definition of Local and Typing Environment Subtyping from Sec-
tion E.1.1 and we define the subtyping for global types G ≺ G′.

Definition 34 (Global and Local Subtyping). G ≺ G′ is the smallest relation over
closed and unfolded global types satisfying the rules below

I ⊆ J ∀ i ∈ I, Gi ≺ G′i ∧ Ui ≺ U ′i
A -> B.{oi(Ui);Gi}i∈I ≺ A -> B.{oj(U ′j);G′j}j∈J

bSubG|COMe

U ≺ U ′ G ≺ G′

A B.o(U);G ≺ A B.o(U ′);G′
bSubG|RECVe

G′′ ≺ G′ (G′′ ≈ G ∨ G′′ 'G G)

G ≺ G′
bSubG|EQe end ≈ G

end ≺ G
bSubG|ENDe

We extend the subtyping relations for local and global types to set inclusion and
point-wise to i) the typing of services (i.e., of kind l̃ : G〈A|B̃|C̃〉) and ii) the typing
of sessions, respectively. Given two types G and G′, we denote their least upper
bound wrt ≺ with GOG′ (the same for local types and typing environments). Our
definition of subtyping for global types follows [14].

We define the minimal typing system `min on this notion of subtyping. The
minimal typing uses the minimal global and local types for typing sessions and
services such that the projection of the choreography is still typable. We report
the rules for minimal typing in Figure E.2.

E.3.2 Typing Projection
Like in [14] our EPP projects recursive definitions of the same procedure from
the point of view of different processes, therefore the same definition has different
types according to the process on which it has been projected. Similarly to [14], to
deal with this discrepancy we define the projection of environments. Note that we
give the definition of JΓK over annotated ACs, i.e., ACs where any procedure X is
annotated, e.g., X〈p̃〉, where p̃ are the process identifiers of the active processes
in the body of X . Formally, given a choreography C it is always possible to have
its annotated version with operator @C, defined following the rules in Figure D.5.

Definition 35 (Typing Projection). Let Γ = Γ′,Γdef where @ X : Γ∗ ∈ Γ′ and
Γdef = Γ/Γ′ (Γdef contains only typings of recursive procedures). The projection
of Γ, written JΓK, is defined as:

JΓK = Γ′,
{
X〈p〉 : JΓxKp | X 〈̃r〉 : Γx ∈ Γ ∧ p ∈ {r̃}

}
205

Appendix E. Applied Choreographies: Proofs

Γ, init
(
r̃[C], k, G

)
`min C r̃[C] = p[A], q̃[B] q̃ 6∈ Γ

Γ, l̃ : G〈A|B̃|B̃〉 `min start k : p[A] <=> l̃.q[B];C
bMin|START1e

Γ, l̃ : G〈A|B̃|B̃〉, init
(
r̃[C], k, G′

)
`min C r̃[C] = p[A], q̃[B] q̃ 6∈ Γ

Γ, l̃ : GOG′〈A|B̃|B̃〉 `min start k : p[A] <=> l̃.q[B];C
bMin|START2e

Γ, p : k[A], k[A] : JGKA `min C Γ ` l̃ : G〈A|B̃|∅〉

Γ `min req k : p[A] <=> l̃.B;C
bMin|REQe

l̃ ⊆ l̃′ Γ, l̃′ : G〈A|B̃|∅〉,Γ′ `min C Γ′ ≺ init
(
q̃[C], k, G

)
Γ, l̃′ : G〈A|B̃|C̃〉 `min acc k : l̃.q[C];C

bMin|ACCe

Γ1OΓ2 ` p.e : bool Γ1 `min C1 Γ2 `min C2

Γ1OΓ2 `min if p.e {C1} else {C2}
bMin|CONDe

Γ ` p : k[A], q : k[B] Γ ` p.e : U Γ, q.x : U, k[A] : T, k[B] : T ′ `min C

Γ, k[A] : !B.{o(U);T}, k[B] : ?A.{o(U);T ′} `min k : p[A].e -> q[B].o(x);C
bMin|COMe

j ∈ I Γ ` p : k[A] q : k[B] 6∈ Γ Γ ` p.e : Uj Γ, k[A] : Tj `min C

Γ, k[A] : !B.{oi(Ui);Ti}i∈I `min k : p[A].e -> B.oj;C
bMin|SENDe

Γ ` q : k[B] p : k[A] 6∈ Γ ∀ i ∈ I. Γ, q.xi : Ui, k[B] : Ti ` Ci
Γ, k[B] : ?A.{oi(Ui);Ti}i∈I ` k : A -> q[B].{oi(xi);Ci}i∈I

bMin|RECVe

Γ1 `min C1 Γ2 `min C2

Γ1 ◦ Γ2 `min C1 | C2

bT|PARe
end(Γ)

Γ `min 0
bT|ENDe

Γ, X : Γ′ `min C Γ′, X : Γ′ `min C
′ Γ′|locs ⊆ Γ

ΓOΓ′ `min def X = C ′ in C
bT|DEFe

end(Γ) Γ′′ ⊆ Γ′

Γ,Γ′′, X : Γ′ `min X
bT|CALLe

pco(Γ) Γ `min D Γ `min C

Γ `min D,C
bMin|DCe

Figure E.2: Choreography Calculus — Minimal typing rules

206

E.3. Proof of Endpoint Projection

where

JΓKp =

{
p.x : U | p.x : U ∈ Γ

}
∪{

p : k[A], k[A] : T | {p : k[A], k[A] : T} ⊆ Γ
}
∪{

X〈p〉 : JΓ′Kp | X 〈̃r〉 : Γ′ ∈ Γ ∧ p ∈ {r̃}
}
∪{

l : G〈A|B̃|C̃〉 | l : G〈A|B̃|C̃〉 ∈ Γ
}

Notably, in the definition of JΓKp we omit to include in the typing of procedures
buffer types (b[k]AB), process locations (p@l), since they are not used in the typing
of C. Contrarily, we include all service typings present in the typings of proce-
dures, although they might not be minimal wrt the process that is object of the
projection.

E.3.3 Proof of Theorem 6
We define some auxiliary lemmas used in the proof of Theorem 6.

Lemma 18 (Weakening). Let Γ `min C and l̃ be a service name such that l̃ 6∈ Γ
then Γ, l̃ : G〈A|B̃|C̃〉 ` C for any G, A, B̃, C̃.

Proof. Immediate since l̃ : G〈A|B̃|C̃〉 is never used in C.

Lemma 19 (Composability of Typing Projections). Let Γ ◦ Γ′ = Γ′′ then
JΓK ◦ JΓ′K = JΓ′′K.

Proof. Directly from the fact that since the projection JΓK returns exactly Γ except
for the projection of the typings of the procedures. Since Γ ◦ Γ′ is applicable, all
procedure typings in common are equal and the same holds for their projections.

We proceed defining well-annotated choreographies. Well annotated chore-
ographies are ACs in which annotated procedures report the names of the active
processes in their bodies.

Definition 36 (Well-annotated Choreographies). Let C be an annotated choreog-
raphy, C is well-annotated iff

∀ X〈p̃〉 s.t C ≡ def X〈p̃〉 = C ′′ in C ′, p̃ = fp(C ′′)

We prove Lemma 20 that states that given a well-annotated choreography C
and a typing environment Γ for which Γ `min C then the projection of Γ, JΓK
types minimally the projection of C, JCK.

Lemma 20 (Choreography EPP Typing Preservation). Let C be a well-annotated
choreography and let Γ `min C then JΓK `min JCK .

207

Appendix E. Applied Choreographies: Proofs

Proof. Like for the proof of Theorem 5, we assume our choreographies to be
well-sorted. The proof is by induction on the typing derivation of Γ `min C .

Case bMin|START1e
From the premises we have C = start k : p[A] <=> l̃.q[B];C ′. We can partition
Γ = l̃ : G〈A|B̃|B̃〉,Γ′ and we can write the derivation

Γ′, init
(
r̃[C], k, G

)
`min C

′ r̃[C] = p[A], q̃[B] q̃ 6∈ Γ′

Γ′, l̃ : G〈A|B̃|B̃〉 `min start k : p[A] <=> l̃.q[B];C ′
bMin|START1e

Let l̃.q[B] = l1.q1.[B1], · · · , ln.qn.[Bn].

Let Γc = Γ′, init
(
r̃[C], k, G

)
, from the induction hypothesis we have that Γc `min

C ′ and therefore JΓcK `min JC ′K .

By its definition JC ′K ≡ C ′s | C ′′ where

C ′s = JC ′Kp | JC ′Kq1 | . . . | JC ′Kqn

and

C ′′ =
∏

r ∈ fp(C′)/{p,q̃}

JC ′Kr |
∏
l

 ⊔
s ∈ bC′cl

JC ′Ks

We partition JΓcK as

JΓcK = Γ′p ◦ Γq̃ ◦ Γ′′

where
Γ′p = Γp, p : k[A], k[A] : JGKp

and
Γq̃ = Γ′q1 ◦ . . . ◦ Γ′qn

where
Γ′qi = Γqi , qi : k[A], k[A] : JGKqi

. We such that we can write the derivation

Γ′′ `min C
′′

Γ′p `min JC ′Kp

Γ′q1 `min JC ′Kq1

...
Γ′q2 ◦ . . . ◦ Γqn `min JC ′Kq2 | . . . | JC ′Kqn

bMin|PARe

Γ′q1 ◦ Γ′q2 ◦ . . . ◦ Γ′qn `min JC ′Kq1 | . . . | JC ′Kqn
bMin|PARe

Γ′p ◦ Γq̃ `min JC ′Kp | JC ′Kq1 | . . . | JC ′Kqn
bMin|PARe

Γ′′ ◦ Γ′p ◦ Γq̃ `min C
′′ | C ′s

bMin|PARe

208

E.3. Proof of Endpoint Projection

Since the ownership and session typings for k in Γc belong to init
(
r̃[C], k, G

)
1

we have that Γ′′ ◦ Γp ◦ Γq1 ◦ . . . ◦ Γqn = JΓ′K by Lemma 19.

Therefore we can partition JΓK as (using Lemma 18 for Γp)

JΓK = Γ′′ ◦ Γp, l̃ : G〈A|B̃|∅〉 ◦ Γq1 , l̃ : G〈A|B̃|B1〉 ◦ . . . ◦ Γqn ◦ l̃ : G〈A|B̃|Bn〉

Let l̃.q[B]
∣∣∣
i

= {li.qi[Bi], . . . , ln.qn[Bn]}.

We prove the case by proving the typing derivation for JΓK `min JCK
From the definition of EPP (Definition 22) we can write

JCK ≡ Cs | C ′′

where

Cs = req k : p[A] <=> l̃.B; JC ′Kp |
∏

l.r[C] ∈ {l̃.q[B]}

acc k : l.r[C]; JC ′Kr

and

C ′′ =
∏

r ∈ fp(C′)/{p}

JC ′Kr |
∏
l′ 6=l

 ⊔
s ∈ bC′cl′

JC ′Ks

We now prove we can derive the typing of JΓK `min JCK

Γ′′ `min C
′′

Γp, p : k[A], k[A] : JGKA `min JC ′Kp
Γp, l̃ : G〈A|B̃|∅〉 ` l̃ : G〈A|B̃|∅〉

Γp, l̃ : G〈A|B̃|∅〉 `min req k : p[A] <=> l̃.B; JC ′Kp
bMin|REQe

∆1

Γp, l̃ : G〈A|B̃|∅〉 ◦ Γq1 , l̃ : G〈A|B̃|B1〉 ◦ . . . ◦ Γqn ◦ l̃ : G〈A|B̃|Bn〉 `min Cs
bMin|PARe

Γ′′ ◦ Γp, l̃ : G〈A|B̃|∅〉 ◦ Γq1 , l̃ : G〈A|B̃|B1〉 ◦ . . . ◦ Γqn ◦ l̃ : G〈A|B̃|Bn〉 `min Cs | C ′′
bMin|PARe

where

∆i =
∆i+1

li ⊆ l̃ Γqi , l̃ : G〈A|B̃|∅〉 ◦ Γ′′qi `min JC ′Kqi
Γ′′qi ≺ init

(
qi[Bi], k,G

)
qi 6∈ Γqi

Γqi , l̃ : G〈A|B̃|Bi〉 `min acc k : li.qi[Bi]; JC ′Kqi
bMin|ACCe

Γqi , l̃ : G〈A|B̃|Bi〉 ◦ . . . ◦ Γqn ◦ l̃ : G〈A|B̃|Bn〉
`min acc k : li.qi[Bi]; JC ′Kqi |

∏
l.r[C] ∈ l̃.q[B]

∣∣∣
i+1

acc k : l.r[C]; JC ′Kr

bMin|PARe

In particular we prove
1we omit buffer types as of Lemma 14.

209

Appendix E. Applied Choreographies: Proofs

1© Γ′′ `min C
′′ and 2© Γp, p : k[A], k[A] : JGKA `min JC ′Kp which hold by the

induction hypothesis;

3© Γqi , l̃ : G〈A|B̃|∅〉 ◦ Γ′′qi `min JC ′Kqi which holds by the induction hypothesis
and Lemma 18;

4© Γ′′qi ≺ init
(
qi[Bi], k, G

)
holds as of Definition 33 and because, for Γ′qi , i ∈

{1, . . . , n}, init
(
qi[Bi], k, G

)
⊆ Γ′qi .

Case bMin|START2e
Similar to case bMin|START1e.

Case bMin|REQe
Follows the proof of 2© of case bMin|START1e.

Case bMin|ACCe
Follows the proof of 3© of case bMin|START1e.

Case bMin|CONDe
By induction hypothesis on C1 or C2.

Case bMin|COMe
From the premises we have C = k : p[A].e -> q[B].o(x);C ′ on which we can
apply the typing derivation

Γ′ ` p : k[A], q : k[B] Γ′ ` p.e : U Γ′, q.x : U, k[A] : T, k[B] : T ′ `min C
′

Γ′, k[A] : !B.o(U);T, k[B] : ?A.o(U);T ′ `min k : p[A].e -> q[B].o(x);C ′
bMin|COMe

From the definition of EPP (Definition 22) we have JCK ≡ Cc | C ′′ where

Cc = k : p[A].e -> B.o; JC ′Kp | k : A -> q[B].o(x); JC ′Kq

C ′′ =
∏

r ∈ {fp(C′)/{p,q}}

JC ′Kr |
∏
l

 ⊔
s ∈ bC′cl

JC ′Ks

By the definition of JΓK we can write

JΓK = JΓ′K , k[A] : !B.o(U);T, k[A] : ?A.o(U);T ′

from the induction hypothesis we have that, let Γc = Γ′, q.x : U, k[A] : T, k[B] : T ′,
Γc `min C

′ and therefore JΓcK `min JC ′K . We can partition JΓcK as

210

E.3. Proof of Endpoint Projection

JΓcK = Γp, k[A] : T ◦ Γq, q.x : U, k[B] : T ′ ◦ Γ′′

such that

Γ′′ `min C
′′

Γp, k[A] : T `min JC ′Kp Γq, q.x : U, k[B] : T ′ `min JC ′Kq
Γp, k[A] : T ◦ Γq, q.x : U, k[B] : T ′ `min JC ′Kp | JC ′Kq

bMin|PARe

Γ′′ ◦ Γp, k[A] : T ◦ Γq, q.x : Uk[B] : T ′ `min JC ′Kp | JC ′Kq | C ′′
bMin|PARe

From the derivation on Rule bMin|COMe we know that

JΓ′K = Γ′′ ◦ Γp ◦ Γq

and therefore that

JΓK = Γ′′ ◦ Γp, k[A] : !B.o(U);T ◦ Γq, k[B] : !A.o(U);T ′

To prove JΓK `min JCK we prove that we can apply Rule bMin|PARe on it.

Γ′′ `min C
′′

Γp ` p : k[A] q : k[B] 6∈ Γq

Γp ` p.e : U
Γp, k[A] : T `min JC ′Kp

Γp, k[A] : !B.o(U);T
`min k : p[A].e -> B.o; JC ′Kp

bMin|SENDe

Γq ` p : k[B] p : k[A] 6∈ Γq

Γq, q.x : U, k[A] : T ′ `min JC ′Kq
Γp, k[B] : ?A.o(U);T ′

`min k : A -> q[B].o(x); JC ′Kp

bMin|RECVe

Γp, k[A] : !B.o(U);T ◦ Γq, k[B] : !A.o(U);T ′

`min k : p[A].e -> B.o; JC ′Kp | k : A -> q[B].o(x); JC ′Kq

bMin|PARe

Γ′′ ◦ Γp, k[A] : !B.o(U);T ◦ Γq, k[B] : !A.o(U);T ′

`min k : p[A].e -> B.o; JC ′Kp | k : A -> q[B].o(x); JC ′Kq | C ′′
bMin|PARe

Case bMin|SENDe
From the premises we have C = k : p[A].e -> B.o;C ′ on which we can apply the
typing derivation

j ∈ I Γ′ ` q : k[A] q : k[B] 6∈ Γ′ Γ′ ` p.e : Uj Γ′, k[A] : Tj `min C
′

Γ′, k[A] : !B.{oi(Ui);Ti}i∈I `min k : p[A].e -> B.o;C ′
bMin|SENDe

the case is proven by applying the induction hypothesis similarly to case bMin|COMe.

211

Appendix E. Applied Choreographies: Proofs

Case bMin|RECVe
Analogous to case bMin|SENDe.

Case bMin|PARe
From the premises we know that C = C1 | C2 on which we can apply the typing
derivation

Γ1 `min C1 Γ2 `min C2

Γ1 ◦ Γ2 `min C1 | C2

bMin|PARe

the case is proven by Lemma 18 and the induction hypothesis.

Case bMin|ENDe
Trivial.

Case bMin|DEFe
From the premises we know that C = def X 〈̃r〉 = C ′′ in C ′ on which we can
apply the typing derivation, with Γ = ΓdOΓ′

Γ′, X 〈̃r〉 : Γd `min C
′ Γd, X 〈̃r〉 : Γd `min C

′′ Γd|locs ⊆ Γ′

ΓdOΓ′ `min def X 〈̃r〉 = C ′′ in C ′
bMin|DEFe

By its definition

Jdef X 〈̃r〉 = C ′′ in C ′K = Cd | C ′′′

Where
Cd =

∏
p ∈ r̃

def Xp = JC ′′Kp in JC ′Kp

and

C ′′′ =
∏

q ∈ fp(C′)/{r̃}

JC ′Kq |
∏
l

 ⊔
s ∈ bC′cl

JC ′Ks

From the induction hypothesis we know that JΓ′, X 〈̃r〉 : ΓdK `min JC ′K .

Let JΓ′, X 〈̃r〉 : ΓdK = JΓ′K ◦ JX 〈̃r〉 : ΓdK = JΓ′K ◦Xp1 : JΓdKp1 ◦ · · ·Xpn : JΓdKpn
for {p1, . . . , pn} = {r̃}where JΓ′K can be partitioned as JΓ′K = Γ′′◦Γp1

d ◦. . .◦Γ
pn
d

such that Γds = Γp1
d , Xp1 : JΓdKp1 ◦ . . . ◦ Γpn

d , Xpn : JΓdKpn and JΓ′, X 〈̃r〉 : ΓdK =
Γ′′ ◦ Γds.

Likewise, we apply the induction hypothesis on JΓd, X 〈̃r〉 : ΓdK `min C
′′ and we

can partition JΓd, X 〈̃r〉 : ΓdK in a similar way wrt JΓ′, X 〈̃r〉 : ΓdK.

212

E.3. Proof of Endpoint Projection

Finally we can write the derivation that proves the case

Γ′′ `min C
′′′

∆

...
Γd/Γ

p1
d `min

∏n
i=2 def Xpi = JC ′′Kpi in JC ′Kpi

bMin|PARe

Γds `min def Xp1 = JC ′′Kp1 in JC ′Kp1 |
∏n
i=2 def Xpi = JC ′′Kpi in JC ′Kpi

bMin|PARe

JΓK `min Cd | C ′′′
bMin|PARe

where

∆ =

 Γp1
d , Xp1 : JΓdKp1 `min JC ′Kp1 JΓdKp1 , Xp1 : JΓdKp1 `min JC ′′Kp1 JΓdKp1

∣∣∣
locs
⊆ Γp1

d

Γp1
d , Xp1 : JΓdKp1 `min def Xp1 = JC ′′Kp1 in JC ′Kp1

bMin|DEFe

Case bMin|CALLe
From the premises we know that C = X 〈̃r〉 , on which we can apply the typing
derivation

end(Γ) Γ′ ⊆ Γd

Γ,Γ′, X 〈̃r〉 : Γd `min X 〈̃r〉
bMin|CALLe

Since Γ,Γ′, X 〈̃r〉 : Γd `min X 〈̃r〉 we know that

JX 〈̃r〉K =
∏
p ∈ r̃

Xp

Let Γc = Γ′,Γ′′, X 〈̃r〉 : Γd, following Lemma 19 we can partition JΓcK such that,
let {p1, . . . , pn} = r̃

JΓcK = JΓ′K , JΓ′′K, JX 〈̃r〉 : ΓdK

where

JX 〈̃r〉 : ΓdK = Xp1 : JΓdKp1 ◦ . . . ◦Xpn : JΓdKpn
JΓ′K = Γ′p1 ◦ . . . ◦ Γ′pn

JΓ′′K = Γ′′p1 ◦ . . . ◦ Γ′′pn

213

Appendix E. Applied Choreographies: Proofs

We can write the derivation that proves the case

end(Γ′p1) Γ′′p1 ⊆ JΓdKp1
Γ′p1 ,Γ

′′
p1
, Xp1 : JΓdKp1 `min Xp1

bMin|CALLe
∆

JΓ′K , JΓ′′K JX 〈̃r〉 : ΓdK `min JX 〈̃r〉K
bMin|PARe

∆ =
...

Γ′p2 ,Γ
′′
p2 , Xp2 : JΓdKp2 ◦ . . . ◦ Γ′pn ,Γ

′′
pn , Xpn : JΓdKpn `min

∏
p∈{p̃}/p1

Xp

bMin|PARe

as, for all i ∈ {1, . . . , n}, end(Γ′pi) and Γ′′pi ⊆ JΓ′Kpi hold by the premises and by
construction.

We finally prove Theorem 6.
Theorem 6 (EPP Type Preservation) Let Γ `min D,C then JΓK `min D, JCK .

Proof. To prove Theorem 6 we need to prove that we can apply Rule bMin|DCe on
JΓK `min D, JCK

pco(JΓK) JΓK `min D JΓK `min JCK
JΓK `min D, JCK

bMin|DCe

where

• pco(JΓK) and JΓK `min D hold because JΓK alters only procedure defini-
tions in Γ;

• JΓK `min JCK holds from Lemma 20 and the assumption of well-sortedness
on C (if C is well-sorted also JCK is well-sorted and typable by Γ).

E.3.4 EPP Theorem
Before proving Theorem 7 we define some auxiliary concepts to establish a cor-
respondence between a choreography and its projection.

Lemma 21 (EPP Swap Invariance). Let C 'C C
′ then JCK 'C JC ′K.

214

E.3. Proof of Endpoint Projection

Proof Sketch. In the proof we show that the projection is invariant under the rules
for the swapping relation'C defined in Figure D.1. bCS|ETAETAe is trivial. For Rule
bCS|ETACNDe we need to check that the projections of the processes in the swapped
interaction η do not change, which holds by the definition of EPP for (cond) terms
and the merging operator (merging the same η returns η). The same reasoning on
the EPP and the merging operator applies to all other cases.

Lemma 22 (EPP under ≡). Let C ≡ C ′ then JCK ≡ JC ′K.

Proof. Easy by cases on the rules of ≡ for C.

Lemma 23 (Compositional EPP). Let C be well-typed and C = C1 | C2 then
JCK ≡ JC1K | JC2K.

Proof. By definition of EPP

JCK =
∏

p ∈ fp(C)

JCKp |
∏
l

 ⊔
s∈bCcl

JCKs

Since C is well-typed and C = C1 | C2, Rule bT|PARe applies and by definition

of Γ1 ◦ Γ2 there cannot be a process p such that p ∈ fp(C1) ∩ fp(C2). Therefore
we can write

JCK ≡
∏

p ∈ fp(C1)

JC1Kp |
∏

q ∈ fp(C2)

JC2Kq |
∏
l

 ⊔
s∈bCcl

JCKs

By the definition of service typing we know that i) locations can implement

only one role in a choreography and ii) a location can appear only in one service
typing. Therefore there cannot be two service processes at the same location in
C1 and C2. Thus we can write

JCK ≡
∏

p ∈ fp(C1)

JC1Kp︸ ︷︷ ︸
Ca

1

|
∏

q ∈ fp(C2)

JC2Kq︸ ︷︷ ︸
Ca

2

|
∏
l

 ⊔
r ∈ bC1cl

JC1Kr

︸ ︷︷ ︸

Cs
1

|
∏
l′

 ⊔
s ∈ bC2cl′

JC2Ks

︸ ︷︷ ︸

Cs
2

where JC1K = Ca
1 | Cs

1 and JC2K = Ca
2 | Cs

2 by definition of EPP.

Pruning

Following our definition of EPP, the projection of (start) terms on service pro-
cesses yield a parallel composition of (acc) terms on the locations subject of the

215

Appendix E. Applied Choreographies: Proofs

(start). However, the reduction of a (start) term might remove the availability
to start new processes on the locations subject of the (start) (i.e., if the reductum
does not contain another (start) term on the same locations). Contrarily, (acc)
terms remain always available.

A similar observation can be drawn between conditional branches that contain
(com) terms whose projection merges all possible communications into (recv)
and (send) terms. Also in this case, reducing the condition and projecting the
result yields a subset of all possible branches for the considered communication.

Similarly to [14] and [96], we deal with these asymmetries by introducing the
pruning relation, which allows us to ignore unused i) endpoint services and ii)
input branches.

Definition 37 (Pruning). Let Γ `min JCK , Γ = Γp,Γacc where Γacc|locs = Γacc and
Γp|locs = ∅ and JCK = Cp | Cacc, Γp `min Cp , Γacc `min Cacc .

Let C ′ = C ′p | C ′acc such that Γp,Γacc,Γ
′
acc `min C

′ where

• Γacc,Γ
′
acc `min C

′
acc , Γ′acc|locs = Γ′acc and Γ′acc ∩ Γacc = ∅,

• Γp `min C
′
p and C ′p t Cp = C ′p

then JCK prunes C ′ under Γ, written Γ `min JCK ≺ C ′.

Like in [96] we can write JCK ≺ C ′ as its does not lose any precision since it is
always possible to reconstruct appropriate typings.

The ≺ relation is a typed strong bisimulation because if JCK ≺ C ′ then JCK
and C ′ have the same observable behaviours except for the visible input actions at
pruned inputs (either input branches or services).

Lemma 24 (Pruning Lemma). ≺ is a strong reduction bisimilation over partial
choreographies if JCK ≺ C ′ and for some D, D′

• if D, JCK → D′, C ′′ then D,C ′ → D′, C ′′′ and C ′′ ≺ C ′′′ and

• if D,C ′ → D,C ′′′ then D, JCK → D,C ′′ and C ′′ ≺ C ′′′

Proof Sketch. Since JCK ≺ C ′ we know that C ′ does not use any of the locations
not typed by the minimal typing of JCK. Similarly, the input branches pruned in
JCK are only those that are never used inC ′ and cannot contribute in the reduction.

Before continuing with the last auxiliary results and the proof of Theorem 7 we
need to augment the labels of the semantics of annotated ACs with the identifiers
of the processes involved in a reduction

β ::= k : p[A] -> B.o | A q[B].o(x) | τ@p | τ

216

E.3. Proof of Endpoint Projection

and the annotation of the reduction with Rule bC|CONDe as

i = 1 if eval(e,D(p).st) = true, i = 2 otherwise

D, if p.e {C1} else {C2}
τ@p−−→ D, Ci

bC|CONDe

Let also pn(k : p[A] -> B.o) = {p}, pn(A q[B].o(x)) = {q}, pn(τ@p) = {p},
and pn(τ) = ∅

Lemma 25 (Passive Processes Pruning Invariance). D,C β−→ D′, C ′ implies that
for all p ∈ fp(C)/pn(β), JC ′Kp ≺ JCKp.

Sketch Proof. By cases on the derivation ofC. The only interesting case is bC|CONDe
in which the the projection of the processes receiving selections are merged. The
thesis follows directly from Definition 37 and Lemmas 21 and 22.

Lemma 26 (Deployment Invariance). LetD andD′ be two deployments such that

1. ∀ p.x : U ∈ Γ, x(D(p).st) = x(D′(p).st)

2. ∀ p : k[A], q : k[B] ∈ Γ, D(p).que(k.A.B(D(p).st)) = D′(p).que(k.A.B(D′(p).st))

3. Γ `min D,C and Γ `min D
′, C for some C.

then D,C ∼ D′, C.

Sketch Proof. By cases on the derivation of C. Reductions on C are invariant wrt
to a specific deployment as long as it is well-typed (3.) and for each process: typed
variables have the same value (1.) and queues hold the same messages (2.).

E.3.5 Proof of Theorem 7
We restate Theorem 7 to include annotated reductions.

Theorem 7 (EPP Operational Correspondence)
Let D,C be well-typed and well-annotated. Then,

1. (Completeness)D,C
β−→ D′, C ′ impliesD, JCK β−→ D′, C ′′ and JC ′K ≺ C ′′.

2. (Soundness) D, JCK β−→ D′, C ′′ implies D,C
β−→ D′, C ′ and JC ′K ≺ C ′′.

We report below the respective proofs of (Completeness) and (Soundness) sep-
arately.

217

Appendix E. Applied Choreographies: Proofs

Proof (Completeness).

Proof by induction on the derivation of D,C
β−→ D′, C ′.

Case bC|COMe
we know that C = k : p[A].e -> q[B].o(x);Cc and we can write the derivation

η = k : p[A].e -> q[B].o(x) D, k : p[A].e -> B.o I D′

D, η;C
k: p[A] -> B.o−−−−−−−→ D′, k : A -> q[B].o(x);Cc

bC|COMe

and C ′ = k : A -> q[B].o(x);Cc.

From the definition of EPP we have that JCK = Cact | Cs such that

Cact = k : p[A].e -> B.o; JCcKp | k : A -> q[B].o(x); JCcKq |
∏

r ∈ fp(C)/{p,q}

JCcKr

and

Cs =
∏
l

 ⊔
s ∈ bCcl

JCcKs

Whilst JC ′K ≡ C ′act | Cs

C ′act = JCcKp | k : A -> q[B].o(x); JCcKq |
∏

r ∈ fp(C′)/{p,q}

JCcKr

We can apply Rules bC|PARe, bC|EQe, and bC|SENDe on D, JCK such that

η = k : p[A].e -> B.o D, η I D′′

D, JCK
k: p[A] -> B.o−−−−−−−→ D′′, C ′′

bC|SENDe

for which it holds that D′ = D′′ by Rule bD|SENDe.

C ′′ = JCcKp | k : A -> q[B].o(x); JCcKq |
∏

r ∈ fp(C′)/{p,q}

JCcKr | Cs

for which it holds that JC ′K ≺ C ′′.

218

E.3. Proof of Endpoint Projection

Case bC|SENDe

Similar to case bC|COMe.

Case bC|RECVe

we know that C = D, k : A -> q[B].{oi(xi);Ci}i∈I and we can write the deriva-
tion

j ∈ I D, k : A -> q[B].oj(xj) I D′

D, k : A -> q[B].{oi(xi);Ci}i∈I
k:A B.oj(xj)−−−−−−−−→ D′, Cj

bC|RECVe

for β = k : A B.oj(xj) and C ′ = Cj .
By the definition of EPP we have

JCK ≡ k : A -> q[B].{oi(xi); JCiKq}i∈I |
∏

p ∈ fp(C)/{q}

(⊔
i ∈ I

JCiKp

)
|
∏
l

 ⊔
r ∈ bCcl

JCKr

Then we can apply Rules bC|PARe, bC|EQe, and bC|SENDe such that

j ∈ I D, k : A -> q[B].oj(xj) I D′′

D, JCK
k:A B.oj(xj)−−−−−−−−−−→ D′′, JCjKq |

∏
p ∈ fp(C)/{q}

(⊔
i ∈ I

JCiKp

)
|
∏
l

(⊔
r ∈ bCcl

JCKr

) bC|RECVe

and

C ′′ = JCjKq |
∏

p ∈ fp(C)/{q}

(⊔
i ∈ I

JCiKp

)
|
∏
l

 ⊔
r ∈ bCcl

JCKr

From Rule bD|RECVe we know that D′′ = D′.

JC ′K ≺ C ′′ by Definition 37 and Lemma 25.

Case bC|STARTe

we know that C = start k : p[A] <=> l̃.q[B];Cc and we can write the derivation

#r̃ #k′ p ∈ D(l) δ = start k′ : l.p[A], ˜l.r[B] D, δ I D′

D, start k : p[A] <=> l̃.q[B];Cc
τ−→ D′, Cc[k

′/k][̃r/q̃]
bC|STARTe

219

Appendix E. Applied Choreographies: Proofs

and C ′ = Cc[k
′/k][̃r/q̃].

From the definition of EPP we have

JC ′K =
∏

q ∈ fp(C′)

JC ′Kq |
∏
l

 ⊔
s ∈ bC′cl

JC ′Ks

and

JCK ≡
req k : p[A] <=> l̃.B; JCcKp |

∏
r ∈ fp(C)/{p} JCKr

|
∏
l.q[B] ∈ l̃.q[B]

acc k : l.q[B]; JCcKq |
∏
l′ 6∈ l̃

(∏
s ∈ bCcl′

JCKs
)

we can apply Rules bC|PARe, bC|EQe, bC|PSTARTe such that

i ∈ {1, . . . , n} #k′′ {l̃.B} =
⊎
i{l̃i.Bi}

#r̃′ {r̃′} =
⋃
i{r̃′i} p ∈ D(l)

δ = start k′′ : l.p[A], ˜l1.r′1[B1], . . . , ˜ln.r′n[Bn] D, δ I D′′

D, JCK τ−→ D′′, C ′′
bC|PSTARTe

where

C ′′ ≡

JCcKp [k′′/k] |
∏

(q,r′) ∈
{

(q1,r′1),...,(qn,r′n)
} JCcKq [k′′/k][q/r′]

|
∏

r ∈ fp(Cc)/{p,q̃}
JCcKr |

∏
l.q[B] ∈ l̃.q[B]

acc k : l.q[B]; JCcKq

|
∏
l′ 6∈ l̃

(∏
s ∈ bCccl′

JCcKs

)

Observe that we can α-rename k′′ to k′ and r̃′ to r̃ as k′′, k′, r̃′, and r̃ are all fresh
wrt D,C.

From the application of Rule bD|STARTe we can find Γ such that

Γ `min (D′′, C ′′)[k′/k′′][̃r/r̃′]

and
Γ `min D

′, C ′′[k′/k′′][̃r/r̃′]

220

E.3. Proof of Endpoint Projection

and by Lemma 26 we have that

D, JCK τ−→ D′, C ′′[k′/k′′][̃r/r̃′]

Finally JC ′K ≺ C ′′[k′/k′′][̃r/r̃′] by Lemma 25.

Case bC|PSTARTe

Similar to (in particular the second part of) the proof of case bC|STARTe.

Case bC|CONDe

we know that C ≡ if p.e {C1} else {C2} and we can write the derivation

i = 1 if eval(e,D(p).st) = true, i = 2 otherwise

D, if p.e {C1} else {C2}
τ@p−−→ D, Ci

bC|CONDe

We only consider the case for eval(e,D(p).st) = true as eval(e,D(p).st) = false
follows alike.

C ′ = C1 and by the definition of EPP

JCK ≡ if p.e {JC1Kp} else {JC2Kp} |
∏

q ∈ fp(C′)/{p}

JC1KqtJC2Kq |
∏
l

 ⊔
r ∈ bCcl

JCKr

and

JC ′K ≡ JC1Kp |
∏

q ∈ fp(C′)/{p}

JC1Kq |
∏
l

 ⊔
r ∈ bC1cl

JC1Kr

We can apply rules bC|PARe, bC|EQe, and bC|CONDe such that D, JCK τ@p−−→ D,C ′′

where

C ′′ = JC1Kp |
∏

q ∈ fp(C′)/{p}

JC1Kq t JC2Kq |
∏
l

 ⊔
r ∈ bCcl

JCKr

and JC ′K ≺ C ′′ by Lemma 25.

221

Appendix E. Applied Choreographies: Proofs

Case bC|CTXe and Case bC|PARe

Proven by the definition of EPP and the induction hypothesis.

Case bC|EQe

We can write the derivation

R ∈ {≡ , 'C } C1RC ′1 D,C ′1
β−→ D′, C ′2 C ′2RC2

D,C1
β−→ D′, C2

bC|EQe

ForR = ≡, proven by the definition of EPP and the induction hypothesis.

For R = 'C, proven by the definition of EPP, Lemma 21, and the induction
hypothesis.

Proof (Soundness). Proof by induction on the structure of C.

Case C = k : p[A].e -> q[B].o(x);Cc
From the definition of EPP we have

JCK ≡ k : p[A].e -> B.o; JCcKp | k : A -> q[B].o(x); JCcKq |
∏

r ∈ fp(C)

JCcKr |
∏
l

 ⊔
s ∈ bCcl

JCKs

we proceed by subcases on the last applied Rule in the derivation of D, JCK β−→
D′, C ′′.

Case bC|SENDe

Divided into subcases whether β = k : p[A] -> B.o holds or not.

Case β = k : p[A] -> B.o
D, JCK reduces toD′, C ′′ with Rules bC|PARe, bC|EQe, ending with Rule bC|SENDe
such that

C ′′ = JCcKp | k : A -> q[B].o(x); JCcKq |
∏

r ∈ fp(C)

JCcKr |
∏
l

 ⊔
s ∈ bCcl

JCKs

222

E.3. Proof of Endpoint Projection

D,C mimics D, JCK with Rule bC|COMe for which D,C
β−→ D′′, C ′, D′ = D′′

by Rule bD|SENDe,

JC ′K ≡ JCcKp | k : A -> q[B].o(x); JCcKq |
∏

r ∈ fp(C)

JCcKr |
∏
l

 ⊔
s ∈ bCcl

JCKs

and JC ′K ≺ C ′′ by Lemma 25.
Case β 6= k : p[A] -> B.o

In this case D,C can mimic D, JCK with the application of Rules bC|EQe and
bC|PARe, ending the derivation with either Rule bC|COMe or bC|SENDe. The thesis
follows by the induction hypothesis.

Case bC|RECVe, bC|PSTARTe, or bC|CONDe
In this case D, JCK reduces with Rules bC|EQe, bC|PARe, and respectively ends
the derivation with either bC|RECVe, bC|PSTARTe, or bC|CONDe, i.e., some process
r ∈ fp(C) (p and q included) either receives a message, starts a new session with
some service processes, or reduces to some branch. D,C can mimic D, JCK
applying Rules bC|EQe, bC|PARe and terminates the derivation with either Rules
bC|RECVe, bC|PSTARTe, (or bC|STARTe, depending on the form of C) or bC|CONDe.
The thesis follows by the induction hypothesis.

Case C = k : p[A].e -> B.o;Cc

Similar to case C = k : p[A].e -> q[B].o(x);Cc.

Case C = k : A -> q[B].{oi(xi);Ci}i∈I

From the definition of EPP we have

JCK ≡ k : A -> q[B].{oi(xi); JCiKq}i∈I |
∏
i ∈ I

 ⊔
p ∈ fp(Ci)

JCiKp

 |
∏
k

 ⊔
r ∈ bCcl

JCKr

we proceed by subcases on last applied Rule in the derivation of D, JCK β−→
D′, C ′′.

Case bC|RECVe

Divided into subcases whether β = k : A q[B].oj , j ∈ I or not.

223

Appendix E. Applied Choreographies: Proofs

Case β = k : A q[B].oj , j ∈ I
D, JCK reduces toD′, C ′′ with Rules bC|PARe, bC|EQe, and terminates with Rule
bC|RECVe such that

C ′′ = JCjKq |
∏
i ∈ I

 ⊔
p ∈ fp(Ci)

JCiKp

 |
∏
k

 ⊔
r ∈ bCcl

JCKr

D,C mimics D, JCK with Rule bC|RECVe for which D,C

β−→ D′′, C ′ where
D′′ = D′ by Rule bD|RECVe and

C ′′ = JCjKq |
∏

p ∈ fp(Cj)

JCjKp |
∏
k

 ⊔
r ∈ bCjcl

JCjKr

and JC ′K ≺ C ′′ by Lemma 25.
Case β 6= k : A q[B].oj
For any β of this case D,C can mimic D, JCK with the application of Rules
bC|EQe and bC|PARe, terminating with Rule bC|RECVe and the thesis follows by
the induction hypothesis.

Case bC|SENDe, bC|PSTARTe, or bC|CONDe
is similar to subcase Case bC|RECVe, bC|PSTARTe, or bC|CONDe of Case
C = k : p[A].e -> q[B].o(x);Cc.

Case C = start k : p[A] <=> l̃.q[B];Cc

JCK ≡ req k : p[A] <=> l̃.B;Cc |
∏

r ∈ fp(Cc)

JCcKr |
∏
l

 ⊔
s ∈ bCcl

JCKs

we proceed by subcases on last applied Rule in the derivation of D, JCK β−→
D,C ′′.

Case bC|PSTARTe
D, JCK can reduce toD′, C ′′ with a process r (including p) that starts a new ses-
sion with some service processes. D,C can reduce toD′′, C ′mimickingD, JCK
by applying Rules bC|EQe, bC|PARe, terminating with either Rule bC|PSTARTe or
bC|STARTe.
The proof follows from Lemma 26 as D′′ and D′ differ only on the correlation
values used in for session k.

224

E.3. Proof of Endpoint Projection

Case bC|SENDe, bC|RECVe, and bC|CONDe
are similar to the corresponding proof for the previous cases.

Case C = if p.e {C1} else {C2}

From the definition of EPP we have

JCK ≡ if p.e {JC1Kp} else {JC2Kp} |
∏

q ∈ fp(C1) ∪ fp(C2)/{p}

JC1KqtJC2Kq | |
∏
l

 ⊔
r ∈ bCcl

JCKr

we proceed by subcases on the derivation of D, JCK β−→ D′, C ′′.

Case bC|CONDe
D, JCK can reduce to D′, C ′′ with:

Case β = τ@p
that reduces to a branch. D,C can mimic D, JCK applying Rules bC|EQe,
bC|PARe, and terminating the derivation with Rule bC|CONDe. The case is proven
by Lemma 25.
Case β = τ@r
for r 6= p. A process r reduced to a branch. The case follows the proof of the
previous case where the thesis follows by the induction hypothesis.

Case bC|RECVe, bC|SENDe, bC|PSTARTe
are similar to the corresponding proof for the previous cases.

Case C = req k : p[A] <=> l̃.B;Cc

Case not allowed by the hypothesis that D, JCK β−→ D,C ′′.

Case C = acc k : l̃.q[B];Cc

Case not allowed by the hypothesis that D, JCK β−→ D,C ′′.

Case C = def X〈p̃〉 = Cd in Cc
Proven by Lemma 22 and the induction hypothesis.

Case C = X〈p̃〉
Case not allowed by the hypothesis that C is well-sorted.

Case C = C1 | C2

JCK ≡ JC1K | JC2K by Lemma 23.

225

Appendix E. Applied Choreographies: Proofs

we proceed by subcases for n equal to the length of the derivation of D, JCK β−→
D′, C ′′

Case n = 1
In this case the only applicable Rule is bC|PSTARTe where, by the definition of
EPP, we can infer, let

l̃.q[B] = l1.q1[B1], . . . , li.qi[Bi], li+1.qi+1[Bi+1] . . . , ln.qn[Bn]

that

JC1K ≡ req k : p[A] <=> l̃.B; JCr
1Kp |

i∏
j=1

acc k : lj.qj[Bj];
q
Cj

1

y
qj

JC2K ≡
n∏

j=i+1

acc k : lj.qj[Bj];
q
Cj

2

y
qj

Observe that we can proceed without loss of generality as the symmetric case
(with p ∈ fp(C2)) follows the same structure.

i ∈ {1, . . . , n} #k′ {l̃.B} =
⊎
i{l̃i.Bi}

#r̃ {r̃} =
⋃
i{r̃i} p ∈ D(l)

δ = start k′ : l.p[A], ˜l1.r1[B1], . . . , ˜ln.rn[Bn] D, δ I D′′

D, JC1K | JC2K
τ−→ D′, C ′′

bC|PSTARTe

where

C ′′ ≡

JCr
1Kp [k′/k] |

 ∏i
j=1

q
Cj

1

y
qj

|
∏n

j=i+1

q
Cj

2

y
qj

 [k′/k][̃r/q̃]

|

 ∏i
j=1 acc k : lj.qj[Bj];

q
Cj

1

y
qj

|
∏n

j=i+1 acc k : lj.qj[Bj];
q
Cj

2

y
qj

Since both JC1K and JC2K reduce, we can infer from the definition of EPP that,

C1 ≡ req k : p[A] <=> l̃.B;Cr
1 |

i∏
j=1

acc k : lj.qj[Bj];C
j
1

226

E.3. Proof of Endpoint Projection

C2 ≡
n∏

j=i+1

acc k : lj.qj[Bj];C
j
2

Then D,C can mimic D, JCK applying Rule bC|PSTARTe with reduction

i ∈ {1, . . . , n} #k′′ {l̃.B} =
⊎
i{l̃i.Bi} #r̃′ {r̃′} =

⋃
i{r̃′i}

p ∈ D(l) δ = start k′′ : l.p[A], ˜l1.r′1[B1], . . . , ˜ln.r′n[Bn] D, δ I D′′

D, JC1K | JC2K
τ−→ D′′, C ′

bC|PSTARTe

where

C ′ ≡ Cr
1 [k′′/k] |

(∏i
j=1C

j
1 |∏n

j=i+1 C
j
2

)
[k′′/k][̃r′/q̃] |

(∏i
j=1 acc k : lj.qj[Bj];C

j
1

|
∏n

j=i+1 acc k : lj.qj[Bj];C
j
2

)

Following the structure of the second part of the proof of Case bC|STARTe for
the proof of Completeness of Theorem 7, we have, by Lemma 26, D′′, C ′ ∼
D′, C ′[k′/k′′][̃r/r̃′] and JC ′K ≺ C ′′.

Case n > 1

For n > 1 we have a derivation similar to

R
...

n− 1 times, each either
bC|PARe or bC|EQe

D, JC1K | JC2K
β−→ D′, C ′′1 | JC2K

bC|PARe

whereR is the last applied Rule,R ∈ {bC|SENDe , bC|COMe , bC|SENDe , bC|PSTARTe , bC|CONDe}.
The thesis follows from the induction hypothesis.

The proof for the mirror case D, JC1K | JC2K
β−→ D′, JC1K | C ′′2 follows

the same structure.

Case C = 0
trivial.

227

Appendix E. Applied Choreographies: Proofs

E.4 Proof of Compilation

E.4.1 Proof of Theorem 8
Lemma 27 (Compilation Invariance). Let Γ ` D,C , D,C → D′, C ′, and Γ′ `
D′, C ′ for some Γ′, Γ|locs = Γ′|locs and {p@l | p@l ∈ Γ} = {p@l | p@l ∈ Γ′},
then D′, C ′ Γ= D′, C ′ Γ′.

Proof Sketch. By cases on the derivation of D,C → D′, C ′. From Definition 23,
the only information used by the compiler present in Γ (respectively Γ′) are i)
the location of running processes (p@l) and ii) the service typings (l̃ : G〈A|B̃|C̃〉).
Therefore, provided Γ and Γ′ have the same service typings and locations the
compilation of the given choreography under Γ produces the same result as the
compilation of such choreography under Γ′.

We provide some auxiliary results on variable substitution. We remind that
the only bound names in DCC are the variables in (accept) terms (e.g., x in
!(x);B). However, the following lemmas prove that renaming free variables with
fresh names in processes (and, by extension, in services) preservers bisimilarity.

In the following, we abuse the notation for α-renaming to denote variable re-
naming in running processes. We define the variable renaming operator for DCC
processes P [x′/x].

Definition 38 (DCC Variable Renaming Operator). Let B . t .M be a DCC pro-
cess, then (B . t .M)[x′/x] = B[x′/x] . t / (x′, x(t)) / (x, t⊥) .M where B[x′/x]
substitutes every occurrence of x with x′.

Lemma 28 (DCC Process Variable Renaming). Let P and P ′ be two DCC pro-
cesses such that P = B . t .M and P ′ = P [x′/x] and x′ is fresh in B then

P
λ−→ P ′′ ⇐⇒ P ′

λ[x′/x]−−−−→ P ′′[x′/x].

Proof. The proof is by induction on the form of P . We report the most interesting
cases. Below we consider t′ = t / (x′, x(t)) / (x, t⊥).

Case P = o(y) from e;B . t .M
On both P and P ′ the only applicable Rule is bDCC|RECVe, hence we consider
the interesting case in which M contains a message for the queue defined by e.
In the other case the Lemma holds as both P and P ′ cannot reduce. The case
unfolds on the combination of whether i) y 6= x and ii) expression e contains x.
Below we consider the comprehensive case for y = x and e that contains x. The
proof of the other cases is either trivial or a slight modification of the reported
one.

228

E.4. Proof of Compilation

Since we assume we can apply Rule bDCC|RECVe we take tc = eval(e, t) and
M(tc) = (o, t′) :: m̃. From Definition 38 we have that tc = eval(e[x′/x], t′).

Therefore we have the reductions P o from e−−−−−→ B . t / (x, tm) .M [tc 7→ m̃] and

P ′
o from e[x′/x]−−−−−−−−→ B[x′/x] . t′ / (x′, tm) .M [tc 7→ m̃].

Case P =
∑

i∈I [oi(xi) from e] {Bi} . t .M
The only applicable Rule on both P and P ′ is bDCC|CHOICEe. The most compre-
hensive case is for M that contains a message for operation oj , j ∈ I where
xj = x and expression e contains x. The remainder of the proof follows that of
the previous case.

Case P = if e {B1} else {B2} . t .M
Trivial by Definition 38 for which eval(e, t) = eval(e[x′/x], t′).

Case P = y = e;B . t .M
The only applicable Rule on both P and P ′ is bDCC|ASSIGNe. The most compre-
hensive case is for y = x and expression e that contains x. The case is proven
considering that, by Definition 38, it holds that eval(e, t) = eval(e[x′/x], t′).

Case P = def X = B1 in B . t .M
The thesis follows from the application of Rule bDCC|CTXe and the induction hy-
pothesis.

Lemma 29 (DCC Service Variable Renaming). Let S and S ′ be two DCC services
such that S = 〈Bs, P | Q〉l and S ′ = 〈Bs, P [x′/x] | Q〉l then

S
λ−→ 〈Bs, P

′′ | Q′〉l ⇐⇒ S ′
λ[x′/x]−−−−→ 〈Bs, P

′′[x′/x] | Q′〉l.

Proof. The proof is by induction on the derivation of S. Below we consider t′ =
t / (x′, x(t)) / (x, t⊥). We report the most interesting cases.

Case bDCC|EQe
The thesis follows from the application of the induction hypothesis on S ≡ S1,
S1 → S ′1, and S ′1 ≡ S ′.

Case bDCC|PARe
From Lemma 28 we have that, for any form of P of the kind P = B . t .M ,
P [x′/x] can mimic the reduction of P such that P → P ′′ and P [x′/x] →
P ′′[x′/x] and vice versa. In this case Q remains the same in both reductions.

229

Appendix E. Applied Choreographies: Proofs

Case bDCC|CQe
We consider the case where P = cq(x);B . t .M . Let Q =

∏
iBi

. ti .Mi and
tc 6∈

⋃
i dom(Mi) ∪ dom(M). We have the reduction

S
cq(x)−−−→ 〈Bs, B . t / (x, tc, .)M [tc 7→ ε] | Q〉l. S ′ can mimic such behaviour by

taking the fresh value t′c = tc, obtaining the reduction

S ′
cq(x′)−−−→ 〈Bs, B . t / (x′, t′c, .)M [t′c 7→ ε] | Q〉l. The same holds if we let S ′

reduce and prove that S can mimic it.

Case bDCC|INSENDe
We consider the case where P = o@e1(e2) to e3;B . t .M and expressions e1, e2

and e3 contain x. From Definition 38 we know that eval(e1, t) = eval(e1[x′/x], t′).
Similarly the couples e2 and e2[x′/x] and e3 and e3[x′/x] enjoy the same property
when evaluated respectively on t and t′.

We analyse the case in which P moves and P [x′/x] mimics it. The other case,
for P [x′/x] that reduces and P that mimics it, follows the same structure. Since
bDCC|INSENDe applies we can assume that Q = B . t .M | Br

. tr .Mr | P1.

P = o@e1(e2) to e3;B . t .M eval(e1, t) = l eval(e3, t) = tc
eval(e2, t) = tm M ′

r = Mr[tc 7→Mr(tc) :: (o, tm)]

〈Bs, P | Br
. tr .Mr | P1〉l

o@e3−−−→ 〈Bs, B . t .M | Br
. tr .M ′

r | P1〉l
bDCC|INSENDe

and

P [x′/x] = o@e1[x′/x](e2[x′/x]) to e3[x′/x];B[x′/x] . t′ .M
eval(e1[x′/x], t) = l eval(e3[x′/x], t) = tc

eval(e2[x′/x], t) = tm M ′
r = Mr[tc 7→Mr(tc) :: (o, tm)]

〈Bs, P [x′/x] | Br
. tr .Mr | P1〉l

o@e3[x′/x]−−−−−−→
〈Bs, B[x′/x] . t′ .M | Br

. tr .M ′
r | P1〉l

bDCC|INSENDe

Case bDCC|INSTARTe
We consider the case where P =?@e1(e2);B . t .M and expressions e1 and e2

contain x. From Definition 38 we know that eval(e1, t) = eval(e1[x′/x], t′). Sim-
ilarly e2 and e2[x′/x] and enjoy the same property when evaluated respectively
on t and t′.

Below we describe the case in which P moves and P [x′/x] mimics it. The other
case, for P [x′/x] that reduces and P that mimics it, follows the same structure.
We assume the start behaviour Bs =?(y);Bc.

230

E.4. Proof of Compilation

P =?@e1(e2);B . t .M eval(e1, t) = l P1 = Bc
. t⊥ / (y, eval(e2, t)) . ∅

〈!(y);Bc, P | Q〉l
?(e2)−−−→ 〈!(y);Bc, P1 | B . t .M | Q〉l

bDCC|INSTARTe

and

P ′ =?@e1[x′/x](e2[x′/x]);B[x′/x] . t′ .M
eval(e1[x′/x], t′) = l P1 = Bc

. t⊥ / (y, eval(e2[x′/x], t′)) . ∅

〈!(y);B, P ′ | Q〉l
?(e2[x′/x])−−−−−−→ 〈!(y);B′, P1 | B[x′/x] . t′ .M | Q〉l

bDCC|INSTARTe

Lemma 30 (DCC Network Variable Renaming). Let S and S ′ be two DCC net-
work such that S = 〈Bs, P | Q〉l | S∗ and S ′ = 〈Bs, P [x′/x] | Q〉l | S∗ then

S
λ−→ 〈Bs, P

′′ | Q′〉l | S ′∗ ⇐⇒ S ′
λ[x′/x]−−−−→ 〈Bs, P

′′[x′/x] | Q′〉l | S ′∗.

Proof. The proof is by induction on the derivation of S. Below we consider t′ =
t / (x′, x(t)) / (x, t⊥). We report the most interesting cases.

Case bDCC|SENDe
We know that P = o@e1(e2) to e3;B . t .M . We consider the case in which
all expressions e1, e2, and e3 contain x. Let suppose that eval(e1, t) = l′ and
eval(e3, t) = tc then, since bDCC|SENDe applies, we know that
S∗ ≡ 〈B′s, Br

. tr .Mr | P2〉l′ where tc ∈ dom(Mr).

From Definition 38 we know that eval(e1, t) = eval(e1[x′/x], t′). Similarly the
couples e2 and e2[x′/x] and e3 and e3[x′/x] enjoy the same property when eval-
uated respectively on t and t′.

We proceed proving that S reduces and S ′ can mimic it. The other case, for S ′

that reduces and S that mimics it, follows the same structure.

P = o@e1(e2) to e3;B . t .M eval(e1, t) = l′ eval(e3, t) = tc
eval(e2, t) = tm M ′

r = Mr[tc 7→Mr(tc) :: (o, tm)]

〈Bs, P | P1〉l | 〈B′s, Br
. tr .Mr | P2〉l′

o@e3−−−→
〈Bs, B . t .M | P1〉l | 〈B′s, Br

. tr .M ′
r | P2〉l′

bDCC|SENDe

and

231

Appendix E. Applied Choreographies: Proofs

P [x′/x] = o@e1[x′/x](e2[x′/x]) to e3[x′/x];B[x′/x] . t .M
eval(e1[x′/x], t) = l′ eval(e3[x′/x], t) = tc

eval(e2[x′/x], t) = tm M ′
r = Mr[tc 7→Mr(tc) :: (o, tm)]

〈Bs, P [x′/x] | P1〉l | 〈B′s, Br
. tr .Mr | P2〉l′

o@e3[x′/x]−−−−−−→
〈Bs, B[x′/x] . t′ .M | P1〉l | 〈B′s, Br

. tr .M ′
r | P2〉l′

bDCC|SENDe

Case bDCC|STARTe
We know that P =?@e1(e2);B . t .M . We consider the case in which both ex-
pressions e1 and e2 contain x. Let suppose that eval(e1, t) = l′. Since bDCC|SENDe
applies, we know that S∗ ≡ 〈!(y);Bc, P1〉l′ .
From Definition 38 we know that eval(e1, t) = eval(e1[x′/x], t′). Similarly also
e2 and e2[x′/x] enjoy the same property when evaluated respectively on t and t′.

We proceed proving that S reduces and S ′ can mimic it. The other case, for S ′

that reduces and S that mimics it, follows the same structure.

P =?@e1(e2);B . t .M eval(e1, t1) = l

P2 = B . t⊥ / (y, eval(e2, t)) . ∅

〈!(y);Bc, P1〉l′ | 〈B′s, P | Q〉l
?(e2)−−−→

〈!(y);Bc, P2 | P1〉l′ | 〈B′s, B . t .M | Q〉l

bDCC|STARTe

P [x′/x] =?@e1[x′/x](e2[x′/x]);B[x′/x] . t′ .M eval(e1[x′/x], t1) = l′

P2 = B . t⊥ / (y, eval(e2[x′/x], t′)) . ∅

〈!(y);Bc, P1〉l′ | 〈B′s, P [x′/x] | Q〉l
?(e2[x′/x])−−−−−−→

〈!(y);Bc, P2 | P1〉l′ | 〈B′s, B[x′/x] . t′ .M | Q〉l

bDCC|STARTe

Case bDCC|EQe and bDCC|SPARe
In both cases the thesis follows from the application of the induction hypothesis
and Lemma 29.

We report below the statement of Theorem 8, enriched with annotation on the
transitions of D,C.
Theorem 8 (Compilation Operational Correspondence)
Let C be a composition of endpoint choreographies such that Γ ` D,C . Then we
have that:

232

E.4. Proof of Compilation

1. (Completeness) D,C
β−→ D′, C ′ implies i) D,C Γ →+ D′, C ′

Γ′ for some
Γ′ such that ii) Γ′ ` D′, C ′ .

2. (Soundness) D,C Γ →∗ S implies i)D,C →∗ D′, C ′ and ii) S →∗ D′, C ′ Γ
′

for some D′, C ′, and Γ′ such that iii) Γ′ ` D′, C ′ .

As a convention in the following we use the shortcuts tp = D(p).st and Mp =
D(p).que for p process in D.

Proof (Completeness). We proceed by induction on the derivation of D,C →
D′, C ′.

Case bC|SENDe
We know that

• C ≡ Cp | Cc with Cp = k : p[A].e -> B.o;C ′p;

• D,C
β−→ D′, C ′ with bC|SENDe being the last applied Rule, where β =

k : p[A].e -> B.o. C ′ = C ′p | Cc; D′ = D
[
q 7→ (tq,Mq[tc 7→ m̃ ::

(oj, tm)])
]

by Rule bD|SENDe, tc = k.A.B(tp) and tm = eval(e, tp)

Since bC|SENDe applies and there exists Γ ` D,C , then there exists a queue
associated with a process q in D where the message is delivered.

We have two cases, whether the receiving process q is in the same location of the
sender p or not. Let p ∈ D(l)

Case q ∈ D(l)

From Definition 23 we have that D,C Γ≡ S | Sc where

• S =
〈
Cc|l Γ, P | Q | R

〉
l

• P = o@k.B.l(e) to k.A.B; C ′p
Γ. tp .Mp

• Q = Cc|q Γ. tq .Mq

• R =
∏

r ∈ D(l)/{p,q}
Cc|r Γ. tr .Mr

• Sc =
∏

l′ ∈ Γ/{l}

〈
Cc|l′ Γ,

∏
s∈D(l′)

Cc|s Γ. ts .Ms

〉
l′

In this case D,C Γ can mimic D,C applying Rules bDCC|EQe, bDCC|SPARe, and
bDCC|INSENDe where S | Sc → S ′ | Sc with bDCC|SPARe and S → S ′ with

233

Appendix E. Applied Choreographies: Proofs

o@k.B.l(e) to k.A.B; C ′p
Γ. tp .Mp eval(k.B.l, tp) = l eval(k.A.B, tp) = tc

eval(e, tp) = tm M ′q = Mq[tc 7→Mq(tc) :: (o, tm)]〈
Cc|l Γ, P | Q | R

〉
l

k: p[A].e -> B.o−−−−−−−−−→
〈
Cc|l Γ, P ′ | Q′ | R

〉
l

bDCC|INSENDe

where P ′ = C ′p
Γ. tp .Mp and Q′ = Cc|q Γ. tq .M ′

q.

From the hypothesis we know that Γ = Γ1, b[k]AB : T, k[A] : !B.o(U);T ′ (as Γ `
D,C).
By Rules bT|DCe and bT|SENDe we can find Γ′ = Γ1, b[k]AB : T ; ?A.o(U), k[A] : T ′

such that Γ′ ` D′, C ′ .
From Rule bD|SENDe and 23, we have that

D′, C ′ Γ≡

S′︷ ︸︸ ︷〈
Cc|l Γ,

P ′︷ ︸︸ ︷
C ′p

Γ. tp .Mp |

Q′︷ ︸︸ ︷
Cc|q Γ. tq .M ′

q |

R︷ ︸︸ ︷∏
r ∈ D′(l)/{p,q}

Cc|r Γ. tr .Mr

〉
l

|
∏

l′ ∈ Γ/{l}

〈
Cc|l′ Γ,

∏
s ∈ D(l′)

Cc|s Γ. ts .Ms

〉
l′︸ ︷︷ ︸

Sc

Therefore D′, C ′ Γ= S ′ | Sc, by construction of Γ′ we can apply Lemma 27 for
which D′, C ′ Γ= D′, C ′ Γ′and therefore S ′ | Sc = D′, C ′ Γ′.

Case q 6∈ D(l)

Similar to Case q ∈ D(l) except the last applied Rule for D,C Γ→ D′, C ′ Γ′ is
bDCC|SENDe.

Case bC|COMe
Does not apply since C is a composition of endpoint choreographies by hypoth-
esis.

Case bC|RECVe
We know that

• C ≡ Cq | Cc with Cq = k : A -> q[B].{oi(xi);Ci}i∈I

234

E.4. Proof of Compilation

• D,C
β−→ D,C ′ with Rule bC|RECVe where β = k : A q[B].oj(xj),

C ′ ≡ Cj | Cc, and D′ = D
[
q 7→ (tq / (xj, tm),Mq[tc 7→ m̃])

]
where

tc = k.A.B(tq) and Mq(tc) = (oj, tm) :: m̃;

Let q@l ∈ Γ, from the Definition 23 we have

D,C Γ≡ S | Sc where

• S =
〈
Cc|l Γ, Q | R

〉
l

• Q =
∑

i∈I [oi(xi) from k.A.B]
{
Ci Γ

} . tq .Mq

•
∏

r∈D(l)/{q}
Cc|r Γ. tr .Mr

• Sc =
∏

l′∈Γ/{l}

〈
Cc|l′ Γ,

∏
s∈D(l′)

Cc|s Γ. ts .Ms

〉
l′

In this case D,C Γcan mimicD,C applying Rules bDCC|EQe, bDCC|SPARe, bDCC|PPARe,
and bDCC|CHOICEe where

j ∈ I tc = eval(k.A.B, tq) Mq = (oj , tm) :: m̃∑
i∈I [oi(xi) from k.A.B]

{
Ci Γ

} . tq .Mq → Cj Γ. tq / (xj , tm) .Mq[tc 7→ m̃]
bDCC|CHOICEe

〈Cc|l , Q | R〉
l
→

〈
Cc|l , Cj Γ. tq / (xj , tm) .Mq[tc 7→ m̃] | R

〉
l

bDCC|PPARe

S | Sc → S′ | Sc
bDCC|SPARe

Let Q′ = Cj Γ. tq / (xj, tm) .Mq[tc 7→ m̃].

From the hypothesis we know that Γ = Γ1, b[k]AB : ?A.oj(Uj);T, k[B] : ?A.{oi(Ui);Ti}i∈I
and we can find Γ′ = Γ1, b[k]AB : T, k[B] : Tj such that Γ′ ` D′, C ′ .
From Rule bD|RECVe and Definition 23, we have that, let t′q = tq / (xj, tm,) and
M ′

q = Mq[tc 7→ m̃]

D′, C ′ Γ≡

S′︷ ︸︸ ︷〈
Cc|l Γ,

Q′︷ ︸︸ ︷
Cj |q

Γ. t′q .M ′q |

R︷ ︸︸ ︷∏
r ∈ D′(l)/{q}

Cc|r Γ. tr .Mr

〉
l

|
∏

l′ ∈ Γ/{l}

〈
Cc|l′ Γ,

∏
s ∈ D(l′)

Cc|s Γ. ts .Ms

〉
l′︸ ︷︷ ︸

Sc

Therefore D′, C ′ Γ = S ′ | Sc, by construction of Γ′ we can apply Lemma 27 for
which D′, C ′ Γ= D′, C ′ Γ′and therefore S ′ | Sc = D′, C ′ Γ′.

235

Appendix E. Applied Choreographies: Proofs

Case bC|STARTe
Does not apply since C is a composition of endpoint choreographies by hypoth-
esis.

Case bC|PSTARTe
We know that

• C ≡ Cr | Ca | Cc where, let l̃ : G〈A|B̃|B̃〉 ∈ Γ

• Cr = req k : p[A] <=> l̃.B;C ′r

• let l1.B1, . . . , ln.Bn = l̃.B, Ca =
n∏
i=1

acc k : li.qi[Bi];Cqi

We can apply Rules bC|PARe and bC|EQe and lastly Rule bC|PSTARTe such that

i ∈ {1, . . . , n} #k′ {l̃.B} =
⊎
i{li.Bi} #r̃ {r̃} =

⋃
i{r̃i}

p ∈ D(l) δ = start k′ : l.p[A], l1.r1[B1], . . . , ln.rn[Bn] D, δ I D′

D,Cr | Ca
τ−→ D′, C ′r[k

′/k] |
∏n
i=1

(
Cqi [k

′/k][ri/qi]
)
| Ca

bC|PSTARTe

and

D,Cr | Ca | Cc → D′, C ′r[k
′/k] |

∏
i

(
Cqi [k

′/k][ri/qi]
)
| Ca | Cc

thus C ′ = C ′r[k
′/k] |

∏
i

(
Cqi [k

′/k][ri/qi]
)
| Ca | Cc

From the hypothesis we know that Γ ` D,C and therefore that Γ = Γ1, l̃ :G〈A|B̃|B̃〉.
We can find Γ′ = Γ, init(k′, (p[A], q̃[B]), G) and Γ′ ` D′, C ′ .

Remark 7. We have two cases for, let p@l ∈ Γ, whether l ∈ {l̃} or not. For
a clearer treatment of the case we proceed considering that l 6∈ {l̃} (i.e., no
service process is created in the same location — service — of the requester p).
The other case follows the same structure of l 6∈ {l̃} although the service located
at l has Ca|l Γas start behaviour and D,C Γapplies Rule bDCC|INSTARTe in place
of the bDCC|STARTe for starting the DCC process located at l.

Henceforth we proceed analysing the case for l 6∈ {l̃}.

From Definition 23 we have

236

E.4. Proof of Compilation

D′, C ′ Γ′=
〈
Cc|l Γ′, P ′′ | R′

〉
l
|

n∏
i=1

〈
Q′′i , Q

∗
i | R′li

〉
li
| S ′c

In the following, we use the shortcuts t∗s = D′(s).st and M∗
s = D′(s).que for s

process in D′.

• P ′′ = C ′r[k
′/k] Γ′. t∗p .M∗

p

• R′ =
∏

p′ ∈ D(l)/{p}
Cc|p′ Γ′. t∗p′ .M∗

p′

• Q′′i = accept(k, Bi, G〈A|B̃|B̃〉); Cqi
Γ′

• Q∗i = Cqi [k
′/k][ri/qi]

Γ′. t∗qi .M∗
qi

• R′li =
∏

s ∈ D(li)

Cc|s Γ′. t∗s .M∗
s

• S ′c =
∏

l′ ∈ Γ/{l,l̃}

〈
Cc|l′ Γ′,

∏
s′ ∈ D(l′)

Cc|s′ Γ′. t∗s′ .M∗
s′

〉
l′

From Rule bD|STARTe we know that

k′(t∗p) = k′(t∗q1) = . . . = k′(t∗qn) = tk′

for some tk′ session descriptor of session k′.

We proceed by proving that we can reduce D,C Γ→+ S.

From Definition 23 we have

D,C Γ≡
〈
Cc|l Γ, P | R

〉
l
|

n∏
i=1

〈Qi, Rli〉li | Sc

where

•

P = start(k, (l.A, l̃.B)); C ′r
Γ. tp .Mp =

=

�

I∈{A,B̃}
k.I.l = lI ;

�
I∈{B̃}

(
cq(k.I.A); ?@k.I.l(k); sync(k) from k.I.A

)
;

�
I∈{B̃}

start@k.I.l(k) to k.A.I; C ′r
Γ

 . tp .Mp

237

Appendix E. Applied Choreographies: Proofs

• Qi = accept(k, Bi, G〈A|B̃|B̃〉); Cqi
Γ=

!(k); �
I∈{A,B̃}/{Bi}

cq(k.I.Bi) ;

sync@k.A.l(k) to k.Bi.A ;
start(k) from k.A.Bi ; Cqi

Γ

• R =
∏

p′ ∈ D(l)/{p}
Cc|p′ Γ. tp′ .Mp′

• Rli =
∏

s ∈ D(li)

Cc|s Γ. ts .Ms

• Sc =
∏

l′ ∈ Γ/{l,l̃}

〈
Cc|l′ Γ,

∏
s′ ∈ D(l′)

Cc|s′ Γ. ts′ .Ms′

〉
l′

D,C Γcan mimic D,C with the following sequence of reductions. Note that we
make use of renaming on (accept) terms in Q1, . . . , Qn and variable renaming
on P (as of Definition 38) to align the evolution of D,C Γwith the evolution of
D,C, in which k has been replaces with the fresh name k′.

Therefore we take S∗0 ∼ D,C Γ

S∗0 =
〈
Cc|l Γ, P [k′/k] | R

〉
l
|

n∏
i=1

〈Qi[k
′/k], Rli〉li | Sc

S∗0 →

bDCC|EQe bDCC|SPARe bDCC|PPARe bDCC|ASSIGNe−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
}
n+ 1 times

1©

2.1© bDCC|EQe bDCC|SPARe bDCC|PPARe bDCC|CQe−−−−−−−−−−−−−−−−−−−−−−−−−−→

2.2© bDCC|EQe bDCC|SPARe bDCC|STARTe−−−−−−−−−−−−−−−−−−−−→

2.3© bDCC|EQe bDCC|SPARe bDCC|PPARe bDCC|CQe−−−−−−−−−−−−−−−−−−−−−−−−−−→
}
n times

2.4© bDCC|EQe bDCC|SPARe bDCC|SENDe−−−−−−−−−−−−−−−−−−−−→

2.5© bDCC|EQe bDCC|SPARe bDCC|RECVe−−−−−−−−−−−−−−−−−−−−→

2©

n times

3.1© bDCC|EQe bDCC|SPARe bDCC|SENDe−−−−−−−−−−−−−−−−−−−−→

3.2© bDCC|EQe bDCC|SPARe bDCC|RECVe−−−−−−−−−−−−−−−−−−−−→

n times

3©

→ S∗1

We briefly comment the numbered transitions.

• In 1© P [k′/k] proceeds to store (for n + 1 times, l plus li, i ∈ {1, . . . , n})
the locations of all roles under k′.

• In 2©, for each location li, i ∈ {1, . . . , n} (for each service process):

238

E.4. Proof of Compilation

– P creates its receiving queue for the service process 2.1©;
– in 2.2© we apply Rule bDCC|EQe such that we rename
– P synchronises with the service at location li starting (bDCC|STARTe) a

new service process;
– in 2.3© the service process creates its own queues for all other roles in

the session (hence n times);
– in 2.4© the service process sends the correlation values to P ;
– finally P receives the message in 2.5©.

• In 3© for each service process (n times) 3.1© the starter sends a message to
the service process to start the session and 3.2© the addressee receives it.

Finally we have

S∗1 =
〈
Cc|l Γ| P ′ | R

〉
l
|

n∏
i=1

〈Qi[k
′/k], Q′i | Rli〉li | Sc

where

• P ′ = C ′r
Γ[k′/k] . t′p .M ′

p, and

• Q′i = Cqi
Γ[k′/k] . tk′ .Mqi

From the transitions presented above we know that there exists t′k′ such that
t′p = tp / (k′, t′k′), where t′k′ is a session descriptor for session k′ (i.e., it contains
all the locations and correlations keys used by the processes in session k′). In
this case, we take t′k = tk′ obtained from the derivation D,C τ−→ D′, C ′.

Similarly, M ′
p and Mq1 , . . . ,Mqn contain the necessary (empty) queues to sup-

port communication in session k′.

M ′
p = Mp[k

′.B1.A(tk′) 7→ ε] . . . [k′.Bn.A(tk′) 7→ ε]

and

Mqi = ∅
[k′.A.Bi(tk) 7→ ε][k′.B1.Bi(tk) 7→ ε] . . . [k′.Bi−1.Bi(tk) 7→ ε] . . .

. . . [k′.Bi+1.Bi(tk) 7→ ε] . . . [k′.Bn.Bi(tk) 7→ ε]

We proceed with the proof taking S ∼ S∗1 as S is simply the renaming of k′ to k
on start behaviours Qi, i ∈ {1, . . . , n} (trivially Qi[k

′/k][k/k′] = Qi)

239

Appendix E. Applied Choreographies: Proofs

S =
〈
Cc|l Γ| P ′ | R

〉
l
|

n∏
i=1

〈Qi, Q
′
i | Rli〉li | Sc

We now proceed to prove that D,C Γ→+ D′, C ′ Γ′, i.e. that D′, C ′ Γ′= S with
Γ′ ` D′, C ′ .
We prove that

D′, C ′ Γ′︷ ︸︸ ︷〈
Cc|l Γ′, P ′′ | R′

〉
l
|

n∏
i=1

〈
Q′′i , Q

∗
i | R′li

〉
li
| S ′c =

S︷ ︸︸ ︷〈
Cc|l Γ| P ′ | R

〉
l
|

n∏
i=1

〈Qi, Q
′
i | Rli〉li | Sc

• Cc|l Γ= Cc|l Γ′as Γ|locs = Γ′|locs by construction;

• P ′′ = P ′ is proven by

C ′r[k
′/k] Γ′. t∗p .M∗

p = C ′r
Γ[k′/k] . t′p .M ′

p

which holds as

i) C ′r[k
′/k] Γ′= C ′r

Γ[k′/k] since
(a) Γ′ does not contain any new process used in C ′r;
(b) by renaming, and
(c) Definition 38.

ii) t∗p = t′p by construction and Rule bD|STARTe;
iii) M∗

p = M ′
p by construction and Rule bD|STARTe.

• Q′∗i = Q′i proven by

Cqi [k
′/k][ri/qi]

Γ′. t∗qi .M∗
qi

= Cqi
Γ[k′/k] . tk′ .Mqi

whose proof of equivalence follows that of P ′′ = P ′, except that Γ′ contains
the location of the process (ri) used in Cqi [k

′/k][ri/qi].

• Q′′i = Qi proven by

accept(k, Bi, G〈A|B̃|B̃〉); Cqi
Γ′= accept(k, Bi, G〈A|B̃|B̃〉); Cqi

Γ

which holds as Cqi
Γ′ = Cqi

Γ because Γ and Γ′ contain the same service
typings.

240

E.4. Proof of Compilation

• R′ = R is proven by∏
p′ ∈ D(l)/{p}

Cc|p′ Γ′. t∗p′ .M∗
p′ =

∏
p′ ∈ D(l)/{p}

Cc|p′ Γ. tp′ .Mp′

for which

i) Cc|p′ Γ′= Cc|p′ Γas Γ′ does not contain any new process used in Cc.

ii) t∗p′ = tp′ unchanged by the reduction of D,C and D,C Γ;
iii) M∗

p′ = Mp′ unchanged by the reduction of D,C and D,C Γ.

• R′li = Rli whose proof follows that of R′ = R.

• S ′c = Sc following the proof of Cc|l Γ= Cc|l Γ′and R′li = Rli .

Case bC|CONDe
We have C = Cp | Cc where Cp = if p.e {C1} else {C2}. Let p@l ∈ Γ and

• P = if e { C1
Γ} else { C2

Γ} . tp .Mp;

• R =
∏

r ∈ D(l)/{p}
Cc|r Γ. tr .Mr

• Sc =
∏

l′ ∈ Γ/{l}

〈
Cc|l′ Γ,

∏
r ∈ D(l′)

Cc|r Γ. tr .Mr

〉
l′

From Definition 23 we have,

D,C Γ≡
〈
Cc|l Γ, P | R

〉
l
| Sc

we reduce D,C applying Rules bC|PARe, bC|EQe and lastly Rule bC|CONDe. We
analyse only the case for eval(e, tp) = true as the other case for eval(e, tp) =
false follows the same structure.

D,C
τ@p−−→ D,C1 | Cc

and C ′ = C1 | Cc and D′ = D. We can choose Γ = Γ′, for which it holds that
Γ ` D,C ′ .
From Definition 23 we have

D′, C ′ Γ′= D,C ′ Γ=
〈
Cc|l Γ, C1

Γ. tp .Mp | R
〉
l
| Sc

D,C Γ can mimic D,C applying Rules bDCC|EQe, bDCC|SPARe, bDCC|PPARe, and
lastly bDCC|CONDe for which

241

Appendix E. Applied Choreographies: Proofs

D,C Γ→
〈
Cc|l Γ, C1

Γ. tp .Mp | R
〉
l
| Sc

Case bC|CTXe
The thesis follows from the induction hypothesis as D,C applies Rule bC|CTXe
and D,C Γcan mimic it with Rule bDCC|CTXe.

Case bC|PARe
The thesis follows from the induction hypothesis.

Case bC|EQe
The thesis follows from the induction hypothesis. Starting from any configura-
tion of D,C, D,C Γ can always mimic the evolution of D,C when it applies
Rule bC|EQe: in both cases that R = ≡ or R = 'C, D,C Γcan apply bDCC|EQe,
bDCC|SPARe, and bDCC|PPARe to mimic D,C.

Before proceeding with the proof of (Soundness) of Theorem 8 we extend the
semantics of DCC with annotations on transitions to bear the paths on which op-
erations are executed. We range over transition labels with λ.

λ ::= x | cq(x) | ?(x) | o from x | o@x | τ

We report in Figure E.3 the annotated semantics of DCC.

242

E.4. Proof of Compilation

tc = eval(e, t) M(tc) = (o, t′) :: m̃

o(x) from e;B . t .M o from e−−−−−→ B . t / (x, t′) .M [tc 7→ m̃]
bDCC|RECVe

B . t .M λ−→ B′ . t′ .M ′
def X = B1 in B . t .M λ−→ def X = B1 in B′ . t′ .M ′

bDCC|CTXe

i = 1 if eval(e, t) = true, i = 2 otherwise

if e {B1} else {B2} . t .M τ−→ Bi . t .M
bDCC|CONDe

j ∈ I tc = eval(e, t) M(tc) = (oj , t
′) :: m̃∑

i∈I [oi(xi) from e] {Bi} . t .M oj from e−−−−−−→ Bj . t / (xj , t
′) .M [tc 7→ m̃]

bDCC|CHOICEe

t′ = eval(e, t)

x = e;B . t .M x−→ B . t / (x, t′) .M
bDCC|ASSIGNe

P
λ−→ P ′

〈Bs, P | P1〉l
λ−→ 〈Bs, P ′ | P1〉l

bDCC|PPARe

P = cq(x);B . t .M tc 6∈
⋃
i dom(Mi) ∪ dom(M) t′ = t / (x, tc)

〈Bs, P |
∏
iBi . ti .Mi〉l

cq(x)−−−−→ 〈Bs, B . t′ .M [tc 7→ ε] |
∏
iBi . ti .Mi〉l

bDCC|CQe

P = o@e1(e2) to e3;B . t .M eval(e1, t) = l eval(e3, t) = tc
eval(e2, t) = tm M ′′ = M ′[tc 7→M ′(tc) :: (o, tm)]

〈Bs, P | B′ . t′ .M ′ | P1〉l
o@e3−−−−→ 〈Bs, B . t .M | B′ . t′ .M ′′ | P1〉l

bDCC|INSENDe

P = o@e1(e2) to e3;B . t .M eval(e1, t) = l′ eval(e3, t) = tc
eval(e2, t) = tm M ′′ = M ′[tc 7→M ′(tc) :: (o, tm)]

〈Bs, P | P1〉l | 〈B′s, B′ . t′ .M ′ | P2〉l′
o@e3−−−−→

〈Bs, B . t .M | P1〉l | 〈B′s, B′ . t′ .M ′′ | P2〉l′

bDCC|SENDe

P1 =?@e1(e2);B1
. t1 .M1

eval(e1, t1) = l Q = B . t⊥ / (x, eval(e2, t1)) . ∅
〈!(x);B, P 〉l | 〈B′s, P1 | P2〉l′

?(e2)−−−−→
〈!(x);B, Q | P 〉l | 〈B′s, B1

. t1 .M1 | P2〉l′

bDCC|STARTe

P =?@e1(e2);B . t .M eval(e1, t) = l Q = B . t⊥ / (x, eval(e2, t)) . ∅
〈!(x);B′, P | P1〉l

?(e2)−−−−→ 〈!(x);B′, Q | B . t .M | P1〉l
bDCC|INSTARTe

S ≡ S1 S1
λ−→ S′1 S′1 ≡ S′

S
λ−→ S′

bDCC|EQe
S1

λ−→ S′1

S1 | S λ−→ S′1 | S
bDCC|SPARe

Figure E.3: Correlation Calculus, annotated semantics

243

Appendix E. Applied Choreographies: Proofs

We also introduce the filtering and complement operators on sequences of DCC
transition labels. Let λ, λ̃ be a sequence of DCC labels, the filtering of λ, λ̃ on k ,
written (λ, λ̃)

∣∣∣
k

is defined as

(λ, λ̃)
∣∣∣
k

=

λ, (λ̃

∣∣∣
k
) if λ ∈

k.x.y, cq(k.x.y), ?(k),

sync from k.x.y, sync@k.x.y,

start from k.x.y, start@k.x.y

λ̃
∣∣∣
k

otherwise

Let λ1, λ̃1 and λ2, λ̃2 be two sequences of DCC labels, the complement of λ1, λ̃
on λ2, λ̃2 , written (λ1, λ̃1)/(λ2, λ̃2) is defined as

(λ1, λ̃1)/(λ2, λ̃2) =

{
λ̃1/λ̃2 if λ1 = λ2 ∧ λ̃2 ⊆ λ̃1

λ1, (λ̃1/(λ2, λ̃2)) if λ1 6= λ2 ∧ (λ2, λ̃2) ⊆ λ̃1

Below we state Lemma 32 that proves that we can permute the order of tran-
sitions in DCC systems and obtain the same final configurations. In particular
prove such result on transitions that regard the start of new sessions. The proof of
Lemma 32 is based on the simpler Lemma 31 that proves that we can change the
order of one start transition and eventually obtain the same DCC system.

Lemma 31 (Single DCC Start Permutation). Let S be a composition of DCC ser-

vices such that S λ̃1−→ S1 and S1
λ2−→ S2 where λ̃1

∣∣∣
k

= ε and λ2|k = λ2 then

S
λ2−→ S ′1 and S ′1

λ̃1−→ S2.

Proof Sketch. The proof is by induction on the length of λ̃1. Note that we can
exclude to have transitions on session k in λ̃1 since by the premises they happen
before λ2 which, by the premises, at most may correspond to the last transition of
the start of session k.

Lemma 32 (DCC Start Permutations). Let S be a composition of DCC services

such that S λ̃−→ S ′ and λ̃ = (k.C.l, λ̃′) then S
λ̃|

k−−→ S ′′ and S ′′
λ̃/ λ̃|

k−−−−→ S ′.

Proof Sketch. Let λ̃
∣∣∣
k

= λk1, . . . , λ
k
m and

λ̃ = λk1, λ1.1, . . . , λ1.n1 , . . . λ
k
i , λi.1, . . . , λi.ni

, . . . λkm, λm.1, . . . , λm.nm

we can apply Lemma 32 inductively on each couple of the kind λki and λi.1, . . . , λi.ni
,

i ∈ {1, . . . , n}. Note that the proof holds also for configurations of λ̃ in which the
elements of λ̃

∣∣∣
k

appear next to each other (e.g., λ̃ = λk1, . . . , λ
k
i , λ

k
i +1, . . . , λm.nm)

since it is a base case of Lemma 31 in which there are no transitions in λ̃1.

244

E.4. Proof of Compilation

Next we state Lemma 33 that proves that, i) given a well-typed AC choreogra-
phy, ii) its DCC projection, and iii) the DCC system that results from a sequence
of reductions belonging to the start of a session, we can complete the remaining
sequences of interactions and obtain the originating AC choreography after the
reduction to start the session.

Lemma 33 (DCC Start Completion). Let Γ ` D,C ,

C = req k : p[A] <=> l1.[B1], . . . , ln.[Bn];Cr |
n∏
i=1

acc k : li.qi[Bi];Cqi

and D,C Γ= S such that S λ̃−→ S ′ where λ̃
∣∣∣
k

= λ̃ then i) S ′ λ̃′−→ S ′′, ii) D,C →
D′, C ′, and iii) there exists some Γ′ s.t. Γ′ ` D′, C ′ and D′, C ′ Γ′= S ′′.

Proof. Proof by case analysis on the length of λ̃.
Let p@l ∈ Γ. To proceed, we have two subcases whether l ∈ {l1, . . . , ln},

i.e., whether one of the service processes is at the same location of p. Since the
subcases follow the same structure, we detail only the proof for l 6∈ {l1, . . . , ln}
which allows for a uniform treatment. In the other case, i) we should account for
transitions on the same service of p with Rules bDCC|INSTARTe and bDCC|INSENDe and
ii) we would have a newly created process in parallel with p in S ′′ and D,C Γ′.

Provided n is the number of service processes involved in the start of the session
k, from Definition 23 we can count the number of transitions needed to complete
the start of a session. Indeed, given a D,C with

C = req k : p[A] <=> l1.[B1], . . . , ln.[Bn];Cr |
n∏
i=1

acc k : li.qi[Bi];Cqi

and D,C Γ = S then we can write the sequence of transitions of the projected
DCC system

245

Appendix E. Applied Choreographies: Proofs

S

1©︷ ︸︸ ︷
k.I.l−−−→
2.1©︷ ︸︸ ︷

cq(k.A.I)−−−−−−→

2.2©︷ ︸︸ ︷
?(k)−−→

2.3©︷ ︸︸ ︷
cq(k.I.I′)−−−−−→

2.4©︷ ︸︸ ︷
sync@k.I′.A−−−−−−−→

2.5©︷ ︸︸ ︷
sync from k.I′.A−−−−−−−−−−→︸ ︷︷ ︸

2©
3.1©︷ ︸︸ ︷

start@k.I′.A−−−−−−−−→

3.2©︷ ︸︸ ︷
start from k.I′.A−−−−−−−−−−→︸ ︷︷ ︸
3©

S ′′

and count the number of all the transitions to complete the start, let it be m, as
the sum of:

1© n+1 times, for I ∈ {A, B̃}, with last Rule bDCC|ASSIGNe;

2© n times, for I ∈ B̃:

2.1© reduces with last applied Rule bDCC|CQe;
2.2© reduces with last applied Rule bDCC|STARTe;

2.3© n times for I′ ∈ {A, B̃}/{I}, reduces with last applied Rule bDCC|CQe;
2.4© reduces with last applied Rule bDCC|SENDe;
2.5© reduces with last applied Rule bDCC|RECVe;

3© n times, for I ∈ B̃:

3.1© reduces with last applied Rule bDCC|SENDe;
3.2© reduces with last applied Rule bDCC|RECVe;

and m = n2 + 7n+ 1. We proceed unfolding the proof on the length of λ̃.

Case |{λ̃}| = 1

Since the cardinality of λ̃ is one and that from the premises we know that λ̃
contains only transitions belonging to the start of session k, we can infer that
λ̃ = k.C.l where C ∈ {A, B̃}.
To prove the thesis we let S ′ do all the remaining transitions to start the session
and show thatD,C can mimic it. Let l̃.B = l1.B1, . . . , ln.Bn and l̃ :G〈A|B̃|B̃〉 ∈ Γ.

246

E.4. Proof of Compilation

From Definition 23 we have

D,C Γ≡
〈
Cc|l Γ, P | R

〉
l
|

n∏
i=1

〈Qi, Rli〉li | Sc

where

•

P = start(k, (l.A, l̃.B)); Cr Γ. tp .Mp =

=

�

I∈{A,B̃}
k.I.l = lI ;

�
I∈{B̃}

(
cq(k.I.A); ?@k.I.l(k); sync(k) from k.I.A

)
;

�
I∈{B̃}

start@k.I.l(k) to k.A.I;

 ; Cr Γ. tp .Mp

• Qi = accept(k, Bi, G〈A|B̃|B̃〉); Cqi
Γ=

!(k); �
I∈{A,B̃}/{Bi}

cq(k.I.Bi) ;

sync@k.A.l(k) to k.Bi.A ;
start(k) from k.A.Bi ; Cqi

Γ

• R =
∏

p′ ∈ D(l)/{p}
Cc|p′ Γ. tp′ .Mp′

• Rli =
∏

s ∈ D(li)

Cc|s Γ. ts .Ms

• Sc =
∏

l′ ∈ Γ/{l,l̃}

〈
Cc|l′ Γ,

∏
s′ ∈ D(l′)

Cc|s′ Γ. ts′ .Ms′

〉
l′

The first transition, λ = k.C.l consumed the first assignment of location and
assigned the location of role C to k.C.l in the state of the starter tp.

Let us suppose, without loss of generality, that C = A, then we have

P ′ =

�

I∈{B̃}
k.I.l = lI ;

�
I∈{B̃}

(
cq(k.I.A); ?@k.I.l(k); sync(k) from k.I.A

)
;

�
I∈{B̃}

start@k.I.l(k) to k.A.I;

 ; Cr Γ. tp / (k.A.l, l) .Mp

and D,C Γ
k.A.l−−−→ S ′ where

S ′ =
〈
Cc|l Γ, P ′ | R

〉
l
|

n∏
i=1

〈Qi, Rli〉li | Sc

247

Appendix E. Applied Choreographies: Proofs

Since in its reduction D,C renames the new session with a fresh name, we first
rename session k in P and the service processesQi to k′, which is fresh. We take

P ′′ = P ′[k′/k] =

�

I∈{B̃}
k′.I.l = lI ;

�
I∈{B̃}

(
cq(k′.I.A); ?@k′.I.l(k′); ?@k′.I.l(k′);

)
;

�
I∈{B̃}

sync(k′) from k′.I.A

 ; Cr Γ[k′/k] . t′′p .Mp

where, let t′p = tp / (k.A.l, l), t′′p = t′p / (k′,k(t′p)) / (k, t⊥).

By Lemma 28 we have P ′ ∼ P ′′. We take

S∗0 =
〈
Cc|l Γ, P ′′ | R

〉
l
|

n∏
i=1

〈Qi[k
′/k], Rli〉li | Sc

and by Corollary 30 we have S∗0 ∼ S ′.

Now we can proceed with the rest of the transitions of the start procedure, as
defined at the beginning of the proof. Finally we have

S ′′ =
〈
Cc|l Γ| P ′′′ | R

〉
l
|

n∏
i=1

〈Qi[k
′/k], Q′i | Rli〉li | Sc

where P ′′′ = Cr Γ[k′/k] . t′p .M ′
p and Q′i = Cqi

Γ[k′/k] . tk′ .Mqi

From the transitions presented above we know that there exists t′k′ such that
t′p = tp / (k′, t′k′), where t′k′ is a session descriptor for session k′ (i.e., it contains
all the locations and correlations keys used by the processes in session k′).

We proceed by proving that D,C can mimic D,C Γ.

We can apply Rules bC|PARe and bC|EQe and lastly Rule bC|PSTARTe such that

i ∈ {1, . . . , n} #k′ {l̃.B} =
⊎
i{li.Bi} #r̃ {r̃} =

⋃
i{r̃i}

p ∈ D(l) δ = start k′ : l.p[A], l1.r1[B1], . . . , ln.rn[Bn] D, δ I D′

D,C → D′, Cr[k
′/k] |

∏n
i=1

(
Cqi [k

′/k][ri/qi]
)
| Ca

bC|PSTARTe

and

D,C | Cc →
D′, Cr[k

′/k] |
∏

i

(
Cqi [k

′/k][ri/qi]
)
|
∏n

i=1 acc k : li.qi[Bi];Cqi | Cc

248

E.4. Proof of Compilation

thus C ′ = Cr[k
′/k] |

∏n
i=1

(
Cqi [k

′/k][ri/qi]
)
|
∏n

i=1 acc k : li.qi[Bi];Cqi | Cc.

From the hypothesis we know that Γ ` D,C and therefore that Γ = Γ1, l̃ :G〈A|B̃|B̃〉.
We can find Γ′ = Γ, init(k′, (p[A], q̃[B]), G) and Γ′ ` D′, C ′ .

Finally, we need to prove that S∗1 = D′, C ′ Γ′.

From Definition 23 we have

D′, C ′ Γ′=
〈
Cc|l Γ′, P ′′ | R′

〉
l
|

n∏
i=1

〈
Q′′i , Q

∗
i | R′li

〉
li
| S ′c

In the following, we use the shortcuts t∗s = D′(s).st and M∗
s = D′(s).que for s

process in D′.

• P ′′ = C ′r[k
′/k] Γ′. t∗p .M∗

p

• R′ =
∏

p′ ∈ D(l)/{p}
Cc|p′ Γ′. t∗p′ .M∗

p′

• Q′′i = accept(k, Bi, G〈A|B̃|B̃〉); Cqi
Γ′

• Q∗i = Cqi [k
′/k][ri/qi]

Γ′. t∗qi .M∗
qi

• R′li =
∏

s ∈ D(li)

Cc|s Γ′. t∗s .M∗
s

• S ′c =
∏

l′ ∈ Γ/{l,l̃}

〈
Cc|l′ Γ′,

∏
s′ ∈ D(l′)

Cc|s′ Γ′. t∗s′ .M∗
s′

〉
l′

From Rule bD|STARTe we know that

k′(t∗p) = k′(t∗q1) = . . . = k′(t∗qn) = tk′

for some tk′ session descriptor of session k′.

We prove the case by taking tk′ = t′k′ , t
′
k′ obtained from the derivation of D,C Γ

and M∗
p = M ′

p and M∗
qi

= Mqi , i ∈ {1, . . . , n}.

Case 1 < |{λ̃}| < m− 1
The case follows the same structure of the previous case. We rename k to k′ on
p and all the newly created service processes. Then we let the system complete
all the transitions and prove that the reductum corresponds to the compilation of
D′, C ′.

249

Appendix E. Applied Choreographies: Proofs

Case |{λ̃}| = m
Since |{λ̃}| = m then S = S ′ where S ′ has terminated all the transitions to start
the session. Here we only have to rename k to k′ for all the involved processes
and prove that S ′ = D′, C ′ Γ′.

We now proceed to prove the (Soundness) of Theorem 8. In the following we
use the shortcut

Cstart = req k : p[A] <=> l1.[B1], . . . , ln.[Bn];Cr |
n∏
i=1

acc k : li.qi[Bi];Cqi

Proof (Soundness). We proceed by induction on the cardinality of λ̃.

Case |{λ̃}| = 0

Trivial, D,C Γ= S = D′, C ′ Γ′, D,C = D′, C ′, and Γ ` D′, C ′ .

Case |{λ̃}| = 1

We unfold the case on the structure of D,C. We do not consider the inapplica-
ble cases for C containing (com) or (start) terms, which cannot be present in
endpoint choreographies.

Case C = k : p[A].e -> B.o;Cp | Cc

We proceed analysing the last Rule applied in the derivation of D,C Γ

Case bDCC|INSENDe

We have λ̃ = λ = o@k.A.B where o 6∈ {start, sync}. Indeed operations
start and sync are reserved for the starting of new sessions and cannot appear
as first action of the compilation of D,C Γ. Therefore we can exclude the case
that D,C Γis starting a new session.
Since bDCC|INSENDe applies we can infer that, let p@l ∈ Γ, then q@l ∈ Γ such
that

D,C Γ≡
〈
Cc|l Γ, P | Q | R

〉
l
| Sc

where

250

E.4. Proof of Compilation

• P = o@k.B.l to k.A.B; Cp
Γ. tp .Mp

• Q = Cc|q Γ. tq .Mq

• R =
∏

r ∈ D(l)/{p,q}
Cc|r Γ. tr .Mr

• Sc =
∏

l′∈Γ/{l}

〈
Cc|l′ Γ,

∏
s ∈ D(l′)

Cc|s Γ. ts .Ms

〉
l′

D,C Γ reduces, applying as last Rule bDCC|INSENDe, let tc = eval(k.A.B, tp),
tm = eval(e, tp), and Mq(tc) = m̃

D,C Γ
o@k.A.B−−−−−→ S

where

S =
〈
Cc|l Γ, Cp

Γ. tp .Mp | Cc|q Γ. tq .Mq[tc 7→ m̃ :: (o, tm)] | R
〉
l
| Sc

D,C can mimic D,C Γwith Rules bC|EQe, bC|PARe, and bC|SENDe for which

D,C → D′, Cp | Cc

where D′ = D[q 7→ (tq,Mq[tc 7→ m̃ :: (o, tm)])].
Since from the premises Γ ` D,C then Γ = Γ1, k[A] : !B.o(U);T, b[k]AB : T ′

and we can find Γ′ = Γ1, k[A] : T, b[k]AB : T ′; ?A.o(U) such that Γ′ ` D,C .
From Lemma 27 we have that D′, C ′ Γ′= D′, C ′ Γ. Applying Definition 23 to
D′, C ′ Γ, we have D′, C ′ Γ= S and therefore S = D′, C ′ Γ′.
Case bDCC|SENDe
Similar to the proof of case bDCC|INSENDe.
Case bDCC|CHOICEe
The case unfolds following the proof of caseC = k : A -> q[B].{oi(xi);Ci}i;Cq |Cc,
subcase bDCC|CHOICEe, and the thesis follows by applying the induction hypoth-
esis.
Case bDCC|CONDe
The case unfolds following the proof of caseC = if p.e {C1} else {C2};Cq |Cc,
subcase bDCC|CONDe, and the thesis follows by applying the induction hypoth-
esis.
Case bDCC|ASSIGNe
The case unfolds following the proof of caseC = Cstart |Cc, subcase bDCC|ASSIGNe,
and the thesis follows by applying the induction hypothesis.
Case bDCC|RECVe or bDCC|INSTARTe or bDCC|STARTe or bDCC|CQe
None of the Rules bDCC|RECVe, bDCC|INSTARTe, bDCC|STARTe, bDCC|CQe apply as

251

Appendix E. Applied Choreographies: Proofs

D,C Γmakes only one transition whilst all the listed Rules can appear only in
a sequence of interactions greater than one.

Case C = k : A -> q[B].{oi(xi);Ci}i∈I | Cc
We proceed analysing the last Rule applied in the derivation of D,C Γ

Case bDCC|INSENDe or bDCC|SENDe
The case unfolds following the proof of case C = k : p[A].e -> B.o;Cq | Cc,
respectively subcases bDCC|INSENDe and bDCC|SENDe. The thesis follows by ap-
plying the induction hypothesis.
Case bDCC|CHOICEe
We have λ̃ = λ = oj from k.A.B where oj 6∈ {start, sync}, following the
same reasoning of case C = k : p[A].e -> B.o;Cp | Cc subcase bDCC|SENDe.
Let q@l ∈ Γ, from Definition 23 we have

D,C Γ≡
〈
Cc|l Γ, Q | R

〉
l
| Sc

where
• Q =

∑
i∈I [oi(xi) from k.A.B]

{
Ci Γ
} . tq .Mq

• R =
∏

r ∈ D(l)/{q}
Cc|r Γ. tr .Mr

• Sc =
∏

l′∈Γ/{l}

〈
Cc|l′ Γ,

∏
s ∈ D(l′)

Cc|s Γ. ts .Ms

〉
l′

and can apply Rules bDCC|EQe, bDCC|SPARe, bDCC|PPARe and lastly bDCC|CHOICEe
such that, let tc = eval(k.A.B, tp), tm = eval(e, tp), and Mq(tc) = (oj, tm) ::
m̃

D,C Γ
oj from k.A.B−−−−−−−−→ S

where

S =
〈
Cc|l Γ, Cj Γ. tq / (xj, tm) .Mp[tc 7→ m̃] | R

〉
l
| Sc

D,C can mimic D,C Γwith Rules bC|EQe, bC|PARe, and bC|RECVe for which

D,C → D′, Cp | Cc

where D′ = D[q 7→ (tq / (xj, tm),Mq[tc 7→ m̃])].
Since from the premises Γ ` D,C then
Γ = Γ1, k[A] : ?A.{oi(Ui);Ti}i∈I , b[k]AB : ?A.oj(Uj);T

′ and we can find
Γ′ = Γ1, k[A] : Tj, b[k]AB : T ′ such that Γ′ ` D,C .
From Lemma 27 we have that D′, C ′ Γ′= D′, C ′ Γ. Applying Definition 23 to
D′, C ′ Γ, we have D′, C ′ Γ= S and therefore S = D′, C ′ Γ′.

252

E.4. Proof of Compilation

Case bDCC|CONDe
The case unfolds following the proof of caseC = if p.e {C1} else {C2};Cq |Cc,
subcase bDCC|CONDe, and the thesis follows by applying the induction hypoth-
esis.
Case bDCC|ASSIGNe
The case unfolds following the proof of caseC = Cstart |Cc, subcase bDCC|ASSIGNe,
and the thesis follows by applying the induction hypothesis.
Case bDCC|RECVe or bDCC|INSTARTe or bDCC|STARTe or bDCC|CQe
None of the Rules bDCC|RECVe, bDCC|INSTARTe, bDCC|STARTe, bDCC|CQe apply as
D,C Γmakes only one transition whilst all the listed Rules can appear only in
a sequence of interactions greater than one.

Case C = Cstart | Cc
We proceed analysing the last Rule applied in the derivation of D,C Γ

Case bDCC|INSENDe or bDCC|SENDe
The case unfolds following the proof of case C = k : p[A].e -> B.o;Cq | Cc,
respectively subcases bDCC|INSENDe and bDCC|SENDe. The thesis follows by ap-
plying the induction hypothesis.
Case bDCC|CHOICEe
The case unfolds following the proof of case
C = k : A -> q[B].{oi(xi);Ci}i∈I ;Cq | Cc, respectively subcases bDCC|INSENDe
and bDCC|SENDe. The thesis follows by applying the induction hypothesis.
Case bDCC|CONDe
The case unfolds following the proof of caseC = if p.e {C1} else {C2};Cq |Cc,
subcase bDCC|CONDe, and the thesis follows by applying the induction hypoth-
esis.
Case bDCC|ASSIGNe
Let p@l ∈ Γ, we have two subcases whether l ∈ {l1, . . . , ln}, i.e., whether one
of the service processes is at the same location of p.
Case l 6∈ {l1, . . . , ln}
Let C ∈ {A, B̃}, we have two subcases whether λ̃ = λ = k.C.l or λ̃ =
λ = k′′.C.l, i.e., whether we are stating the session on k or we are starting
another session k′′.
Case λ = k.C.l
In this case D,C Γis starting a new session on k. The case is proven apply-
ing Lemma 33.
Case λ 6= k′.C.l
In this case we are starting a session on k′′ 6= k. The case unfolds following
the proof of case C = Cstart|Cc, subcase bC|ASSIGNe, subcase λ = k.C.l.
The thesis follows by applying the induction hypothesis.

253

Appendix E. Applied Choreographies: Proofs

Case l ∈ {l1, . . . , ln}
The case follows the same structure of the case l 6∈ {l̃} although the service
located at l has Ca|l Γas start behaviour and D,C Γapplies Rule bDCC|INSTARTe
in place of the bDCC|STARTe for starting the DCC process located at l.

Case bDCC|RECVe or bDCC|INSTARTe or bDCC|STARTe or bDCC|CQe
None of the Rules bDCC|RECVe, bDCC|INSTARTe, bDCC|STARTe, bDCC|CQe apply as
D,C Γmakes only one transition whilst all the listed Rules can appear only in
a sequence of interactions greater than one.

Case C = if p.e {C1} else {C2} | Cc
We proceed analysing the last Rule applied in the derivation of D,C Γ.

Case bDCC|INSENDe or bDCC|SENDe
The case unfolds following the proof of case C = k : p[A].e -> B.o;Cq | Cc,
respectively subcases bDCC|INSENDe and bDCC|SENDe. The thesis follows by ap-
plying the induction hypothesis.
Case bDCC|CHOICEe
The case unfolds following the proof of case
C = k : A -> q[B].{oi(xi);Ci}i;Cq | Cc, subcase bDCC|CHOICEe, and the thesis
follows by applying the induction hypothesis.
Case bDCC|CONDe
We have λ̃ = λ = τ . Let p@l ∈ Γ. From Definition 23 we have

D,C Γ≡
〈
Cc|l Γ, P | R

〉
l
| Sc

where

• P = if p.e {C1
Γ} else {C2

Γ} . tp .Mp

• R =
∏

r∈D(l)/{p}
Cc|r Γ. tr .Mr

• Sc =
∏

l′∈Γ/{l}

〈
Cc|l′ Γ,

∏
s∈D(l′)

Cc|s Γ. ts .Ms

〉
l′

The case unfolds into two cases, on whether eval(e,D.st(p) = true. Here we
proceed with the positive case. The other case follows the same structure.
We proceed considering that eval(e,D.st(p) = true. D,C Γ reduces with
Rules bDCC|EQe, bDCC|SPARe, bDCC|PARe, and bDCC|CONDe such that

D,C Γ →
〈
Cc|l Γ, Cc|p Γ. tp .Mp | R

〉
l
| Sc

where S =
〈
Cc|l Γ, Cc|l Γ. tp .Mp | R

〉
l
| Sc. D,C can mimic D,C Γ with

Rules bC|EQe, bC|PARe, and bC|CONDe such that

254

E.4. Proof of Compilation

D,C → D,C1 | Cc
We choose Γ′ = Γ for which it holds that Γ ` D,C1 | Cc .
Finally, D,C1 | Cc Γ= S by Definition 23.
Case bDCC|ASSIGNe
The case unfolds following the proof of caseC = Cstart |Cc, subcase bDCC|ASSIGNe,
and the thesis follows by applying the induction hypothesis.
Case bDCC|RECVe or bDCC|INSTARTe or bDCC|STARTe or bDCC|CQe
None of the Rules bDCC|RECVe, bDCC|INSTARTe, bDCC|STARTe, bDCC|CQe apply as
D,C Γmakes only one transition whilst all the listed Rules can appear only in
a sequence of interactions greater than one.

Case C = def X = C ′ in Cp | Cc or C = C1 | C2

In either cases the proof unfolds with the same structure of the previous cases
and the thesis follows by applying the induction hypothesis.

Case C = 0
Impossible since |{λ̃}| = 1.

Case |{λ̃}| > 1
We unfold the case on the structure ofD,C. Like in the previous case, we do not
consider the inapplicable cases for C containing (com) or (start) terms, which
cannot be present in endpoint choreographies.

For each AC configuration, we analyse the subcases on the structure of λ̃ =
λ′, λ̃′. Note that λ̃ contains all the annotation labels of execution since the com-
pilation of D,C Γ. Hence, we can exclude that the labels of the kind cq(x) and
?(x) as they can only appear later in λ̃′ after a sequence of assignments.

Case C = k : p[A].e -> B.o;Cp | Cc

Case λ′ = o@x
We can follow the same structure of the proof for case |{λ}| = 1, C =
k : p[A].e -> B.o;Cp | Cc, Rule bDCC|INSENDe (or bDCC|SENDe, depending on
whether {p@l, q[B] : k, q@l} ⊆ Γ or not), to prove that D,C → D′, C ′,

D,C Γ λ′−→ S and that there exists a Γ′ such that Γ′ ` D′, C ′ and D,C Γ′= S.
Then we can prove the thesis applying the induction hypothesis on the remain-
ing transitions in λ̃′ and D′, C ′.
Case λ′ = o from x
The case unfolds following the proof of case |{λ̃}| > 1,
C = k : A -> q[B].{oi(xi);Ci}i∈I | Cc, λ′ = o from x and the thesis follows
by applying the induction hypothesis on the remaining transitions in λ̃′.

255

Appendix E. Applied Choreographies: Proofs

Case λ′ = x
The case unfolds following the proof of case |{λ̃}| > 1, C = Cstart | Cc,
λ′ = x. Let x = k.C.l, the thesis follows by applying Lemma 32, Lemma 33
and the induction hypothesis on the remaining transitions in λ̃/ λ̃

∣∣∣
k
.

Case λ′ = τ
The case unfolds following the proof of case |{λ̃}| > 1,
C = if p.e {C1} else {C2} | Cc, λ′ = τ and the thesis follows by applying the
induction hypothesis on the remaining transitions in λ̃′.

Case C = k : A -> q[B].{oi(xi);Ci}i∈I | Cc

Case λ′ = o@x
The case unfolds following the proof of case |{λ̃}| > 1,
C = k : p[A].e -> B.o;Cp | Cc, λ′ = o@x and the thesis follows by applying
the induction hypothesis on the remaining transitions in λ̃′.
Case λ′ = o from x
We follow the same structure of the proof for case |{λ}| = 1,
C = k : A -> q[B].{oi(xi);Ci}i∈I | Cc, Rule bDCC|CHOICEe to prove thatD,C →
D′, C ′, D,C Γ λ′−→ S and that there exists a Γ′ such that Γ′ ` D′, C ′ and
D,C Γ′= S. Then we can prove the thesis applying the induction hypothesis
on the remaining transitions in λ̃′. Note that we can exclude that λ′ has been
generated applying Rule bDCC|RECVe since such occurrence cannot happen right
after the compilation of D,C.
Case λ′ = x
The case unfolds following the proof of case |{λ̃}| > 1, C = Cstart | Cc,
λ′ = x. Let x = k.C.l, the thesis follows by applying Lemma 32, Lemma 33
and the induction hypothesis on the remaining transitions in λ̃/ λ̃

∣∣∣
k
.

Case λ′ = τ
The case unfolds following the proof of case
|{λ̃}| > 1, C = if p.e {C1} else {C2} | Cc, λ′ = τ and the thesis follows by
applying the induction hypothesis on the remaining transitions in λ̃′.

Case C = Cstart | Cc

Case λ′ = o@x
The case unfolds following following the proof of case |{λ̃}| > 1, C =
k : p[A].e -> B.o;Cp | Cc, λ′ = o@x and the thesis follows by applying the
induction hypothesis on the remaining transitions in λ̃′.
Case λ′ = o from x
We follow the proof of case |{λ̃}| > 1, C = k : A -> q[B].{oi(xi);Ci}i∈I | Cc,

256

E.4. Proof of Compilation

λ′ = o from x and the thesis follows by applying the induction hypothesis on
the remaining transitions in λ̃′.
Case λ′ = x
Since λ′ = x, we know that we are at the beginning of the start of a new ses-
sion. We have two subcases on whether x = k.C.l or x = k′′.C.l. The latter
case is proven following the same structure of this case for C that contains the
start of a session on k′′. Below we develop the first case.
First we extract all the transitions in λ̃ regarding the start of session k. Let
λ̃k = λ̃

∣∣∣
k
. From Lemma 33 we know that, given the set of transitions λ̃k,

we can complete the start at DCC level such that D,C Γ
λ̃k,λ̃m−k−−−−−→ S ′ where

λ̃m−k are the remaining transitions to complete the start. We remind that,
since at AC level we replace k with a fresh session name k′, we follow the
same principle at DCC level applying the renaming [k′/k] — k′ fresh — on all
the involved processes. Then we can find D,C → D′, C ′ with Rule bC|PSTARTe
such that, for some Γ′, Γ′ ` D′, C ′ and D′, C ′ Γ′= S ′. Finally, we prove the
thesis applying Lemma 32 and the induction hypothesis on the remaining and
properly renamed transitions

(
λ̃/ λ̃

∣∣∣
k

)
[k′/k].

Case λ′ = τ
The case follows the proof of case |{λ̃}| > 1, C = if p.e {C1} else {C2} | Cc,
λ′ = τ and the thesis follows by applying the induction hypothesis on the
remaining transitions in λ̃′.

Case C = if p.e {C1} else {C2} | Cc

Case λ′ = o@x
The case follows the proof of case |{λ̃}| > 1, C = k : p[A].e -> B.o;Cp | Cc,
λ′ = o@x and the thesis follows by applying the induction hypothesis on the
remaining transitions in λ̃′.
Case λ′ = o from x
The case unfolds following the proof of case
|{λ̃}| > 1, C = k : A -> q[B].{oi(xi);Ci}i∈I |Cc, λ′ = o from x and the thesis
follows by applying the induction hypothesis on the remaining transitions in
λ̃′.
Case λ′ = x
The case unfolds following the proof of case |{λ̃}| > 1, C = Cstart | Cc,
λ′ = x. Let x = k.C.l, the thesis follows by applying Lemma 32, Lemma 33,
and the induction hypothesis on the remaining transitions in λ̃/ λ̃

∣∣∣
k
.

Case λ′ = τ
The case follows the same proof of case |{λ̃}| = 1,C = if p.e {C1} else {C2} |Cc,

257

Appendix E. Applied Choreographies: Proofs

λ′ = τ and the thesis follows by applying the induction hypothesis on the re-
maining transitions in λ̃′.

Case C = def X = C ′ in Cp | Cc or C = C1 | C2

In either cases the proof unfolds with the same structure of the previous cases
and the thesis follows by applying the induction hypothesis.

Case C = 0
Impossible since |{λ̃}| > 1.

258

	Abstract
	Acknowledgements
	List of Publications
	Table of Contents
	List of Figures
	Introduction to the dissertation
	Problem Description
	Aim and Thesis Statement
	Contributions
	Structure of the Dissertation

	I Introduction and Background
	Introduction to Choreographies
	Distributed Programming, in brief
	Problems of Distributed Programming

	The Service-Oriented Approach
	Breaking down complexity

	Orchestration
	Choreography
	Programming with Choreographies
	Contributions

	II Adaptable Choreographies
	Runtime Software Update and Adaptation
	Linguistic Constructs for Adaptation
	Reflection and Metaprogramming
	Aspect- and Context-Oriented Programming
	Adaptation in Process-Aware Information Systems

	Safe Update of Distributed Systems

	Dynamic Choreographies
	Introduction
	Dynamic Interaction-Oriented Choreographies
	DIOC Syntax
	Annotated DIOCs and their Semantics

	Dynamic Process-Oriented Choreographies
	DPOC syntax
	DPOC semantics

	Projection Function
	Running Example: Projection and Execution
	Projection
	Runtime Execution

	Connected DIOCs
	Correctness

	Adaptable Interaction-Oriented Choreographies in Jolie
	Introduction
	DIOC Language Extensions in AIOCJ

	AIOCJ Practice
	Implementation
	Validation

	III Applied Choreographies
	Applied Choreographies
	Introduction
	Applied Choreography Language
	Syntax
	Semantics
	An example

	Typing
	Types and Type Projection
	Type checking
	Runtime Typing
	Properties

	Endpoint Projection
	Projection Example
	Properties

	Dynamic Correlation Calculus Language
	Compiler from AC to DCC and Properties
	Compiler
	Example of Compilation
	Properties

	IV Conclusion
	Conclusion
	Adaptable Choreographies
	Adaptable Choreographies and their degree of flexibility

	Applied Choreographies

	V Appendix
	Adaptable Choreographies: Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	Adaptable Choreographies: Test Code
	Code used for validation
	Pipe and fork-join code
	AIOCJ programs used for benchmarking primitives

	Adaptable Choreographies: Models of Adaptation
	A distributed adaptive document system
	Pointcuts
	Dynamic wrappers

	ContextChat
	Online/Offline switch

	Applied Choreographies: Additional Material
	Applied Choreographies
	Typing
	Endpoint Projection
	Dynamic Correlation Calculus

	Applied Choreographies: Proofs
	Proofs of Subject Reduction and Session Fidelity
	Local and Typing Environment Subtyping

	Proof of Deadlock Freedom
	Proof of Endpoint Projection
	Minimal Typing
	Typing Projection
	Proof of Theorem 6
	EPP Theorem
	Proof of Theorem 7

	Proof of Compilation
	Proof of Theorem 8

