
ALMA MATER STUDIORUM · UNIVERSITÀ DI BOLOGNA

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI
Corso di Laurea Magistrale in Scienze di Internet

WORKFLOW PATTERNS FOR
SERVICE ORIENTED COMPUTING

IN JOLIE

Tesi di Laurea Magistrale in Intelligenza Artificiale

Relatore:
Chiar.mo Prof.
MAURIZIO GABBRIELLI

Presentata da:
SAVERIO GIALLORENZO

Sessione 1
Anno Accademico 2011/2012

a Mamma e Papà,
miei punti di riferimento,

grazie per aver sempre creduto in me,

anche se, non sempre, avevo ragione.

a Danny,
la migliore compagna che potessi desiderare,

grazie per avermi accettato nella tua vita

e per volerla condividere con me.

Sommario

Il presente lavoro di tesi ha come punto focale la descrizione, la verifica e la di-
mostrazione della realizzabilità dei Workflow Patterns di Gestione del Flusso (Control-
Flow) e Risorse (Resource) definiti da parte della Workflow Pattern Initiative (WPI)
in JOLIE, un innovativo linguaggio di programmazione orientato ai servizi nato
nell’ambito del Service Oriented Computing.

Il Service Oriented Computing (SOC) è un nuovo modo di pensare la program-
mazione di applicazioni distribuite, i cui concetti fondamentali sono i servizi e la
composizione. L’approccio SOC definisce la possibilità di costruire un’applicazione
in funzione dei servizi che ne realizzano il comportamento tramite una loro com-
posizione, definita secondo un particolare flusso di lavoro.

Allo scopo di fornire la necessaria conoscenza per capire la teoria, le meccaniche
e i costrutti di JOLIE utilizzati per la realizzazione dei pattern, il seguente lavoro
di tesi è stato diviso in quattro parti, corrispondenti ad altrettanti capitoli.

Nel primo capitolo viene riportata una descrizione generale del SOC e della Busi-
ness Process Automation (BPA), che costituisce l’ambiente in cui il SOC è inserito.
Per questo viene fatta una disamina della storia informatica sui sistemi distribuiti,
fino ad arrivare ai sistemi odierni, presentando in seguito il contesto del BPA e
delle innovazioni derivanti dalle sue macro-componenti, di cui il SOC fa parte.

Continuando la descrizione dell’approccio Service Oriented, ne vengono presen-
tati i requisiti (pre-condizioni) e si cerca di dare una definizione precisa del ter-
mine “servizio”, fino all’enunciazione dei principi SOC declinati nell’ottica delle
Service Oriented Architectures, presentando in ultimo i metodi di composizione dei
servizi, tramite orchestrazione e coreografia.

L’ultima sezione del capitolo prende in considerazione il SOC in un’ottica pretta-
mente industriale e ne evidenzia i punti strategici.

i

Il secondo capitolo è incentrato sulla descrizione di JOLIE, gli aspetti fondamen-
tali dell’approccio orientato ai servizi, che ne caratterizzano profondamente la
definizione concettuale (SOCK), e la teoria della composizione dei servizi.

Il capitolo non si pone come una descrizione esaustiva di tutte le funzionalità
del linguaggio, ma considera soprattutto i concetti teorici, le strutture di dati, gli
operatori e i costrutti di JOLIE utilizzati per la dimostrazione della realizzabilità
dei Workflow Pattern del capitolo successivo.

Il terzo capitolo, più lungo e centrale rispetto agli altri, riguarda la realizzazione
dei workflow pattern in JOLIE. All’inizio del capitolo viene fornita una descrizione
delle caratteristiche del WPI e dei Workflow Pattern in generale. In seguito, nelle
due macro-sezioni relative ai Control-Flow e Resource pattern vengono esposte al-
cune nozioni riguardanti le metodologie di definizione dei pattern (e.g. la teo-
ria sulla definizione delle Colored Petri Nets) e le convezioni adottate dal WPI,
per passare in seguito al vero e proprio lavoro (sperimentale) di tesi riguardo la
descrizione dei pattern, l’analisi sulla loro realizzabilità in JOLIE, insieme ad un
codice di esempio che esemplifica quanto affermato dall’analisi.

Come sommario delle conclusioni raggiunte sui pattern, alla fine di ognuna delle
due sezioni definite in precedenza, è presente una scheda di valutazione che, con
lo stesso metodo utilizzato e definito dalla WPI, permette di avere una rappresen-
tazione generale della realizzabilità dei pattern in JOLIE.

Il quarto capitolo riguarda gli esiti tratti dal lavoro di tesi, riportando un con-
fronto tra le realizzazioni dei pattern in JOLIE e le valutazioni del WPI rispetto
agli altri linguaggi da loro considerati e valutati. Sulla base di quanto ottenuto nel
terzo capitolo vengono definite le conclusioni del lavoro portato avanti sui pattern
e viene delineato un’eventuale scenario riguardante il proseguimento dell’opera
concernente la validazione ed il completamento della studio.

In ultimo vengono tratte alcune conclusioni sia riguardo JOLIE, nel contesto evo-
lutivo del linguaggio e soprattutto del progetto open-source che è alla sua base,
sia sul SOC, considerato nell’ambito del BPA e del suo attuale ambito di sviluppo
dinamico.

ii

Summary

This work sets its focal point in the description, verification and demonstration
of the feasibility of Workflow Patterns of Control-Flow and Resources, defined by
the Workflow Patterns Initiative (WPI) in JOLIE, an innovative service-oriented pro-
gramming language developed within the context of Service Oriented Computing.

The Service Oriented Computing (SOC) is a new way of thinking about program-
ming distributed applications, whose fundamental concepts are services and com-
position. The SOC approach defines the capability to build an application as a
composition of services that realize its behavior, according to a particular work-
flow.

In order to provide the necessary knowledge for understanding theories, mech-
anisms and constructs of JOLIE used for the realization of patterns, the work of
research conducted in this thesis has been divided into four parts, corresponding
to the same number of chapters.

In the first chapter a general description SOC is provided, along with an introduc-
tion to Business Process Automation (BPA), which constitutes the environment
where SOC is included. For this purpose a little historical overview about dis-
tributed systems has been included, up to nowadays. After that, the context of
BPA is presented, including the innovations arising from its macro-components,
whom SOC is part of.

Continuing the description of service oriented approach, its requirements (precon-
ditions) are taken into account, after whom a precise definition of the term "ser-
vice" is provided, which leads to the enunciation of SOC’s principles, declined in
the perspective of Service Oriented Architectures; ultimately the methods concern-
ing service composition - orchestration and choreography - are presented.

The last section of the chapter considers SOC in a strictly industrial perspective,

iii

highlighting its strategic features.

The second chapter focuses on the description of JOLIE, the fundamental aspects
of service oriented approach, which deeply characterize its conceptual definition
(SOCK), and the theory of composition of services.

This chapter isn’t intended as a comprehensive description of all language’s fea-
tures, but gives an overview of theoretical concepts, data structures, operators
and constructs of JOLIE used to demonstrate the feasibility of Workflow Patterns
in the next chapter.

The third chapter, the longest and most central in the context of this work, con-
cerns the implementation of Workflow Patterns in JOLIE. At the beginning of the
chapter a description of the characteristics of WPI and Workflow Patterns is pro-
vided, furthermore, in the two macro-sections about Control-Flow and Resource
patterns, there are some notions regarding the methods employed in patterns defi-
nition (e.g. the theory about Colored Petri Nets), as well as the conventions adopted
by WPI.

Finally the main (experimental) work of this thesis is presented, which concerns
the description of patterns, the analysis of their feasibility in JOLIE, along with a
sample code that illustrates what emerged from the analysis.

As a summary of the conclusions drawn on patterns, an evaluation table at the
end of each section is reported, using the same notation employed and defined by
WPI to represent the feasibility of each pattern in JOLIE

The fourth chapter concerns the results drawn from this thesis work, showing a
comparison between realizations of patterns in JOLIE and the evaluation of other
languages made by WPI. Based on the outcomes of the third chapter, the conclu-
sions of this work are drown, along with the delineation of a possible scenario,
about continuing the validation and completion of this study.

Finally some conclusions are drawn regarding both JOLIE, in the perspective of
the evolution of the language and especially the open-source project at its base,
and SOC, considered within the context of BPA and its currently dynamic growth.

iv

Contents

1 Service Oriented Computing 1

1.1 A bit of history . 1

1.2 A quantum leap in Business Process Automation 3

1.2.1 Business Process Management 4

1.2.2 Computational Logic . 5

1.2.3 Semantics . 6

1.2.4 Service Oriented Computing 7

1.3 Service Oriented Computing Preconditions 8

1.3.1 Autonomy . 9

1.3.2 Heterogeneity . 9

1.3.3 Dynamism . 10

1.4 What a “service” is . 11

1.5 Principles of Service Oriented Computing 12

1.5.1 Service Oriented Architectures 12

1.5.1.1 Loose Coupling . 15

1.5.1.2 Service Contract . 15

1.5.1.3 Abstraction . 15

1.5.1.4 Reusability . 16

1.5.1.5 Autonomy . 16

v

1.5.1.6 Statelessness . 16

1.5.1.7 Discoverability . 17

1.5.1.8 Composability . 17

1.5.2 Composing Services . 17

1.5.2.1 Choreography . 18

1.5.2.2 Orchestration . 18

1.6 In the shoes of an entrepreneur . 21

1.6.1 Long-lasting, easy changing 22

1.6.2 Enterprise Integration . 23

1.6.3 When it’s good to go SOC . 23

1.6.4 Never change a winning team (Legacy Systems) 24

2 A Java Orchestration Language Interpreter Engine 27

2.1 Dealing with services . 28

2.1.1 SOCK & JOLIE . 28

2.1.2 Services and Operations . 29

2.1.3 Interfaces . 31

2.1.4 Composition of statements and services 33

2.1.4.1 Sequence operator 34

2.1.4.2 Parallel operator . 34

2.1.4.3 Mixing Parallel and Sequential composition 34

2.1.4.4 Non-deterministic input choice 35

2.1.5 Sessions . 36

2.1.5.1 Correlation sets . 37

2.1.5.2 The init scope . 40

2.1.5.3 The global scope 40

2.1.6 Fault Handling . 41

vi

2.1.6.1 Scope, Install and Throw 41

2.1.7 Termination . 42

2.2 Data structures and Flow Control operators in JOLIE 43

2.2.1 JOLIE approach to structured data. 43

2.2.1.1 Basic data types and methods 43

2.2.1.2 Every JOLIE variable is a vector 45

2.2.1.3 JOLIE data structures and data structures’ operators 46

2.2.1.4 Including default interfaces 48

2.2.2 Flow Control Operators . 50

2.2.2.1 Conditional operators 50

2.2.2.2 Loop statements . 50

2.2.2.3 Synchronization statements 51

3 Workflow Patterns for SOC 53

3.1 Workflow Patterns and the Workflow Patterns Initiative 53

3.2 Control-Flow Patterns . 55

3.2.1 Control-Flow Patterns and Colored Petri-Nets 55

3.2.1.1 From Petri-Nets to Colored Petri-Nets 55

3.2.1.2 Representing Control-Flow in Colored Petri-Nets . 58

3.2.2 Adopted Conventions . 59

3.2.2.1 Dealing with simultaneous reaching branches . . . 59

3.2.2.2 Dealing with fault handling operations 60

3.2.3 Basic Control-Flow Patterns 61

3.2.3.1 Sequence . 61

3.2.3.2 Parallel Split . 62

3.2.3.3 Synchronization . 63

3.2.3.4 Exclusive Choice . 66

vii

3.2.3.5 Simple Merge . 70

3.2.4 Advanced Branching and Synchronization Patterns 72

3.2.4.1 Multi-Choice . 72

3.2.4.2 Structured Synchronizing Merge 75

3.2.4.3 Multi-Merge . 80

3.2.4.4 Structured Discriminator 83

3.2.4.5 Blocking Discriminator 88

3.2.4.6 Canceling Discriminator 91

3.2.4.7 Structured Partial Join 94

3.2.4.8 Blocking Partial Join 99

3.2.4.9 Canceling Partial Join 103

3.2.4.10 Generalized AND-Join 107

3.2.4.11 Local Synchronizing Merge 111

3.2.4.12 General Synchronizing Merge 114

3.2.4.13 Thread Merge . 118

3.2.4.14 Thread Split . 121

3.2.5 Multiple Instance Patterns . 123

3.2.5.1 Multiple Instances without Synchronization 124

3.2.5.2 Multiple Instances with a priori Design-Time Knowl-
edge . 126

3.2.5.3 Multiple Instances with a priori Run-Time Knowl-
edge . 128

3.2.5.4 Multiple Instances without a priori Run-Time Knowl-
edge . 130

3.2.5.5 Static Partial Join for Multiple Instances 135

3.2.5.6 Canceling Partial Join for Multiple Instances 137

3.2.5.7 Dynamic Partial Join for Multiple Instances 139

3.2.6 State-based Patterns . 143

viii

3.2.6.1 Deferred Choice . 143

3.2.6.2 Interleaved Parallel Routing 147

3.2.6.3 Milestone . 150

3.2.6.4 Critical Section . 153

3.2.6.5 Interleaved Routing 155

3.2.7 Cancellation and Force Completion Patterns 158

3.2.7.1 Cancel Task . 158

3.2.7.2 Cancel Case . 162

3.2.7.3 Cancel Region . 167

3.2.7.4 Cancel Multiple Instance Activity 169

3.2.7.5 Complete Multiple Instance Activity 171

3.2.8 Iteration Patterns . 173

3.2.8.1 Arbitrary Cycles . 173

3.2.8.2 Structured Loop . 174

3.2.8.3 Recursion . 176

3.2.9 Termination Patterns . 178

3.2.9.1 Implicit Termination 178

3.2.9.2 Explicit Termination 179

3.2.10 Trigger Patterns . 181

3.2.10.1 Transient Trigger . 181

3.2.10.2 Persistent Trigger 185

3.3 Summary Table of JOLIE Control-Flow Patterns Support 188

3.4 Resource Patterns . 190

3.4.1 What a “Resource” is . 190

3.4.2 Adopted Conventions . 191

3.4.2.1 Human resources, non-Human resources and pat-
terns implementations in JOLIE 191

ix

3.4.3 Resource Patterns and Workflow Structures 192

3.4.3.1 Work distribution to resources 194

3.4.4 Creation Patterns . 195

3.4.4.1 Direct Distribution 195

3.4.4.2 Role-Based Distribution 197

3.4.4.3 Deferred Distribution 199

3.4.4.4 Authorization . 201

3.4.4.5 Separation of Duties 204

3.4.4.6 Case Handling . 207

3.4.4.7 Retain Familiar . 209

3.4.4.8 Capability-Based Distribution 210

3.4.4.9 History-Based Distribution 214

3.4.4.10 Organizational Distribution 217

3.4.4.11 Automatic Execution 221

3.4.5 Push Patterns . 222

3.4.5.1 Distribution by Offer - Single Resource 223

3.4.5.2 Distribution by Offer - Multiple Resources 227

3.4.5.3 Distribution by Allocation - Single Resource 230

3.4.5.4 Random Allocation 231

3.4.5.5 Round Robin Allocation 233

3.4.5.6 Shortest Queue . 236

3.4.5.7 Early Distribution 238

3.4.5.8 Distribution on Enablement 239

3.4.5.9 Late Distribution . 240

3.4.6 Pull Patterns . 243

3.4.6.1 Resource-Initiated Allocation 244

3.4.6.2 Resource-Initiated Execution - Allocated Work Item 247

x

3.4.6.3 Resource-Initiated Execution - Offered Work Item . 248

3.4.6.4 System-Determined Work Queue Content 249

3.4.6.5 Resource-Determined Work Queue Content 252

3.4.6.6 Selection Autonomy 255

3.4.7 Detour Patterns . 258

3.4.7.1 Delegation . 258

3.4.7.2 Escalation . 260

3.4.7.3 Deallocation . 264

3.4.7.4 Stateful Reallocation 265

3.4.7.5 Stateless Reallocation 269

3.4.7.6 Suspension-Resumption 271

3.4.7.7 Skip . 274

3.4.7.8 Redo . 276

3.4.7.9 Pre-Do . 279

3.4.8 Auto-Start Patterns . 282

3.4.8.1 Commencement on Creation 282

3.4.8.2 Commencement on Allocation 284

3.4.8.3 Piled Execution . 287

3.4.8.4 Chained Execution 291

3.4.9 Visibility Patterns . 294

3.4.9.1 Configurable Unallocated Work Item Visibility . . 294

3.4.9.2 Configurable Allocated Work Item Visibility 296

3.4.10 Multiple Resource Patterns 297

3.4.10.1 Simultaneous Execution 297

3.4.10.2 Additional Resources 300

3.5 Summary Table of JOLIE Resource Patterns Support 303

xi

4 Conclusions 305

4.1 On Workflow Patterns & JOLIE . 305

4.1.1 Future works . 308

4.2 On JOLIE language . 308

4.3 On Service Oriented Computing and Business Process Automation 309

xii

List of Figures

1.1 Business Process Automation Areas (SOC exploded) 4

1.2 The Semantic Web Stack . 6

1.3 Web Services Stack (a view) . 8

1.4 Principles of Service Oriented Architecture 14

1.5 Orchestration Service Compositions 19

2.1 A composition of services in JOLIE 28

2.2 Requester-Responder Structure . 33

2.3 Session Data example . 37

2.4 Correlation Sets example . 39

3.1 Petri-Nets Elements . 55

3.2 A Colored Petri-Net Example . 57

3.3 Sequence pattern . 61

3.4 Parallel Split pattern . 62

3.5 Synchronization pattern . 63

3.6 Exclusive Choice pattern . 66

3.7 Simple Merge pattern . 70

3.8 Multi-Choice pattern . 72

3.9 Structured Synchronizing Merge pattern 75

3.10 Multi-Merge pattern . 80

xiii

3.11 Structured Discriminator pattern . 83

3.12 Blocking Discriminator pattern . 88

3.13 Canceling Discriminator pattern . 91

3.14 Structured Partial Join pattern . 94

3.15 Blocking Partial Join pattern . 99

3.16 Canceling Partial Join pattern . 103

3.17 AND-Join pattern . 107

3.18 Local Synchronizing Merge pattern 111

3.19 General Synchronizing Merge pattern 114

3.20 Thread Merge pattern . 118

3.21 Thread Split pattern . 121

3.22 Multiple Instances without Synchronization pattern 124

3.23 Multiple Instances with a priori Design-Time Knowledge pattern . 126

3.24 Multiple Instances with a priori Run-Time Knowledge pattern . . . 128

3.25 Multiple Instances without a priori Run-Time Knowledge pattern . 130

3.26 Static Partial Join for Multiple Instances pattern 135

3.27 Canceling Partial Join for Multiple Instances pattern 137

3.28 Dynamic Partial Join for Multiple Instances pattern 139

3.29 Deferred Choice pattern . 143

3.30 Interleaved Parallel Routing pattern 147

3.31 Milestone pattern . 150

3.32 Critical Section pattern . 153

3.33 Interleaved Routing pattern . 155

3.34 Cancel Task pattern (variants) . 159

3.35 Cancel Case pattern (variants) . 164

3.36 Cancel Region pattern . 167

3.37 Cancel Multiple Instance Activity pattern 169

xiv

3.38 Complete Multiple Instance Activity pattern 171

3.39 Arbitrary Cycles pattern . 173

3.40 Structured Loop pattern . 174

3.41 Recursion pattern . 176

3.42 Transient Trigger (safe variant) pattern 181

3.43 Persistent Trigger (control-flow variant) pattern 185

3.44 Workflow Model components . 193

3.45 Work Item Lifecycle . 194

3.46 Push Patterns . 222

3.47 Push Patterns . 243

3.48 Detour Patterns . 258

3.49 Auto-start Patterns . 282

4.1 Languages Patterns Support . 307

xv

xvi

List of listings

1 outputPort statement . 30
2 inputPort statement . 31
3 The inputPort statement . 32
4 requester Code . 32
5 The execution statement . 36
6 The cset statement . 39
7 The global scope . 40
8 Fault Handling example . 41
9 Termination example . 42
10 Vector size operator . 45
11 Undefinition operator . 46
12 Dynamic look-up operator . 47
13 With operator . 47
14 Deep copy operator . 47
15 Alias operator . 48
16 Console, Math and Time interfaces 49
17 If, else if and else operators . 50
18 For and While statements . 51
19 Synchronization statements . 52
20 Synchronization code example . 64
21 Exclusive Choice code example (if-then-else) 68
22 Exclusive Choice code example (non-deterministic choice) 68
23 Simple Merge code example . 71
24 Multi-Choice code example . 74
25 Structured Synchronizing Merge code example 78
26 Multi-Merge (server) code example 81
27 Multi-Merge (client) code example 82

xvii

28 Structured Discriminator (server) code example 85
29 Structured Discriminator (client) code example 86
30 Blocking Discriminator (server) code example 89
31 Canceling Discriminator (server) code example 92
32 Structured Partial Join (server) code example 96
33 Blocking Partial Join (server) code example 100
34 Canceling Partial Join (server) code example 104
35 Generalized AND-Join (server) code example 109
36 Local Synchronizing Merge (server) code example 113
37 General Synchronizing Merge (server) code example 115
38 General Synchronizing Merge (server) code example 116
39 Thread Merge (server) code example 119
40 Thread Merge (server) code example 119
41 Thread Split (server) code example 122
42 Multiple Instances without a priori Run-Time Knowledge (server)

code example . 132
43 Multiple Instances without a priori Run-Time Knowledge (client)

code example . 133
44 Dynamic Partial Join for Multiple Instances (server) code example . 140
45 Dynamic Partial Join for Multiple Instances (client) code example . 141
46 Deferred Choice (server) code example 144
47 Deferred Choice (client) code example 145
48 Interleaved Parallel Routing (server) code example 148
49 Interleaved Parallel Routing (client) code example 149
50 Milestone (server) code example . 151
51 Interleaved routing (server) code example 156
52 Cancel Task (guaranteed cancellation variant) code example 161
53 Cancel Case ("bypass" activity variant) code example 166
54 Recursion (workaround) code example 177
55 Transient Trigger (safe) code example 183
56 Persistent Trigger code example . 186
57 Role-Based Distribution code example 197
58 Deferred Distribution code example 199
59 Separation of Duties code example 205
60 Case Handling code example . 208
61 Capability-based Distribution code example 211

xviii

62 History-based Distribution code example 215
63 Organizational Distribution code example 218
64 Distribution by Offer - Single Resource code example 224
65 Distribution by Offer - Multiple Resource code example 228
66 Random Allocation code example 231
67 Round Robin code example . 233
68 Shortest Queue code example . 236
69 Late Distribution code example . 241
70 Resource-Initiated Allocation (single variant) code example 245
71 System-Determined Work Queue Content code example 249
72 Resource-Determined Work Queue Content code example 252
73 Selection Autonomy code example 256
74 Delegation code (snippet) example 259
75 Escalation code example . 260
76 Deallocation code (snippet) example 264
77 Stateful Reallocation code example 266
78 System-Determined Work Queue Content code example 270
79 Suspension-Resumption code example 272
80 Skip code example . 274
81 Redo code example . 277
82 Pre-Do code example . 280
83 Commencement on Allocation code example 284
84 Piled Execution (server) code example 288
85 Piled Execution (client) code example 289
86 Chained Execution code example . 292
87 Configurable Unallocated Work Item Visibility code example 295
88 Simultaneous Execution code example 298
89 Additional Resources code example 300

xix

xx

Chapter 1

Service Oriented Computing

This chapter is intended as a general overview about Service Oriented Computing
(SOC) and the environment in which its underpinning concepts have grown.

Before presenting the features offered by JOLIE and by its orientation to services
and their composition, it’s fundamental to understand why the next quantum leap
in Business Process Automation (BPA), passes by Service Oriented Computing, dis-
tributed systems, and especially reliable and expressive technologies.

In the sections of this chapter are taken into account several topics, starting from
a little historical introduction about BPA and SOC [1.1], continuing with a general
overview about the four foundational concepts linked to BPA and its evolution
[1.2].

After this general introduction the sections 1.3, 1.4, 1.5 and 1.5.1 are deeply fo-
cused in defining the elements and the main features of the Service Oriented ap-
proach, while the last section [1.6] tries to examine the features of SOC viewed as
a new strategic asset for the enterprise.

1.1 A bit of history

Making a brief tour on the history of BPA, it’s necessary to follow the evolution of
information technology from the perspective of both distributed computing and
information modeling.

1

CHAPTER 1. Service Oriented Computing

The birth of information technology and BPA is linked to big-sized centralized
processing machines, operated by one user at a time from simple terminals. Ter-
minals were used as mere input/output devices, lot of data were processed by
the mainframe, along with a considerable amount of computation time wasted by
waiting the inputs of the single user, during his work session.

The evolution of this mainframe-terminal paradigm brought to information sys-
tems organized according to the (now) widely known server-client architecture.
Servers, equipped with considerable computing power and storage, were dedi-
cated to heavy-load general-purpose processing and data retention, while clients
- running on personal computers - were used for processing specific and limited
amount of data and for managing data input and output from the servers.

Next peer-to-peer (P2P) networking changed the concept of client-server paradigm,
inasmuch as each peer of a P2P network works both as a server and as a client,
thus enabling the distributed processing of data, among the whole network.

Finally the last generation of information systems relies on cooperative but au-
tonomous, loosely-coupled and distributed components, which can be composed
collectively, in a modular way, to provide new solutions.

The bleeding-edge of this approach to composition and collaboration, is brought
further towards a higher degree of integration, not only letting each module co-
operate with each other, but even to making them “understand” each other. This
target is achieved by the fundamental division between data and application.

This first step, towards a more application-agnostic data management system,
was made thanks to the creation of a standardized Structured Query Language
(SQL) and the widely adoption of relational databases; although the semantics
of data were still strictly linked to the ad-hoc solution coupled with the Data Base
Management System.

The same kind of problem happened with the adoption of the Internet: for a long
time, data published and retrievable on the World Wide Web (WWW) had no stan-
dard format nor standardized methods to access it. This characteristic did not
compromise the incredible success of the WWW, since, in those “early” days, only
humans were supposed to read, understand and process the information, whilst
nowadays, it’s becoming more and more important to automatically understand
and process huge flows of information, possibly coming from different and not
coordinated sources.

2

CHAPTER 1. Service Oriented Computing

Thus, in recent times, the research for a “smarter” automated information pro-
cessing lead to develop four main areas of innovation, that characterize the next
generation of Business Automation technologies.

Anyway it’s very important to keep in mind that the more independent and dis-
tributed the resources on the WWW become, the greater is their value, although
this increased heterogeneity requires a greater effort to “extract” it. To this pur-
pose, web services, by bridging the gap between heterogeneous systems, promise
to ease the creation of distributed systems, whose high value can be seamlessly
extracted.

1.2 A quantum leap in Business Process Automation

As aforementioned, BPA aims to develop technologies that make possible and
(relatively) easy to extract value from distributed systems.

This technology is based on enabling the automatic creation of new services by
combining already existing services and data between heterogeneous contexts,
like business to consumers, business to business and internal business services.

The highly dynamic environment of today’s businesses needs a real “quantum
leap” in BPA, especially because of the closer and closer changes these systems
are subjected to, which require a lot of adjustments and, mostly, the continuous
verification of conformance between these changes and their working environ-
ment, that constitutes an unaffordable increasingly cost for companies.

The four areas of innovation that leads to this necessary leap are described in the
next subsections.

3

CHAPTER 1. Service Oriented Computing

Figure 1.1: Business Process Automation Areas (SOC exploded)

1.2.1 Business Process Management

Business Process Management (BPM) is an approach towards management that con-
siders it as a whole, whose focus is pointed at composing all the aspects of an
organization by means of an abstract view of all of its components.

The practice of BPM is made by four phases about process:

• design;

• modeling;

4

CHAPTER 1. Service Oriented Computing

• execution;

• monitoring and optimization.

One of the main technologies currently adopted by the market is BPEL – acronym
of Business Process Execution Language – whose purpose is to formally describe
business, helping to translate a design, which, generally, has been a “manual task”
so far.

Furthermore the standard which defines how to employ BPEL in describing the
interaction between (web) services is called WS-BPEL (Web Service-BPEL) and
since its standardization, in April 2003, more than thirteen engines has been de-
veloped by companies like Oracle, Microsoft, IBM and SAP, in order to create a
runtime environment for automatically created composition of services.

1.2.2 Computational Logic

Combination of preexisting services can give birth to new services, whose com-
plexity may become more and more difficult to manage. That’s why, another im-
portant area to push further the possibilities offered by BPA, is the automated
composition of a variety of services, according to specific situations.

Computational Logic (CL) actually provides algorithms necessary to achieve this.

At the heart of CL is an application-independent inference procedure, which:

• accepts queries from users;

• accesses the “facts” in its knowledge base;

• draws appropriate conclusions.

Thus, together with semantic description of business contexts, it is possible to
infer a sequence of activities and/or services that can solve a specific business
goal. Furthermore, by reasoning on already acquired knowledge, CL may extract
new information and record its conclusions in its own knowledge base.

This opportunity is reached by a conjunct work between Semantics [1.2.3] and
CL, describing problems and knowledge through ontologies and reasoning with
a wide set of algorithms and techniques like evidential, causal, induction, abduc-
tion, and deduction reasoning, along with natural language understanding and
enhancing.

5

CHAPTER 1. Service Oriented Computing

1.2.3 Semantics

Semantic models of business is the third pillar of BPA.

Semantics gives the power to express, in a machine-understandable language, the
knowledge of a system as well as the characteristics of services.

Nowadays there isn’t still a widely adopted standard in the strict sense, since the
market offers a wide plethora of standards and formal specifications, but, towards
this purpose, the W3C has proposed an architecture called the Semantic Web Stack,
whose technologies shall be adopted as a standard for interaction between Seman-
tic Web services.

Figure 1.2: The Semantic Web Stack

Some of the protocol defined in the architecture have already been developed and

6

CHAPTER 1. Service Oriented Computing

accepted as standard, like the Resource Description Framework (RDF), serialized into
a wide range of interchange formats, like XML, Turtle, N-Triples and JSON-LD.

Along with RDF comes the RDF Schema (RDFS) and the Ontology Web Language
(OWL) which provides respectively ontologies description and ontologies author-
ing, while the SPARQL Protocol and RDF Query Language (SPARQL) is the query
language used to search through RDF-based data and statements.

In addition to the aforementioned technologies, some have to be still developed
and standardized, like the Rule Interchange Format (RIF), whose alternative is the
Semantic Web Rule Language (SWRL), and whose purpose is to support rules for
describing relations, not directly described using the underlying technologies (e.g.
OWL).

It’s also notable that adequate methods and guidelines for annotation of business
objects and services are currently a bleeding-edge research subject, as well as the
tight group of tools available, and still in early developing phases, for working
with semantics in a business environment.

1.2.4 Service Oriented Computing

The paradigm introduced with SOC is a relatively new approach in thinking and
designing information systems.

The service oriented approach is pivoted in creating and composing loosely-coupled,
reusable and simple (web) services, instead of focusing on the creation of mono-
lithic, holistic and - in most cases - very complex applications, which bears with
them all the drawbacks that concerns keep running, maintaining and upgrading
such systems.

One of the focal points of this new way of thinking IT architectures, is the essential
need for a language to make possible bind and compose services, defining either
pre and post-conditions, along with a precise definition of procedures and their
outputs.

Research in both academic and business worlds is in great excitement on the sub-
ject and it’s currently addressing this issue, taking as reference web service tech-
nologies and in particular using WS-BPEL (a.k.a. BPEL4WS) [1.2.1] and WS-CDL
(a.k.a CDL4WS) for programming compositions.

7

CHAPTER 1. Service Oriented Computing

This is the context in which JOLIE comes into play, presenting an innovative alter-
native to WS-BPEL and in general to other orchestration languages as discussed
in Chapter 2.

Figure 1.3 provides a brief layered view on the main technologies that characterize
the stack of (web) services.

Figure 1.3: Web Services Stack (a view)

It’s important to empathize that, while the current focus in research and devel-
opment of new languages and tools is directed at defining a “static” approach to
make possible composition of services with ease and precision by a programmer
(human), the final endeavor of BPA and SOC is to allow services to understand
each other, in order to find solutions to problems expressed by the conditions
given by their users, letting them to automatically compose themselves.

1.3 Service Oriented Computing Preconditions

This section is intended as a continuation of section 1.2.4, focusing on SOC pre-
conditions, i.e. all of those components that lead and are necessary for designing

8

CHAPTER 1. Service Oriented Computing

and developing a service oriented system. Thus, let’s begin stating that distribu-
tion, decoupling, composition and collaboration must necessarily live in “open
environments”.

The most straightforward example of this “openness” in the wide spreading of the
Internet, instead of proprietary local area networks, which has been achieved only
with the adoption of a open approach towards heterogeneous and autonomous
systems. The key-concepts behind such an idea of openness are autonomy, het-
erogeneity and dynamism.

1.3.1 Autonomy

The autonomy of services reflects the autonomy of businesses and people behind
them.

Each organization which builds an application must be endowed with the capac-
ity to autonomously implement and control its own services, in the same way
as these organization are autonomous but still integrated into a - usually - thick
network of relations and transactions.

Furthermore autonomy is the leading path towards security and robustness, since
each service must be designed as atomic and not affectable by other services with
which it cooperates; this fact is very important considering that third party ser-
vices may have been implemented by misinterpreting guidelines or with faults.

It’s also true that autonomy means the impossibility to control (to force) other
(third party) components to do any specific task. This is the most explicit case
of robust service design, such that, if the requested task isn’t completed, the re-
questing application can “understand” it and apply the corresponding counter-
measures.

1.3.2 Heterogeneity

Along with autonomy goes heterogeneity.

Heterogeneity means no centralized or top-down design over the different com-
ponents of a system. This approach toward services has both historical and “so-
ciopolitical” reasons, since the most part of today’s organizations have a good

9

CHAPTER 1. Service Oriented Computing

chance to have accumulated a substantial set of legacy applications, components
and business objects which, at the time of their design, were built for mostly sin-
gle or narrow purposes. Since “collaboration” wasn’t among requirements, each
designer made his own application based on his knowledge and suiting to its
working environment, along with needed performances and constraints linked to
its tasks.

Thus applications heterogeneity can be declined at each level of a system, starting
from transmission media, to networking protocol, to encoding and serialization
of information and data formats.

On this matter it’s remarkable that, while maintaining an open approach, stan-
dardization of protocols and formats (not design) can improve productivity by
means of enhanced interoperability1; it’s also notable that composition along with
migration, data retrieval and conversion from legacy systems is considerably sim-
pler and less error-prone if supported by the employment of standards, especially
the open ones.

1.3.3 Dynamism

Summed together heterogeneity and autonomy lead to dynamism among system
which collaborate into an open environment.

Dynamism is the essence of SOC: any environment in which services and applica-
tions aren’t controlled directly by a central manager and whose implementation
is not pre-determined, is a dynamic one.

In this environment services can both change their behavior according to their
owners’ needs and become available or unreachable independently.

Designing services that collaborate in such a system means taking into account
and dealing with this dynamic behavior, in which components can be available,
depart, be modified and substituted dynamically.

1Internet Protocol (IP), HyperText Transfer Protocol (HTTP), Universal Characters Set (UCS) and
UCS Transformation Formats (e.g. UTF-8), eXtensible Markup Language (XML) are some of the most
known widely adopted standards in the IT world.

10

CHAPTER 1. Service Oriented Computing

1.4 What a “service” is

Defining what can be identified a “service” has the same burden that theorists and
technologists of previous generation tackled in defining the concept of “object”,
during the development of the object oriented paradigm.

Different organization gives different definition of service, some of them are re-
ported as it follows:

“A piece of business logic accessible via the Internet using open standard.”

Microsoft

“Services are collections of capabilities.

A Service is a unit of solution logic to which service-orientation has been
applied to a meaningful extent.

Services exist as physically independent software programs with specific de-
sign characteristics that support the attainment of the strategic goals associ-
ated with service-oriented computing.

A Web service is a body of solution logic that provides a physically decoupled
technical contract consisting of a WSDL definition and one or more XML
Schema definitions and possible WS-Policy expressions.

In a Web service Capabilities are exposed as operations.”

Thomas Erl

“Loosely coupled software components that interact with one another dynam-
ically via standard Internet technologies”

Gartner

“A software application identified by a URI, whose interface and binding are
capable of being defined, described and discovered by XML artifacts and sup-
ports direct interactions with other software applications using XML-based
messages via Internet-based protocols.”

11

CHAPTER 1. Service Oriented Computing

World Wide Web Consortium

It’s worth reading and understanding how difficult can be to converge towards a
single definition, while each organization and person tries to figure out, accord-
ing to their different perspectives, backgrounds and concerns, the meaning of a
service and, on top of that, the possibilities of a still-nebulous matter such as SOC.

The least common denominator of all of those definitions is that a service is a
capability provided and exploitable, either remotely or not. According to this
viewpoint, the definition of a Web Service is a service whose functionality can be
required over the Web.

Stated the basic definition of what a service is, the next section tries to delineate
the main principles of Service Oriented Computing.

1.5 Principles of Service Oriented Computing

SOC represents a new paradigm in thinking, designing and building business ap-
plications which focuses on openness and flexibility, that, in turn, mirrors itself
into a new way of thinking about business work items, offered service and struc-
tures.

1.5.1 Service Oriented Architectures

Switching to a new design paradigm necessitate the switch to a new architectural
paradigm, such that the way the system is structured reflects the same essential
properties its components share. In this way the whole system can count on a
solid structural and theoretical integrity, which fosters integration, collaboration
and development among services.

This kind of approach is called Service Oriented Architecture (SOA) and its main aim
is to employ the principles of SOC into a cohesive framework - the architecture
itself - in order to be applied seamlessly in software development and production.

Since this research area is receiving so much attention from either the scientific
and the industrial community, several “SOAs” have been provided from multiple
sources, each satisfying the underpinning elements of SOC. Thus no particular

12

CHAPTER 1. Service Oriented Computing

SOA will be taken into account in this work, instead the key elements of SOA
- and therefore of SOC - are listed and described.

13

CHAPTER 1. Service Oriented Computing

Figure 1.4: Principles of Service Oriented Architecture

14

CHAPTER 1. Service Oriented Computing

1.5.1.1 Loose Coupling

Services are loosely coupled, thus they implement low consumer coupling re-
quirements and are themselves decoupled from their surrounding environment.

By fostering a reduction in coupling between and within services, their contracts
became increasingly independent from each other. Such independence is guar-
anteed by their contracts too, lowering the dependence between a service and its
implementation.

In this way service can seamlessly evolve, lowering the impact of their evolution
within their consumers environment.

1.5.1.2 Service Contract

Service within the same service-inventory are in compliance with the same con-
tract design standard.

This means that a service contract - the collectively defined communication agree-
ment between services of the same service-inventory - shall both be provided with
the service and standardized by a general application of design standards. This
element is important to achieve a meaningful level of interoperability either be-
tween services from the same inventory or from different ones.

Compliance on contracts leads to consistency between data models and conse-
quently to a general simplification in understanding purposes and capabilities of
services.

1.5.1.3 Abstraction

Non-essential service information is abstracted.

This principle states the importance to keep contracts light, publishing only es-
sential information about the service, in order to provide a concise and balanced
amount of details about the service, preventing unnecessary access to additional
non-essential details.

In this way services guarantees a high level of abstraction from logic, functions
and technology of its implementation, while proving the essential information
about constraints and requirement necessary to interact with them.

15

CHAPTER 1. Service Oriented Computing

1.5.1.4 Reusability

Services are reusable.

The SOC way to think about services is also about considering them like assets.
In this perspective, reusability of assets is one of the highest strategic key point:
using an acquired asset for multiple tasks increases the return on its initial invest-
ment.

Furthermore the reusability of services may give birth to a “service inventory”
- or even to a set of them - which contains services whose logic is associated with
a sufficiently agnostic context, to be reusable in any usage scenario.

1.5.1.5 Autonomy

Services are autonomous.

Services are highly autonomous in determining and controlling their underlying
runtime execution environment.

This principle requires an high level of control over how service logic is designed
and developed and above all, it must be well-defined the functional boundary of
a service, which, as the principles states, mustn’t be overlapped with the one of
another service.

Thus execution environments of services must foster service-exclusive level of
control, high concurrency and distributable deployments.

1.5.1.6 Statelessness

Services must minimize statefulness.

Statefulness means low degree of scalability in order to maintain a permanent
state. In the contrary, services’ states must be temporary and develop a state-
agnostic logic, with state management deference.

State deferral is the key-concept of this principle, since by deferring the manage-
ment of state information, consumption of resources is lowered and the potential
reuse of the service is improved.

16

CHAPTER 1. Service Oriented Computing

1.5.1.7 Discoverability

Services are discoverable.

Services communicate meta-data by with they can actually be discovered and in-
terpreted.

An organization which possesses a large - or a lot of - service inventory, can ben-
efit of an high level of discoverability of its services, each service’s purposes and
capabilities are clearly expressed, thus both humans and software programs can
understand and interpret them.

To achieve an high level of service discoverability the existence of design stan-
dards, governing the meta-data used to make service contracts discoverable and
interpretable, is imperative.

1.5.1.8 Composability

Services are composable.

Although service composability can be seen as a declination of service reusability
- which fosters and enables wide-scale service composition -, composability brings
this concept a step further, defining one of the most important and ultimate goal
of SOC.

Composability of services means to consider each service as a potential member
of a composition and thus, approaching to its design and realization with this
capability in mind.

Composability encloses all of the aforementioned principles since, to achieve high
efficiency in composition among services, reusability must walk along with highly
efficient execution environments, in which concurrency is boosted at its maximum
degree, managing resources used by services in the most efficient way - stateful-
ness and autonomy - and designing flexible contracts in order to facilitate different
types of data exchange requirements for similar functions.

1.5.2 Composing Services

In the previous sections the main principles of SOA and SOC have been listed
and commented, from that exposition emerged that the criterion of composability

17

CHAPTER 1. Service Oriented Computing

among services is the all-comprehensive key-concept.

Although the definition of the principle of composition states the underpinning
requirements in designing services and their environment, it’s noteworthy that,
like any other abstract principle, it asserts the free interpretation of the modalities
in which the composition among services is realized.

Focusing on this topic, two opposite approach can be followed in realizing com-
position of services. These two techniques face the problem of composing ser-
vices from two perspectives at odds: one from a choreographic (distributed) point
of view, the other from an orchestrational (centralized) one.

1.5.2.1 Choreography

Choreography focus on the collaboration of each party in the composition. Any
service that takes part in the interaction knows and describes its own role (or part),
while Choreography tracks the sequence of messages sent and received by the
participants. Thus Choreography deals with the public message exchanges that
occur between multiple services without defining a “director” of the conversation
and simply defining the “contents” of the conversation that should be undertaken
by the participants, letting each party collaborate in a peer-to-peer interaction.

Hence Choreography is about describing the interaction between each service,
which comprehends control-flow2, data-flow, message correlation (sessions), time
constraints, transactional dependencies and the like; these elements are needed to
capture and control interactions from a global perspective, letting each peer play
its own role.

1.5.2.2 Orchestration

The second approach for composing services is to orchestrate them. Orchestration
looks at the problem of defining the collaboration among services from a central-
ization perspective.

The orchestrator is a “superior” process (service) endowed with the capability
to regulate communications and execute internal actions including data transfor-
mation, and advanced composing operations - not declared in any other service

2not on the internal logic of a service, but on “correctness” of the sequence of interactions
between services.

18

CHAPTER 1. Service Oriented Computing

interface, like embedding other services or legacy applications for both manage-
ment granularity of resources and system upgrade with backward compatibility.

Hence service composition, in the context in a Orchestration, may make use of
operations which overcome the simple composition, allowing the orchestrator to
perform advanced compose operations. In Figure 1.5 the simple composition of
services is represented by the interactions with Service C that are performed over
the network.

As a foretaste of JOLIE overview provided in Chapter 2, three of these “advanced
compose operations”, taken from the operational context of the language, are an-
alyzed.

Figure 1.5: Orchestration Service Compositions

1.5.2.2.1 Embedding

Embedding is the composition of more than one service into the same con-
tainer.

Embedding services into the same container allows the use of internal communi-
cation mechanism without the need of the network. This feature can be exploited
for security, backward compatibility (legacy systems) and performance issues.

19

CHAPTER 1. Service Oriented Computing

Furthermore the capability to embed services boosts the granularity management
of services in the systems, as well as making possible to overcome limitations and
performance degradations that comes with passing each communication via the
network.

On the contrary, the practice of embedding “utility” services like the ones provid-
ing mathematical functions, logging or time management unburdens the need to
deploy each auxiliary service in the network.

In Figure 1.5 the embedding of services is represented by the inner interaction
between services A and B.

1.5.2.2.2 Redirecting

Redirecting allows for the creation of a master service, acting as a single com-
munication endpoint to multiple services which are called resources.

A redirecting service - the service Mr in Figure 1.5 - is a master service which re-
ceives messages directed to a certain resource (service) and then forward them
towards the corresponding services.

This behavior is obtained by binding an input port of the master service to multi-
ple output ports, each identifying a specific service (via its “resource” name).

This approach give birth to a wide range of architectural possibilities, like the
capability to provide an unique gateway for the clients of the system.

In this way the dynamic relocation/replacement of services can be done transpar-
ently with respect to clients; furthermore this capability can be exploited for “fil-
tering” and even “transforming” messages directed towards the resources, mak-
ing possible for the master to act like a router/firewall, forwarding, commuting
or discarding incoming messages from outside the system.

It’s worth noting that redirection not necessarily hides the services behind it, as
represented in Figure 1.5 where service A can invoke any of the redirected re-
source by means of their names (anyway passing through Mr).

1.5.2.2.3 Aggregation

20

CHAPTER 1. Service Oriented Computing

Aggregation is a redirecting composition of services whose interfaces are joined
together and published as unique.

Aggregation can be seen as an evolution of the redirection service.

In this case the master service groups more services under the same interface, thus
no “resource” is directly callable by an outer communication. On the contrary the
master service exposes an interfaces which declares to provide the functionality
of the resources it aggregates.

The concept of this kind of composition that, instead of simply redirecting to
services, aggregation makes clients loose any knowledge about the services be-
hind the aggregation itself. Hence, one of the main advantages of this composing
method is to deal with the necessity to completely hide the component of the sys-
tem from the outside.

With reference to Figure 1.5, Ma represents the aggregation service which receives
the request to execute op1 from an outer service (C) and seamlessly passes it to
service G which implements it.

1.6 In the shoes of an entrepreneur

Service orientation it’s being a long-talked topic in both research and business
environments as part of the forthcoming BPA revolution treated in section 1.2. In
previous sections SOC principles and its approach have been diffusely described
and commented, but it’s worth to keep in mind that, besides the importance of a
solid and consistent theoretical structure, the affirmation of a new technology or,
in this case, of a new way of thinking about applications and their architectures,
is strictly linked to the adoption of that technology in business world.

Considering SOC from the perspective of an entrepreneur - and more generally,
from an industrial point of view -, gives the opportunity to cross the wall which
usually divides research departments and industrial production chain, highlight-
ing strengths and weaknesses of the “new kid on the block”.

21

CHAPTER 1. Service Oriented Computing

1.6.1 Long-lasting, easy changing

As stated when enumerating the principles of SOC, thinking about applications,
in a service oriented context, means considering a long-time, profound and durable
change in application architectures. In particular, the major modification in the
way an application or, generally, a software asset shall be seen, regards the change
itself.

Until recently, it has been the degree of adaptation of a design model (or an archi-
tecture), with respect to the business needs, the main key-point for deciding on
which technology to invest in.

Contrariwise, the fast-changing environment in which the most part of indus-
tries are embedded nowadays, requires a reconsideration, fostering the degree of
adaptability in place of adaptation.

This is a real revolution in thinking about business assets and industrial plan-
ning, since applications have usually been considered long-lasting - and dedi-
cated - investments, whose biggest span in their lifecycle begins with their release
(deployment), as the final output of a development process. This span is formally
called “maintenance” and it’s characterized by an intensive use of the application,
which, at most, may require the implementation of minor changes, bugs fixing
and performance adjustments. These are the only interventions operated on the
software until its removal.

Conversely the present and near-future strategic value on which basing the eval-
uation of application designs and architectures is their degree of adaptability to-
wards new, complex and systemic needs.

In this context SOC plays an important role, since thinking applications in term
of services is thinking about them in the terms of their relations, their connections
and the way they can be changed, combined and composed, in order to achieve
either general or specific solutions.

The modular and additive approach of SOC fosters the accumulation of func-
tionality which, from a restricted initial set, can rapidly expand by building and
adding new services on top of the previously acquired ones.

22

CHAPTER 1. Service Oriented Computing

1.6.2 Enterprise Integration

Orientation to services isn’t a new concept for thinking about resources in a firm:
the most part of business functions in modern enterprises are viewed as services
and the resulting organization model fosters the aggregation of staff and resources
according to the services they perform within the organization itself. Each de-
partment’s services are needed by and depend from others, in order to fulfill their
tasks and thus the objectives of their company.

The aforementioned concept applies for designing service oriented applications,
which are characterized by the principles of standardization, abstraction, reusabil-
ity, autonomy and composability described in section 1.5.

Actually there’s much ado about enterprise integration of SOC and, as any evolv-
ing and not clearly defined technology, its principles - and its buzzword in par-
ticular - has been applied, to some extent, to a wide set of applications from any
kind of distributed system, even including process, policy or semantic manage-
ment systems.

As clearly stated in section 1.2, there is a subtle but important difference between
all of these concepts, and to fully take advantage of them, it’s important to under-
stand their role, their tasks and even the “gray” areas in which they can overlap
in a synergistic manner.

1.6.3 When it’s good to go SOC

Competition, globalization and faster technology advances call for fast-adapting
companies, whose capability to conform their structure to new and unexpected
market conditions determines their performances and, ultimately, their success.

The main benefit of SOC is that, by building applications in a modular and com-
posable way, efforts and time needed to integrate a new functionality in the enter-
prise system drastically decrease.

However, like each new and raising technology, SOC isn’t the silver-bullet for
taming any problem of an enterprise, rather it might become an issue if applied
thoughtlessly.

SOC is a technology which requires an high level of acquaintance about either its
principles and the objectives to be accomplished, along with an ad-hoc process

23

CHAPTER 1. Service Oriented Computing

plan to coordinate design of interfaces and development of modules.

However, while getting acquainted with SOC requires some significant initial in-
vestment, these expenses rapidly bear their fruits and a lot of companies that have
started using SOC continue and expand their use of it.

Clearly shifting from a “monolithic” to a service oriented approach bears some
issues, above all linked to re-thinking from scratches the previously realized ap-
plications in term of their services, trying to boost each component’s reusability.

Compared with traditional and even client-server applications, SOC systems in-
troduces the need to address a range of theoretical and practical issues, derived
from the necessity of managing the interactions between applications, spread across
multiple platforms, possibly running on an heterogeneous mix of operative sys-
tems and developed by separate and autonomous groups.

SOA is part of the solution, since its principles clarifies the system design, isolating
each module from each other and boosting the creation of a efficient documenta-
tion of interfaces.

Testing the adaptability of SOC in the specific context of a company is relatively
easy and bears a little cost, but choosing to completely “go SOC”, it’s a strategic
choice leading to significant long-term costs (and benefits), which must be well
pondered, as it commits a deep impact in how business units relate to each other.

1.6.4 Never change a winning team (Legacy Systems)

Today’s companies have accumulated a lot of assets in terms of data and appli-
cations - procedures - which constitutes both a strategic resource of success and a
damper to enterprise’s business modernization.

Handling preservation, conversion and integration of legacy systems has a strong
economic impact on the budget of any company.

Each system (application or data) acquisition has required an investment by the
company and returns a profit. Hence the firm benefits of this investment until its
returns are overcome by expenses connected to its maintenance, inefficiencies or
lock-in switching costs.

While switching to a new architectural paradigm usually means undertaking new
costs linked to legacy systems replacement, using SOC for designing an “um-

24

CHAPTER 1. Service Oriented Computing

brella” system over the whole company, allows the achievement of two features:
retrofit of legacy systems and sharability of legacy systems’ services.

By retrofitting a legacy system into a larger, service oriented, one, the investment
undertaken for its acquisition, isn’t “lost” in (re)building a new one - possibly
with the same identical features - but it becomes part of the development of the
new system, where some (selected, useful) parts of the legacy application are in-
tegrated as services.

Furthermore the newly retrofitted services become usable by (and shared to) any
other service or business unit, letting the whole organization take advantage of
the services provided by the legacy system.

25

CHAPTER 1. Service Oriented Computing

26

Chapter 2

A Java Orchestration Language
Interpreter Engine

The following chapter is focused on the description of JOLIE, the fundamental
aspects of the service oriented approach which deeply characterize it, and the
theory of services composition.

This chapter contains both theoretical definitions and practical examples, but it’s
noteworthy that the following sections are not intended to be an exhaustive de-
scription of all of the features, constructs and theoretical concepts behind JOLIE,
instead it’s designed as a brief overview of the language’s constructs used in this
work, in order to provide the required knowledge to understand the realizations
of workflow patterns given in Chapter 3.

Such overview is divided into two sub-parts: the first traces a path that starts with
the definition of operations and communications among services, leading to their
composition and instances management; the latter relates to “side” concepts of
the language, which are involved in data and workflow handling.

As an introducing example, Figure 2.1 provides the representation of an inter-
esting composition of services. In the example Service 1 is the master service
(orchestrator) of the composition which manages separately the communications
with other services by means of their sessions. These communications are made
on various media and protocols. Service 3 communicate via Bluetooth using the
SOAP protocol, Service 4 via the Internet (HTTP/TCP/IP), while Service 2, using
the internal network which also Service 1 belongs to, embeds a legacy system by

27

CHAPTER 2. A Java Orchestration Language Interpreter Engine

means of a Java Bridging Class.

Figure 2.1: A composition of services in JOLIE

2.1 Dealing with services

2.1.1 SOCK & JOLIE

The fundamental feature of JOLIE language is its innovative approach in compos-
ing services.

While maintaining an imperative programming paradigm - which contrasts with
the declarative one, used by the most part of other orchestration languages - JOLIE
provides a simple yet expressive environment in which services can be composed
in several different manners.

JOLIE has been developed as a realization of the theoretical process calculus Ser-
vice Oriented Calculus Kernel (SOCK) which is a process calculus developed for
representing service behavior, engines and systems.

28

CHAPTER 2. A Java Orchestration Language Interpreter Engine

Organized in five layers (service behavior, service engine state, service engine corre-
lation, service engine execution and services system), one overlapped on the other,
SOCK is meant for precisely describe each possible execution path of a composi-
tion of services, whose behavior is the emergence of actions and executions among
the level previously defined.

In SOCK are discussed the main features of communications, based on exter-
nal/internal inputs, output actions and service locations, that are the theoretical
basis upon which the JOLIE language has been built on.

The primitives defined by SOCK and involved in modeling such behaviors are
four and are divided in input and output operations.

Input operations are:

• One-Way: which has the task to receive a request message;

• Request-Response: whose task is to receive a request message and to send
back a response message to the invoker.

Output operations are:

• Notification: that has the task to send a request message (complementary
action of the One-Way operation);

• Solicit-Response: whose task is to send a request message, waiting for the
corresponding response to be sent back from the invoked resource (comple-
mentary action of the Request-Response operation).

Based on this approach, JOLIE implements orchestration between services upon
their communication.

2.1.2 Services and Operations

Given the approach described by SOCK in the previous section and the fact that
JOLIE is strictly related to this concepts, the practice of writing a program in JOLIE
results in the composition two parts: a behavioral and a deployment one.

29

CHAPTER 2. A Java Orchestration Language Interpreter Engine

As a matter of facts, the behavioral part is about the definition of the workflow of
the orchestrator, which directly corresponds to the higher levels of SOCK’s stack,
whereas deployment part relates to the lower (engine) levels of the stack.

Mention should be made apart for the service system layer, which has no direct
correspondence in JOLIE language, although its definition finds its realization in
the Communication Core of the language interpreter.

Services can invoke (and in a complementary manner, being invoked by) other
services, in order to make possible a more complex behavior, towards the comple-
tion of a defined task. Composing services is all about making them communicate
with each other, and communications in JOLIE are modeled upon operations iden-
tified by SOCK and reported in Section 2.1.1.

Declined in JOLIE context, an operation is defined as a functionality which is ex-
posed by a service and that can be invoked by other services. As already stated,
there are two different kind of input operations, namely One-Ways and Request-
Responses, to which correspond their output counterparts called Notifications and
Solicit-Responses.

Let’s consider the scenario of two services, namely the requester and the responder,
in which the requester wants to invoke one the services exposed by the responder.
The invocation of one of responder’s services by the requester implies, at first, the
definition of an output port in the requester’s preamble. Such definition is required
to state Location, Protocol and Interfaces (operations) exposed by the responder and
that are invoked by the requester itself.

This is made possible in JOLIE by the outputPort statement, whose example is
shown below:

Listing 1: outputPort statement

1 outputPort Responder{
2 Location: "socket://localhost:8000"
3 Protocol: sodep
4 Interfaces: responderInterface
5 }

According to the example above, the output port identifies:

• the location (of the responder’s service) at the localhost of the running sys-
tem (at port 8000);

30

CHAPTER 2. A Java Orchestration Language Interpreter Engine

• the protocol used to communicate is the Simple Operation Data Exchange Pro-
tocol (SODEP);

• the operations that can be invoked are described by the myServiceInterface
interface (whose definition is discussed afterwards [2.1.3]).

Once defined the invocation of the service, it must be declared the corresponding
input port in the responder’s preamble; specular to the outputPort, the inputPort

statement example is provided as it follows.

Listing 2: inputPort statement

1 inputPort Responder{
2 Location: "socket://localhost:8000"
3 Protocol: sodep
4 Interfaces: responderInterface
5 }

It’s worth noting that JOLIE has been expressly designed with a transport-and-
protocol-agnostic approach, in fact by specifying Locations and Protocols of an
interface, any kind of communication medium (TCP/IP, Bluetooth, Java RMI, etc.)
and protocol (SODEP, SOAP, HTTP, etc.) can be used to let services communicate
to each other.

2.1.3 Interfaces

In the previous section has been taken into account the definition of the “rules”
(location, protocol to use, exposed interfaces) of communication between services.

This section is focused on delineating the meaning of a service interface and its
purposes in JOLIE.

An interface is a collection of operations that can be used (and re-used) in input
and output port definitions. In JOLIE interfaces are a very useful means of sharing
services’ interfaces between different applications. With reference to the example
in previous section, there’s no need to duplicate the definition of the operations
invoked by the requester and exposed by the responder; on the contrary, it suffices
to declare the respoderInterface once, by means of the interface construct.

31

CHAPTER 2. A Java Orchestration Language Interpreter Engine

In the scope of the interface definition, OneWay and Request-Response operations
can be specified by the corresponding statement (OneWay: and Request-Response:

respectively) followed by their names, one after the other, divided by a “,”.

This is done, in practice, by writing a responderInterface.iol file, whose content
is reported as it follows.

Listing 3: The inputPort statement

1 interface responderInterface{
2 OneWay: oneWayA, oneWayB
3 Request-Response: request-responseA, request-responseB
4 }

Finally the interface can be included in both requester and responder applica-
tions (written in requester.ol and responder.ol files) by means of the include

statement.

For the sake of brevity, only the code of the requester is showed below.

Listing 4: requester Code

1 include "responderInterface.iol"
2

3 outputPort Responder{
4 Location: "socket://localhost:8000"
5 Protocol: sodep
6 Interfaces: responderInterface
7 }

As can be seen, the responder exposes (and the requester can invoke) four opera-
tions, two One-Ways and two Request-Responses. A graphical representation of
the structure assembled until here is given by Figure 2.2.

32

CHAPTER 2. A Java Orchestration Language Interpreter Engine

Figure 2.2: Requester-Responder Structure

2.1.4 Composition of statements and services

Once described how services can communicate with each other, it’s important to
understand how services’ behaviors are realized in JOLIE.

Each JOLIE program must define a main procedure, which represents the service’s
entry point of execution. The main procedure can contain any kind of process and
moreover, it can be preceded (or succeeded) by definitions of auxiliary procedures
and/or initialization code1.

As aforementioned, JOLIE offers a definition statement (define) which allows the
specification of procedures callable from other code, by their name. It’s notewor-
thy that, defined procedures do not implement any “procedural programming”
behavior (value passing, local variable state and the like), and their implementa-
tion in JOLIE is only meant for recurrent code repetition avoidance. For a better

1the initialization (init) block is explicitly described in section 2.1.5.2
33

CHAPTER 2. A Java Orchestration Language Interpreter Engine

understanding of defined procedures and data handling, is made reference to the
Section 2.2 about data structures in JOLIE.

Composition rules and statements are the same for either main, init and defined
procedures and they offers the possibility to compose statements in sequence, par-
allels or in a non-deterministic input choice manner.

2.1.4.1 Sequence operator

The sequence operator in JOLIE is “;”2 and it specifies that the statement at its left
side is executed before the one at its right. For a more accurate description of this
operator is made reference to the section 3.2.3.1.

2.1.4.2 Parallel operator

The parallel operator in JOLIE is “|” and it specifies that both statements which
surround it are executed concurrently. For a more accurate description of this
operator is made reference to the section 3.2.3.2.

2.1.4.3 Mixing Parallel and Sequential composition

It’s important to understand the priorities set in JOLIE when mixing sequentially
and parallelly composed statements.

In fact the parallel composition has always priority over the sequential one.

Thus, considering an example in which are involved four statements and whose
composition shall be:

• the execution of A;

• followed by the parallel execution of B and C and, after their completion;

• the execution of D.

2not be confused with the symbol frequently used by other languages as statement termination
operator (like C, Java, Perl, etc.)

34

CHAPTER 2. A Java Orchestration Language Interpreter Engine

We could be induced in thinking that such an execution could correspond to the
code example given below.

1 main{
2 A ; B | C ; D
3 }

Conversely the given code defines the parallel execution of two branches: the one
corresponding to the sequential composition between A and B and the other one
between C and D.

Such behavior is easier to understand if curly braces are used to enclose sequential
behaviors, as shown as it follows.

1 main{
2 {A ; B} | {C ; D}
3 }

For the sake of completeness, the sought behavior defined at the beginning of this
example can be obtained running the code given below.

1 main{
2 A ; {B | C} ; D
3 }

2.1.4.4 Non-deterministic input choice

The non-deterministic input choice construct is used to allow the programming of
input guarded choices over a set of input operations.

Once an input operation is received, all of the other (waiting) input operations are
discarded. To each input operation corresponds a branch of code, which is the
only one that is executed.

The definition of a non-deterministic input choice block is expressed within square
braces and it’s followed by the corresponding code block contained between curly
braces. For a more accurate description of this operator is made reference to the
section 3.2.3.4.

It’s noteworthy that a non-deterministic input choice blocks the whole execution
of the program it’s located in, until one of the programmed input operation is
triggered by the reception of a message.

35

CHAPTER 2. A Java Orchestration Language Interpreter Engine

2.1.5 Sessions

JOLIE provides a powerful mechanism for session generation and management.
In general each JOLIE service is also a session manager and a new session is initi-
ated as soon as the first input operation is invoked. It’s important to understand
that, in JOLIE, each “instance” of execution run the same code but with its own
(private) data.

JOLIE defines three kind of session executions:

• single (set by default): the execution is set as a “one-shot” instance. No other
instances can be invoked after the first one;

• concurrent: each invocation spawns a new session which is run concurrently
with others;

• sequential: each invocation spawns a new session, each of which is executed
one after the other, ordered according to their time of invocation.

The JOLIE statement used to specify the session execution is execution, it’s de-
clared in the service’s preamble and its argument, enclosed within curly braces,
indicates the type of session execution.

Listing 5: The execution statement

1 execution{concurrent}

The Figure 2.3 depicts the “session side” of an interaction between multiple in-
voking services (clients) and a service (the server) which, while running the same
code (op1), keeps session data of each client separated.

36

CHAPTER 2. A Java Orchestration Language Interpreter Engine

Figure 2.3: Session Data example

2.1.5.1 Correlation sets

Up to here, it’s been stated that each new operation invocation, coming from an-
other service, spawns a new session, each one with its own private data. It’s note-
worthy that, in a real context, invoker and invoked services rarely shares only one
communication, on the contrary they usually have a “starting” communication
which sets some of the parameters of the communication and then other mes-
sages can pass from a service towards the other, according to processing delay
times, resources availability and the like.

This is the typical situation related to web services and sessions management:
since transactions between a client, which requests some content, and the corre-
sponding server is stateless (e.g. via HTTP protocol), to keep track of multiple
activities of a certain client, HTTP cookies have been introduced. Cookies are
packets of data that are sent with each client request and that carry information
about session identification, user authentication and so on.

37

CHAPTER 2. A Java Orchestration Language Interpreter Engine

The same problem exists in services transactions and, to provide a protocol-agnostic
solution, JOLIE implements natively a mechanism called correlation sets.

A correlation set is the set of data shared among invoker and invoked services and
which is used to preserve the state of the session - or better to precisely identify it
- by means of a unique concatenation of data corresponding to that session.

As stated, JOLIE implements natively the definition of correlation sets in the ap-
plication preamble and this is done by means of the construct cset.

Thus a cset is identified by a set of nodes whose values identifies a session. Fur-
thermore, the values contained (and passed) in the cset aren’t sufficient for cor-
relating incoming messages and sessions because the service must be informed
about how to identify correlation set values within the incoming message. Thus,
the cset declaration must be enhanced in a way that explicitly specifies what are
the cset values that must be checked each time the service receives a message.
In this way a message is correctly retained from the receiving service, only if the
message nodes have the same values of the related variables.

It’s noteworthy that, in order to obtain unique session identification, the services
must implement a unique session identifier or a set of data whose ensemble works
as a unique identifier. Figure 2.4 depicts the simple case in which the name of the
clients (c1, c2, c3, ...) is defined as a monotonically increasing value, thus unique.

38

CHAPTER 2. A Java Orchestration Language Interpreter Engine

Figure 2.4: Correlation Sets example

In the example reported below a session is identified uniquely by the couple of
values name and surname3, that are located in messages incoming towards openSession,
makeRequest, closeSession operations.

Listing 6: The cset statement

1 //application preamble
2 cset{
3 name:openSession.name makeRequest.name closeSession.name,
4 surname: openSession.surname makeRequest.surname closeSession.surname
5 }

3in this case it’s assumed that the system has no homonyms except for names and surnames
considered individually

39

CHAPTER 2. A Java Orchestration Language Interpreter Engine

2.1.5.2 The init scope

As exposed in section 2.1.4, the main procedure implements the service behavior
(code) and handles the different values of data coming from other services. Thus,
each session execute its own workflow separately. Although some applications
may require to run an initialization code, which is the same for any session, and
then to proceed in separate session execution. This need is met by means of the
init scope.

This scope allows the specification of a series of statements (with the same compo-
sition rules described in section 2.1.4) which works as an initialization procedure,
that is the same for each session. Thus such code is run once, when the service is
launched, and never repeated.

2.1.5.3 The global scope

As already described, each instance of a JOLIE application is a separated session
with its own private data. To share variables among multiple sessions, the lan-
guage offers the definition of global variables. Such variables are nodes of the
structure global, which is shared (visible and modifiable) by each session.

Listing 7: The global scope

1 //application preamble
2 main{
3 openSession(msg);
4 ...
5 global.db.userscount++;
6 global.db.user[global.db.userscount].name=msg.name;
7 global.db.user[global.db.userscount].surname=msg.surname;
8 ...
9 }

In the example reported above, the node global.db contains two sub-nodes, a
node userscount used to keep track of the number of users that opened a ses-
sion and the user array, which contains a shared structure with the names and
surnames of the users, indexed by their user (arrival) count.

40

CHAPTER 2. A Java Orchestration Language Interpreter Engine

2.1.6 Fault Handling

Fault handlers define how an application shall respond when a certain fault (error)
happens. In JOLIE scopes, install and throw statements are used to handle faults.

2.1.6.1 Scope, Install and Throw

Faults can be raised either by the interpreter, when encountering a fault during the
execution, or by means of the throw statement. When a fault happens, it’s caught
within the scope it has been raised4 and in such boundaries can be handled by
means of the install statement. It’s noteworthy that, if a fault isn’t caught and
handled within the scope it has been raised, it’s automatically re-thrown to the
parent scope.

As a matter of facts, the install statement is the command directly involved in
dynamic fault handling. Such statement allows the description of a fault han-
dling procedure (with the same composition rules described in section 2.1.4) cor-
responding to a specifically raised fault.

In the example shown below the throw statement, at the end of myScope scope,
raises a myFault fault (exception), that, once caught by the corresponding install

statement, the code associated with it (the procedure defined as reset_settings) is
executed.

Listing 8: Fault Handling example

1 define reset_settings{
2 ...
3 }
4

5 main{
6 ...
7 scope(myScope){
8 install(myFault=>
9 reset_settings);

10 ...
11 throw(myFault)
12 }
13 }

4it’s noteworthy that the main procedure itself is a scope called “main”

41

CHAPTER 2. A Java Orchestration Language Interpreter Engine

2.1.7 Termination

The practice of terminating faulty executions is based upon fault handling state-
ments described in the previous section.

Termination is mechanisms intended for dealing with the recovery of a fault hap-
pened during the execution of an application. As aforementioned, the install

statement allows the specification of a procedure which can be run only in case
the corresponding fault is raised, within the scope that install has been declared.

In JOLIE the termination of a branch’s execution is obtained by a sibling branch
which can raise a fault. In such case the install statement takes as argument the
keyword this, which specifies that the recovery handler is installed for the whole
enclosing scope (myScope). It’s worth noting that, if myScope can reach the end of
its (successful) execution and the throw statement is run after it, no termination
code is executed.

Listing 9: Termination example

1 define reset_settings{
2 ...
3 }
4

5 main{
6 ...
7 scope(myScope){
8 install(this=>
9 reset_settings);

10 ...
11 }
12 |
13 throw(myFault)
14 }

To handle recovery of an activity that has successfully completed its execution,
JOLIE offers the comp(scope_name) statement, but since it’s not used in this work,
its knowledge is left to the reader’s curiosity.

42

CHAPTER 2. A Java Orchestration Language Interpreter Engine

2.2 Data structures and Flow Control operators in JOLIE

In this section are treated the main features of the language (JOLIE) about either
data, data structures and flow control constructs.

2.2.1 JOLIE approach to structured data.

2.2.1.1 Basic data types and methods

JOLIE supports seven basic data types:

• 32 bit integers with sign - int;

• 64bit integers with sign - long;

• 64 bit double-precision floats - double;

• strings - string;

• empty nodes - void;

• any other type possible value - any;

• byte arrays - raw5.

JOLIE is a duck-typing language, thus there’s no need to declare any variable or
its type in advance, since it’s determined when assigned/read at runtime.

Variable assignation is made in a C/Java-like way, by means of the “=” infix oper-
ator:

5byte arrays can not be created directly by the programmer, but they are supported in case a
service returns one and the recipient need to pass it to another service. Anyway it’s not important
in the context of this work, because ints, doubles and strings are all the kind of data necessary
for the purpose of patterns realization.

43

CHAPTER 2. A Java Orchestration Language Interpreter Engine

1 varA = 12;
2 varB="Hello"

JOLIE supports also some basic arithmetic operators like:

• add (+);

• substract (-);

• multiply (*) ;

• divide (/);

• modulo (%);

• pre-increment/decrement (++var and –var);

• post-increment/decrement (var++ and var–);

furthermore strings can be inputted enclosing them between double quotes, with
support of the main Java escaping characters6, space preservation (tabs, white
spaces and new lines), and concatenation among several strings (or automatically
cast types) by means of the + operator.

JOLIE variables’ basic types can be both cast and checked by means of (respec-
tively) int(var), double(var) and string(var) methods and is_int(var), is_double(var)
and is_string(var) methods.

Besides these methods, other two constructs are added to handle variable defi-
nition checking and undefining, which are, respectively, is_defined(var) and un-
def(var).

6\’ - single quote; \" - double quotes; \\ - backslash; \n - new line; \t - horizontal tab; \b - backspace.

44

CHAPTER 2. A Java Orchestration Language Interpreter Engine

2.2.1.2 Every JOLIE variable is a vector

It’s very important to understand the approach implemented in JOLIE about data
definition.

IN JOLIE EACH VARIABLE IS A VECTOR,

thus when an assignation statement is written like in the previous section:

1 varA = 12;
2 varB="Hello"

it’s automatically interpreted by JOLIE like the assignation of the first (0) value of
an array:

1 varA[0] = 12;
2 varB[0]="Hello"

If in first instance this approach can look confusing and complicated with relation
to simple data, it becomes immediately handy when dealing with complex nested
data.

Furthermore, since its strong focus on vectors, JOLIE offers a very useful vector
size operator # with prefix notation:

Listing 10: Vector size operator

1 varA[0]=1;
2 varA[1]=2;
3 varA[2]=3;
4 varA[3]=4;
5 #varA // 4

It’s worth noting that, w.r.t. the aforementioned methods, using the undefinition
operator on a vector (by means of its name) erases the whole vector7, while single
vector’s elements can be erased by applying the operator to them:

7thus undef(var) it’s not interpreted like undef(var[0])

45

CHAPTER 2. A Java Orchestration Language Interpreter Engine

Listing 11: Undefinition operator

1 varA[0]=1;
2 varA[1]=2;
3 varA[2]=3;
4 varA[3]=4;
5 undef(varA[2]) // erases the third element of the vector
6 undef(varA) //erases the whole vector

2.2.1.3 JOLIE data structures and data structures’ operators

Data structures in JOLIE have a tree-like conformation8 in which navigation is
done by using the . (dot) operator and on which the same assumptions made in
the previous section still apply, thus, navigating a nested vector structure like this:

1 root.parent.son.leaf[3]

that means, verbosely, the fourth element in the leaf array in the structure root.parent.son,
has it’s automatic conversion into the statement:

1 root[0].parent[0].son[0].leaf[3]

verbosely, the fourth element in the leaf array, in the first element of son array, in
the first element of parent array, in the first element of root array.

In order to easily handle this kind of data structures, JOLIE offers a series of oper-
ators for navigating, copying and aliasing purposes.

2.2.1.3.1 Dynamic look-up Nested variables can be identified by means of a
string expression, which is evaluated at runtime. This feature is obtained by en-
closing a string between round parenthesis as shown below:

8similar but not isomorphic to XML or JSON trees

46

CHAPTER 2. A Java Orchestration Language Interpreter Engine

Listing 12: Dynamic look-up operator

1 last="leaf";
2 root.("parent").("so"+"n").(last)[3]

The expression given above is interpreted in the same way described in the pre-
vious example. It’s noteworthy that any kind of string concatenation aforemen-
tioned is permitted, since every dynamic look-up evaluates its content at runtime.

2.2.1.3.2 Repetitive variable paths shortcut The with operator provides a use-
ful shortcut for repetitive variable paths:

Listing 13: With operator

1 with(animals){
2 .pet[0].name="Rufus";
3 .pet[0].species="cat";
4 .pet[1].name="Pongo";
5 .pet[1].species="dog";
6 .wild[0].name="Skere Khan";
7 .wild[0].species="tiger";
8 .wild[1].name="Simba";
9 .wild[1].species="lion"

10 }

2.2.1.3.3 Deep copy operator The deep copy operator <<9 provides a useful
shortcut for copying an entire data structure into another:

Listing 14: Deep copy operator

1 zoo.animals<<animals

Since the animals structure copied into zoo.animals sub-structure is the one defined
in the previous section, the content of zoo.animals after the deep copy operator
execution will be the same shown in 2.2.1.3.2.

9infix notation, the left argument is the assigned structure, the right one is the one copied.

47

CHAPTER 2. A Java Orchestration Language Interpreter Engine

2.2.1.3.4 Structure aliases Structure aliases are variables which point to other
variables.

Aliases are created by means of the ->10 operator. It’s of fundamental importance
to understand that aliases in JOLIE are evaluated every time they are used, and
not only at creation (definition) time.

Thus, aliasing a variable can allow a programmer to exploit it as a mechanism for
deep structure navigation (with relation to the animals structure declare in section
2.2.1.3.3):

Listing 15: Alias operator

1 //preamble
2 ...
3 main {
4 foreach(kind:zoo.animals){
5 species -> zoo.animals.(kind)[i].species;
6 for(i=0,i<#animals.(kind),i++){
7 println@Console(species)()
8 }
9 }

10 }

The code example reported above will assign the values “pet” and “wild” to the
variable kind in the foreach operator11, then the species variable is set as an alias
which, according to i values, points to the species data of one of the animals
present in the code example in section 2.2.1.3.2.

2.2.1.4 Including default interfaces

It’s noteworthy that the operation println@Console(species)(), which is used to
print the content of the species variable at console, is a Solicit-Response opera-
tion, which is allowed by including JOLIE’s default interface “console.iol” in the
application preamble.

10infix notation, the left argument is the aliasing variable, the right one is the aliased one.
11the foreach operator in JOLIE is used to loop through the sub-nodes of a node, since it’s not

used in subsequent patterns realization, but only in this example, it’s not described in the language
overview.

48

CHAPTER 2. A Java Orchestration Language Interpreter Engine

In order to exploit all the programming power of Java, JOLIE provides a mecha-
nism to integrate Java code into a JOLIE application. This mechanism is based in
writing a Java class which extends the JavaService class contained in the package
jolie.runtime.JavaService, inside the JOLIE installation folder.

To help JOLIE programmers in implementing common tasks like letting the appli-
cation wait for a certain time, using advanced mathematics operations and even
printing the content of a variable at console (which is theoretically equal to saving
its value to a file or sending it via the HTTP protocol) JOLIE comes with several
interfaces like time.iol, math.iol, console.iol, etc. installed by default with the JOLIE
interpreter.

Such interfaces can be included by simply adding the interface inclusion state-
ment show in section 2.1.3, while their exposed operations can be called via Solicit-
Responses as shown below:

Listing 16: Console, Math and Time interfaces

1 include "math.iol"
2 include "time.iol"
3 include "console.iol"
4

5 main{
6 random@Math()(a);
7 a=int(a*1000);
8 sleep@Time(a)();
9 println@Console("Slept for "+a+" ms.")()

10 }

In the example reported above, a request to the operation random at Math service
is made in order to obtain a random value between 0 a 1 (extremes excluded) as
the reply to the Solicit-Response invocation. Then the value is multiplied by 1000
and cast as integer (rounded) to be passed as the argument of the sleep operation
of the Time service. The Time service will send its response (void) to the invoker
after the time (in milliseconds) defined by the request is passed. Finally the println
operation is sent at Console service which prints (plus a line) the concatenation of
the strings “Slept for”, the number of milliseconds sent to Time service and “ms”.

49

CHAPTER 2. A Java Orchestration Language Interpreter Engine

2.2.2 Flow Control Operators

Execution flow in JOLIE is controlled by means of some of the classical imperative
constructs.

2.2.2.1 Conditional operators

The if-then-else construct in JOLIE is the same implemented in many others lan-
guages like C and Java.

Accepted comparators are <, <=, >, >=, == and !=.

The definition of several cascading conditions is possible by means of the else if
operator12.

Listing 17: If, else if and else operators

1 ...
2 if(first_condition){
3 //CODE
4 }
5 else if(second_condition){
6 //CODE
7 }
8 else{
9 //CODE

10 }

2.2.2.2 Loop statements

As for conditional operators, also loop statements are the same implemented in
C/Java.

12which is literally an else operator followed by an if

50

CHAPTER 2. A Java Orchestration Language Interpreter Engine

Listing 18: For and While statements

1 ...
2 for(i=0,i<10,i++){
3 //CODE REPEATED FOR TEN TIMES
4 };
5 ...
6 j=0; flag=true;
7 while(flag){
8 if(j<10){
9 j++

10 }else{
11 flag=false
12 }
13 //CODE REPEATED FOR TEN TIMES
14 }

In the code example shown above the procedure contained in both for and while
scopes is run ten times.

2.2.2.3 Synchronization statements

JOLIE provides two statements for synchronization purposes: synchronized(var)
and linkIn(var)/linkOut(var).

The difference between the two statements lies in their scope of application.

linkIn and linkOut statements implements a token-request/token-release policy in which
their argument is a variable that serves as the token. When a linkIn statement is
met during a branch execution, the flow of that branch is blocked until a linkOut
statement is run and the corresponding token is released. Since linkIn and linkOut
variables (arguments) are normally scoped within the running session, they are
used for internal synchronization.

Contrarily, the synchronized statement has been expressly implemented in JOLIE
to handle races between sessions that need to access to the same shared resources.

Thus the synchronized construct accepts a variable as an argument (which serves
as a token) and realizes a mutual exclusion policy which guarantees that only one
process at a time can access the data subjected to the procedure.

51

CHAPTER 2. A Java Orchestration Language Interpreter Engine

Listing 19: Synchronization statements

1 ...
2 synchronized(lock){
3 //CODE
4 };
5 ...
6 linkOut(lock);
7 linkIn(lock);
8 ...

52

Chapter 3

Workflow Patterns for SOC

3.1 Workflow Patterns and the Workflow Patterns Ini-
tiative

The Workflow Patterns Initiative (WPI) is a project whose purpose is to identify the
core architectural constructs in workflow technology.

Workflow technology is an approach, towards services, data and applications, fo-
cused on making connections between various resources and software applica-
tions to obtain a certain behavior. Such behavior is the result of loosely coupled
applications that communicate, the one with the others, exchanging and process-
ing data in a modular composition. Much like the one defined by SOC in the first
chapter.

Each application can be seen as a construct, which realizes a particular behav-
ior, that encapsulates algorithms and processes data, that will be used as a final
output by the user or as an input for another application. This approach as been
declined in the form of the Business Process Modeling activity, a practice of repre-
senting processes (social, economic, productive, etc.) as a composition of their
interactions.

In this context the WPI strives to clearly define and delineate the fundamental
requirements of the business process modeling by means of its recurring patterns.

The pattern based approach employed by the WPI has been chosen to offer both
a language-and-technology-independent means of expressing each requirement’s

53

CHAPTER 3. Workflow Patterns for SOC

characteristics, in the most generic form, to allow its application to the wider va-
riety of offerings as possible.

Once identified and defined, these patterns have been described both in a imper-
ative verbal way and through the use of a specific set of definition for the various
components of the workflow system, according with the perspective in which that
system is considered (i.e. control, resource, etc.).

WPI Patterns and Conventions Adopted

In the analysis of process-aware information systems, the WPI identified various
perspectives:

• Control-flow: it captures aspects related to control-flow dependencies be-
tween various tasks (e.g. parallelism, choice, synchronization etc).

• Data: it deals with the passing of information , scoping of variables, and the
like.

• Resource: it deals with resource to task allocation, delegation, etc.

Along with those describe above, another kind of perspective has been identified:
the exception handling perspective which deals with the various causes of excep-
tion and actions that need to be put in place, as result of an occurring exception.

The WPI work on workflow patterns has culminated into an extensive collection
of patterns, finely described in terms of verbal and modeling language, whose
description, motivation, diagram and evaluation criteria are used in this work in
order to give the strictest implementation of each pattern in JOLIE.

In this thesis work only Control-flow and Resource Pattern are taken into account
because of their main importance in defining workflow paradigms.

It’s also very important to underline that, all of the work done on pattern analy-
sis and feasibility in JOLIE is based on a keep-it-simple principle: even if the lan-
guage may allow the use of a multitude of complex but suitable advanced con-
structs - like aggregation, redirection and embedding -, a restricted set of “basic”
constructs1 have been employed to give the most meaningful yet straightforward
demonstration of pattern feasibility in the language.

1described in Chapter 2

54

CHAPTER 3. Workflow Patterns for SOC

3.2 Control-Flow Patterns

3.2.1 Control-Flow Patterns and Colored Petri-Nets

Colored Petri-Nets (CPN) is a graphical language, which is used for modeling and
analyzing distributed systems and, since it’s focus in modeling of process-aware
information systems, it’s employed in workflow analysis to design communica-
tion protocols, embedded systems, distributed systems and the like.

As it follows, it’s reported a brief description of the main components of CPNs,
in order to provide a general knowledge of this language, to be able to interpret
the representing diagram of each pattern. Finally it’s explained why the CPN
language is used to model Workflow Patterns and some conventions adopted in
Workflow Patterns representation are defined.

3.2.1.1 From Petri-Nets to Colored Petri-Nets

Classical Petri-Nets

The Petri-Net (PN) is a modeling languages made for the description of distributed
systems. A PN-net is a directed graph, in which nodes represent transitions and
places. Classical PNs are made by just three elements:

Figure 3.1: Petri-Nets Elements

55

CHAPTER 3. Workflow Patterns for SOC

• Place: the graphical symbol for a place is a cycle. A place represents the state
of the modeled system (usually defined by the transition of a token).

• Transition: the graphical symbol for a transition is a box. Each transition can
fire a modification in the state of the system. A transition is allowed to fire
only if enabled, thus its preconditions must be fulfilled in order to change
the position (from its input to its output) of a set of tokens whose cardinality
depends on the cardinality of each incoming and outgoing arc.

• Arc: the graphical symbol for an arc is an arrow. An arc connects a place
with a transition and vice versa. An arc coming from place to a transition
means that the place condition is necessary (precondition) for the occurrence
of the event. Contrariwise, an arc coming from a transition to a place means
the occurrence of the place condition, thus making it true (post-condition).

As defined above, a PN-net is a directed graph, thus each arc (connection) is di-
rected and there can be no connection between two places or two transition, but
there’s no limit about the number of arcs between two nodes.

Colored Petri-Nets

High-Level PNs (HLPNs) are an evolution of PNs and tackle some of their main
limitations like the inability to test for zero tokens in a place, the fast-growing size
of nets according to model size, the lack of temporal characterization and support
for large models structuration.

One of the proposed implementations of HLPNs are the Colored Petri-Nets (CPNs)
which support color sets (data type) modeling. In PNs tokens represent objects
in the modeled system. Therefore, to represent attributes of these objects, PNs
tokens are extend in CPNs with colored (typed) values. In CPNs the transitions
determine the values of the produced colors (tokens) based on the values of the
consumed colors, i.e. a transition describes the relation between the values of
the input colors and the values of the output colors. Likewise preconditions are
specifiable and they take the colors of tokens to be consumed into account.

Thus places in CPNs have an associated type, which determine the kind of data
that the place may contain, which is usually written in italics, next to the place.

Colored Petri-Nets, by an example

56

CHAPTER 3. Workflow Patterns for SOC

Figure 3.2: A Colored Petri-Net Example

In the example provided by Figure 3.2 places Send, A, and B have the type INTxDATA,
where the x symbol means the cartesian product of the basic type INT(egers) and
the custom type DATA. In this specific example the elements of the type represent
packets to be transmitted over the Network.

Each packet is a pair, where the first element is the packet number (of type INT),
while the second element is the data contents of the packet, i.e. a text string (of
type DATA). During the execution each place will contain a varying number of
tokens, each of which carries a data value that belongs to the type associated with
the place.

The example provided by Figure 3.2 is useful also to represent another important
feature of CPNs notation, that is the cardinality of tokens of the same kind, ex-
pressed with the notation #’(token) and defined as a multi-set of token values, in
which the # before the ’ is called the coefficient of the multi-set.

Each state represented by a CPN is defined as a marking and it consists of a num-
ber of tokens positioned on individual places, namely the marking of that place.

57

CHAPTER 3. Workflow Patterns for SOC

The convention used in this context identifies the initial marking with an un-
derline, next to the place, albeit when the specification of the initial marking is
lengthy, the underlining is omitted (like for Send place specification).

As in PNs, transitions are drawn as rectangles in CPNs and represent an action of
removal or addition of tokens according to arcs orientation, while the number of
tokens involved by the transition is determined by the arc expression (positioned
next to the arc).

Still taking as an example the CPN provided by Figure 3.2, the transition Send-
Packet has three surrounding arcs, two of which share the same expression, but
with different orientations. Thus they are “collapsed” and represented as a bidi-
rectional (double) arc between Send place and SendPacket transition. By analyzing
the notation that surrounds the considered arcs, it’s noticeable the definition (n,p)

which are free variables: n of type INT and p of type DATA. This to identify a par-
ticular occurrence of the transition the two free variables must be bind together
such that n takes an INT value and p takes a value from DATA. If both tokens (n
and p) are available the transition may occur.

In this context another assumption is made, namely the binding element. As de-
fined above, to specify an occurrence of SendPacket from Send, two typed values of
n and p must be chosen, bind and tested against the transition’s condition. Such
a couple made of a transition and the bind variables appearing on its surround-
ing arcs is called a binding element. W.r.t. the example of Figure 3.2, the initial
marking enables the binding element (SendPacket, <n=1, p=”Modellin”) which
occurrence lead to a marking identical to the initial, except that a new token with
value (1,”Modellin”) has been added to place A.

Finally a last note regarding the TransmitPacket transition that contains a particular
conditional binding element (n,p,s,r) to the place B. This arc defines a function
call Ok(s,r) which, according to the values of r and s, returns true if r ≤ s.

3.2.1.2 Representing Control-Flow in Colored Petri-Nets

Solutions to problems are often non-unique, they recur in many systems, but de-
velopers invest their time on solving a problem often reinventing an already ex-
isting solutions.

A method to generalize and make a solution dependent only on general con-
text assumptions and requirements about its behavior, possibly making known

58

CHAPTER 3. Workflow Patterns for SOC

its advantages and disadvantages, is the definition of a pattern language which
can abstract an implemented solution, by means of its main features, defining a
realization-agnostic pattern, which can be efficiently transposed into a model.

The language selected for representing Control-Flow Patterns by the WPI is the
CPN, as it allows to model data by means of colors on the top of classical PNs,
suitable for representing the behavioral logic of the control-flow.

In addition to the features of the CPN language, some assumptions are made:

• input places are labeled i1...in;

• output places are labeled o1...on;

• internal places are labeled p1...pn;

• transitions are labeled A...Z.

In case either places or transitions serve a more significant role in the context of
the pattern, they are given more meaningful names (e.g. triggered-input or reset).

Unless stated otherwise, it’s assumed that the tokens flowing through a CPN
model that signify control-flow are typed CID (short for “Case ID”) and that each
executing case (i.e. process instance) has a distinct case identifier.

For most patterns, the assumption is also made that the model is safe, which
means that each place in the model can only contain at most one token such that
one thread of control for each case currently being executed.

3.2.2 Adopted Conventions

3.2.2.1 Dealing with simultaneous reaching branches

Control-Flow patterns deal, among with other features, with parallel and simulta-
neous incoming branches which, keeping an implementation-agnostic approach,
can be identified as branches which reach the pattern construct at the exact same
time.

59

CHAPTER 3. Workflow Patterns for SOC

Looking at the meaning of “simultaneously reaching branches”, from an imple-
mentation approach, brings the definition given above into question because, deal-
ing with time, in a discrete domain, means defining time slots and process schedul-
ing, which declines the notion of “simultaneous” events from “processes reaching
the pattern construct at the same time” to “processes reaching the pattern con-
struct within a given time range the one w.r.t. the other”.

In this work the eventuality of simultaneously reaching branches is not taken into
account, since JOLIE provides mutually exclusive atomic constructs which pre-
vent this “simultaneous reach” contingency to happen (as a matter of fact, pro-
cesses that reach the pattern block at the same time are scheduled sequentially by
the SO/VM thread scheduler).

A “simultaneous” approach could be taken into account once a strict definition of
“simultaneous reach” is given.

3.2.2.2 Dealing with fault handling operations

Since JOLIE is mainly focused on communication among services, the most part
of workflow patterns implementation is structured with a server-client approach,
which makes use of OneWay and RequestResponse operations. These operations
are provided with a fault exception system which yields a reliable message trans-
mission.

For this reason, the discard, at server-side, of the corresponding operation fired by
the client, raises a fault which has to be handled unless to let stopping (crashing)
the client process.

The convention adopted about this matter is to implement the server part (i.e.
the pattern construct) as strict as possible to the pattern definition, such that if
no branch discard is allowed by the pattern definition, no fault handing shall be
implemented at client-side.

Since the focus of this work is to evaluate possible workflow patterns implemen-
tation in JOLIE, fault handling is included at client-side only if strictly needed for
pattern implementation purposes, otherwise a not-fault-proof version of the client
(when showed) is given.

60

CHAPTER 3. Workflow Patterns for SOC

3.2.3 Basic Control-Flow Patterns

A class of workflow patterns that captures elementary aspects of process control.

3.2.3.1 Sequence

Description

An activity in a workflow process is enabled after the completion of a preceding
activity in the same process.

Diagram

Figure 3.3: Sequence pattern

Motivation

The Sequence pattern is the fundamental building block for workflow processes.
It’s used to construct a series of consecutive activities which are executed one after
the other.

Two activities take part in a sequence if there’s a control-flow edge (statement) from
one of them to the next, without guards or conditions associated with it.

JOLIE Implementation

JOLIE defines a specific sequential composition operator which syntax is:

1 Statement A ; Statement B ; ...

Full support for this pattern is demonstrated by any offering which is able to pro-
vide a means of specifying the execution sequence of two (or more) activities.

As said above, JOLIE offers a specific primitive operator (;) as a rule to specify the
overall execution sequence, since it’s basic definition no further code example is
given.

61

CHAPTER 3. Workflow Patterns for SOC

3.2.3.2 Parallel Split

Description

The divergence of a branch into two or more parallel branches each of which exe-
cute concurrently.

Diagram

Figure 3.4: Parallel Split pattern

Motivation

The Parallel Split pattern allows a single thread of execution to be split into two or
more branches which can execute activities concurrently.

These branches may or may not be re-synchronized at some future time.

JOLIE Implementation

JOLIE defines a specific parallel composition operator which syntax is:

1 Statement A | Statement B | ...

Full support for this pattern is demonstrated by any offering which is able to pro-
vide a means of specifying, at a given point of control, the thread to be split into
two or more concurrent branches.

As said above, JOLIE offers a specific primitive operator (|) as a rule to specify
the overall parallel execution, since it’s basic definition no further code example
is given.

62

CHAPTER 3. Workflow Patterns for SOC

3.2.3.3 Synchronization

Description

The convergence of two or more branches into a single subsequent branch, such
that the thread of control is passed to the subsequent branch when all input branches
have been enabled.

Diagram

Figure 3.5: Synchronization pattern

Motivation

Synchronization provides a means of re-converging the execution threads of two
or more parallel branches.

In general, these branches are created from a Parallel Split[3.2.3.2] construct earlier
in the process model. The thread of control is passed to the activity immediately
following the synchronizer, once all of the incoming branches have completed.

JOLIE Implementation

The Synchronization pattern raises two important context conditions associated
with it:

1. each incoming branch executes precisely once for a given case;

2. the synchronizer can only be reset (and fire again) once each incoming branch
has completed.

63

CHAPTER 3. Workflow Patterns for SOC

These conditions are important since if all incoming branches do not complete,
then the synchronizer will deadlock and if more than one trigger is received on a
branch, then the behavior of the construct is undefined. They also serve to allevi-
ate the concern as to whether all of the threads being synchronized relate to the
same process instance. This issue becomes a significant problem in joins that do
not have these restrictions.

JOLIE defines two specific synchronization complementary statements which syn-
tax is:

1 linkOut(id)
2 linkIn(id)

The linkIn statement is the language blocking primitive, which waits for the cor-
responding linkOut operation to fire a release operation on its same id, while do-
ing this, it keeps in a blocked state the process branch it takes part in.

Full support for this pattern is demonstrated by any offering which provides a
construct to merge several distinct threads of execution in different branches into
a single thread of execution in a single branch.

The merge occurs when a thread of control has been received on each of the in-
coming branches.

JOLIE code example

Listing 20: Synchronization code example

1 include "console.iol"
2 include "time.iol"
3
4 main{
5 scope(pid1){
6 sleep@Time(3000)();
7 linkOut(idP1)
8 }
9 |

10 scope(pid2){
11 sleep@Time(4000)();
12 linkOut(idP2)
13 }
14 |
15 scope(sync){
16 {
17 linkIn(idP1);

64

CHAPTER 3. Workflow Patterns for SOC

18 println@Console("pid1 linked out")()
19 }|{
20 linkIn(idP2);
21 println@Console("pid2 linked out")()}
22 };
23 println@Console(
24 "pid1 and pid2 succesfully synchornized")()
25 }

It’s worth noting that the pattern realization given above can be even simpler be-
cause of scope’s characterization in JOLIE. In the language the flow control within
a scope is released (and the scope exited) only if each of its branch has completed.
Thus an alternative solution could involve the use of a scope (e.g. p_container)
containing the pid1 and pid2 scopes composed in parallel. When both pid1 and
pid2 executions have completed the scope p_container results as completed and
the subsequent operation, after the synchronization of all the branches, can run.

65

CHAPTER 3. Workflow Patterns for SOC

3.2.3.4 Exclusive Choice

Description

The divergence of a branch into two or more branches. When the incoming branch
is enabled, the thread of control is immediately passed to precisely one of the
outgoing branches based on the outcome of a logical expression associated with
the branch.

Diagram

Figure 3.6: Exclusive Choice pattern

Motivation

The Exclusive Choice pattern allows the thread of control to be directed to a specific
activity depending on the outcome of a preceding activity, the values of elements
of specific data elements in the workflow or the results of a user decision.

The routing decision is made dynamically allowing it to be deferred to the latest
possible moment at runtime.

JOLIE Implementation

The Exclusive Choice pattern rises two context conditions:

1. the information required to calculate the logical conditions on each of the
outgoing branches must be available at runtime at the point at which the
choice construct is reached in the process;

66

CHAPTER 3. Workflow Patterns for SOC

2. the condition associated with precisely one outgoing branch of the exclusive
choice construct must evaluate to true.

JOLIE defines both some classical imperative flow control constructs like if, else
if and else operators and input-guarded non-deterministic choices.

The former are mainly involved into the flow control of a specific process, the
latter is used in process composition, by which if one of the input (guarded) state-
ments in the choice receives a message, the specified process is executed, while all
other possible branches are discarded:

1 if(cond1){
2 process1}
3 else if(cond2){
4 process2}
5 ...
6 else{
7 processN
8 }

1 [oneWayOp1(msg)]{
2 process1}
3 [oneWayOp2(msg)]{
4 process2}
5 ...
6 [requestResponseN(msg)(rsp)]{
7 processN}

Full support for this pattern is evidenced by an offering which provides a con-
struct which enables the thread of control to be directed to exactly one of several
outgoing branches. The decision as to which branch is selected is made at runtime
on the basis of specific conditions associated with each of the branches.

Since two possible interpretation and solution have been suggested for this pat-
tern, they are both listed.

JOLIE code example

67

CHAPTER 3. Workflow Patterns for SOC

Listing 21: Exclusive Choice code example (if-then-else)

1 include "console.iol"
2
3 inputPort EC_ite{
4 Location: "socket://localhost:8000"
5 Protocol: sodep
6 OneWay: rcv_msg
7 }
8
9 main{

10 rcv_msg(msg_v);
11 if(msg_v<=13){
12 println@Console("Good Morning")()
13 }
14 else if(msg_v>13 && msg_v<=18){
15 println@Console("Good Afternood")()
16 }
17 else if(msg_v>18 && msg_v<20){
18 println@Console("Good Evening")()
19 }
20 else{
21 println@Console("Good Night")()
22 }
23 }

Listing 22: Exclusive Choice code example (non-deterministic choice)

1 include "console.iol"
2
3 inputPort EC_ite{
4 Location: "socket://localhost:8000"
5 Protocol: sodep
6 OneWay: morning_msg, evening_msg,
7 afternoon_msg, night_msg
8 }
9

10 main{
11 [morning_msg()]{
12 println@Console("Good Morning")()
13 }
14 [afternoon_msg()]{
15 println@Console("Good Afternood")()
16 }
17 [evening_msg()]{
18 println@Console("Good Evening")()
19 }
20 [night_msg()]{

68

CHAPTER 3. Workflow Patterns for SOC

21 println@Console("Good Night")()
22 }
23 }

69

CHAPTER 3. Workflow Patterns for SOC

3.2.3.5 Simple Merge

Description

The convergence of two or more branches into a single subsequent branch.

Each enablement of an incoming branch results in the thread of control being
passed to the subsequent branch.

Diagram

Figure 3.7: Simple Merge pattern

Motivation

The Simple Merge pattern provides a means of merging two or more distinct branches
without synchronizing them. As such, this presents the opportunity to simplify a
process model by removing the need to explicitly replicate a sequence of activities
that is common to two or more branches. Instead, these branches can be joined
with a simple merge construct and the common set of activities need only to be
depicted once in the process model.

JOLIE Implementation

The Simple Merge pattern means no consideration of synchronization and the place
at which the merge occurs is safe and can never contain more than one token.

Within JOLIE can be easily defined a looping OneWay operation that constitutes
a shared but unique and safe place for incoming messages from other processes.

70

CHAPTER 3. Workflow Patterns for SOC

When a message is received the message data is processed, after which the system
is ready for another message to come.

Full support for this pattern is demonstrated by any offering which provides a
construct which satisfies the description when used in a context satisfying the
context assumption.

In this case an accounting service is used as example: the looping OneWay op-
eration acc_calc waits for an “income” message, after the reception the data is
elaborated and stored, after which the system returns into a wait state for the next
message.

An alternative approach achieving the same result can be obtained using the execution
{concurrent} statement and a globally shared variable for net_of_tax and tot_tax

accumulation.

JOLIE code example

Listing 23: Simple Merge code example

1 include "console.iol"
2
3 inputPort SM{
4 Location: "socket://localhost:8000"
5 Protocol: sodep
6 OneWay: acc_calc
7 }
8
9 main{

10 net_of_tax=0.0;
11 tot_tax=0.0;
12 while(true){
13 acc_calc(inc_rep);
14 income=double(inc_rep.income);
15 tax_perc=double(inc_rep.tax_rate);
16 println@Console("New income: "+income)();
17 tot_tax=tot_tax+(income*tax_perc);
18 net_of_tax=net_of_tax+income*(1.0-tax_perc);
19 println@Console(
20 "Net of taxes: "+net_of_tax+
21 ", total taxes: "+tot_tax)()
22 }
23 }

71

CHAPTER 3. Workflow Patterns for SOC

3.2.4 Advanced Branching and Synchronization Patterns

The Advanced Branching and Synchronization Patters constitute a series of patterns
which characterize more complex branching and merging concepts which arise in
business processes.

Although relatively commonplace in practice, these patterns are often not directly
supported or even able to be represented in many commercial offerings.

3.2.4.1 Multi-Choice

Description

The divergence of a branch into two or more branches such that when the incom-
ing branch is enabled, the thread of control is immediately passed to one or more
of the outgoing branches based on a mechanism that selects one or more outgoing
branches.

Diagram

Figure 3.8: Multi-Choice pattern

Motivation

The Multi-Choice pattern provides the ability for the thread of execution to be di-
verged into several concurrent threads on a selective basis. The decision as to
whether to pass the thread of execution to a specific branch is made at runtime.

72

CHAPTER 3. Workflow Patterns for SOC

It can be based on a variety of factors including the outcome of a preceding task,
the values of elements of specific data elements in the process, the results of eval-
uating an expression associated with the outgoing branch or some other form of
programmatic selection mechanism. This pattern is essentially an analogue of the
Exclusive Choice [3.2.3.4] pattern in which multiple outgoing branches can be en-
abled.

JOLIE Implementation

The mechanism that evaluates the Multi-Choice is able to access any required data
elements or necessary resources when determining which of the outgoing branches
the thread of control should be routed.

As seen for the Exclusive Choice pattern, JOLIE allows the implementation of
such a behavior both internally and externally, by means of if-then-else operators
and non-deterministic choice statements. It’s worth noting that, even if the Multi-
Choice pattern condition states the availability of any required data elements or
resource, even the external solution that employs the non-deterministic choice
allows such availability through JOLIE data structures.

Full support for this pattern is demonstrated by any offering which provides a
construct which satisfies the description when used in a context satisfying the
context assumption.

A work-around that can be used to support the pattern in most offerings is based
on the use of an AND-split immediately followed by an (binary) XOR-split in each
subsequent branch.

Another is the use of an XOR-split with an outgoing branch for each possible task
combination, e.g. a Multi-Choice construct with outgoing branches to tasks A and
B would be modeled using an XOR-split with three outgoing branches - one to
task A, another to task B and a third to an AND-split which then triggered both
tasks A and B.

Note that the work-around based on XOR-splits and AND-splits is not consid-
ered to constitute support for this pattern as the decision process associated with
evaluation of the Multi-Choice is divided across multiple split constructs.

One of the possible approaches to the solution to this pattern in JOLIE is employ-
ing the if-then-else structure along with parallel operator. The behavior obtained
with this implementation is similar to conditions on the arcs or parallel conditions
on outgoing transitions used by BPMN and BPEL language.

73

CHAPTER 3. Workflow Patterns for SOC

The following code example represents a Multi-Choice approach for a cart dis-
count calculation based on parallel choices over the same data structure. The cal-
culation is made on what kind of items are inside the cart (note that if the cart is
empty the exit branch is 0).

JOLIE code example

Listing 24: Multi-Choice code example

1 include "console.iol"
2 include "time.iol"
3
4 init{
5 discount_perc=double(0);
6 with(cart){
7 .drinks[0]="coke";
8 .drinks[1]="water";
9 .drinks[2]="tea";

10 .food[0]="hamburger";
11 .food[1]="hot-dog"
12 }
13 }
14
15 main{
16 if (#cart.drinks>0){
17 discount_perc=discount_perc+0.02
18 }|
19 if (#cart.food>0){
20 discount_perc=discount_perc+0.01
21 }|
22 if (#cart.furnishing>0){
23 discount_perc=discount_perc+0.05
24 }|
25 {println@Console(
26 "Your discount is: "+discount_perc+"%")();
27 sleep@Time(2000)();
28 println@Console("Your discount is: "+discount_perc+"%")()
29 }
30 }

It’s worth noting that in the example above, no synchronization technique is used
to prevent possible errors due to read-write access to the discount_perc by con-
current processes. To show this behavior two printing statement, executed in par-
allel along with Multi-Choice block, have been included in the code example, in
most part of executions the output of this example is an immediate “0%” value,
followed by a “0.03%” value printed after 2 seconds (circa 2000ms).

74

CHAPTER 3. Workflow Patterns for SOC

3.2.4.2 Structured Synchronizing Merge

Description

The convergence of two or more branches (which diverged earlier in the process at
a uniquely identifiable point) into a single subsequent branch such that the thread
of control is passed to the subsequent branch when each active incoming branch
has been enabled.

The Structured Synchronizing Merge occurs in a structured context, i.e. there must
be a single Multi-Choice [3.2.4.1] construct earlier in the process model with which
the Structured Synchronizing Merge is associated with and it must merge all of the
branches emanating from the Multi-Choice. These branches must either flow from
the Structured Synchronizing Merge without any splits or joins or they must be
structured in form (i.e. balanced splits and joins).

Diagram

Figure 3.9: Structured Synchronizing Merge pattern

Motivation

The Synchronizing Merge pattern provides a means of merging the branches result-
ing from a specific Multi-Choice or Exclusive Choice construct earlier in a workflow

75

CHAPTER 3. Workflow Patterns for SOC

process into a single branch. Implicit in this merging is the synchronization of all
of the threads of execution resulting from the preceding Multi-Choice.

JOLIE Implementation

As already indicated, the Synchronizing Merge construct provides a means of merg-
ing the branches from a preceding Multi-Choice construct and synchronizing the
threads of control flowing along each of them.

It is not necessary that all of the incoming branches to the Synchronizing Merge are
active in order for the construct to be enabled, however all of the threads of control
associated with the incoming branches must have reached the Synchronizing Merge
before it can fire.

As such there are four context conditions associated with the use of this pattern:

1. There must be a single Multi-Choice construct earlier in the process model
with which the Synchronizing Merge is associated with and it must merge all
of the branches emanating from the Multi-Choice.
These branches must either flow from the Multi-Choice to the Synchronizing
Merge without any splits or joins or they must be structured in form (i.e.
balanced splits and joins) such that it is not possible for the Synchronizing
Merge to receive multiple triggers on the same branch once the Multi-Choice
has been enabled;

2. The Multi-Choice construct must not be re-enabled before the associated Syn-
chronizing Merge construct has fired;

3. Once the Multi-Choice has been enabled none of the activities in the branches
leading to the Synchronizing Merge can be canceled before the merge has been
triggered.
The only exception to this is that it is possible for all of the activities leading
up to the Synchronizing Merge to be canceled;

4. The Synchronizing Merge must be able to resolve the decision as to when it
should fire, based on local information available to it during the course of
execution.
Critical to this decision is knowledge of how many branches emanating from
the Multi-Choice are active and require synchronization.

76

CHAPTER 3. Workflow Patterns for SOC

Addressing the last of the context conditions without introducing non-local se-
mantics for the Synchronizing Merge can be achieved in several ways:

1. including the process model following a Multi-Choice such that the subse-
quent Synchronizing Merge will always receive precisely one trigger on each
of its incoming branches and no additional knowledge is required to make
the decision as to when it should be enabled;

2. by providing the merge construct with knowledge of how many incoming
branches require synchronization;

3. by undertaking a thorough analysis of possible future execution states to
determine when the Synchronizing Merge can fire.

The first of these implementation alternatives forms the basis for this pattern and
it involves adding an alternate “bypass” path around each branch from the Multi-
Merge to the Synchronizing Merge which is enabled in the event that the normal
path is not chosen.

The “bypass” path is merged with the normal path for each branch prior to the
Synchronizing Merge construct ensuring that it always gets a trigger on all incom-
ing branches and can hence be implemented as an Synchronization construct.

Made on top of the Multi-Choice JOLIE implementation proposed above, the solu-
tion of the Synchronizing Merge pattern uses the Multi-Choice structure, where each
branch is evaluated concurrently (AND-split); after the evaluation each of them
fires a linkOut event that’s caught from the Synchronizing Merge process, which is
executed in parallel along with the Multi-Choice process.

Full support for this pattern in an offering is evidenced by the availability of a
construct which demonstrates all of the context requirements for this pattern. Any
offering which allows the threads of control in any subset of the input branches to
the merge to be canceled before it is triggered achieves a rating of partial support.

As defined above, one of the possible approaches to the solution to this pattern in
JOLIE is employing the Multi-Choice structure used as a solution for Multi-Choice
pattern example, along with parallel operator and the language’s synchronizing
functions [3.2.3.3].

The following code example evolves the Multi-Choice example where a cart lists
each kind of item purchased by a customer, its quantity and cost. Based on these

77

CHAPTER 3. Workflow Patterns for SOC

information, partial values of total amount to be paid and total applicable dis-
count are calculated parallelly, while the final value of total amount to be paid
is calculated only when all of the fired choices reached the Synchronization Merge
structure after the corresponding linkOut statement.

JOLIE code example

Listing 25: Structured Synchronizing Merge code example

1 include "console.iol"
2 include "time.iol"
3
4 init{
5 discount_perc=0.0;
6 tot_to_pay=0.0;
7 with(cart){
8 .drinks[0].name="coke";
9 .drinks[0].price=2;

10 .drinks[0].quantity=6;
11
12 .drinks[1].name="water";
13 .drinks[1].price=1;
14 .drinks[1].quantity=6;
15
16 .drinks[2].name="tea";
17 .drinks[2].price=3;
18 .drinks[2].quantity=3;
19
20 .food[0].name="hamburger";
21 .food[0].price=5;
22 .food[0].quantity=1;
23
24 .food[1].name="hot-dog";
25 .food[1].price=2;
26 .food[1].quantity=4
27 }
28 }
29
30 main{
31 {if (#cart.drinks>0){
32 drink->cart.drinks[i];
33 for(i=0,i<#cart.drinks,i++){
34 synchronized(lock){
35 tot_to_pay=tot_to_pay+
36 drink.quantity*
37 drink.price
38 }};
39 discount_perc=discount_perc+0.02
40 };
41 linkOut(drinks)
42 }|{if (#cart.food>0){
43 food->cart.food[j];

78

CHAPTER 3. Workflow Patterns for SOC

44 for(j=0,j<#cart.food,j++){
45 synchronized(lock){
46 tot_to_pay=tot_to_pay+
47 food.quantity*
48 food.price
49 }};
50 discount_perc=discount_perc+0.01
51 };
52 linkOut(food)
53 }|{if (#cart.furnitures>0){
54 furniture->cart.furnitures[y];
55 for(y=0,y<#cart.furnitures,y++){
56 synchronized(lock){
57 tot_to_pay=tot_to_pay+
58 furniture.quantity*
59 furniture.price
60 }};
61 discount_perc=discount_perc+0.04
62 };
63 linkOut(furnitures)
64 }|{
65 linkIn(drinks)|linkIn(food)|linkIn(furnitures)};
66 println@Console("Total to pay $: "+
67 (tot_to_pay*(1.0-discount_perc))+
68 "\nDiscount %: "+discount_perc+
69 "\nDiscount $: "+tot_to_pay*discount_perc)()
70 }

79

CHAPTER 3. Workflow Patterns for SOC

3.2.4.3 Multi-Merge

Description

The convergence of two or more branches into a single subsequent branch such
that each enablement of an incoming branch results in the thread of control being
passed to the subsequent branch.

Diagram

Figure 3.10: Multi-Merge pattern

Motivation

The Multi-Merge pattern provides a means of merging distinct branches in a pro-
cess into a single branch. Although several execution paths are merged, there is
no synchronization of control-flow and each thread of control which is currently
active in any of the preceding branches will flow unimpeded into the merged
branch.

The distinction between this pattern and the Simple Merge[3.2.3.5] is that it is pos-
sible for more than one incoming branch to be active simultaneously and there is
no necessity for merging place to be safe.

JOLIE Implementation

An offering achieves full support if it satisfies the context criterion for the pattern.
Partial support is awarded to offerings that do not provide support for multiple

80

CHAPTER 3. Workflow Patterns for SOC

branches to merge simultaneously or do not provide for preservation of all threads
of control where this does occur.

Since its resemblance to the Simple Merge patter, the same example is used to un-
derline the interesting difference between the two.

While the Simple Merge pattern implementation has been based on a single loop-
ing instance to define a safe merging place (the process itself) which can serve only
one process at a time, the implementation of the not-safe-place Multi-Merge pat-
tern can exploit the concurrent execution of multiple instances of the same process
offered by JOLIE.

Synchronization and global variable state are used along with init{} and the
concurrent execution, thus providing safe concurrent variable access and shared
scope among sessions. The spawn construct is used at client side to run several
parallel branches towards the Multi-Merge block.

JOLIE code example

Listing 26: Multi-Merge (server) code example

1 include "console.iol"
2 inputPort SM{
3 Location: "socket://localhost:8000"
4 Protocol: sodep
5 OneWay: acc_calc
6 }
7
8 execution{concurrent}
9

10 init{
11 net_of_tax->global.income.net_of_tax;
12 tot_tax->global.income.tot_tax;
13 net_of_tax=0.0;
14 tot_tax=0.0
15 }
16
17 main{
18 acc_calc(inc_rep);
19 income=double(inc_rep.income);
20 tax_rate=double(inc_rep.tax_rate);
21 println@Console("New income: "+income+
22 " taxed at: "+tax_rate*100+"%")();
23 synchronized(lock){
24 tot_tax=tot_tax+income*tax_rate;
25 net_of_tax=net_of_tax+
26 income*(1-tax_rate)
27 };
28 println@Console(

81

CHAPTER 3. Workflow Patterns for SOC

29 "Net of taxes: "+net_of_tax+
30 ", total taxes: "+tot_tax)()
31 }

Listing 27: Multi-Merge (client) code example

1 include "console.iol"
2
3 outputPort SM{
4 Location: "socket://localhost:8000"
5 Protocol: sodep
6 OneWay: acc_calc
7 }
8
9 main{

10 registerForInput@Console()();
11 inc_rep.income=200;
12 inc_rep.tax_rate=0.2;
13 spawn(i over 10) in arr{
14 SM << arr[i];
15 acc_calc@SM(inc_rep)
16 }
17 }

82

CHAPTER 3. Workflow Patterns for SOC

3.2.4.4 Structured Discriminator

Description

The convergence of two or more branches into a single subsequent branch follow-
ing a corresponding divergence earlier in the process model.

The thread of control is passed to the subsequent branch when the first incoming
branch has been enabled. Subsequent enablements of incoming branches do not
result in the thread of control being passed on.

The discriminator construct resets when all incoming branches have been enabled.

Diagram

Figure 3.11: Structured Discriminator pattern

Motivation

The Discriminator pattern provides a means of merging two or more distinct branches
in a process into a single subsequent branch such that the first of them to com-
plete results in the subsequent branch being triggered, but completions of other
incoming branches thereafter have no effect on (and do not trigger) the subse-
quent branch. As such, the Discriminator provides a mechanism for progressing

83

CHAPTER 3. Workflow Patterns for SOC

the execution of a process once the first of a series of concurrent activities has
completed.

JOLIE Implementation

The Discriminator pattern provides a means of merging two or more branches in
a workflow and progressing execution of the workflow as rapidly as possible by
enabling the subsequent (merged) branch as soon as a thread of control is received
on one of the incoming branches.

There are five context conditions associated with the use of this pattern:

1. The Discriminator is associated with precisely one Parallel Split[3.2.3.2] earlier
in the process and each of the outputs from the Parallel Split is an input to
the Discriminator;

2. The branches from the Parallel Split to the Discriminator are structured in
form and any splits and merge in the branches are balanced;

3. Each of the incoming branches to the Discriminator must only be triggered
once prior to it being reset;

4. The Discriminator resets (and can be re-enabled) once all of its incoming
branches have been enabled precisely once;

5. Once the Parallel Split has been enabled none of the activities in the branches
leading to the Discriminator can be canceled before the join has been trig-
gered. The only exception to this is that it is possible for all of the activities
leading up to the Discriminator to be canceled.

The Structured Discriminator can be directly implemented by specifying a custom
trigger condition for an activity with multiple incoming routers which only fires
when the first router is enabled.

An offering achieves full support if it satisfies the context criteria for the pattern.
It rates as partial support if the Discriminator can reset without all activities in
incoming branches having run to completion.

The JOLIE code example written following is structured into two processes (files),
server and client, which provide both the Synchronization pattern (client) and a
concurrent implementation of the Structured Discriminator pattern (server).

84

CHAPTER 3. Workflow Patterns for SOC

Multiple executions of the same “server” process are allowed by the concurrent
execution statement (correlation sets are implemented too due to JOLIE session
management requirements).

To simulate different and non-deterministic branches execution times, each branch
waits a random number of seconds before sending a OneWay request towards the
server, which implements reset-after-synchronization policy on top of the JOLIE
code example given for the Synchronization pattern[3.2.3.3].

JOLIE code example

Listing 28: Structured Discriminator (server) code example

1 include "console.iol"
2 include "math.iol"
3 include "time.iol"
4
5 execution{concurrent}
6
7 type session: undefined
8 type a1: undefined
9 type a2: undefined

10 type a3: undefined
11
12 cset{
13 id: session.id
14 a1.id
15 a2.id
16 a3.id
17 }
18
19
20 inputPort SD{
21 Location:"socket://localhost:8000"
22 Protocol: sodep
23 OneWay: alert1(a1), alert2(a2), alert3(a3), start(session)
24 }
25
26 define printFirst {
27 println@Console(
28 "First alert received "+
29 "from the "+token+" circuit")()
30 }
31
32 main{
33 [start(session)]{
34 println@Console("--- Serving session "+
35 session.id+" ---")();
36 {scope(alert_sensing){
37 alert1(a1);
38 if(!is_defined(token)){
39 token="First";
40 token.time=a1.time;

85

CHAPTER 3. Workflow Patterns for SOC

41 printFirst
42 };
43 println@Console("One: "+a1.time)();
44 linkOut(alert1)
45 }|{
46 alert2(a2);
47 if(!is_defined(token)){
48 token="Second";
49 token.time=a2.time;
50 printFirst
51 };
52 println@Console("Two: "+a2.time)();
53 linkOut(alert2)
54 }|{
55 alert3(a3);
56 if(!is_defined(token)){
57 token="Third";
58 token.time=a3.time;
59 printFirst
60 };
61 println@Console("Three: "+a3.time)();
62 linkOut(alert3)
63 }
64 }|{
65 linkIn(alert1)|linkIn(alert2)|linkIn(alert3)
66 };
67 println@Console("All alert received")()
68 }
69 }

Listing 29: Structured Discriminator (client) code example

1 include "console.iol"
2 include "math.iol"
3 include "time.iol"
4
5 outputPort SD{
6 Location:"socket://localhost:8000"
7 Protocol: sodep
8 OneWay: alert1, alert2, alert3, start
9 }

10
11 main{
12 while(true){
13 scope(ini){
14 range=10;
15 getCurrentDateTime@Time()(start_time);
16 random@Math()(a1.time);
17 random@Math()(a2.time);
18 random@Math()(a3.time);

86

CHAPTER 3. Workflow Patterns for SOC

19 random@Math()(session.id);
20
21 a1.timems=int(a1.time*range)*1000;
22 a2.timems=int(a2.time*range)*1000;
23 a3.timems=int(a3.time*range)*1000;
24
25 session.id=int(session.id*10000);
26 a1.id=session.id;
27 a2.id=session.id;
28 a3.id=session.id;
29
30 a1.time=int(a1.timems/1000);
31 a2.time=int(a2.timems/1000);
32 a3.time=int(a3.timems/1000);
33 start@SD(session);
34 println@Console("\nStarting session: "+session.id)()
35 };
36 scope(exec){
37 {
38 sleep@Time(a1.timems)();
39 println@Console("sending alarm 1")();
40 alert1@SD(a1)
41 }
42 |
43 {
44 sleep@Time(a2.timems)();
45 println@Console("sending alarm 2")();
46 alert2@SD(a2)
47 }
48 |
49 {
50 sleep@Time(a3.timems)();
51 println@Console("sending alarm 3")();
52 alert3@SD(a3)
53 }
54 }
55 }
56 }

87

CHAPTER 3. Workflow Patterns for SOC

3.2.4.5 Blocking Discriminator

Description

The convergence of two or more branches into a single subsequent branch follow-
ing one or more corresponding divergences earlier in the process model.

The thread of control is passed to the subsequent branch when the first active
incoming branch has been enabled. The Blocking Discriminator construct resets
when all active incoming branches have been enabled once for the same process
instance. Subsequent enablements of incoming branches are blocked until the
Blocking Discriminator has reset.

Diagram

Figure 3.12: Blocking Discriminator pattern

Motivation

The Blocking Discriminator pattern is a variant of the Structured Discriminator [3.2.4.4]
pattern that is able to run in environments where there are potentially several con-
current execution threads within the same process instance. This quality allows

88

CHAPTER 3. Workflow Patterns for SOC

it to be used in loops and other process structures where more than one execu-
tion thread may be received in a given branch in the time between the first branch
being enabled and the Blocking Discriminator being reset.

JOLIE Implementation

The Blocking Discriminator pattern is more robust than the Structured one, as it is
not subject to the constraint that each incoming branch can only being triggered
once prior to reset.

The Blocking Discriminator functions by keeping track of which inputs have been
triggered (via the triggered input place) and preventing them from being re-enabled
until the construct has reset as a consequence of receiving a trigger on each incom-
ing branch.

An important feature of this pattern is that it is able to be used in environments
that do not support a safe process model or those that may receive multiple trig-
gerings on the same input place e.g. where the Blocking Discriminator is used
within a loop.

The JOLIE code example for this pattern has been written as an slight evolution of
the one used for the Structured Discriminator pattern. In this case the limitation of
simultaneous Discriminator executions during subsequent processing is obtained
by using the execution{sequential} statement which starts a new session only
when the preceding one is finished.

JOLIE code example

Listing 30: Blocking Discriminator (server) code example

1 include "console.iol"
2 include "math.iol"
3 include "time.iol"
4
5 execution{sequential}
6
7 type session: undefined
8 type a1: undefined
9 type a2: undefined

10 type a3: undefined
11
12 cset{
13 id: session.id
14 a1.id
15 a2.id
16 a3.id
17 }
18

89

CHAPTER 3. Workflow Patterns for SOC

19
20 inputPort SD{
21 Location:"socket://localhost:8000"
22 Protocol: sodep
23 OneWay: alert1(a1), alert2(a2), alert3(a3), start(session)
24 }
25
26 define printFirst {
27 println@Console(
28 "First alert received "+
29 "from the "+token+" circuit")()
30 }
31
32 main{
33 [start(session)]{
34 println@Console("--- Serving session "+
35 session.id+" ---")();
36 {scope(alert_sensing){
37 alert1(a1);
38 if(!is_defined(token)){
39 token="First";
40 token.time=a1.time;
41 printFirst
42 };
43 println@Console("One: "+a1.time)();
44 linkOut(alert1)
45 }|{
46 alert2(a2);
47 if(!is_defined(token)){
48 token="Second";
49 token.time=a2.time;
50 printFirst
51 };
52 println@Console("Two: "+a2.time)();
53 linkOut(alert2)
54 }|{
55 alert3(a3);
56 if(!is_defined(token)){
57 token="Third";
58 token.time=a3.time;
59 printFirst
60 };
61 println@Console("Three: "+a3.time)();
62 linkOut(alert3)
63 }
64 }|{
65 linkIn(alert1)|linkIn(alert2)|linkIn(alert3)
66 };
67 println@Console("All alert received")()
68 }
69 }

90

CHAPTER 3. Workflow Patterns for SOC

3.2.4.6 Canceling Discriminator

Description

The convergence of two or more branches into a single subsequent branch follow-
ing one or more corresponding divergences earlier in the process model.

The thread of control is passed to the subsequent branch when the first active
incoming branch has been enabled. Triggering the Cancelling Discriminator also
cancels the execution of all of the other incoming branches and resets the con-
struct.

Diagram

Figure 3.13: Canceling Discriminator pattern

Motivation

91

CHAPTER 3. Workflow Patterns for SOC

This pattern provides a means of expediting a process instance where a series of
incoming branches to a join need to be synchronized but it is not important that
the tasks associated with each of the branches (other than the first of them) be
completed.

JOLIE Implementation

Full support for this pattern is demonstrated by any offering which provides a
construct which satisfies the description when used in a context satisfying the
context assumption. An offering is considered to provide partial support for the
pattern if there are side-effects associated with the execution of the pattern (e.g.
tasks in incoming branches which have not completed being recorded as com-
plete).

The JOLIE code example for this pattern has been written as an evolution of the
one used for the Structured Discriminator pattern, but in this case a non-deterministic
choice approach is used. When a non-deterministic case reach the Canceling Dis-
criminator the other branches are still waiting to be accepted, that eventuality
should be handled at client-side as stated in adopted conventions [3.2.2].

The server part of the Cancelling Discriminator pattern is listed as follows, while
for the client part is made reference to the Standard Discriminator implementation.

JOLIE code example

Listing 31: Canceling Discriminator (server) code example

1 include "console.iol"
2 include "math.iol"
3 include "time.iol"
4
5 execution{concurrent}
6
7 type session: undefined
8 type a1: undefined
9 type a2: undefined

10 type a3: undefined
11
12 cset{
13 id: session.id
14 a1.id
15 a2.id
16 a3.id
17 }
18
19
20 inputPort SD{
21 Location:"socket://localhost:8000"
22 Protocol: sodep

92

CHAPTER 3. Workflow Patterns for SOC

23 OneWay: alert1(a1), alert2(a2), alert3(a3), start(session)
24 }
25
26 define printFirst {
27 println@Console(
28 "First alert received "+
29 "from the "+token+" circuit")()
30 }
31
32 main{
33 [start(session)]{
34 println@Console("--- Serving session "+
35 session.id+" ---")();
36 [alert1(a1)]{
37 token="First";
38 printFirst
39 }
40 [alert2(a2)]{
41 token="Second";
42 printFirst
43 }
44 [alert3(a3)]{
45 token="Third";
46 printFirst
47 };
48 println@Console("Alert received")();
49 println@Console("Resetting system...")()
50 }
51 }

93

CHAPTER 3. Workflow Patterns for SOC

3.2.4.7 Structured Partial Join

Description

The convergence of M branches into a single subsequent branch following a corre-
sponding divergence earlier in the process model. The thread of control is passed
to the subsequent branch when N of the incoming branches have been enabled.
Subsequent enablements of incoming branches do not result in the thread of con-
trol being passed on.

The join construct resets when all active incoming branches have been enabled.

Diagram

Figure 3.14: Structured Partial Join pattern

Motivation

The Structured Partial Join pattern provides a means of merging two or more dis-
tinct branches resulting from a specific Parallel Split [3.2.3.2] or AND-split con-
struct earlier in a workflow process into a single branch. The join construct does
not require triggers on all incoming branches before it can fire. Instead a given

94

CHAPTER 3. Workflow Patterns for SOC

threshold can be defined which describes the circumstances under which the join
should fire.

Typically this is presented as the ratio of incoming branches that need to be live
for firing as against the total number of incoming branches to the join e.g. a 2-out-
of-3 Join signifies that the join construct should fire when two of three incoming
arcs are live.

Subsequent completions of other remaining incoming branches have no effect on
(and do not trigger) the subsequent branch. As such, the Structured Partial Join
provides a mechanism for progressing the execution of a process once a specified
number of concurrent activities have completed rather than waiting for all of them
to complete

JOLIE Implementation

The Structured Partial Join pattern is one possible variant of the Synchronization
[3.2.3.3] construct, where the number of incoming arcs that will cause the join to
fire (N) is between 2 and M − 1 (i.e. the total number of incoming branches less
one i.e. 2 6 N < M).

There are a number of possible specializations of the Synchronization pattern and
they form a hierarchy based on the value of N. Where only one incoming arc
must be live for firing (i.e. N = 1), this corresponds to one of the variants of
the Discriminator pattern (3.2.4.4, 3.2.4.5 or 3.2.4.6). An Synchronization where all
incoming arcs must be live (i.e. N = M) is the Synchronization or Generalized AND-
Join [3.2.4.10] pattern.

The pattern provides a means of merging two or more branches in a workflow
and progressing execution of the workflow as rapidly as possible by enabling the
subsequent (merged) branch as soon as a thread of control has been received on
N of the incoming branches where N is less than the total number of incoming
branches.

There are two context conditions associated with the use of this pattern:

1. Each of the incoming branches to the join must only be triggered once prior
to it being reset;

2. The Partial Join resets (and can be re-enabled) once all of its incoming branches
have been enabled precisely once.

95

CHAPTER 3. Workflow Patterns for SOC

There are two possible variants on this pattern that arise from relaxing some of
the context conditions associated with it. Both of these improve on the efficiency
of the join whilst retaining its overall behavior.

The first alternative, the Blocking Partial Join [3.2.4.8], removes the requirement
that each incoming branch can only be enabled once between join resets. It allows
each incoming branch to be triggered multiple times although the construct only
resets when one triggering has been received on each input branch.

Second, the Cancelling Partial Join [3.2.4.9], improves the efficiency of the pattern
further by canceling the other incoming branches to the join construct once N
incoming branches have completed.

Both of these alternatives are described and taken into account further.

An offering achieves full support if it provides a construct that satisfies the context
requirements for the pattern. If there is any ambiguity in how the join condition
is specified, an offering is considered to provide partial support for the pattern

The JOLIE code example for this pattern has been written as an evolution of the
one used for the Structured Discriminator pattern, along with a token based count
that releases a linkOut variable when the maximum number of token is reached.

As stated in the pattern description, all other waiting operations (branches) must
be completed after the max_token number is reached. To be able to reset the pattern
block, each later operation shall remain in a waiting state until the corresponding
client branch reaches the server and release its own token. Once all token have
been released the block can be reset.

The server part of the Structured Partial Join pattern is listed as follows, while for
the client part is made reference to the Standard Discriminator implementation.

JOLIE code example

Listing 32: Structured Partial Join (server) code example

1 include "console.iol"
2 include "math.iol"
3 include "time.iol"
4
5 execution{concurrent}
6
7 type session: undefined
8 type a1: undefined
9 type a2: undefined

10 type a3: undefined

96

CHAPTER 3. Workflow Patterns for SOC

11
12 cset{
13 id: session.id
14 a1.id
15 a2.id
16 a3.id
17 }
18
19
20 inputPort SD{
21 Location:"socket://localhost:8000"
22 Protocol: sodep
23 OneWay: alert1(a1), alert2(a2), alert3(a3), start(session)
24 }
25
26 init{
27 max_token=1
28 }
29
30 main{
31 [start(session)]{
32 println@Console("--- Serving session "+
33 session.id+" ---")();
34 token=0;
35 {scope(alert_sensing){
36 {
37 alert1(a1);
38 synchronized(lock){
39 if(token<=max_token){
40 println@Console(
41 "a1 took token: "+token)();
42 println@Console("A1: "+a1.msg)();
43 if(token==max_token){
44 linkOut(spj)};
45 token=token+1
46 }}
47 }|{
48 alert2(a2);
49 synchronized(lock){
50 if(token<=max_token){
51 println@Console(
52 "a2 took token: "+token)();
53 println@Console("A2: "+a2.msg)();
54 if(token==max_token){
55 linkOut(spj)};
56 token=token+1
57 }}
58 }|{
59 alert3(a3);
60 synchronized(lock){
61 if(token<=max_token){
62 println@Console(
63 "a3 took token: "+token)();
64 println@Console("A3: "+a3.msg)();

97

CHAPTER 3. Workflow Patterns for SOC

65 if(token==max_token){
66 linkOut(spj)};
67 token=token+1
68 }}
69 }
70 };
71 println@Console("Resetting system...")()}|
72 {linkIn(spj);
73 println@Console("All needed branches "+
74 "reached the system")()}
75 }
76 }

98

CHAPTER 3. Workflow Patterns for SOC

3.2.4.8 Blocking Partial Join

Description

The convergence of two or more branches into a single subsequent branch follow-
ing one or more corresponding divergences earlier in the process model.

The thread of control is passed to the subsequent branch when N of the incoming
branches have been enabled.

The join construct resets when all active incoming branches have been enabled
once for the same process instance. Subsequent enablements of incoming branches
are blocked until the join has reset.

Diagram

Figure 3.15: Blocking Partial Join pattern

Motivation

The Blocking Partial Join is a variant of the Structured Partial Join [3.2.4.7] that is able
to run in environments where there are concurrent process instances, particularly
process instances that have multiple concurrent execution threads.

99

CHAPTER 3. Workflow Patterns for SOC

The Blocking Partial Join functions by keeping track of which inputs have been
enabled and preventing them from being re-enabled until the construct has reset
as a consequence of receiving a trigger on each incoming place.

After N incoming triggers have been received for a given process instance, the
join fires. The completion of the remaining N − M branches has no impact on the
join except that it is reset when the last of them is received.

The pattern shares the same advantages over the Structured Partial Join as the Block-
ing Discriminator [3.2.4.5] does over the Structured Discriminator [3.2.4.4], namely
greater flexibility as it is able to deal with the situation where a branch is triggered
more than once e.g. where the construct exists within a loop and it also shares the
same context condition: it can only deal with one case at a time.

JOLIE Implementation

An offering achieves full support if it provides a construct that satisfies the context
requirements for the pattern. If there is any ambiguity in how the join condition
is specified, an offering is considered to provide partial support for the pattern.

The JOLIE code example for this pattern has been written as a slight evolution of
the one used for the Structured Partial Join pattern which, like the Blocking Discrim-
inator, implements its blocking feature using the execution{sequential} state-
ment,

The server part of the Blocking Partial Join pattern is listed as follows while for the
client part is made reference to the Standard Discriminator implementation.

JOLIE code example

Listing 33: Blocking Partial Join (server) code example

1 include "console.iol"
2 include "math.iol"
3 include "time.iol"
4
5 execution{sequential}
6
7 type session: undefined
8 type a1: undefined
9 type a2: undefined

10 type a3: undefined
11
12 cset{
13 id: session.id
14 a1.id
15 a2.id

100

CHAPTER 3. Workflow Patterns for SOC

16 a3.id
17 }
18
19
20 inputPort SD{
21 Location:"socket://localhost:8000"
22 Protocol: sodep
23 OneWay: alert1(a1), alert2(a2), alert3(a3), start(session)
24 }
25
26 init{
27 max_token=1
28 }
29
30 main{
31 [start(session)]{
32 println@Console("--- Serving session "+
33 session.id+" ---")();
34 token=0;
35 {scope(alert_sensing){
36 {
37 alert1(a1);
38 synchronized(lock){
39 if(token<=max_token){
40 println@Console(
41 "a1 took token: "+token)();
42 println@Console("A1: "+a1.msg)();
43 if(token==max_token){
44 linkOut(spj)};
45 token=token+1
46 }}
47 }|{
48 alert2(a2);
49 synchronized(lock){
50 if(token<=max_token){
51 println@Console(
52 "a2 took token: "+token)();
53 println@Console("A2: "+a2.msg)();
54 if(token==max_token){
55 linkOut(spj)};
56 token=token+1
57 }}
58 }|{
59 alert3(a3);
60 synchronized(lock){
61 if(token<=max_token){
62 println@Console(
63 "a3 took token: "+token)();
64 println@Console("A3: "+a3.msg)();
65 if(token==max_token){
66 linkOut(spj)};
67 token=token+1
68 }}

101

CHAPTER 3. Workflow Patterns for SOC

69 }
70 };
71 println@Console("Resetting system...")()}|
72 {linkIn(spj);
73 println@Console("All needed branches "+
74 "reached the system")()}
75 }
76 }

102

CHAPTER 3. Workflow Patterns for SOC

3.2.4.9 Canceling Partial Join

Description

The convergence of two or more branches into a single subsequent branch fol-
lowing one or more corresponding divergences earlier in the process model. The
thread of control is passed to the subsequent branch when N of the incoming
branches have been enabled.

Triggering the join also cancels the execution of all of the other incoming branches
and resets the construct.

Diagram

Figure 3.16: Canceling Partial Join pattern

Motivation

The Canceling Partial Join pattern provides a means of expediting a process in-
stance where a series of incoming branches to a join need to be synchronized but

103

CHAPTER 3. Workflow Patterns for SOC

only a subset of those activities associated with each of the branches needs to be
completed.

It is a context condition of this pattern that only one thread of execution is active
for a given process instance in each of the preceding branches to the discriminator.
If this is not the case, then the behavior of the process instance is likely to become
unpredictable at a later stage during execution.

JOLIE Implementation

An offering achieves full support if it provides a construct that satisfies the con-
text requirements for the pattern. An offering is considered to provide partial
support for the pattern if there are undesirable side-effects associated with the
construct firing (e.g. activities in incoming branches which have not completed
being recorded as complete or if the semantics associated with the join condition
are unclear).

Many of the advanced synchronization patterns assume a safe context (i.e. a place
cannot be marked twice for the same process instance). The following pattern is
not predicated on this assumption.

The JOLIE code example for this pattern has been written as a slight evolution of
the one used for the Structured Partial Join pattern which implements its cancel-
ing feature using the throw(kill_session) statement when the need number of
branches reach the block.

The server part of the Canceling Partial Join pattern is listed as follows, while for
the client part is made reference to the Standard Discriminator implementation.

JOLIE code example

Listing 34: Canceling Partial Join (server) code example

1 include "console.iol"
2 include "math.iol"
3 include "time.iol"
4
5 execution{concurrent}
6
7 type session: undefined
8 type a1: undefined
9 type a2: undefined

10 type a3: undefined
11
12 cset{
13 id: session.id
14 a1.id

104

CHAPTER 3. Workflow Patterns for SOC

15 a2.id
16 a3.id
17 }
18
19
20 inputPort SD{
21 Location:"socket://localhost:8000"
22 Protocol: sodep
23 OneWay: alert1(a1), alert2(a2), alert3(a3), start(session)
24 }
25
26 init{
27 max_token=1
28 }
29
30 main{
31 [start(session)]{
32 println@Console("--- Serving session "+
33 session.id+" ---")();
34 token=0;
35 install(kill_session=>
36 println@Console("All needed branches "+
37 "reached the system")();
38 println@Console("Resetting system...")());
39 scope(alert_sensing){
40 {
41 alert1(a1);
42 synchronized(lock){
43 if(token<=max_token){
44 println@Console(
45 "a1 took token: "+token)();
46 println@Console("A1: "+a1.msg)();
47 if(token==max_token){
48 throw(kill_session)};
49 token=token+1
50 }}
51 }|{
52 alert2(a2);
53 synchronized(lock){
54 if(token<=max_token){
55 println@Console(
56 "a2 took token: "+token)();
57 println@Console("A2: "+a2.msg)();
58 if(token==max_token){
59 throw(kill_session)};
60 token=token+1
61 }}
62 }|{
63 alert3(a3);
64 synchronized(lock){
65 if(token<=max_token){
66 println@Console(
67 "a3 took token: "+token)();

105

CHAPTER 3. Workflow Patterns for SOC

68 println@Console("A3: "+a3.msg)();
69 if(token==max_token){
70 throw(kill_session)};
71 token=token+1
72 }}
73 }
74 }
75 }
76 }

106

CHAPTER 3. Workflow Patterns for SOC

3.2.4.10 Generalized AND-Join

Description

The convergence of two or more branches into a single subsequent branch such
that the thread of control is passed to the subsequent branch when all input branches
have been enabled.

Additional triggers received on one or more branches between firings of the join
persist and are retained for future firings.

Diagram

Figure 3.17: AND-Join pattern

Motivation

The Generalized AND-Join corresponds to one of the generally accepted notions of
the Synchronization [3.2.3.3] pattern in which several paths of execution are syn-
chronized and merged together.

Unlike the Synchronization pattern, it supports the situation where one or more
incoming branches may receive multiple triggers for the same process instance
(i.e. a non-safe context).

JOLIE Implementation

The operation of the Generalized AND-Join consists of two steps:

107

CHAPTER 3. Workflow Patterns for SOC

1. Before the pattern transition can be enabled, an input token (corresponding
to the same case) is required in each of the incoming branches.

2. When there are corresponding tokens in each place, the pattern transition is
enabled and consumes a token from each input place.

If there is more than one token at an input place, it ignores additional tokens and
they are left in place.

The process analogy to this sequence of events is that the Synchronization pattern
only fires when a trigger has been received on each incoming branch for a given
process instance however additional triggers are retained for future firings.

This approach to Synchronization implementation relaxes the context condition as-
sociated with the Synchronization pattern that only allows it to receive one trigger
on each incoming branch and as a result, it is able to be used in concurrent execu-
tion environments such as process models which involve loops as well as offerings
that do not assume a safe execution environment.

One consideration associated with the Generalized AND-Join is that over time, each
of the incoming branches should deliver the same number of triggers to the Syn-
chronization construct. If this is not the case, then there is the potential for dead-
locks to occur and/or tokens to remain after execution has completed.

An offering achieves full support if it provides a construct that satisfies the con-
text requirements for the pattern. If there is any ambiguity associated with the
specification or use of the construct, an offering is considered to provide partial
support for the pattern.

The JOLIE code example for this pattern has been written as a slight evolution of
the one used for the Structured Discriminator pattern [3.2.4.4] which keeps a con-
current behavior along with a non-deterministic choice approach. While each ses-
sion is a different one, using several general-scope stacks, each incoming branch
(token) is accumulated until their number is sufficient for block output.

The server part of the Generalized AND-Join pattern is listed as follows, while for
the client part is made reference to the Standard Discriminator implementation (ses-
sion management features taken away).

JOLIE code example

108

CHAPTER 3. Workflow Patterns for SOC

Listing 35: Generalized AND-Join (server) code example

1 include "console.iol"
2 include "math.iol"
3 include "time.iol"
4
5 execution{concurrent}
6
7 inputPort SD{
8 Location:"socket://localhost:8000"
9 Protocol: sodep

10 OneWay: alert1, alert2, alert3
11 }
12
13 define addA1 {
14 stack.a1=stack.a1+1
15 }
16
17 define addA2{
18 stack.a2=stack.a2+1
19 }
20
21 define addA3{
22 stack.a3=stack.a3+1
23 }
24
25 define stackCheck{
26 if (stack.a1>0 && stack.a2>0 &&stack.a3>0){
27 stack.a1=stack.a1-1;
28 stack.a2=stack.a2-1;
29 stack.a3=stack.a3-1;
30 println@Console("All alarms arrived")()
31 }
32 }
33
34 init{
35 stack->global.stack
36 }
37
38 main{
39 [alert1(a1)]{
40 synchronized(lock){
41 addA1;
42 stackCheck
43 }
44 }
45 [alert2(a2)]{
46 synchronized(lock){
47 addA2;
48 stackCheck
49 }
50 }
51 [alert3(a3)]{
52 synchronized(lock){

109

CHAPTER 3. Workflow Patterns for SOC

53 addA3;
54 stackCheck
55 }
56 }
57 }

110

CHAPTER 3. Workflow Patterns for SOC

3.2.4.11 Local Synchronizing Merge

Description

The convergence of two or more branches which diverged earlier in the process
into a single subsequent branch such that the thread of control is passed to the
subsequent branch when each active incoming branch has been enabled.

Determination of how many branches require synchronization is made on the ba-
sis on information locally available to the merge construct. This may be communi-
cated directly to the merge by the preceding diverging construct or alternatively it
can be determined on the basis of local data such as the threads of control arriving
at the merge.

Diagram

Figure 3.18: Local Synchronizing Merge pattern

Motivation

111

CHAPTER 3. Workflow Patterns for SOC

The Local Synchronizing Merge provides a deterministic semantics for the synchro-
nizing merge which does not rely on the process model being structured (as is
required for the Structured Synchronizing Merge) but also does not require the use
of non-local semantics in evaluating when the merge can fire.

JOLIE Implementation

The pattern is based on the use of "true" and "false" tokens which are used to
indicate whether a branch is enabled or not.

After the divergence (Parallel Split), one or both of the outgoing branches may
be enabled. The determinant of whether the branch is enabled is that the token
passed to the branch contains both the case id as well as a Boolean variable which
is "true" if the tasks in the branch are to be executed, "false" otherwise.

As the control-flow token is passed down a branch, if it is a "true" token, then each
task that receives the thread of control is executed, otherwise it is skipped.

The Local Synchronizing Merge can be evaluated when every incoming branch has
delivered a token to the input places for the same case.

There are two context conditions associated with the use of this pattern:

1. once the Local Synchronizing Merge has been activated and has not yet been
reset, it is not possible for another signal to be received on the activated
branch or for multiple signals to be received on any incoming branch, i.e. all
input places to the Local Synchronizing Merge are safe;

2. the Local Synchronizing Merge construct must be able to determine how many
incoming branches require synchronization based on local knowledge avail-
able to it during execution.

Full support for this pattern is demonstrated by any offering which provides a
construct which satisfies the description when used in a context satisfying the
context assumptions. If there is any ambiguity as to the manner in which the
synchronization condition is specified, then it rates as partial support.

The JOLIE code example for this pattern has been written as a slight evolution
of the one used for the Synchronization pattern [3.2.3.3] which implements a local
(internal) decision block (deferred choice) whether to wait for pid2 operation (for
synchronization purposes) or not.

112

CHAPTER 3. Workflow Patterns for SOC

The server part of the Local Synchronizing Merge pattern is listed as follows, while
for the client part is made reference (with merely operational modifications) to the
Synchronization pattern implementation.

JOLIE code example

Listing 36: Local Synchronizing Merge (server) code example

1 include "console.iol"
2 include "math.iol"
3
4 inputPort SyncSvr{
5 Location: "socket://localhost:8000"
6 Protocol: sodep
7 OneWay: pid1, pid2
8 }
9

10 main{
11 scope(pid1){
12 pid1(pid1);
13 linkOut(idP1)
14 }
15 |
16 scope(pid2){
17 random@Math()(value);
18 value=int(2.0*value);
19 if(value>0){
20 println@Console("pid2 enabled")();
21 pid2(pid2);
22 linkOut(idP2)
23 }
24 else{linkOut(idP2)}
25 }
26 |
27 scope(sync){
28 {
29 linkIn(idP1);
30 if(is_defined(pid1)){
31 println@Console("pid1 state active, msg: "+pid1.msg)()}
32 }|{
33 linkIn(idP2);
34 if(is_defined(pid2)){
35 println@Console("pid2 state active, msg: "+pid2.msg)()}
36 }};
37 println@Console(
38 "Synchornization successfull")()
39 }

113

CHAPTER 3. Workflow Patterns for SOC

3.2.4.12 General Synchronizing Merge

Description

The convergence of two or more branches which diverged earlier in the process
into a single subsequent branch.

The thread of control is passed to the subsequent branch when each active incom-
ing branch has been enabled or it is not possible that the branch will be enabled at
any future time.

Diagram

Figure 3.19: General Synchronizing Merge pattern

Motivation

The General Synchronizing Pattern pattern provides a general approach to the eval-
uation of the Simple Merge [3.2.3.5] construct in workflow. It is able to be used in
non-structured and highly concurrent workflow, including process models that
include looping structures.

JOLIE Implementation

The difficulty in implementing the General Synchronizing Merge stems from the
fact that its evaluation relies on non-local semantics in order to determine when

114

CHAPTER 3. Workflow Patterns for SOC

it can fire. In fact it is easy to see that this construct can lead to the “vicious circle
paradox” where two Simple Merge blocks depend on one another.

The Simple Merge can only be enabled when the thread of control has been re-
ceived from all incoming branches and it is certain that the remaining incoming
branches which have not been enabled will never be enabled at any future time.
Determination of this fact requires a (computationally expensive) evaluation of
possible future states for the current process instance.

An offering achieves full support if it provides a construct that implements the
context requirements for the pattern.

The JOLIE code example for this pattern has been written as a “merge” between
the code examples from the Local Synchronizing Merge pattern [3.2.4.11] and the
Simple Merge pattern [3.2.3.5].

The code implements both a local (internal) decision block (deferred choice) and a
Simple Merge (XOR) block shared between client and server sides, whose behavior
is achieved employing a RequestResponse operation between the sides.

The server and client sides of the General Synchronizing Merge pattern are listed as
follows.

JOLIE code example

Listing 37: General Synchronizing Merge (server) code example

1 include "console.iol"
2 include "math.iol"
3
4 inputPort SyncSvr{
5 Location: "socket://localhost:8000"
6 Protocol: sodep
7 OneWay: pid1
8 RequestResponse: pid2
9 }

10
11 main{
12 min_taxable=150;
13 tot_income=0;
14 scope(pid1){
15 pid1(pid1);
16 linkOut(idP1)
17 }
18 |
19 scope(pid2){
20 random@Math()(earnings_count);
21 earning_days=int(earnings_count*4)+1;

115

CHAPTER 3. Workflow Patterns for SOC

22 for(i=0,i<earning_days,i++){
23 pid2(pid2)(pid2){
24 tot_income=tot_income+pid2.income;
25 println@Console("Received: "+tot_income)();
26 if(i<earning_days-1){pid2.needNext=true}
27 else{pid2.needNext=false}
28 }
29 };
30 if (tot_income<min_taxable) {
31 undef(tot_income)
32 };
33 linkOut(idP2)
34 }|
35 scope(sync){
36 {linkIn(idP1)|linkIn(idP2)};
37 println@Console("Received \""+pid1.income_prov+
38 "\" earnings data.")();
39 if(is_defined(tot_income)){
40 println@Console("Total income: "+tot_income)();
41 println@Console("taxted at :"+pid1.income_tax_rate)();
42 println@Console("Total taxed: "+double(tot_income)*
43 pid1.income_tax_rate)()
44 }
45 else{
46 println@Console("Total earnings are below"+
47 " minimum taxable amount.")()}
48 };
49 println@Console(
50 "Synchornization successfull")()
51 }

Listing 38: General Synchronizing Merge (server) code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 outputPort sync_svr{
6 Location: "socket://localhost:8000"
7 Protocol: sodep
8 OneWay: pid1
9 RequestResponse: pid2

10 }
11
12 main{
13 scope(pid1){
14 sleep@Time(2000)();
15 pid1.income_prov="Rented assets";
16 pid1.income_tax_rate=0.2;
17 pid1@sync_svr(pid1)

116

CHAPTER 3. Workflow Patterns for SOC

18 }
19 |
20 scope(pid2){
21 sleep@Time(1000)();
22 pid2.needNext=true;
23 while(pid2.needNext){
24 random@Math()(pid2.income);
25 pid2.income=int(pid2.income*100);
26 println@Console("Sending: "+pid2.income)();
27 pid2@sync_svr(pid2)(pid2)
28 }
29 }
30 }

117

CHAPTER 3. Workflow Patterns for SOC

3.2.4.13 Thread Merge

Description

At a given point in a process, a nominated number of execution threads in a sin-
gle branch of the same process instance should be merged together into a single
thread of execution.

Diagram

Figure 3.20: Thread Merge pattern

Motivation

This pattern provides a means of merging multiple threads within a given pro-
cess instance. It is a counterpart to the Thread Split pattern [3.2.4.14] which creates
multiple execution threads along the same branch. In some situations, it can also
be used in conjunction with the Multiple Instances without Synchronization pattern
[3.2.5.1], however there is the requirement that each of the multiple instances exe-
cute along the same branch in the process.

JOLIE Implementation

There are two context considerations for this pattern:

1. the number of threads needing to be merged must be known at design-time;

2. only execution threads for the same process instance can be merged. If the
pattern is used to merge independent execution threads arising from some
form of activity spawning, then it must be possible to identify the specific
threads that need to be coalesced.

An offering achieves full support for this pattern if it provides a construct that
satisfies the context requirements. If any degree of programmatic extension is
required to achieve the same behavior, then the partial support rating applies.

118

CHAPTER 3. Workflow Patterns for SOC

The JOLIE code example for this pattern has been written to be in compliance
with the second context condition too. Even for this simple pattern a server-client
approach is used such that employing the cset and concurrent execution features
make possible having several separated branches running simultaneously while
is possible to clearly identifying each thread’s provenience.

The server and client sides of the Thread Merge pattern are listed as follows.

JOLIE code example

Listing 39: Thread Merge (server) code example

1 include "console.iol"
2
3 cset{
4 branch_id: msg.branch_id
5 }
6
7 type msg: undefined
8
9 inputPort TM{

10 Location: "socket://localhost:8000"
11 Protocol: sodep
12 OneWay: start(msg), tm(msg)
13 }
14
15 execution{concurrent}
16
17 main{
18 [start(msg)]{
19 tc=0;
20 while(tc<10){
21 tm(msg);
22 tc++;
23 println@Console("Received thread n."+tc+
24 " from bid: "+msg.branch_id)()
25 };
26 println@Console("All thread received"+
27 " from bid: "+msg.branch_id+
28 ", starting finishing procedure.")()
29 }
30 }

Listing 40: Thread Merge (server) code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 outputPort TM{

119

CHAPTER 3. Workflow Patterns for SOC

6 Location: "socket://localhost:8000"
7 Protocol: sodep
8 OneWay: start, tm
9 }

10
11 main{
12 random@Math()(branch_id);
13 msg.branch_id=int(branch_id*1000);
14 start@TM(msg);
15 for(i=0,i<10,i++){
16 random@Math()(exec_time);
17 exec_time=int(exec_time*10000);
18 sleep@Time(exec_time)();
19 tm@TM(msg)
20 }
21 }

120

CHAPTER 3. Workflow Patterns for SOC

3.2.4.14 Thread Split

Description

At a given point in a process, a nominated number of execution threads can be
initiated in a single branch of the same process instance.

Diagram

Figure 3.21: Thread Split pattern

Motivation

This pattern provides a means of triggering multiple execution threads along a
branch within a given process instance. It is a counterpart to the Thread Merge
pattern [3.2.4.13] which merges multiple execution threads along the same branch.
Unless used in conjunction with the Thread Merge pattern, the execution threads
will run independently to the end of the process.

JOLIE Implementation

There are two context considerations for this pattern:

1. the number of threads to be initiated must be known at design-time

2. all threads must be initiated from the same point in the process model (i.e.
they must flow along the same branch).

An offering achieves full support for this pattern if it provides a construct that
satisfies the context requirements. If any degree of programmatic extension is
required to achieve the same behavior, then the partial support rating applies.

The JOLIE code example for this pattern has been written with a server-client
approach taking advantage of non-deterministic choice feature to run each thread
independently.

121

CHAPTER 3. Workflow Patterns for SOC

The server side of the code example of the Thread Split pattern is listed as follows,
since the client implementation consists of a single for block invoking ten times
the ts operation at server side .

JOLIE code example

Listing 41: Thread Split (server) code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5
6 inputPort TS{
7 Location: "socket://localhost:8000"
8 Protocol: sodep
9 OneWay: ts

10 }
11
12 execution{concurrent}
13
14 main{
15 [ts(msg)]{
16 random@Math()(tid);
17 tid=int(tid*1000);
18 for(i=1,i<4,i++){
19 random@Math()(exec_time);
20 exec_time=int(exec_time*10000);
21 sleep@Time(exec_time)();
22 println@Console("Thread: "+tid+
23 " rep: "+i)()
24 }
25 }
26 }

122

CHAPTER 3. Workflow Patterns for SOC

3.2.5 Multiple Instance Patterns

Multiple instance patterns describe situations where there are multiple threads of
execution active in a process model which relate to the same activity (and hence
share the same implementation definition).

Multiple instances can arise in three situations:

• An activity is able to initiate multiple instances of itself when triggered (namely
a multiple instance activity);

• A given activity is initiated multiple times as a consequence of it receiving
several independent triggerings;

• Two or more activities in a process share the same implementation defini-
tion. This may be the same activity definition in the case of a multiple in-
stance activity or a common sub-process definition in the case of a block
activity. Two (or more) of these activities are triggered such that their execu-
tions overlap (either partially or wholly).

Although all of these situations potentially involve multiple concurrent instances
of an activity or sub-process, it is the first of them in which we are most interested
as they require the triggering and synchronization of multiple concurrent activity
instances. This group of patterns focuses on the various ways in which these
events can occur.

123

CHAPTER 3. Workflow Patterns for SOC

3.2.5.1 Multiple Instances without Synchronization

Description

Within a given process instance, multiple instances of an activity can be created.
These instances are independent of each other and run concurrently. There is no
requirement to synchronize them upon completion.

Diagram

Figure 3.22: Multiple Instances without Synchronization pattern

Motivation

This pattern provides a means of creating multiple instances of a given activity.
It is particularly suited to situations where the number of individual activities re-
quired is known before the spawning action commences, the activities can execute
independently of each other and no subsequent synchronization is required.

JOLIE Implementation

There are two context conditions associated with this pattern:

124

CHAPTER 3. Workflow Patterns for SOC

1. each of the multiple instance activities that are created must execute within
the context of the process instance from which they were started (i.e. they
must share the same case id and have access to the same data elements);

2. each of the multiple instance activities must execute independently from and
without reference to the activity that started them.

Where an offering provides support for this pattern, one issue that can potentially
arise is how the various threads of execution might be synchronized at some fu-
ture point in the process. This is potentially problematic as it is likely that the in-
dividual threads of execution may ultimately flow down the same path. In recog-
nition of this need, the Thread Merge [3.2.4.13] and Thread Split [3.2.4.14] patterns
have been introduced.

An offering achieves full support if it satisfies the context requirements for the pat-
tern. Where the newly created activity instances run in a distinct process instance
to the activity that started them or they cannot access the same data elements as
the parent activity, the offering achieves only partial support.

The JOLIE code example for this pattern is very recurrent in multi-threaded/concurrent
implementation provided for previous patterns, a straightforward example of this
pattern implementation can be found in Thread Split code example where multi-
ple instances of the same activity can be run simultaneously, each one with it’s
reserved context.

125

CHAPTER 3. Workflow Patterns for SOC

3.2.5.2 Multiple Instances with a priori Design-Time Knowledge

Description

Within a given process instance, multiple instances of an activity can be created.
The required number of instances is known at design time. These instances are
independent of each other and run concurrently.

It is necessary to synchronize the activity instances at completion before any sub-
sequent activities can be triggered.

Diagram

Figure 3.23: Multiple Instances with a priori Design-Time Knowledge pattern

Motivation

This pattern provides the basis for concurrent execution of a nominated activity a
predefined number of times. It also ensures that all activity instances are complete
before subsequent activities are initiated.

JOLIE Implementation

There are three context conditions associated with this pattern:

1. the number of activity instances required must be specified in the design-
time process model;

126

CHAPTER 3. Workflow Patterns for SOC

2. it must be possible for the activity instances to execute concurrently (al-
though it is not necessarily required that they do all execute in parallel);

3. all activity instances must complete before subsequent activities in the pro-
cess can be triggered.

Many offerings provide a work-around for this pattern by embedding some form
of activity invocation within a loop. These implementation approaches have two
significant problems associated with them:

1. the activity invocations occur at discrete time intervals and it is possible for
the individual activity instances to have potentially distinct states at the time
they are invoked (i.e. the activities do not need to be executed in sequence
and can be handled concurrently)

2. there is no consideration of the means by which the distinct activity in-
stances will be synchronized.

These issues, together with the necessity for the designer to effectively craft the
pattern themselves (rather than having it provided by the offering) rule out this
form of implementation from being considered as satisfying the requirements for
full support.

An offering achieves full support if it provides a construct that satisfies the context
criteria for the pattern. Although work-arounds are possible which achieve the
same behavior through the use of various constructs within an offering such as
activity replication or loops, they have a number of shortcomings and are not
considered to constitute support for the pattern.

The JOLIE code example for this pattern is very recurrent too [3.2.5.1] in multi-
threaded/concurrent implementation provided for previous patterns examples, a
straightforward example of this pattern implementation can be found in : Struc-
tured Synchronizing Merge [3.2.4.2] code example where multiple instances, de-
fined at design-time, run simultaneously, while a synchronizing block is used to
merge all branches after their completion.

127

CHAPTER 3. Workflow Patterns for SOC

3.2.5.3 Multiple Instances with a priori Run-Time Knowledge

Within a given process instance, multiple instances of an activity can be created.
The required number of instances may depend on a number of runtime factors,
including state data, resource availability and inter-process communications, but
is known before the activity instances must be created.

Once initiated, these instances are independent of each other and run concur-
rently. It is necessary to synchronize the instances at completion before any sub-
sequent activities can be triggered.

Diagram

Figure 3.24: Multiple Instances with a priori Run-Time Knowledge pattern

Motivation

The Multiple Instances with a priori Run-Time Knowledge pattern provides a means
of executing multiple instances of a given activity in a synchronized manner with
the determination of exactly how many instances will be created being deferred
to the latest possible time before the first of the activities is started.

JOLIE Implementation

There are three context conditions associated with this pattern:

128

CHAPTER 3. Workflow Patterns for SOC

1. the number of activity instances required must be known at run-time prior
to the invocation of the multiple instance activity;

2. it must be possible for the activity instances to execute concurrently (al-
though it is not necessarily required that they do all execute in parallel);

3. all activity instances must complete before subsequent activities in the pro-
cess can be triggered.

An offering achieves full support if it provides a construct that satisfies the context
criteria for the pattern.

The JOLIE code example for this pattern can be found in General Synchronizing
Merge [3.2.4.12] code example where multiple instances, defined at run_time ac-
cording to a random counter, run sequentially, while a synchronizing block is used
to merge all branches after their completion.

129

CHAPTER 3. Workflow Patterns for SOC

3.2.5.4 Multiple Instances without a priori Run-Time Knowledge

Within a given process instance, multiple instances of an activity can be created.
The required number of instances may depend on a number of runtime factors,
including state data, resource availability and inter-process communications and
is not known until the final instance has completed.

Once initiated, these instances are independent of each other and run concur-
rently.

At any time, whilst instances are running, it is possible for additional instances to
be initiated. It is necessary to synchronize the instances at completion before any
subsequent activities can be triggered.

Diagram

Figure 3.25: Multiple Instances without a priori Run-Time Knowledge pattern

Motivation

This pattern is an extension to the Multiple Instances with a priori Run-Time Knowl-
edge pattern [3.2.5.3] which defers the need to determine how many concurrent

130

CHAPTER 3. Workflow Patterns for SOC

instances of the activity are required until the last possible moment – either when
the final join construct fires or the last of the executing instances completes.

It offers more flexibility in that additional instances can be created “on-the-fly”
without any necessary change to the process model or the synchronization condi-
tions for the activity.

JOLIE Implementation

There are three context conditions associated with this pattern:

1. the number of activity instances required must be known at run-time prior
to the completion of the multiple instance activity (it’s worth noting that the
final number of instances does not need to be known when initializing the
multiple instance activity);

2. it must be possible for the activity instances to execute concurrently (al-
though it is not necessarily required that they do all execute in parallel);

3. all activity instances must complete before subsequent activities in the pro-
cess can be triggered.

An offering achieves full support if it provides a construct that satisfies the context
criteria for the pattern.

This pattern rises some implementation (and behavioral) concerns in JOLIE.

Both implementation, as a single non-communicating execution and with the tra-
ditional server-client approach, can’t fully support of the Multiple Instances with-
out a priori Run-Time Knowledge pattern requirement because of thread execution
modality implemented by JOLIE.

In JOLIE parallel threads can run simultaneously to each other only if program-
matically defined (i.e. at design time), thus only a predetermined number of
branches can potentially run in parallel, while each thread runs sequentially within
the same branch.This limitation in threads execution (and the absence of recursive
constructs) makes impossible to fully implement the pattern mechanism.

The code example listed as follows implements a main process branch whose
number of threads is known at design-time, along with a parallel add_thread

functionality which, once invoked, executes a single parallel (side) thread, which
is added to the total thread count, to be synchronized with the ones of the main

131

CHAPTER 3. Workflow Patterns for SOC

branch. The implementation issue raised is that no additional parallel side threads
can be invoked next to the one described before, thus forbidding other concurrent
thread invocations to be received and run.

Considering an execution example, while the main process (start) branch has
been invoked and running, the add_thread operation is invoked to run a side
thread, which keeps the add_thread process busy for several seconds before let-
ting it to reset and to able to receive another add_thread request. For this rea-
son, even if the client asks for N additional threads to be run, the server would
probably catch only a subset M (M < N) of those because, although concurrent
add_thread invocations are run, the corresponding server-side operation is busy,
running a single thread, resulting in missing invocations and less-than-expected
threads to be run.

The server and client sides of the code example of the Multiple Instances without a
priori Run-Time Knowledge pattern are listed as follows.

JOLIE code example

Listing 42: Multiple Instances without a priori Run-Time Knowledge (server)
code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 inputPort MIWAPRTK{
6 Location: "socket://localhost:8000"
7 Protocol: sodep
8 OneWay: start, add_thread
9 }

10
11 main{
12 completed_threads=0;
13 runnable_threads=0;
14 install(process_complete=>
15 println@Console("All "+completed_threads+
16 " threads executed.")());
17 {//MAIN PROCESS SEQUENCE
18 start(msg);
19 runnable_threads=msg.td_count;
20 for(i=0,i<msg.td_count,i++){
21 random@Math()(exec_time);
22 exec_time=int(exec_time*3000);
23 sleep@Time(exec_time)();
24 synchronized(lock){completed_threads=
25 completed_threads+1};

132

CHAPTER 3. Workflow Patterns for SOC

26 println@Console("Completed main thread "+(i+1)+
27 ", "+(runnable_threads-completed_threads)+
28 " still running.")();
29 if(completed_threads==runnable_threads){
30 throw(process_complete)
31 }
32 }
33 }|
34 {//SIDE SEQUENCE
35 while(true){
36 if(runnable_threads>0){
37 add_thread(msg);
38 synchronized(lock){runnable_threads++};
39 sleep@Time(msg.td_exec_time)();
40 println@Console("Completed side thread, "+
41 (runnable_threads-completed_threads)+
42 " still running.")();
43 synchronized(lock){completed_threads=
44 completed_threads+1};
45 if(completed_threads==runnable_threads){
46 throw(process_complete)
47 }
48 }
49 }
50 }
51 }

Listing 43: Multiple Instances without a priori Run-Time Knowledge (client) code
example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5
6 outputPort MIWAPRTK{
7 Location: "socket://localhost:8000"
8 Protocol: sodep
9 OneWay: start, add_thread

10 }
11
12 main{
13 {
14 random@Math()(msg.td_count);
15 msg.td_count=int(msg.td_count*10);
16 println@Console("Started main "+msg.td_count+
17 " threads block.")();
18 start@MIWAPRTK(msg)
19 }|
20 {

133

CHAPTER 3. Workflow Patterns for SOC

21 while(true){
22 random@Math()(msg.exec_time);
23 msg.exec_time=int(msg.exec_time*5000);
24 sleep@Time(msg.exec_time)();
25 println@Console("Adding side thread.")();
26 add_thread@MIWAPRTK(msg)
27 }
28 }
29 }

134

CHAPTER 3. Workflow Patterns for SOC

3.2.5.5 Static Partial Join for Multiple Instances

Within a given process instance, multiple concurrent instances of an activity can
be created. The required number of instances is known when the first activity
instance commences. Once N of the activity instances have completed, the next
activity in the process is triggered. Subsequent completions of the remaining M −
N instances are inconsequential.

Diagram

Figure 3.26: Static Partial Join for Multiple Instances pattern

Motivation

The Static Partial Join for Multiple Instances pattern is an extension to the Multiple
Instances with a priori Run-time Knowledge pattern [3.2.5.3] which allows the process
instance to continue once a given number of the activity instances have completed
rather than requiring all of them to finish before the subsequent activity can be
triggered.

JOLIE Implementation

The general format of the Static Partial Join for Multiple Instances defines several
context conditions associated with it:

135

CHAPTER 3. Workflow Patterns for SOC

• the number of concurrent activity instances is known prior to activity com-
mencement;

• the number of activities that need to completed before subsequent activities
in the process model can be triggered is known prior to activity commence-
ment;

• once the required number of activities have completed, the thread of control
can immediately be passed to subsequent activities;

• the number of instances that must complete for the join to be triggered (N)
cannot be greater than the total number of concurrent activity instances (M),
i.e. N ≯ M;

• completion of the remaining activity instances do not trigger a subsequent
activity, however all instances must have completed in order for the join
construct to reset and be subsequently re-enabled.

An offering achieves full support if it provides a construct that satisfies the con-
text criteria for the pattern. It achieves partial support if there is any ambiguity
associated with the specification of the join condition.

The JOLIE implementation of this pattern can be obtained as a slight modification
to the Structured Partial Join pattern [3.2.4.7] example, where the main difference
relies in the client part, where multiple instances of the same client can be run and
invoke parallelly the token-release operations.

136

CHAPTER 3. Workflow Patterns for SOC

3.2.5.6 Canceling Partial Join for Multiple Instances

Within a given process instance, multiple concurrent instances of an activity can
be created. The required number of instances is known when the first activity
instance commences. Once N of the activity instances have completed, the next
activity in the process is triggered and the remaining M − N instances are can-
celed.

Diagram

Figure 3.27: Canceling Partial Join for Multiple Instances pattern

Motivation

This pattern provides a variant of the multiple instances pattern that expedites
process throughput by both allowing the process to continue to the next activity
once a specified number (N) of the multiple instance activities have completed
and also cancels any remaining activity instances negating the need to expend
any further effort executing them.

JOLIE Implementation

This pattern shares four context conditions with the Static Partial Join for Multiple
Instances pattern [3.2.5.5]: the number of concurrent activity instances (M) and the

137

CHAPTER 3. Workflow Patterns for SOC

completion threshold (N) must be known before commencement, the number of
instances that must complete for the join to be triggered (N) cannot be greater than
the total number of concurrent activity instances (M), i.e. N ≯ N and subsequent
activities can be triggered as soon as the required completion threshold has been
reached, however the final context condition is relaxed and the pattern is able to
be re-enabled almost immediately after the completion threshold is reached as
remaining activity instances are canceled.

An offering achieves full support if it provides a construct that satisfies the con-
text criteria for the pattern. An offering achieves partial support if there is any
ambiguity associated with the implementation of the pattern.

The JOLIE implementation of this pattern can be obtained as a slight modification
to the Canceling Partial Join pattern [3.2.4.9] example, where the main difference
relies in the client part, where multiple instances of the same client can be run and
invoke parallelly the token-release operations.

138

CHAPTER 3. Workflow Patterns for SOC

3.2.5.7 Dynamic Partial Join for Multiple Instances

Within a given process instance, multiple concurrent instances of an activity can
be created. The required number of instances may depend on a number of runtime
factors, including state data, resource availability and inter-process communica-
tions and is not known until the final instance has completed.

At any time, whilst instances are running, it is possible for additional instances
to be initiated providing the ability to do so has not been disabled. A comple-
tion condition is specified which is evaluated each time an instance of the activity
completes.

Once the completion condition evaluates to true, the next activity in the process is
triggered. Subsequent completions of the remaining activity instances are incon-
sequential and no new instances can be created.

Diagram

Figure 3.28: Dynamic Partial Join for Multiple Instances pattern

Motivation

139

CHAPTER 3. Workflow Patterns for SOC

This pattern is a variant of the Multiple Instances without a priori Run-time Knowledge
pattern [3.2.5.4] that allows the thread of execution to pass to subsequent activities
once a specified completion condition is met. It allows the process to progress
without requiring that all instances associated with a multiple instance activity
have completed.

JOLIE Implementation

An offering achieves full support if it provides a construct that satisfies the context
requirements for the pattern. It achieves partial support if the creation of activity
instances cannot be disabled once the first activity instance has commenced.

The JOLIE implementation of this pattern can be obtained as a slight modification
to the previous Multiple Instances without a priori Run-time Knowledge pattern exam-
ple, where the main difference relies in the client part, where multiple instances
of the same client can be run and invoke parallelly the token-release operations.

JOLIE code example

Listing 44: Dynamic Partial Join for Multiple Instances (server) code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 inputPort DPJMI{
6 Location: "socket://localhost:8000"
7 Protocol: sodep
8 OneWay: start, add_thread
9 }

10
11 main{
12 completed_threads=0;
13 runnable_threads=0;
14 install(process_complete=>
15 println@Console("All "+completed_threads+
16 " threads executed.")());
17 {//MAIN PROCESS SEQUENCE
18 start(msg);
19 runnable_threads=msg.max_td;
20 for(i=0,i<msg.td_count,i++){
21 random@Math()(exec_time);
22 exec_time=int(exec_time*3000);
23 sleep@Time(exec_time)();
24 synchronized(lock){completed_threads=
25 completed_threads+1};
26 println@Console("Completed main thread "+(i+1)+
27 ", "+(runnable_threads-completed_threads)+

140

CHAPTER 3. Workflow Patterns for SOC

28 " still running.")();
29 if(completed_threads==runnable_threads){
30 throw(process_complete)
31 }
32 }
33 }|
34 {//SIDE SEQUENCE
35 while(true){
36 if(runnable_threads>0){
37 add_thread(msg);
38 sleep@Time(msg.td_exec_time)();
39 println@Console("Completed side thread, "+
40 (runnable_threads-completed_threads)+
41 " still running.")();
42 synchronized(lock){completed_threads=
43 completed_threads+1};
44 if(completed_threads==runnable_threads){
45 throw(process_complete)
46 }
47 }
48 }
49 }
50 }

Listing 45: Dynamic Partial Join for Multiple Instances (client) code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5
6 outputPort DPJMI{
7 Location: "socket://localhost:8000"
8 Protocol: sodep
9 OneWay: start, add_thread

10 }
11
12 main{
13 {
14 random@Math()(msg.td_count);
15 msg.td_count=int(msg.td_count*10)+1;
16 random@Math()(max_percent);
17 msg.max_td=int(max_percent*msg.td_count)+1;
18 println@Console("Started main "+msg.td_count+
19 " threads block. "+msg.max_td+
20 " needed before completion.")();
21 start@DPJMI(msg)
22 }|
23 {
24 while(true){

141

CHAPTER 3. Workflow Patterns for SOC

25 random@Math()(msg.exec_time);
26 msg.exec_time=int(msg.exec_time*5000);
27 sleep@Time(msg.exec_time)();
28 println@Console("Adding side thread.")();
29 add_thread@DPJMI(msg)
30 }
31 }
32 }

142

CHAPTER 3. Workflow Patterns for SOC

3.2.6 State-based Patterns

State-based patterns reflect situations for which solutions are most easily accom-
plished in process languages that support the notion of state. In this context, it’s
considered the state of a process instance to include the broad collection of data
associated with current execution including the status of various activities as well
as process-relevant working data such as activity and case data elements.

3.2.6.1 Deferred Choice

A point in a workflow process where one of several branches is chosen based on
interaction with the operating environment.

Prior to the decision, all branches present possible future courses of execution.
The decision is made by initiating the first activity in one of the branches, i.e.
there is no explicit choice but rather a race between different branches. After the
decision is made, execution alternatives in branches other than the one selected
are withdrawn.

Diagram

Figure 3.29: Deferred Choice pattern

Motivation

143

CHAPTER 3. Workflow Patterns for SOC

The Deferred Choice pattern provides the ability to defer the moment of choice in
a process, i.e. the moment as to which one of several possible courses of action
should be chosen is delayed to the last possible time and is based on factors exter-
nal to the process instance (e.g. incoming messages, environment data, resource
availability, timeouts etc.).

Up until the point at which the decision is made, any of the alternatives presented
represent viable courses of future action.

JOLIE Implementation

It is a context condition of this pattern that once one of the possible alternative
courses of action is chosen, any possible actions associated with other branches
are immediately withdrawn.

An offering achieves full support if it provides a construct that satisfies the context
criteria for the pattern. If there are any restrictions on which branches can be
selected or withdrawn, then the offering is rated as having partial support.

The JOLIE support of this pattern can be obtained in two ways:

• via the primitive non-deterministic input choice construct, which imple-
ments exactly the first-to-reach-XOR mechanism described by this pattern
(whose example is not given for the sake of brevity);

• whereas implementations based on environment data, timeouts and resource
availability can be obtained by a parallel thread run along with invocation
waiting operation which “senses” the execution environment modifications
and discards the corresponding subsequent operations.

An example of such an implementation is given as follows.

JOLIE code example

Listing 46: Deferred Choice (server) code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 inputPort DC{
6 Location: "socket://localhost:8000"
7 Protocol: sodep
8 OneWay: pid1, pid2

144

CHAPTER 3. Workflow Patterns for SOC

9 }
10
11 main{
12 pid1.in_time=true;
13 pid2.in_time=true;
14 {
15 pid1(msg);
16 if(pid1.in_time){
17 pid2.in_time=false;
18 println@Console("PID1 executed")()
19 }
20 }|{
21 pid2(msg);
22 if(pid2.in_time){
23 pid1.in_time=false;
24 println@Console("PID2 executed")()
25 }
26 }|{
27 random@Math()(pid1.timeout);
28 pid1.timeout=int(pid1.timeout*5000);
29 println@Console("PID1 timeout: "+pid1.timeout)();
30 sleep@Time(pid1.timeout)();
31 synchronized(lock){
32 if(pid2.in_time){
33 pid1.in_time=false;
34 println@Console("PID1 timeout")()
35 }}
36 }|{
37 random@Math()(pid2.timeout);
38 pid2.timeout=int(pid2.timeout*5000);
39 println@Console("PID2 timeout: "+pid2.timeout)();
40 sleep@Time(pid2.timeout)();
41 synchronized(lock){
42 if(pid1.in_time){
43 pid2.in_time=false;
44 println@Console("PID2 timed out")()
45 }}
46 }
47 }

Listing 47: Deferred Choice (client) code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 outputPort DC{
6 Location: "socket://localhost:8000"
7 Protocol: sodep
8 OneWay: pid1, pid2

145

CHAPTER 3. Workflow Patterns for SOC

9 }
10
11 main{
12 {
13 random@Math(pid1.time)();
14 pid1.time=int(pid1.time*5000);
15 sleep@Time(pid1.time)();
16 println@Console("PID1 Started")();
17 pid1@DC(msg)
18 }|{
19 random@Math(pid2.time)();
20 pid2.time=int(pid2.time*5000);
21 sleep@Time(pid2.time)();
22 println@Console("PID2 Started")();
23 pid2@DC(msg)
24 }
25 }

146

CHAPTER 3. Workflow Patterns for SOC

3.2.6.2 Interleaved Parallel Routing

A set of activities has a partial ordering defining the requirements with respect
to the order in which they must be executed. Each activity in the set must be
executed once and they can be completed in any order that accords with the partial
order.

However, as an additional requirement, no two activities can be executed at the
same time (i.e. no two activities can be active for the same process instance at the
same time).

Diagram

Figure 3.30: Interleaved Parallel Routing pattern

Motivation

The Interleaved Parallel Routing pattern offers the possibility of relaxing the strict
ordering that a process usually imposes over a set of activities. Note that Inter-
leaved Parallel Routing is related to mutual exclusion, i.e. a semaphore makes sure
that activities are not executed at the same time without enforcing a particular
order.

JOLIE Implementation

There are three context conditions associated with this pattern:

1. for a given process instance, no two activities from the set of activities subject
to interleaved parallel routing may be executed at the same time,

147

CHAPTER 3. Workflow Patterns for SOC

2. there must be some (partial) ordering defined between the activities

3. activities must be initiated and completed on a sequential basis, it is not
possible to suspend one activity during its execution to work on another.

An offering achieves full support if it it is able to satisfy the context criteria for the
pattern. It achieves a partial support rating if there are any limitations on the set
of activities that be interleaved or if activities can be suspended during execution.

An example of such an implementation is given as follows.

JOLIE code example

Listing 48: Interleaved Parallel Routing (server) code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 inputPort IPR{
6 Location: "socket://localhost:8000"
7 Protocol: sodep
8 OneWay: alarm1, alarm2, alarm3
9 }

10
11 main{
12 {{
13 synchronized(lock){alarm1(msg);
14 println@Console("alarm1 received, "+
15 "processing initiated")();
16 sleep@Time(2000)();
17 println@Console("alarm1 done.")()
18 }
19 }|
20 {
21 synchronized(lock){
22 alarm2(msg);
23 println@Console("alarm2 received, "+
24 "processing initiated")();
25 sleep@Time(1000)();
26 println@Console("alarm2 done.")();
27 alarm3(msg);
28 println@Console("alarm3 received, "+
29 "processing initiated")();
30 sleep@Time(1000)();
31 println@Console("alarm2 done.")()
32 }
33 }};
34 println@Console("All alarms received.")();
35 println@Console("System reset.")()
36 }

148

CHAPTER 3. Workflow Patterns for SOC

Listing 49: Interleaved Parallel Routing (client) code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 outputPort IPR{
6 Location: "socket://localhost:8000"
7 Protocol: sodep
8 OneWay: alarm1, alarm2, alarm3
9 }

10
11 main{
12 {
13 random@Math()(a1.s_time);
14 sleep@Time(int(a1.s_time*5000))();
15 alarm1@IPR(msg);
16 println@Console("alarm1 sent.")()
17 }|
18 {
19 random@Math()(a2.s_time);
20 sleep@Time(int(a2.s_time*5000))();
21 alarm2@IPR(msg);
22 println@Console("alarm2 sent.")()
23 }|{
24 random@Math()(a3.s_time);
25 sleep@Time(int(a3.s_time*5000))();
26 alarm3@IPR(msg);
27 println@Console("alarm3 sent.")()
28 }
29 }

149

CHAPTER 3. Workflow Patterns for SOC

3.2.6.3 Milestone

An activity is only enabled when the process instance (of which it is part) is in a
specific state (typically in a parallel branch). The state is assumed to be a specific
execution point (also known as a milestone) in the process model. When this
execution point is reached the nominated activity can be enabled. If the process
instance has progressed beyond this state, then the activity cannot be enabled now
or at any future time (i.e. the deadline has expired).

Note that the execution does not influence the state itself, i.e. unlike normal
control-flow dependencies it is a test rather than a trigger.

Diagram

Figure 3.31: Milestone pattern

Motivation

The Milestone pattern provides a mechanism for supporting the conditional execu-
tion of an activity or sub-process (possibly on a repeated basis) where the process
instance is in a given state.

The notion of state is generally taken to mean that control-flow has reached a
nominated point in the execution of the process instance (i.e. a milestone). As
such, it provides a means of synchronizing two distinct branches of a process
instance, such that one branch cannot proceed unless the other branch has reached
a specified state.

150

CHAPTER 3. Workflow Patterns for SOC

JOLIE Implementation

An offering achieves full support if it provides a construct that allows the exe-
cution of a given activity to be dependent on the process instance being in some
predefined state.

An example of such an implementation is given as follows, using a throw state-
ment, caught by the corresponding install statement, that “kills” the sibling
OneWay operation and resets the looping procedure. While the server part is
reported below, the client one is not listed since it only contains a widely used
and common method which waits for a random number of seconds and sends its
alert message.

JOLIE code example

Listing 50: Milestone (server) code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 inputPort MILE{
6 Location: "socket://localhost:8000"
7 Protocol: sodep
8 OneWay: alert
9 }

10
11 main{
12 while(true){
13 random@Math()(s_time);
14 sleep@Time(int(s_time*5000))();
15 println@Console("System Check complete.")();
16 scope(myScope){
17 install(alert=>
18 println@Console("!!!Alert sensed!!!")());
19 install(no_alert=>
20 println@Console("No alert sensed")();
21 throw(killOneWay)
22);
23 {
24 install(killOneWay=>
25 println@Console("OneWay killed")());
26 println@Console("Sensing for alerts.")();
27 alert(msg);
28 if(!is_defined(msg.self_req)){
29 throw(alert)}
30 }|{
31 random@Math()(s_time);
32 s_time=int(s_time*11);

151

CHAPTER 3. Workflow Patterns for SOC

33 println@Console("Waiting for alerts for: "+
34 (s_time)+"s")();
35 for(i=s_time,i>0,i--){
36 println@Console("-"+i)();
37 sleep@Time(1000)()
38 };
39 throw(no_alert)
40 }};
41 println@Console("Alarm checked.")();
42 println@Console("System reset.")()
43 }
44 }

152

CHAPTER 3. Workflow Patterns for SOC

3.2.6.4 Critical Section

Two or more connected sub-graphs of a process model are identified as “critical
sections”.

At runtime for a given process instance, only activities in one of these “critical
sections” can be active at any given time. Once execution of the activities in one
“critical section” commences, it must complete before another “critical section”
can commence.

Diagram

Figure 3.32: Critical Section pattern

Motivation

The Critical Section pattern provides a means of limiting two or more sections of
a process from executing concurrently. Generally this is necessary if activities
within this section require exclusive access to a common resource (either data or
a physical resource) necessary for an activity to be completed.

However, there are also regulatory situations (e.g. as part of due diligence or
quality assurance processes) which necessitate that two activities do not occur
simultaneously.

153

CHAPTER 3. Workflow Patterns for SOC

JOLIE Implementation

There is one consideration associated with the use of this pattern: tasks must be
initiated and completed on a sequential basis, in particular it is not possible to
suspend one task during its execution to work on another.

Full support for this pattern is demonstrated by any offering which provides a
construct which satisfies the description when used in a context satisfying the
context assumption. Where an offering is able to achieve similar functionality
through additional configuration or programmatic extension of its existing con-
structs (but does not have a specific construct for the pattern) this qualifies as
partial support.

JOLIE implements the built-in mutually exclusive statement synchronized(var)
which provides a synchronization primitive for programming mutual exclusion
behaviors among concurrent sessions. More specifically, each branch’s Critical
Section is scoped within a synchronized globally shared token (lock) and all of its
statements are executed atomically until it leaves the synchronization scope.

154

CHAPTER 3. Workflow Patterns for SOC

3.2.6.5 Interleaved Routing

Each member of a set of activities must be executed once. They can be executed
in any order but no two activities can be executed at the same time (i.e. no two
activities can be active for the same process instance at the same time).

Once all of the activities have completed, the next activity in the process can be
initiated.

Diagram

Figure 3.33: Interleaved Routing pattern

Motivation

The Interleaved Routing pattern relaxes the partial ordering constraint that exists
with the Interleaved Parallel Routing pattern [3.2.6.2] and allows a sequence of ac-
tivities to be executed in any order.

JOLIE Implementation

There are two considerations associated with the use of this pattern:

155

CHAPTER 3. Workflow Patterns for SOC

1. for a given process instance, it is not possible for two activities from the set
of activities subject to interleaved routing to be executed at the same time;

2. activities must be initiated and completed on a sequential basis, in particular
it is not possible to suspend one activity during its execution to work on
another.

An offering achieves full support if it provides a construct that satisfies the context
requirements for the pattern. An offering is rated as having partial support if it has
limitations on the range of activities that can be coordinated (e.g. activities must
be in the same process block) or if it cannot enforce that activities are executed
precisely once or ensure activities are not able to be suspended once started whilst
other activities in the interleave set are commenced.

Likewise for the Critical Section pattern [3.2.6.4], the built-in mutually exclusive
statement synchronized can be employed to design mutual exclusion behaviors
among concurrent sessions. Although being a relaxation of the Interleaved Parallel
Routing patter, an approach towards an Interleaved Routing pattern implementa-
tion in JOLIE is fundamentally identical to the one described for the Critical Section
pattern, in which each parallel branch is defined as a Critical Section by itself and
executed sequentially (but not deterministically) w.r.t. all of the other by means
of the same shared synchronization scope. The spawn construct is used to launch
several parallel branches that share the same instruction sequence, but the same
result can be achieved by declaring the same number of blocks in parallel compo-
sition.

JOLIE code example

Listing 51: Interleaved routing (server) code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 main{
6 exec_sequence->global.exec_sequence;
7 spawn(i over 10) in arr{
8 synchronized(lock){
9 println@Console("Starting branch n."+(i+1))();

10 sleep@Time(250)();
11 exec_sequence=exec_sequence+(i+1)+"|"
12 }
13 };

156

CHAPTER 3. Workflow Patterns for SOC

14 println@Console("All branches executed."+
15 " Execution sequence was: "+exec_sequence)()
16 }

157

CHAPTER 3. Workflow Patterns for SOC

3.2.7 Cancellation and Force Completion Patterns

Several of the patterns above like the Structured Synchronizing Merge [3.2.4.2] and
Structured Discriminator [3.2.4.4] have variants that utilize the concept of activity
cancellation where enabled or active activity instance are withdrawn.

Various forms of exception handling in processes are also based on cancellation
concepts.

It’s noteworthy that the practice of canceling running tasks is a common and well
known way to mess up processing data, which regularly ends up in data inconsis-
tency and unpredictable process execution, if not directly managed by compensa-
tion policies.

Even if not directly linked to the Cancellation and Force Completion Patterns is re-
markable that JOLIE offers a wide set of instructions and constructs that are specif-
ically developed for fault handling, process termination, dynamic recovery and
compensation.

3.2.7.1 Cancel Task

An enabled activity is withdrawn prior to it commencing execution. If the activity
has started, it is disabled and, where possible, the currently running instance is
halted and removed.

Diagram

158

CHAPTER 3. Workflow Patterns for SOC

Figure 3.34: Cancel Task pattern (variants)

Motivation

The Cancel Task pattern provides the ability to withdraw an activity which has
been enabled. This ensures that it will not commence execution.

JOLIE Implementation

There are 3 different interpretations of this pattern according to various contexts
of execution (as illustrated in the previous pattern figures):

• the general interpretation of the Cancel Task pattern is the removal/disablement
of the task’s trigger, which prevents it from proceeding. This is done before
the task’s execution (first figure);

159

CHAPTER 3. Workflow Patterns for SOC

• the second variant of the pattern takes into account the eventuality that the
task has already commenced its execution but has not yet completed. In this
context a dedicated instruction is used to cancel the task;

• the latter variant is the guaranteed cancellation. It’s worth noting that the
previously mentioned interpretations of the Canceling Task do not take into
account the necessity to guarantee the task’s cancellation, since each of them
simply defines a race between cancellation and execution, which can suc-
ceed or not according to threads execution. For this reason the last possible
interpretation of the Cancel Task pattern makes allowance of the guarantee
on the cancellation of the task. In such a context the decision to cancel a task
can only be made after it has been enabled and prior to it completing. Once
this decision is made, it is not possible for the activity to progress any fur-
ther. For obvious reasons, it is not possible to cancel an activity which has
not been enabled (i.e. there is no “memory” associated with the action of
canceling an activity in the way that there is for triggers) nor is it possible to
cancel an activity which has already completed execution.

An offering achieves full support for the pattern if it provides the ability to denote
activity cancellation within a process model. If there are any side-effects associ-
ated with the cancellation (e.g. forced completion of other activities, the canceled
activity being marked as complete), then the offering is rated as having partial
support.

In JOLIE each of the possible interpretations are implementable:

• the first case is merely a Deferred Choice that is triggered before the task’s
execution, for this purpose it’s made reference to the pattern [3.2.6.1];

• the second case can be obtained by means of a parallel process, scoped
within the task code execution, which can be triggered by an external source
and that rises an exception fault that stops the “sibling” process (the task’s
one) execution;

• the latter, the guaranteed cancellation case, can be achieved as a “combina-
tion” of a post-execution Deferred Choice and the solution described for the
previous (second) variant of the defined pattern cases. Thus until the start
of the process execution, no canceling action can take place, then the task

160

CHAPTER 3. Workflow Patterns for SOC

can be both canceled (therefore not marked as completed) during it’s exe-
cution or at it’s end, where a Deferred Choice is set to check if a terminating
instruction has been fired during the process execution.

Since the trivial trait of the first interpretation and that the guaranteed cancellation
variant includes in its behavior the second case, as it follows is provided the JOLIE
code example for the third (guaranteed cancellation) case only.

JOLIE code example

Listing 52: Cancel Task (guaranteed cancellation variant) code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 main{
6 {
7 install(terminate_process=>
8 println@Console("Task cancelled")());
9 println@Console("Task started")();

10 linkOut(task_started);
11 sleep@Time(3000)();
12 synchronized(lock){
13 if(!termination_token){
14 println@Console("Task completed")()}
15 else{
16 println@Console("Termination"+
17 "signal received after completion. "+
18 "Canceling...")();
19 throw(terminate_process)}
20 }
21 }|{
22 linkIn(task_started);
23 random@Math()(termination_sleep);
24 sleep@Time(int(termination_sleep*4000))();
25 synchronized(lock){termination_token=true};
26 println@Console("Task termination triggered")();
27 throw(terminate_process)
28 }
29 }

161

CHAPTER 3. Workflow Patterns for SOC

3.2.7.2 Cancel Case

A complete process instance is removed. This includes currently executing activi-
ties, those which may execute at some future time and all sub-processes.

The process instance is recorded as having completed unsuccessfully.

Diagram

162

CHAPTER 3. Workflow Patterns for SOC

163

CHAPTER 3. Workflow Patterns for SOC

Figure 3.35: Cancel Case pattern (variants)

Motivation

The Cancel Case pattern provides a means of halting a specified process instance
and withdrawing any activities associated with it.

JOLIE Implementation

As for the Cancel Task pattern [3.2.7.1], also for this pattern exist 3 different inter-
pretations according to various contexts of execution (as illustrated in the previous
pattern figures):

• the general interpretation of the Cancel Case pattern is the cancellation of
an entire case, which involves the disabling of all currently enabled activ-
ities. Each combination has a transition associated with it that disables all
enabled activities. Where cancellation of a case is enabled, it is assumed that
precisely one of the canceling transitions will fire canceling all necessary en-
abled activities. To achieve this, it is necessary that none of the canceling
transitions represent a state that is a super-set of another possible state, oth-
erwise tokens may be left behind after the cancellation (first figure);

164

CHAPTER 3. Workflow Patterns for SOC

• the second variant of the pattern takes into account the case that every state
has a set of cancellation transitions associated with it. When the cancella-
tion is initiated, these transitions are enabled for a very short time interval,
thus effecting an instantaneous cancellation for a given state that avoids the
potential deadlocks that might arise with this approach.

• the third case is a more general approach to cancellation, in this case the
pattern can be used to cancel individual activities, regions or even whole
cases. It is premised on the creation of an alternative “bypass” activity for
each activity in a process that may need to be canceled. When a cancella-
tion is initiated, the case continues processing but the “bypass” activities are
executed rather than the normal activities, so in effect no further work is
actually achieved on the case.

There is an important context condition associated with this pattern: cancellation
of a executing case must be viewed as unsuccessful completion of the case.

This means that even though the case was terminated in an orderly manner, per-
haps even with tokens reaching its final end state, this should not be interpreted
in any way as a successful outcome. For example, where a log is kept of events
occurring during process execution, the case should be recorded as incomplete or
canceled.

An offering achieves full support for the pattern if it provides the ability to denote
the cancellation of an entire process instance in a process model and satisfies the
context requirements for the pattern. If there are any side-effects associated with
the cancellation (e.g. forced completion of other activities, the process instance
being marked as complete), then the offering is rated as having partial support.

In JOLIE the first two variants of the pattern are implementable by means of the
install and throw statements:

• The first case is merely a scoped execution (it’s noteworthy that even the
“main” statement is a scope by itself) of a process, which installs a fault
handler for that instance and once the corresponding exception has been
thrown, the execution is stopped and the process is marked as canceled;

• the same approach can be used for the second case, but in this context a finer
grained control is available, since every state can be associated with both

165

CHAPTER 3. Workflow Patterns for SOC

static and dynamic install statements. Cumulative or separate termination
behaviors can be implemented according to the context of execution, along
with dedicated termination policies.

Finally the third case can be simply obtained by means of a sequence of De-
ferred/Exclusive Choice [3.2.3.4] blocks, one for each state transition block, which
implements the “bypass” no-op mechanism described by the variant.

Since the first and second variant implementations of this pattern are very similar
to the one defined for the guaranteed cancellation of the Cancel Task patter, is made
reference to it for their implementation. The JOLIE code example of the third
variant of the pattern is listed as it follows.

JOLIE code example

Listing 53: Cancel Case ("bypass" activity variant) code example

1 include "console.iol"
2 include "time.iol"
3
4 define state_transit{
5 if(cancel_case){
6 println@Console("NoOp.")()
7 }else{
8 println@Console("State transit."+i)();
9 sleep@Time(1000)()

10 }
11 }
12
13 main{
14 {
15 println@Console("Case started")();
16 for(i=0,i<5,i++){
17 state_transit
18 };
19 if(cancel_case){
20 println@Console("Case Cancelled.")()
21 }else{
22 println@Console("Case Finished.")()
23 }
24
25 }|{
26 sleep@Time(3000)();
27 cancel_case=true
28 }
29 }

166

CHAPTER 3. Workflow Patterns for SOC

3.2.7.3 Cancel Region

The ability to disable a set of activities in a process instance. If any of the activi-
ties are already executing, then they are withdrawn. The activities need not be a
connected subset of the overall process model.

Diagram

Figure 3.36: Cancel Region pattern

Motivation

The option of being able to cancel a series of (potentially unrelated) activities is a
useful capability, particularly for handling unexpected errors or for implementing
forms of exception handling.

JOLIE Implementation

The general form of this pattern is based on the premise that every activity in the
required region has an alternate “bypass” activity. When the cancellation of the

167

CHAPTER 3. Workflow Patterns for SOC

region is required, the process instance continues execution, but the bypass activ-
ities are executed instead of the original activities. As a consequence, no further
work occurs on the activities in the cancellation region. However, as shown for
the Cancel Case pattern [3.2.7.2], there are several alternative mechanisms that can
be used to cancel parts of a process.

There are two specific requirements for this pattern:

• it must be possible to denote a set of (not necessarily connected) activities
that are to be canceled;

• once cancellation of the region is invoked, all activity instances within the
region (both currently executing and also those that may execute at some
future time) must be withdrawn.

One issue that can arise with the implementation of the Cancel Region pattern oc-
curs when the canceling activity lies within the cancellation region. Although this
activity must run to completion and cause the cancellation of all of the activities
in the defined cancellation region, once this has been completed, it too must be
canceled.

The most effective solution to this problem is to ensure that the canceling activity
is the last of those to be processed (i.e. the last to be terminated) of the activities
in the cancellation region.

An offering achieves full support if it provides a construct that satisfies the context
requirements for the pattern.

Since it’s similarity to the Cancel Case “bypass” activity (third) variant, it’s made
reference to that JOLIE pattern for the Cancel Region pattern implementation.

168

CHAPTER 3. Workflow Patterns for SOC

3.2.7.4 Cancel Multiple Instance Activity

Within a given process instance, multiple instances of an activity can be created.
The required number of instances is known at design time. These instances are
independent of each other and run concurrently.

At any time, the multiple instance activity can be canceled and any instances
which have not completed are withdrawn. This does not affect activity instances
that have already completed.

Diagram

Figure 3.37: Cancel Multiple Instance Activity pattern

Motivation

This pattern provides a means of canceling a multiple instance activity at any time
during its execution such that any remaining instances are canceled. However any
instances which have already completed are unaffected by the cancellation.

JOLIE Implementation

There are two variants of this pattern depending on whether the activity instances
are started sequentially or simultaneously. In both cases when the cancel transi-
tion is enabled, any remaining instances that have not already executed are with-
drawn, as is the ability to initiate any additional instances. No subsequent activi-
ties are enabled as a consequence of the cancellation.

169

CHAPTER 3. Workflow Patterns for SOC

An offering achieves full support if it provides a construct that satisfies the context
requirements for the pattern. If there are any limitations on the range of activities
that can appear within the cancellation region or the types of activity instances
that can be canceled then an offering achieves a partial rating.

Even considering the multiple instance context of this pattern, the same behavior
described for the Cancel Case pattern [3.2.7.2] can be applied.

The execution of multiple instances can be synchronized by means of global vari-
ables and csets (concurrent execution), which make feasible implementing any
composition of methods and contexts described previously: both the “bypass” or
the install-throw variants can be easily implemented as long as both sequential
and concurrent execution.

It’s worth noting that a coarser grained approach, through a general block for the
whole case, or a finer grained control via a state-by-state install-throw definition
can be also adopted, resulting in a highly customizable, flexible and even mixable
set of solutions made possible by the JOLIE .

Since the wide and varied feature of this pattern, which generates a significant
number of alternative implementations according to the context and the required
degree of control, it’s made reference to a non obvious but interesting implemen-
tation of this pattern: the Multiple Instances without a priori Run-Time Knowledge
pattern [3.2.5.4] code example, in which, after a defined event, each running in-
stance is canceled and no other new instance can be invoke, while, as described by
the Cancel Multiple Instance Activity pattern, all completed activities are unaffected
by the cancellation.

170

CHAPTER 3. Workflow Patterns for SOC

3.2.7.5 Complete Multiple Instance Activity

Within a given process instance, multiple instances of an activity can be created.
The required number of instances is known at design time. These instances are
independent of each other and run concurrently.

It is necessary to synchronize the instances at completion before any subsequent
activities can be triggered. During the course of execution, it is possible that the ac-
tivity needs to be forcibly completed such that any remaining instances are with-
drawn and the thread of control is passed to subsequent activities.

Diagram

Figure 3.38: Complete Multiple Instance Activity pattern

Motivation

This pattern provides a means of finalizing a multiple instance activity that has not
yet completed at any time during its execution such that any remaining instances
are withdrawn and the thread of control is immediately passed to subsequent
activities. Any instances which have already completed are unaffected by the
cancellation.

JOLIE Implementation

171

CHAPTER 3. Workflow Patterns for SOC

There are two variants of this pattern depending on whether the task instances are
started sequentially or simultaneously. In both cases when the complete transi-
tion is enabled, any remaining instances that have not already executed are with-
drawn, as is the ability to add any additional instances. The subsequent task is
enabled immediately.

There is one context condition associated with this pattern: only one instance of a
multiple instance task can execute at any time.

An offering achieves full support if it provides a construct that satisfies the context
requirements for the pattern. It demonstrates partial support if there are limita-
tions on when the completion activity can be initiated or if the force completion
of the remaining instances does not result in subsequent activities in the process
instance being triggered normally.

Since it’s resemblance to the Canceling Partial Join for Multiple Instances pattern
[3.2.5.6], it’s made reference to the Canceling Partial Join pattern [3.2.4.9] code ex-
ample for the JOLIE implementation of this pattern, while applying the same con-
currency considerations taken into account by the Multiple Instance variant of the
pattern cited above.

172

CHAPTER 3. Workflow Patterns for SOC

3.2.8 Iteration Patterns

3.2.8.1 Arbitrary Cycles

The ability to represent cycles in a process model that have more than one entry
or exit point.

Diagram

Figure 3.39: Arbitrary Cycles pattern

Motivation

The Arbitrary Cycles pattern provides a means of supporting repetition in a process
model in an unstructured way without the need for specific looping operators or
restrictions on the overall format of the process model.

JOLIE Implementation

There are no specific context conditions associated with the inclusion of arbitrary
cycles in a process model other than the obvious requirement that the process
model is able to support cycles (i.e. it is not block structured).

An offering achieves full support for the pattern if it is able to capture unstruc-
tured cycles that have more than one entry or exit point.

At the moment the JOLIE does not offer any support to this pattern.

173

CHAPTER 3. Workflow Patterns for SOC

3.2.8.2 Structured Loop

The ability to execute an activity or sub-process repeatedly. The loop has either a
pre-test or post-test condition associated with it that is either evaluated at the be-
ginning or end of the loop to determine whether it should continue. The looping
structure has a single entry and exit point.

Diagram

Figure 3.40: Structured Loop pattern

Motivation

There are two general forms of this pattern:

• the while loop which equates to the classic while...do pre-test loop construct
used in programming languages;

• the repeat loop which equates to the repeat...until post-test loop construct.

The while loop allows for the repeated sequential execution of a specified activity
or a sub-process zero or more times providing a nominated condition evaluates to
true. The pre-test condition is evaluated before the first iteration of the loop and is

174

CHAPTER 3. Workflow Patterns for SOC

re-evaluated before each subsequent iteration. Once the pre-test condition evalu-
ates to false, the thread of control passes to the activity immediately following the
loop. The while loop structure ensures that each of the activities embodied within
it are executed the same number of times.

The repeat loop allows for the execution of an activity or sub-process one or more
times, continuing with execution until a nominated condition evaluates to true.
The post-test condition is evaluated after the first iteration of the loop and is re-
evaluated after each subsequent iteration. Once the post-test condition evaluates
to true, the thread of control passes to the activity immediately following the loop.
The repeat loop structure ensures that each of the activities embodied within it are
executed the same number of times.

JOLIE Implementation

An offering achieves full support for the pattern if it has a construct that denotes
an activity or sub-process should be repeated whilst a specified condition remains
true or until a specified condition becomes true.

JOLIE offers a set of primitives for the Structured Loop pattern implementation like
the for and foreach (used for navigating structures) constructs which implements
the repeat loop form of the pattern, along with the while construct.

175

CHAPTER 3. Workflow Patterns for SOC

3.2.8.3 Recursion

The ability of an activity to invoke itself during its execution or an ancestor in
terms of the overall decomposition structure with which it is associated.

Diagram

Figure 3.41: Recursion pattern

Motivation

For some types of activity, particularly those that may involve unplanned repe-
tition of an activity or sub-process, simpler and more succinct solutions can be
provided through the use of recursion rather than iteration. In order to harness
recursive forms of problem solving within the context of a workflow, a means of
describing an activity execution in terms of itself (i.e. the ability for an activity to
invoke another instance of itself whilst executing) are required.

JOLIE Implementation

An offering achieves full support if it it is able to satisfy the context criteria for the
pattern.

JOLIE does not support natively the Recursion pattern, although a similar behavior
is achieved by a self-OneWay request as reported in the code example as it follows.

JOLIE code example

176

CHAPTER 3. Workflow Patterns for SOC

Listing 54: Recursion (workaround) code example

1 include "console.iol"
2 include "time.iol"
3
4 outputPort REC{
5 Location: "socket://localhost:8000"
6 Protocol: sodep
7 OneWay: rec
8 }
9

10 inputPort REC{
11 Location: "socket://localhost:8000"
12 Protocol: sodep
13 OneWay: rec
14 }
15
16 execution{concurrent}
17
18 init{
19 rec@REC(1)
20 }
21
22 main{
23 rec(msg);
24 println@Console("Message number: "+msg)();
25 sleep@Time(1000)();
26 msg++;
27 rec@REC(msg)
28 }

177

CHAPTER 3. Workflow Patterns for SOC

3.2.9 Termination Patterns

3.2.9.1 Implicit Termination

A given process (or sub-process) instance should terminate when there are no
remaining work items that are able to be done either now or at any time in the
future.

Motivation

The rationale for this pattern is that it represents the most realistic approach to
determining when a process instance can be designated as complete. This is when
there is no remaining work to be completed as part of it and it is not possible that
work items will arise at some future time.

JOLIE Implementation

Where an offering does not directly support this pattern, the question arises as to
whether it can implement a process model which has been developed based on
the notion of implicit termination.

For simple process models, it may be possible to indirectly achieve the same effect
by replacing all of the end nodes for a process with links to a Simple Merge pattern
[3.2.3.5] which then links to a single final node.

However, it is less clear for more complex process models involving multiple in-
stance activities whether they are always able to be converted to a model with a
single terminating node. It is worthwhile noting that some languages do not of-
fer this construct on purpose: the Implicit Termination pattern makes it difficult (or
even impossible) to distinguish proper termination from deadlock! Additionally,
workflows without explicit endpoints are more difficult to use in compositions.

An offering achieves full support for this pattern if process (or sub-process) in-
stances terminate when there are no remaining activities to be completed now or
at any time in the future and the process instance is not in deadlock.

JOLIE implements natively the kind of behavior described by this pattern.

178

CHAPTER 3. Workflow Patterns for SOC

3.2.9.2 Explicit Termination

A given process (or sub-process) instance should terminate when it reaches a nom-
inated state.

Typically this is denoted by a specific end node. When this end node is reached,
any remaining work in the process instance is canceled and the overall process
instance is recorded as having completed successfully.

Motivation

The rationale for this pattern is that it represents an alternative means of defining
when a process instance can be designated as complete. This is when the thread of
control reaches a defined state within the process model. Typically this is denoted
by a designated termination node at the end of the model.

JOLIE Implementation

There are two specific context conditions associated with this pattern:

• every activity in a the process must be on a path from a defined starting node
to a defined end node;

• when the thread of control reaches the end node, the process is deemed to
have completed successfully regardless of whether there are any activities
in progress or remaining to be executed, for example, where a log is kept
of process activity, the process instance would be recorded as completing
successfully.

One consideration that does arise where a process model has multiple end nodes
is whether it can be transformed to one with a single end node. For simple pro-
cess models, it may be possible to simply replace all of the end nodes for a process
with links to a Simple Merge pattern [3.2.3.5] in which then links to a single final
node. However, it is less clear for more complex process models involving mul-
tiple instance activities whether they are always able to be converted to a model
with a single terminating node.

An offering achieves full support for this pattern if it demonstrates that it can meet
the context requirements for the pattern.

One of the possible JOLIE implementation examples that realizes the behavior
described by this pattern, is the code example provided with the Structured Dis-
criminator pattern [3.2.4.4] in which, after one of the branches has completed (and

179

CHAPTER 3. Workflow Patterns for SOC

has reached its “end node”) all other are discarded while the process is deemed
as completed successfully.

180

CHAPTER 3. Workflow Patterns for SOC

3.2.10 Trigger Patterns

3.2.10.1 Transient Trigger

The ability for an activity to be triggered by a signal from another part of the
process or from the external environment. These triggers are transient in nature
and are lost if not acted on immediately by the receiving activity.

Diagram

Figure 3.42: Transient Trigger (safe variant) pattern

Motivation

Transient triggers are a common means of signaling that a predefined event has
occurred and that an appropriate handling response should be undertaken com-
prising either the initiation of a single activity, a sequence of activities or a new
thread of execution in a process. Transient triggers are events which must be dealt

181

CHAPTER 3. Workflow Patterns for SOC

with as soon as they are received. In other words, they must result in the im-
mediate initiation of an activity. The workflow provides no form of memory for
transient triggers. If they are not acted on immediately, they are irrevocably lost.

JOLIE Implementation

Transient triggers have two context conditions associated with them:

• it must be possible to direct a trigger to a specific activity instance executing
in a specific process instance;

• if the activity instance to which the trigger is directed is not waiting (for the
trigger) at the time that the trigger is received, then the trigger is lost.

There are two main variants of this pattern depending on whether the process is
executing in a safe execution environment or not. In the safe variant, only one
instance of activity can wait on a trigger at any given time. The alternative op-
tion for unsafe processes let multiple instances remain waiting for a trigger to be
received. However only one of these can be enabled for each trigger when it is
received.

One consideration that arises with the use of transient triggers is what happens
when multiple triggers are received simultaneously or in a very short time inter-
val. Are the latter triggers inherently lost as a trigger instance is already pending
or are all instances preserved (albeit for a potentially short timeframe).

In general, in the implementations examined it seems that all transient triggers
are lost if they are not immediately consumed. There is no provision for transient
triggers to be duplicated.

An offering achieves full support if it it is able to satisfy the context criteria for the
pattern.

One of the possible implementations of this pattern in JOLIE, is based on a parallel
process that can be invoked and which releases a token for a certain period of time,
after which the token is discarded. Safe or unsafe variants are modeled by making
use of the synchronized construct.

JOLIE code example

182

CHAPTER 3. Workflow Patterns for SOC

Listing 55: Transient Trigger (safe) code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 main{
6 {
7 while(true){
8 sleep@Time(3000)();
9 println@Console("Triggered alert")();

10 synchronized(lock){token.alert=true};
11 sleep@Time(1000)();
12 synchronized(lock){token.alert=false};
13 println@Console("Alert over")()
14 }
15 }|{
16 while(true){
17 {
18 sleep@Time(3000)();
19 synchronized(lock){
20 if(token.alert){
21 exec1=true}};
22 synchronized(exec){
23 if(exec1){
24 println@Console("Process 1 "+
25 "triggered")();
26 sleep@Time(3000)();
27 println@Console("Process 1 "+
28 "finished")()
29 }}
30 }|{
31 sleep@Time(3000)();
32 synchronized(lock){
33 if(token.alert){
34 exec2=true}};
35 synchronized(exec){
36 if(exec2){
37 println@Console("Process 2 "+
38 "triggered")();
39 sleep@Time(3000)();
40 println@Console("Process 2 "+
41 "finished")()
42 }}
43
44 }|{
45 sleep@Time(6000)();
46 synchronized(lock){
47 if(token.alert){
48 exec3=true}};

183

CHAPTER 3. Workflow Patterns for SOC

49 synchronized(exec){
50 if(exec3){
51 println@Console("Process 3 "+
52 "triggered")();
53 sleep@Time(3000)();
54 println@Console("Process 3 "+
55 "finished")()
56 }}
57
58 }
59 }
60 }
61 }

184

CHAPTER 3. Workflow Patterns for SOC

3.2.10.2 Persistent Trigger

The ability for an activity to be triggered by a signal from another part of the pro-
cess or from the external environment. These triggers are persistent in form and
are retained by the workflow until they can be acted on by the receiving activity.

Diagram

Figure 3.43: Persistent Trigger (control-flow variant) pattern

Motivation

Persistent triggers are inherently durable in nature, ensuring that they are not lost
in transit and are buffered until they can be dealt with by the target activity. This
means that the signaling activity can be certain that the trigger will result in the
activity to which they are directed being initiated either immediately (if it already
has received the thread of control) or at some future time.

JOLIE Implementation

There are two variants of the persistent triggers. One where a trigger is buffered
until control-flow passes to the activity to which the trigger is directed, once this
activity has received a trigger, it can commence execution.

Alternatively, the trigger can initiate an activity (or the beginning of a thread of
execution) that is not contingent on the completion of any preceding activities.

An offering achieves full support for this pattern if it provides any form of durable
activity triggering that can be initiated from outside the process environment. If

185

CHAPTER 3. Workflow Patterns for SOC

triggers do not retain a discrete identity when received and/or stored, an offering
is viewed as providing partial support.

LinkIn and linkOut statements can represent a valid and native implementation
of this pattern, even if a specific trigger must be defined for each activity.

An alternative implementation can be obtained by means of a parallel operation,
executed along with the main process, which can be invoked and is able to manage
each trigger’s identity, by storing them into a shared token-based structure among
the activities. This method eliminates the necessity to define a different trigger for
every activity at design-time and preserves each trigger identity too.

Both the implementations defined above can realize either the control-flow and
the not-contingent variants since their behavior is defined by the context the op-
eration is working in.

As it follows it’s reported the LinkIn-linkOut implementation of this pattern.

JOLIE code example

Listing 56: Persistent Trigger code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define trig1{
6 random@Math()(sleep_time1);
7 sleep_time1=int(sleep_time1*10000);
8 sleep@Time(sleep_time1)();
9 println@Console("Trigger 1 released after "+

10 (sleep_time1/1000)+"s.")();
11 linkOut(trig1)
12 }
13
14 define trig2{
15 random@Math()(sleep_time2);
16 sleep_time2=int(sleep_time2*10000);
17 sleep@Time(sleep_time2)();
18 println@Console("Trigger 2 released after "+
19 (sleep_time2/1000)+"s.")();
20 linkOut(trig2)
21 }
22
23 define trig3{
24 random@Math()(sleep_time3);
25 sleep_time3=int(sleep_time3*10000);
26 sleep@Time(sleep_time3)();
27 println@Console("Trigger 3 released after "+

186

CHAPTER 3. Workflow Patterns for SOC

28 (sleep_time3/1000)+"s.")();
29 linkOut(trig3)
30 }
31
32 main{
33 trig1|
34 trig2|
35 trig3|
36 scope(trig1){
37 install(timeout=>
38 println@Console("Process 1: Operation timed out.")());
39 install(triggered=>
40 println@Console("Process 1: Operation triggered.")());
41 {
42 sleep@Time(5000)();
43 throw(timeout)
44
45 }|{
46 linkIn(trig1);
47 throw(triggered)
48 }
49 }|
50 scope(trig2){
51 install(timeout=>
52 println@Console("Process 2: Operation timed out.")());
53 install(triggered=>
54 println@Console("Process 2: Operation triggered.")());
55 {
56 sleep@Time(5000)();
57 throw(timeout)
58
59 }|{
60 linkIn(trig2);
61 throw(triggered)
62 }
63 }|
64 scope(trig3){
65 install(timeout=>
66 println@Console("Process 3: Operation timed out.")());
67 install(triggered=>
68 println@Console("Process 3: Operation triggered.")());
69 {
70 sleep@Time(5000)();
71 throw(timeout)
72
73 }|{
74 linkIn(trig3);
75 throw(triggered)
76 }
77 }
78 }

187

CHAPTER 3. Workflow Patterns for SOC

3.3 Summary Table of JOLIE Control-Flow Patterns Sup-
port

Control-Flow Pattern JOLIE Support
Sequence [3.2.3.1] +
Parallel Split [3.2.3.2] +
Synchronization [3.2.3.3] +
Exclusive-Choice [3.2.3.4] +
Simple-Merge [3.2.3.5] +
Multi-Choice [3.2.4.1] +
Structured Synchronization [3.2.4.2] +
Multi-Merge [3.2.4.3] +
Structured Discriminator [3.2.4.4] +
Blocking Discriminator [3.2.4.5] +
Canceling Discriminator [3.2.4.6] +
Structured Partial Join [3.2.4.7] +
Blocking Partial Join [3.2.4.8] +
Canceling Partial Join [3.2.4.9] +
General AND-Join [3.2.4.10] +
Local Synchronization Merge [3.2.4.11] +
General Synchronization Merge [3.2.4.12] +
Thread Merge [3.2.4.13] +
Thread Split [3.2.4.14] +

Table 3.1: The table provided lists the first 19 Control-Flow patterns analyzed
previously. Following the same convention adopted by WPI if a pattern can be
realized in directly it is rated +, if is not directly supported, but has been realized
through a workaround is rated +/-, finally if no implementation is supported is
rated -.

188

CHAPTER 3. Workflow Patterns for SOC

Control-Flow Pattern JOLIE Support
Multiple Instances without Synchronization [3.2.5.1] +
Multiple Instances without a Priori Design-Time Knowledge [3.2.5.2] +
Multiple Instances with a Priori Run-Time Knowledge [3.2.5.3] +
Multiple Instances without a Priori Run-Time Knowledge [3.2.5.4] +
Static Partial Join for Multiple Instances [3.2.5.5] +
Canceling Partial Join for Multiple Instances [3.2.5.6] +
Dynamic Partial Join for Multiple Instances [3.2.5.7] +
Deferred Choice [3.2.6.1] +
Interleaved Routing [3.2.6.2] +
Milestone [3.2.6.3] +
Critical Section [3.2.6.4] +
Interleaved Routing [3.2.6.5] +
Cancel Task [3.2.7.1] +
Cancel Case [3.2.7.2] +
Cancel Region [3.2.7.3] +
Cancel Multiple Instance Activity [3.2.7.4] +
Complete Multiple Instance Activity [3.2.7.5] +
Arbitrary Cycles [3.2.8.1] -
Structured Loop [3.2.8.2] +
Recursion [3.2.8.3] +/-
Implicit Termination [3.2.9.1] +
Explicit Termination [3.2.9.2] +
Transient Trigger [3.2.10.1] +
Persistent Trigger [3.2.10.2] +

Table 3.2: The table provided lists the last 24 Control-Flow patterns analyzed pre-
viously. Following the same convention adopted by WPI if a pattern can be re-
alized in directly it is rated +, if is not directly supported, but has been realized
through a workaround is rated +/-, finally if no implementation is supported is
rated -.

189

CHAPTER 3. Workflow Patterns for SOC

3.4 Resource Patterns

3.4.1 What a “Resource” is

For a better understanding of the purposes of Resource Patterns, fundamental to
clearly define what a “Resource” is.

Basically a resource can be considered as an entity that is capable of doing work.
Thus, speaking about resources introduces a new term that’s the work item, a work
item can be describe as an integral unit of work that the resource should under-
take.

A resource can be classified as either human or non-human with the difference
that a human resource is typically a member of an organization; such an organi-
zation is a formal grouping of resources that undertake work items pertaining to
a common set of business objectives. Human resources usually have a specific po-
sition within that organization and in general, most organizational characteristics
belonging to a resource relate to the position(s) occupied by it, rather than directly
to the resource itself.

As a consequence of their position(s), resources may have a number of associated
privileges. They may also be a member of one or more organizational units, which
are permanent groups of human resources within the organization that undertake
work items relating to a common set of business objectives.

Similarly they may also be members of one or more organizational teams. These
are similar to organizational units but not necessarily permanent in nature. Even
less formal in nature, it’s the notion of organizational groups which are often used
to define groupings of resources with some common characteristic or cause e.g.
social club members, fire-wardens etc. Each resource is generally associated with
a specific branch, which defines a grouping of resources within the organization
at a specific physical location.

Resources may also have a level which indicates their position within the organi-
zational hierarchy. They may belong to a division too, which defines a large scale
grouping of resources within an organization, either along regional geographic
or business purpose lines. In terms of the organizational hierarchy, each resource
may have a number of specific relationships with other resources.

Their direct report is the resource to whom they are responsible for their work,

190

CHAPTER 3. Workflow Patterns for SOC

generally these are more “senior” resource, at a higher organizational level. Sim-
ilarly, a resource may also have a number of subordinates for whom they are re-
sponsible and to which each of them reports.

Finally, a resource may also have a delegate which is an alternate human resource
to which they assign work items previously allocated to them. This reassignment
of work items may occur on a temporary or permanent basis. A resource may
have one or more associated roles. Roles serve as another grouping mechanism
for human resources with similar job roles or responsibility levels e.g. managers,
union delegates etc. Individual resources may also possess capabilities or at-
tributes that further clarify their suitability for various kinds of work items. These
may include qualifications and skills as well as other job-related or personal at-
tributes such as specific responsibilities held or previous work experience. They
may also have features which further describe specific characteristics that they
may possess that could be of interest when allocating work items.

Non-human resources may be durable or consumable in nature. A durable re-
source is one whose capacity to undertake work is unaffected by the amount of
work that it has undertaken, whereas a consumable resource is one that is con-
sumed (either partially or wholly) in the act of completing a work item. There is
usually a rate of consumption or capacity associated with consumable resources
indicating how much work they can actually undertake before being depleted and
requiring further replenishment. Each resource may have a schedule and history
associated with them. These are essentially inverses of each other.

A schedule is a list of work items that a resource is committed to undertaking at a
specified future times where as a history or work log is a list of work items that a
resource has completed (successfully or otherwise) at some time in the past.

3.4.2 Adopted Conventions

3.4.2.1 Human resources, non-Human resources and patterns implementations
in JOLIE

As stated in the preceding section, the definition of a “resource” can be declined
into two categories: human and non-human resources, whose leading difference
is that a human resource is defined as a member of an organization which bears
a lot of characteristics with it like position(s), roles, groups (with corresponding

191

CHAPTER 3. Workflow Patterns for SOC

qualifications and skills), privileges, permanent or temporary basis, hierarchy and
responsibilities.

Contrariwise, non-human resources are simply describe as durable or consum-
able ones that can undertake one or more work items, independently from any
hierarchical, grouping or responsibility definition.

Although this definition is clearly correct with respect to the context defined be-
fore, in the circumstances of this work a human-like behavior is simulated by
non-human resources i.e. automated processes. Even though such processes are
non-human, their are structured, grouped and designed to simulate the behavior
of a human resource with reference to the specific pattern situation.

This assumption is actually made since, as a matter of facts, a BPM language has
a double nature of a modeling and deployment language. Such characteristic is
exemplified by the fact that such a language can be both used to formally represent
business models with a certain degree of abstraction and to deploy and run that
model by means of a language-compliant execution engine.

As defined when writing about SOC, these model are based on connecting multi-
ple resources, whose work on items shared among them is redirected, aggregated
and elaborated by the orchestrator to achieve a certain task.

Thus, even if the strict definition of human and non-human resource states that
only human ones can be considered part of an organization, in this work and for
its replication purposes, human resources are represented by non-human ones
that simulate their behaviors by means of organizational structuration, role assig-
nation and the like.

3.4.3 Resource Patterns and Workflow Structures

As stated for the description of Control-Flow patterns, also Resource Patterns
need a specific representational language which can be used to sufficiently detail
the pattern depiction.

In its work in modeling Resource Patterns the WPI has chosen a Workflow Model
(WM) which is the resulting composition of a number of tasks connected of the
form of a directed graph.

In the workflow model a process instance is defined as a case and multiple cases of
a particular WM can run simultaneously. It’s noteworthy that in all of considered

192

CHAPTER 3. Workflow Patterns for SOC

pattern contexts each case is assumed as independent and executed without any
reference to each other.

Figure 3.44: Workflow Model components

The Figure 3.44 depicts the various components of a WM. In each WM there are
usually two particular unique tasks: the first and the last to run in the workflow
case.

A task corresponds to a single unit of work, but four distinct types of tasks can be
denoted:

• atomic: it’s a task which has a simple and self-contained definition (i.e. not
describable in terms of other workflow tasks) and only one instance of the
task can be executed when initiated. W.r.t. Figure 3.44, atomic tasks are
A,B,X,Y,Z and D.

• block: it represents a complex action which has its implementation describe
in terms of a sub-workflow (SW). Thus when started, the block task passes its
control to the first task in its corresponding SW. Once executed to completion
(last task), the control is passed back to the block task. W.r.t. Figure 3.44 C is
a block task.

• multi-instance: it’s a task which may have many distinct execution instances
running concurrently within the same workflow case. Each of these in-
stances are executed independently and only once a nominated number of

193

CHAPTER 3. Workflow Patterns for SOC

these have completed, the task following the multi-instance task can be initi-
ated. W.r.t. Figure 3.44 E is a multi-instance task.

• multiple-instance block: it’s the resulting combination of a multi-instance and
a block task which has multiple distinct execution instances each of which
composed according to a block task structure.

The solid arrows between tasks indicate control flow passages among them, namely
a control channel (i.e. each solid arrow in Figure 3.44 is a control channel). Each
invocation of a task in called work item and, unless defined differently (i.e. multiple-
instance tasks), it’s assumed that each task, in a given case, has only one work item
initiated. It’s noteworthy that in loop cycles, each iteration creates a distinct work
item for each task composing the loop.

3.4.3.1 Work distribution to resources

Once defined the concepts of tasks and work items in the context of resource pat-
terns, it’s important to describe how work items are advertised and bound to a
specific resource of execution.

Figure 3.45: Work Item Lifecycle

Figure 3.45 illustrates a work item lifecycle from its creation to its completion or
failure. As the cited figure depicts, a work item come into existence in the created
state. It’s worth noting that the incoming edge (channel control) of this state in-
dicates an S:create precondition in which the prefix S identifies the initiator of the
transition - S for workflow system, R for resource.

194

CHAPTER 3. Workflow Patterns for SOC

Once the workflow system has created a work item, it can inform exactly one re-
source about the availability of a work item (by means of a message to the resource
or adding the work item into the list of those available to that resource). Alterna-
tively, the system can inform a multitude of resources about the availability of a
work item which will compete for the work item acquisition.

In the following section work item creation patterns will be taken into account
and defined properly.

3.4.4 Creation Patterns

Creation Patterns correspond to limitations on the manner in which a work item
may be executed. They are specified at design time, usually in relation to a task,
and serve to restrict the range of resources that can undertake work items corre-
sponding to the task. They also influence the manner in which a work item can be
matched with a resource that is capable of undertaking it.

The essential rationale for creation patterns is that they provide a degree of clarity
about how a work item should be handled after creation during the offering and
allocation stages prior to it being executed. This ensures that the operation of a
process conforms with its intended design principles and operates as efficiently
and deterministically as possible.

In terms of the work item life-cycle, creation patterns come into effect at the time
a work item is created. This state transition occurs at the beginning of the work
item lifetime and it’s depicted in Figure 3.45.

For all of these patterns it is assumed that there is an associated organizational
model which allows resources to be uniquely identified and that there is a mecha-
nism to distribute work items to specific resources identified in the organizational
model. As creation patterns are specified at design time, they usually form part of
the process model which describes a business process.

3.4.4.1 Direct Distribution

The ability to specify at design time the identity of the resource(s) to which in-
stances of this task will be distributed at runtime.

Motivation

195

CHAPTER 3. Workflow Patterns for SOC

Direct allocation offers the ability for a workflow designer to precisely specify the
identity of the resource to which instances of each task will be allocated at runtime.

This is particularly useful where it is known that a task can only be effectively
undertaken by a specific resource as it prevents the problem of unexpected or non-
suitable resource allocations arising at runtime by ensuring work items are routed
to specific resources, a feature that is particularly desirable for critical tasks.

JOLIE Implementation

In JOLIE single work items can be directly distributed to their corresponding
tasks by means of their identifier (name).

196

CHAPTER 3. Workflow Patterns for SOC

3.4.4.2 Role-Based Distribution

The ability to specify at design-time one or more roles to which instances of this
task will be distributed at runtime.

Roles serve as a means of grouping resources with similar characteristics. Where
an instance of a task is distributed in this way, it is distributed to all resources that
are members of the role(s) associated with the task.

Motivation

Role-Based Distribution is the most common approach to work item allocation within
workflow systems, role-based allocation offers the means for the workflow engine
to route work items to suitably qualified resources at run-time. The decision as to
which resource actually receives a given work item is deferred until the moment
at which it becomes “runnable” and requires a resource allocation in order for it
to proceed.

The advantage offered by role-based allocation (over other work item allocation
schemes) is that roles can be defined for a given workflow process that define the
various classes of available resources to undertake work items. Task definitions
within the process model can nominate the specific role to which they should be
routed, however the actual population of individual roles does not need to occur
until run-time.

JOLIE Implementation

An offering achieves full support if it satisfies the description for the pattern.

In JOLIE work items can be distributed based on role by means of data structures
which can contain a pool of items which are visible by tasks with the same role.

JOLIE code example

Listing 57: Role-Based Distribution code example

1 include "console.iol"
2
3 define pop_alert{
4 if(#msg.alert>1){
5 for(i=0,i<#msg.alert,i++){
6 msg.alert[i]=msg.alert[i+1]
7 }};
8 undef(msg.alert[#msg.alert-1])
9 }

197

CHAPTER 3. Workflow Patterns for SOC

10
11 define pop_warning{
12 if(#msg.warning>1){
13 for(i=0,i<#msg.warning,i++){
14 msg.warning[i]=msg.warning[i+1]
15 }};
16 undef(msg.warning[#msg.warning-1])
17 }
18
19 main{
20 msg.alert[0]="This is alert 1";
21 msg.alert[1]="This is alert 2";
22 msg.warning[0]="This is warning 1";
23 {{
24 synchronized(alert){
25 println@Console("Alert msg: "+msg.alert[0])();
26 pop_alert}
27 }|{
28 println@Console("Warning msg: "+msg.warning[0])();
29 pop_warning
30 }|{
31 synchronized(alert){
32 println@Console("Alert msg: "+msg.alert[0])();
33 pop_alert}
34 }}
35 }

198

CHAPTER 3. Workflow Patterns for SOC

3.4.4.3 Deferred Distribution

The ability to specify at design-time that the identification of the resource(s) to
which instances of this task will be distributed will be deferred until runtime.

Motivation

Deferred Distribution takes the notion of indirect work distribution one step further
and allows the process designer to defer the need to identify the resource for a
specific task (or work items corresponding to the task) until runtime.

One means of achieving this is to nominate a data field from which the identity of
the resource to which a work item should be routed can be determined at runtime.
The identity of the resource can be changed dynamically during process execution
by updating the value of the data field, thus varying the resource allocation of
future work items which are contingent on it.

JOLIE Implementation

There is one context condition associated with this pattern: the offering supports
direct or role-based distribution.

Full support for this pattern is demonstrated by any offering which provides a
construct which satisfies the description when used in a context satisfying the
context assumption.

A JOLIE implementation of the Deferred Distribution pattern can be obtained as
a slight modification of the Role-Based Distribution pattern code example in which
alert and warning messages are created at runtime and an alert message is “de-
moted” as a warning message.

JOLIE code example

Listing 58: Deferred Distribution code example

1 include "console.iol"
2
3 define pop_alert{
4 if(#msg.alert>1){
5 for(i=0,i<#msg.alert,i++){
6 msg.alert[i]=msg.alert[i+1]
7 }};
8 undef(msg.alert[#msg.alert-1])
9 }

10
11 define pop_warning{

199

CHAPTER 3. Workflow Patterns for SOC

12 if(#msg.warning>1){
13 for(i=0,i<#msg.warning,i++){
14 msg.warning[i]=msg.warning[i+1]
15 }};
16 undef(msg.warning[#msg.warning-1])
17 }
18
19 main{
20 for(i=0,i<5,i++){
21 if(i<3){
22 msg.alert[i]="Alert message "+i
23 }
24 else{
25 msg.warning[i-3]="Warning message "+(i-3)
26 }
27 };
28 msg.warning[#msg.warning]="[Demoted] "+msg.alert[#msg.alert-1];
29 undef(msg.alert[#msg.alert-1]);
30 {{
31 synchronized(alert){
32 println@Console("Alert msg: "+msg.alert[0])();
33 pop_alert}
34 }|{for(j=0,j<3,j++){
35 println@Console("Warning msg: "+msg.warning[0])();
36 pop_warning}
37 }|{
38 synchronized(alert){
39 println@Console("Alert msg: "+msg.alert[0])();
40 pop_alert}
41 }}
42 }

200

CHAPTER 3. Workflow Patterns for SOC

3.4.4.4 Authorization

The ability to specify the range of privileges that a resource possesses in regard to
the execution of a process. In the main, these privileges define the range of actions
that a resource can initiate when undertaking work items associated with tasks in
a process.

Motivation

Through the specification of authorizations on task definitions, it is possible to de-
fine a security framework over a process that is independent of the way in which
work items are actually routed at runtime. This can be used to restrict the range of
resources that can access details of a work item or request, execute or redistribute
it.

This ensures that unexpected events that may arise during execution (e.g. work
item delegation by a resource or reallocation to another resource outside of the
usual process definition) do not lead to unexpected resources being able to under-
take work items.

JOLIE Implementation

The Authorization pattern takes the form of a set of relationships between re-
sources and the privileges that they possess in regard to a given process. These
privileges define the range of actions that the resource can initiate and can include
operations such as:

• choose - the ability to select the next work item that they will execute;

• concurrent - the ability to execute more than one work item simultaneously;

• reorder - the ability to reorder work items in their work list;

• view offers - the ability to view all offered work items in the process environ-
ment;

• view allocations - the ability to view all allocated work items in the process
environment;

• view executions - the ability to view all executing work items in the process
environment;

201

CHAPTER 3. Workflow Patterns for SOC

• chained execution - the ability to enter the chained execution mode.

Additionally, it is also possible to specify further user privileges on a per task basis
including:

• suspend - the ability to suspend and resume instances of this task during
execution;

• stateless reallocate - the ability to reallocate instances of this task which have
been commenced to another user;

• stateful reallocate - the ability to reallocate instances of this task which have
been commenced to another user and retain any associated state data;

• deallocate - the ability to deallocate instances of this task which have not been
commenced and allow them to be re-allocated;

• delegate - the ability to delegate instances of this task which have not been
commenced to another user;

• skip - the ability to skip instances of this task;

• piled execution - the ability to enter the piled execution mode for work items
corresponding to this task.

An offering achieves full support if it satisfies the description for the pattern.

A JOLIE implementation of the Authorization pattern can be obtained by provid-
ing a specific process, which handles each Authorization request. This process is
invoked by a resource that sends a specific request to it, on a work item. Among
other kind of data sent within the request by the resource, there are 2, in particular,
which are used to authenticate the resource and to send, to the work item handler,
the permissions linked to the requesting resource. Once authorized the resource
can operate allowed instructions on data.

Since a JOLIE code example of this pattern would contain several lines of code,
for the sake of brevity no code example is provided for this pattern, instead, af-
ter having described how an authorization process structure can be implemented
in JOLIE, the available operations on work items, defined previously by the Au-
thorization pattern, are taken into account and declined into their corresponding
implementation in the language:

202

CHAPTER 3. Workflow Patterns for SOC

• choose - the ability to select the next work item that they will execute. This
feature is easily implemented by sending a reference to the whole pool of
work items (see the view offers operation) to the requesting resource, allow-
ing it to subsequently choose the next item among those;

• concurrent - the ability to execute more than one work item simultaneously.
This operation has an easy implementation too. In this case the ability to
execute concurrent operations on multiple work item is obtained by letting
the resource access several work item, without expecting any output corre-
sponding to the end of the activity of that resource on a single work item;

• reorder - the ability to reorder work items in their work list. As a slight mod-
ification of the choose pattern described above, the reorder pattern lets access
the resource to the whole pool of its work items, after having obtained the
list, the resource can reorder their sequence according to its needs, and send
back the new disposition to the work item handler;

• view offers - the ability to view all offered work items in the process environ-
ment. As stated before, this is a fundamental operation which is achieved
by sending to the requesting resource the full (list) structure of work items.
Scoped views can be easily obtained by sub-structuring the work items list
according to scope necessities.

• view allocations - the ability to view all allocated work items in the process en-
vironment. This operation is based on a work item state log structure, which
keeps track of each work item operation, among which is the allocation one.

• view executions - the ability to view all executing work items in the process
environment. The same approach described for the view allocations pattern
can be used for the view executions to show all the executing work items in
the environment.

Further operations like suspend [3.4.7.6], stateless reallocate [3.4.7.5] , stateful reallo-
cate [3.4.7.4] , deallocate [3.4.7.3] , delegate [3.4.7.1] , skip [3.4.7.7] and piled execution
[3.4.8.3] are described and analyzed separately as it follows, since their behavior
can be allowed as a consequence of an Authorization construct, but they do not
necessarily be preceded by such a construct to operate properly.

203

CHAPTER 3. Workflow Patterns for SOC

3.4.4.5 Separation of Duties

The ability to specify that two tasks must be executed by different resources in a
given case.

Motivation

Separation of Duties allows for the enforcement of audit controls within the execu-
tion of a given case. The Separation of Duties constraint exists between two tasks in
a process model. It ensures that within a given case, work items corresponding to
the latter task cannot be executed by resources that completed work items corre-
sponding to the former task. Another use of this pattern arises with multiple task
instances. In this situation, the degree of parallelism that can be achieved when a
multiple instance task is executed can be maximized by specifying that as far as
possible no two task instances can be executed by the same resource.

JOLIE Implementation

The Separation of Duties pattern relates a task to a number of other tasks that pre-
cede it in the process. Within a given case, work items corresponding to task
cannot be distributed to any resource that previously completed work items cor-
responding to tasks with which it has a Separation of Duties constraint. As it is
possible that preceding tasks may have executed more than once within a given
case, e.g. they may be contained within a loop or have multiple instances, there
may be a number of resources that are excluded from undertaking instances of
that task.

An offering achieves full support if it satisfies the description for the pattern. It
achieves a partial support rating where the same effect can be achieved indirectly,
e.g. using access rights on tasks or security constraints.

A JOLIE implementation of the Separation of Duties pattern can be obtained by
using dedicated values, linked to the item, which are used to state the identity
(differentially/indirectly or directly) of the resource enabled to work on that spe-
cific item.

As stated in support definition, this implementation achieves a partial support for
this pattern.

JOLIE code example

204

CHAPTER 3. Workflow Patterns for SOC

Listing 59: Separation of Duties code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define add_new_wi{
6 random@Math()(id);
7 synchronized(lock){
8 wi[#wi].idd=int(id*100000)
9 };

10 sleep@Time(2001)()
11 }
12
13 main{
14 {while(true){
15 add_new_wi
16 }}|{
17 while(true){
18 synchronized(lock){
19 if(#wi>1 && is_defined(wi[#wi-1])){
20 if(!is_defined(wi[#wi-1].preproc)){
21 rid1.preproc.wi<<wi[#wi-1];
22 undef(wi[#wi-1])
23 }
24 else if(!is_defined(wi[#wi-1].proc) &&
25 wi[#wi-1].preproc!="rid1"){
26 rid1.proc.wi<<wi[#wi-1];
27 undef(wi[#wi-1])
28 }
29 }};
30 if (is_defined(rid1.preproc.wi)){
31 sleep@Time(2000)();
32 println@Console("RID1 Preprocessed "+
33 "work item id: "+rid1.preproc.wi.idd)();
34 rid1.preproc.wi.preproc="rid1";
35 synchronized(lock){
36 wi[#wi]<<rid1.preproc.wi
37 };
38 undef(rid1.preproc.wi)
39 }
40 else if (is_defined(rid1.proc.wi)){
41 sleep@Time(1000)();
42 println@Console("RID1 Processed "+
43 "work item id: "+rid1.proc.wi.idd)();
44 rid1.proc.wi.proc="rid1";
45 synchronized(lock){
46 wi[#wi]<<rid1.proc.wi
47 };
48 undef(rid1.proc.wi)

205

CHAPTER 3. Workflow Patterns for SOC

49 }
50 }}|{
51 while(true){
52 synchronized(lock){
53 if(#wi>1 && is_defined(wi[#wi-1])){
54 if(!is_defined(wi[#wi-1].preproc)){
55 rid2.preproc.wi<<wi[#wi-1];
56 undef(wi[#wi-1])
57 }
58 else if(!is_defined(wi[#wi-1].proc) &&
59 wi[#wi-1].preproc!="rid2"){
60 rid2.proc.wi<<wi[#wi-1];
61 undef(wi[#wi-1])
62 }
63 }};
64 if (is_defined(rid2.preproc.wi)){
65 sleep@Time(2000)();
66 println@Console("RID2 Preprocessed "+
67 "work item id: "+rid2.preproc.wi.idd)();
68 rid2.preproc.wi.preproc="rid2";
69 synchronized(lock){
70 wi[#wi]<<rid2.preproc.wi
71 };
72 undef(rid2.preproc.wi)
73 }
74 else if (is_defined(rid2.proc.wi)){
75 sleep@Time(1000)();
76 println@Console("RID2 Processed "+
77 "work item id: "+rid2.proc.wi.idd)();
78 rid2.proc.wi.proc="rid2";
79 synchronized(lock){
80 wi[#wi]<<rid2.proc.wi
81 };
82 undef(rid2.proc.wi)
83 }
84 }
85 }
86
87 }

206

CHAPTER 3. Workflow Patterns for SOC

3.4.4.6 Case Handling

The ability to allocate the work items within a given case to the same resource at
the time that the case is commenced.

Motivation

Case Handling is a specific approach to work distribution that is based on the
premise that all work items in a given case are so closely related that they should
all be undertaken by the same resource. The identification of the specific resource
occurs when a case (or the first work item in a case) requires allocation.

Case Handling may occur on either a "hard" or "soft" basis i.e. work items within a
given case can be allocated exclusively to the same resource which must complete
them all or alternatively it can serve as a guide to how work items within a given
case should be routed with an initial resource being identified as having respon-
sibility for all work items and subsequently delegating them to other resources or
allowing them to nominate work items they would like to complete.

JOLIE Implementation

The Case Handling pattern takes the form of a relationship between a process and
one or more resources or roles. When an instance of the process is initiated, a
resource is selected from the set of resources and roles and the process instance is
allocated to this resource. It is expected that this resource will execute work items
corresponding to tasks in this process instance.

There are no specific context conditions associated with this pattern. An offering
achieves full support if it satisfies the description for the pattern.

A JOLIE implementation of the Case Handling pattern can be obtained as a slight
modification of the one provided for the Separation of Duties pattern [3.4.4.5]. In
this case the dedicated value, linked to the item, identifies uniquely the set (whose
cardinality equals 1, in the example) of resources enabled to work on that specific
item.

Given the particular similarity of this implementation and the Separation of Du-
ties only a brief snippet of code, reporting the relevant modifications from that
example is provided as it follows.

It’s worth noting that, even if the Separation of Duties example is based on the sep-
aration of work items among different resources, this example can be easily mod-

207

CHAPTER 3. Workflow Patterns for SOC

ified to realize an instance(case)-based separation behavior, by defining a server-
client structure and a concurrent execution of the server, which starts a new case
for each client invocation (case creation).

JOLIE code example

Listing 60: Case Handling code example

1 else if(!is_defined(wi[#wi-1].proc) &&
2 wi[#wi-1].preproc=="rid1"){
3 rid1.proc.wi<<wi[#wi-1];
4 undef(wi[#wi-1])
5 }
6 [...]
7
8 else if(!is_defined(wi[#wi-1].proc) &&
9 wi[#wi-1].preproc=="rid2"){

10 rid2.proc.wi<<wi[#wi-1];
11 undef(wi[#wi-1])
12 }
13 [...]

208

CHAPTER 3. Workflow Patterns for SOC

3.4.4.7 Retain Familiar

Where several resources are available to undertake a work item, the ability to
allocate a work item within a given case to the same resource that undertook a
preceding work item.

Motivation

Distributing a work item to the same resource that undertook a previous work
item is a common means of expediting a case. As the resource is already aware of
the details of the case, it saves familiarization time at the commencement of the
work item. Where the two work items are sequential, it also offers the opportunity
for minimizing switching time as the resource can commence the latter work item
immediately on completion of the former.

This pattern is a more flexible version of the Case Handling pattern [3.4.4.6] dis-
cussed earlier.

It only comes into effect when there are multiple resources available to undertake
a given work item and where this occurs, it favors the allocation of the work item
to the resource that undertook a previous work item in the case. Unlike the Case
Handling pattern (which operates at case level), this pattern applies at the work
item level and comes into play when a work item is being distributed to a resource.

The Chained Execution pattern [3.4.8.4] is related to this pattern and is designed
to expedite the completion of a case by automatically starting subsequent work
items once the preceding work item is complete.

JOLIE Implementation

The Retain Familiar pattern takes the form of a one-one relationship between a
task and a preceding task in the same process. Where it holds for a task, when
an instance of the task is created in a given case, it is distributed to one of the
nominated resources the completed one of the preceding tasks in the same case.
If the preceding task has been executed more than once, it is distributed to one of
the resources that completed it previously.

There are no specific context conditions associated with this pattern.

A JOLIE implementation of the Retain Familiar pattern can be obtained as a slight
modification of the ones provided for the Separation of Duties [3.4.4.5] pattern and
Case Handling pattern. In this case multiple tasks on each item can be operated
only by the resource which operated the first task on that item.

209

CHAPTER 3. Workflow Patterns for SOC

3.4.4.8 Capability-Based Distribution

The ability to distribute work items to resources based on specific capabilities that
they possess. Capabilities (and their associated values) are recorded for individual
resources as part of the organizational model.

Motivation

Capability-based Distribution provides a mechanism for offering or allocating work
items to resources through the matching of specific requirements of work items
with the capabilities of the potential range of resources that are available to un-
dertake them. This allows for a much more fine-grained approach to selecting the
resources suitable for completing a given task.

JOLIE Implementation

Within a given organizational model, each resource is assumed to be able to have
capabilities recorded for them that specify their individual characteristics (e.g.
qualifications, previous jobs) and their ability to undertake certain tasks (e.g. li-
censes held, trade certifications).

Similarly it is assumed that capability functions can be specified that take a set of
resources and their associated capabilities and return the subset of those resources
that conform to a required range of capability values. Each task in a process model
can have a capability function associated with it.

Capability-based Distribution can be either push or pull-based, i.e. the actual distri-
bution process can be initiated by the system or the resource. In the former sit-
uation, the system determines the most appropriate resource(s) to which a work
item should be routed. In the latter, a resource initiates a search for an unallocated
work item(s) which it is capable of undertaking.

Capability-based Distribution is based on the specification of capabilities for indi-
vidual resources. Capabilities generally take the form of attribute-value pairs (e.g.
"signing authority", "$10M"). A dictionary of capabilities can be defined in which
individual capabilities have a distinct name and the type and potential range of
values that each capability may take can also be specified. Similarly, tasks can also
have capabilities recorded for them.

The actual distribution process is generally based on the specification of functions
which are evaluated at runtime and determine how individual work items can
be matched with suitable resources. These may be arbitrarily complex in nature

210

CHAPTER 3. Workflow Patterns for SOC

depending on the range of capabilities that require matching between resources
and work items and the approach that is taken to ranking the matches that are
achieved in order to select the most appropriate resource to undertake a given
work item.

An offering achieves full support if it satisfies the description of the pattern.

The JOLIE implementation of the Capability-based Distribution pattern is based on
a pull approach. Each resource checks periodically the presence of items whose
requirements are satisfiable by its capabilities and once found, the item is with-
drawn by the resource, which finally processes it.

In this particular example, a branch is constantly creating new processes whose
requirement are random and divided on 2 different requirements: an architec-
tural one (x86, x64) and prioritizing one (from 0 to 10). Along with the creation
branch there are 3 other branches: two (RID1 RID2) which have the ability to run
processes of any priority, but only of one specific architecture, contrariwise the
branch RID3 can perform any process, regardless of the architecture, but of low
priority.

JOLIE code example

Listing 61: Capability-based Distribution code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define add_new_wi{
6 random@Math()(id);
7 random@Math()(proc_priority);
8 random@Math()(proc_arch);
9 synchronized(lock){

10 newwi.id=int(id*10000);
11 proc_arch=int(proc_arch*2);
12 if(proc_arch>0){
13 newwi.proc_arch="x86"
14 }
15 else{
16 newwi.proc_arch="x64"
17 };
18 newwi.proc_priority=int(proc_priority*11);
19 wi[#wi]<<newwi
20 };
21 sleep@Time(500)()
22 }
23

211

CHAPTER 3. Workflow Patterns for SOC

24 define print_wi{
25 string_wi="Wi queue: {"+
26 wi[0].id+"|"+
27 wi[0].proc_arch+"|"+
28 wi[0].proc_priority+"}";
29 for(j=1,j<#wi,j++){
30 string_wi=string_wi+",{"+
31 wi[j].id+"|"+
32 wi[j].proc_arch+"|"+
33 wi[j].proc_priority+"}"
34 };
35 println@Console(string_wi)();
36 undef(string_wi)
37 }
38
39 define pop_wi{
40 print_wi;
41 if(#wi>0){
42 for(pop.i=pop_wi_n,pop.i<(#wi-1),pop.i++){
43 wi[pop.i]<<wi[(pop.i+1)]
44 };
45 undef(wi[#wi-1])
46 }
47 }
48
49 main{
50 {while(true){
51 add_new_wi
52 }}|{
53 while(true){
54 synchronized(lock){
55 for(rid1.i=0,rid1.i<#wi,rid1.i++){
56 if(wi[rid1.i].proc_arch=="x86"){
57 println@Console("RID1 Found "+
58 wi[rid1.i].id+"|"+
59 wi[rid1.i].proc_arch+"|"+
60 wi[rid1.i].proc_priority)();
61 rid1.wi<<wi[rid1.i];
62 pop_wi_n=rid1.i;
63 pop_wi;
64 rid1.i=#wi
65 }
66 }};
67 if(is_defined(rid1.wi)){
68 println@Console("RID1 Processing"+
69 " wi: "+rid1.wi.id)();
70 sleep@Time(2000)();
71 undef(rid1.wi)
72 }
73 }}|{
74 while(true){
75 synchronized(lock){

212

CHAPTER 3. Workflow Patterns for SOC

76 for(rid2.i=0,rid2.i<#wi,rid2.i++){
77 if(wi[rid2.i].proc_arch=="x64"){
78 println@Console("RID2 Found "+
79 wi[rid2.i].id+"|"+
80 wi[rid2.i].proc_arch+"|"+
81 wi[rid2.i].proc_priority)();
82 rid2.wi<<wi[rid2.i];
83 pop_wi_n=rid2.i;
84 pop_wi;
85 rid2.i=#wi
86 }
87 }};
88 if(is_defined(rid2.wi)){
89 println@Console("RID2 Processing"+
90 " wi: "+rid2.wi.id)();
91 sleep@Time(2000)();
92 undef(rid2.wi)
93 }
94 }}|{
95 while(true){
96 synchronized(lock){
97 for(rid3.i=0,rid3.i<#wi,rid3.i++){
98 if(wi[rid3.i].proc_priority<6){
99 println@Console("RID 3 Found "+

100 wi[rid3.i].id+"|"+
101 wi[rid3.i].proc_arch+"|"+
102 wi[rid3.i].proc_priority)();
103 rid3.wi<<wi[rid3.i];
104 pop_wi_n=rid3.i;
105 pop_wi;
106 rid3.i=#wi
107 }
108 }};
109 if(is_defined(rid3.wi)){
110 println@Console("RID3 Processing"+
111 " wi: "+rid3.wi.id)();
112 sleep@Time(2000)();
113 undef(rid3.wi)
114 }
115 }}
116 }

213

CHAPTER 3. Workflow Patterns for SOC

3.4.4.9 History-Based Distribution

The ability to distribute work items to resources on the basis of their previous
execution history.

Motivation

History-based Distribution involves the use of information on the previous execu-
tion history of resources when determining which of them a work item should
be distributed to. This is an analogue to common human experience when deter-
mining who to distribute a specific work item to which considers factors such as
who has the most experience with this type of work item or who has had the least
numbers of failures when tackling similar tasks.

JOLIE Implementation

History-based Distribution assumes the existence of historical distribution functions
which take a set of resources and the previous execution history for the process
and return the subset of those resources that satisfy the nominated historical cri-
teria. These may include factors such as the resource that least recently executed a
task, has executed it successfully the most times, has the shortest turnaround time
for the task or any other combination of requirements that can be determined from
the execution history. Each task in a process model can have a historical distribu-
tion function associated with it.

There are no specific context conditions associated with this pattern. An offering
achieves full support if it satisfies the description for the pattern. It achieves a par-
tial support rating if the same effect can be achieved via programmatic extensions.

The JOLIE implementation of the History-based Distribution pattern is provided
by means of two parallel processes: the “create” one whose task is to create new
work items, that represent processes which shall be run on a specific execution ar-
chitecture environment, as a matter of facts, the resources available in the system.
Along with this branch, there’s an “execute” process that is invoked by means of a
self-RequestResponse operation. Each invocation is made by the “create” process,
which checks, chooses and updates each resource’s execution data, according to
the chosen environment.

Each resource has a different process architecture execution multiplier, which, ran-
domly, defines the performance of any resource execution, according to the work
item architecture. Each “work item architecture - resource execution time” couple

214

CHAPTER 3. Workflow Patterns for SOC

is used by the “create” process to update a global resource performances table,
whose calculation is set as a weighted average among resources executions. This
data is subsequently used by the “create” process to assign to the specific (opti-
mal) resource a work item, by means of its execution architecture.

JOLIE code example

Listing 62: History-based Distribution code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 inputPort HBD{
6 Location: "socket://localhost:8000"
7 Protocol: sodep
8 RequestResponse: execute_rid
9 }

10
11 outputPort HBD{
12 Location: "socket://localhost:8000"
13 Protocol: sodep
14 RequestResponse: execute_rid
15 }
16
17 define create_wi{
18 random@Math()(arch);
19 arch=int(arch*3);
20 if(arch<1){
21 wi.arch="x86"
22 }
23 else if(arch<2){
24 wi.arch="x64"
25 }else{
26 wi.arch="arm"
27 }
28 }
29
30 define print_rid_stats{
31 println@Console("---=== RIDs STATS (avgs) ===---")();
32 for(i=0,i<3,i++){
33 println@Console("RID"+(i)+":")();
34 println@Console("\tx86: "+rid[i].x86_runtime+" | runned "+
35 rid[i].x86_run)();
36 println@Console("\tx64: "+rid[i].x64_runtime+" | runned "+
37 rid[i].x64_run)();
38 println@Console("\tarm: "+rid[i].arm_runtime+" | runned "+
39 rid[i].arm_run)()
40 };
41 println@Console("---=========================---")()
42 }
43
44 init{

215

CHAPTER 3. Workflow Patterns for SOC

45 for(i=0,i<3,i++){
46 rid[i].x86_runtime=0;rid[i].x86_run=0;
47 rid[i].x64_runtime=0;rid[i].x64_run=0;
48 rid[i].arm_runtime=0;rid[i].arm_run=0
49 };
50 rid[0].x86.exec_mult=1;rid[0].exec_mult.x64=2;rid[0].exec_mult.arm=3;
51 rid[1].x86.exec_mult=3;rid[1].exec_mult.x64=1;rid[1].exec_mult.arm=2;
52 rid[2].x86.exec_mult=2;rid[2].exec_mult.x64=3;rid[2].exec_mult.arm=1
53 }
54
55 main{
56 {while(true){
57 //create a new wi
58 create_wi;
59 println@Console("Created new wi, wi arch: "+wi.arch)();
60 //print stats
61 print_rid_stats;
62 //choose RID exec
63 rid_exec.time=100000000;
64 for(i=0,i<3,i++){
65 if(rid_exec.time>rid[i].(wi.arch+"_runtime")){
66 rid_exec.rid=i;
67 rid_exec.time=rid[rid_exec.rid].(wi.arch+"_runtime")
68 }
69 };
70 rid_data.wi<<wi;
71 rid_data.rid=rid_exec.rid;
72 execute_rid@HBD(rid_data)(run_time);
73 rid[rid_exec.rid].(wi.arch+"_runtime")=
74 (rid[rid_exec.rid].(wi.arch+"_runtime")*
75 rid[rid_exec.rid].(wi.arch+"_run")+run_time)/
76 (rid[rid_exec.rid].(wi.arch+"_run")+1);
77 rid[rid_exec.rid].(wi.arch+"_run")++
78 }}|{
79 while(true){
80 execute_rid(rid_data)(run_time){
81 random@Math()(exec_time);
82 run_time=int(exec_time*(rid[rid_data.rid].(
83 rid_data.wi.arch).exec_mult*500));
84 sleep@Time(run_time)()
85 }
86 }
87 }
88 }

216

CHAPTER 3. Workflow Patterns for SOC

3.4.4.10 Organizational Distribution

The ability to distribute work items to resources based their position within the
organization and their relationship with other resources.

Motivation

Most offerings provide some degree of support for modeling the organizational
context in which a given process operates. This is an important aspect of busi-
ness process modeling and implementation as many work distribution decisions
are made in the context of the organizational structure and the relative position
of individual resources both in the overall hierarchy and also in terms of their re-
lationships with other resources. The ability to capture and emulate these types
of work distribution strategies are an important requirement to provide a flexible
and realistic basis for managing work in an organizational setting.

JOLIE Implementation

Organizational Distribution assumes the existence of organizational distribution
functions which take a set of resources and the organizational model associated
with a process and return the subset of those resource that satisfy the nominated
organizational criteria. These may include factors such as members of a speci-
fied department, resources holding a certain position, resources that report to a
nominated individual or any other combination of requirements that can be de-
termined from the organizational model. Each task in a process model can have
an organizational distribution function associated with it.

An offering achieves full support if it satisfies the description for the pattern. It
achieves a partial support rating if the same effect can be achieved via program-
matic extensions.

The JOLIE implementation of the Organizational Distribution pattern is provided
by means of a process handler executed in concurrent behavior with the non-
deterministic choice construct. Such process is used to redirect the incoming work
items towards the corresponding organizational resource.

In this example is represented a process whose task is to redirect (allocate) media
processing data towards the corresponding resource that can handle that type of
item. Furthermore, a reporting (log) process, withing the organizational structure,
is run parallelly for logging purposes.

JOLIE code example

217

CHAPTER 3. Workflow Patterns for SOC

Listing 63: Organizational Distribution code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 inputPort OD{
6 Location: "socket://localhost:8000"
7 Protocol: sodep
8 OneWay: proc_handler, proc_image, proc_video,
9 proc_audio, proc_log, start

10 }
11
12 outputPort OD{
13 Location: "socket://localhost:8000"
14 Protocol: sodep
15 OneWay: proc_handler, proc_image, proc_video,
16 proc_audio, proc_log, start
17 }
18
19 init{
20 with (global.log){
21 .audio=0;
22 .video=0;
23 .image=0
24 };
25 start@OD()
26 }
27
28 execution{concurrent}
29
30 define create_wi{
31 random@Math()(type);
32 with(wi){
33 .image=false;.video=false;.audio=false
34 };
35 type=int(type*3);
36 if(type<1){
37 wi.image=true
38 }
39 else if(type<2){
40 wi.video=true
41 }else{
42 wi.audio=true
43 };
44 wi.task=true;
45 proc_handler@OD(wi);
46 sleep@Time(500)()
47
48 }
49
50 define print_log{
51 println@Console("---=== PROCESSED DATA LOG ===---")();

218

CHAPTER 3. Workflow Patterns for SOC

52 println@Console("\timages: "+global.log.image)();
53 println@Console("\tvideos: "+global.log.video)();
54 println@Console("\taudios: "+global.log.audio)();
55 println@Console("---==========================---")()
56 }
57
58 main{
59 [start()]{
60 while(true){
61 create_wi
62 }
63 }
64 //PROC HANDLER
65 [proc_handler(proc_data)]{
66 if(proc_data.task){
67 if(proc_data.image){
68 proc_image@OD(proc_data)
69 }
70 else if(proc_data.video){
71 proc_video@OD(proc_data)
72 }
73 else if(proc_data.audio){
74 proc_audio@OD(proc_data)
75 }
76 }
77 else if(proc_data.log){
78 proc_log(proc_data)
79 }}
80 [proc_image(wi)]{
81 sleep@Time(1000)();
82 wi.log=true;
83 wi.task=false;
84 proc_log@OD(wi)
85 }
86 [proc_audio(wi)]{
87 sleep@Time(2000)();
88 wi.log=true;
89 wi.task=false;
90 proc_log@OD(wi)
91 }
92 [proc_video(wi)]{
93 sleep@Time(3000)();
94 wi.log=true;
95 wi.task=false;
96 proc_log@OD(wi)
97 }
98 [proc_log(wi)]{
99 if(wi.image){

100 global.log.image++
101 }else if(wi.audio){
102 global.log.audio++

219

CHAPTER 3. Workflow Patterns for SOC

103 }else if(wi.video){
104 global.log.video++
105 };
106 print_log
107 }
108 }

220

CHAPTER 3. Workflow Patterns for SOC

3.4.4.11 Automatic Execution

The ability for an instance of a task to execute without needing to utilize the ser-
vices of a resource.

Motivation

Not all tasks within a process need to be executed under the auspices of a hu-
man resource, some are able to execute independently once the specified enabling
criteria are met.

JOLIE Implementation

Where a task is nominated as automatic, it is initiated immediately when enabled.
Similarly, upon its completion, subsequent tasks are triggered immediately.

An offering achieves full support if it satisfies the description for the pattern. It
achieves a partial support rating if the same effect can be achieved via program-
matic extensions.

JOLIE implements natively this behavior by letting the task process to run (both
sequentially or parallelly) without requiring its distribution to a specific resource.

221

CHAPTER 3. Workflow Patterns for SOC

3.4.5 Push Patterns

Push Patterns characterize situations where newly created work items are proac-
tively offered or allocated to resources by the system. These may occur indirectly
by advertising work items to selected resources via a shared work list or directly
with work items being allocated to specific resources.

In both situations however, it is the system that takes the initiative and causes the
distribution process to occur.

Figure 3.46: Push Patterns

As Figure 3.46 reports, nine push Patterns have been identified. These are divided
into three distinct groups.

• The first three Patterns identify the actual manner of work distribution - whether
the workflow system offers the work item to a single resource, to multiple re-
sources or whether it allocates it directly to a single resource. These patterns
correspond directly to the bold arcs in the figure.

• The second group of patterns relate to the means by which a resource is
selected to undertake a work item where there are multiple possible re-
sources identified. Three possible strategies are described - random allo-
cation, round robin allocation and shortest queue.

• The final three patterns identify the timing of the distribution process and in
particular the relationship between the availability of a work item for offer-
ing/allocation to resources and the time at which it commences execution.
Three variants are possible - work items are offered/allocated before they

222

CHAPTER 3. Workflow Patterns for SOC

have commenced (early distribution), after they have commence (late dis-
tribution) or the two events are simultaneous (distribution on enablement).
These Patterns do not have a direct analogue in the figure but relate to the
time at which the transitions may occur with respect to the work item’s
readiness to be executed (i.e. already started, immediate start or subsequent
start).

3.4.5.1 Distribution by Offer - Single Resource

The ability to distribute a work item to a selected individual resource on a non-
binding basis.

Motivation

This pattern provides a means of distributing a work item to a single resource on a
non-binding basis. The resource is informed of the work item being offered but it
is not committed to execute it and can either ignore the work item or redistribute
it to other resources should it choose not to undertake it.

JOLIE Implementation

Offering a work item to a single resource is the process analogy to the act of "ask-
ing for consideration" in real life. If the resource decides not to undertake it, the
onus is still with the system to find another suitable resource to complete it. Once
a task has been enabled, a means of actually informing the selected resource of
the pending work item is required. The mechanism chosen, should notify the re-
source that a work item exists that it may wish to undertake, however it should
not commit the resource to its execution and it should not advise any other re-
sources of the potential work item. Typically this is achieved by adding the work
item to the work list of the selected user with an offered status although other
notification mechanisms are possible.

An offering achieves full support it is satisfies the description for the pattern. It
achieves a partial support rating if work items cannot be distributed on a non-
binding basis but there are facilities for a resource to reject a work item allocated
to it.

The JOLIE implementation of the Distribution by Offer - Single Resource pattern is
provided by means of a process which creates and offers work items to a specific

223

CHAPTER 3. Workflow Patterns for SOC

resource (adding the work item to the work items list of that resource) among the
three available (RID1, RID2 and RID3).

Each resource can either decide (randomly) to process that work item or re-offer
it to it’s “co-worker”. In this example the passing policy is defined at design time
where each resource has a designed co-worker to which it can offer its work item.
It’s worth noting that the passing relation between them is intentionally recursive,
i.e. RID1 can offer to RID2, that can offer to RID3 which that can offer to RID1 and
so on.

JOLIE code example

Listing 64: Distribution by Offer - Single Resource code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define pop_rid1{
6 if(#wi_stack.rid1>1){
7 for(rid1.i=0,rid1.i<#wi_stack.rid1,rid1.i++){
8 wi_stack.rid1[rid1.i]=wi_stack.rid1[rid1.i+1]
9 }};

10 undef(wi_stack.rid1[#wi_stack.rid1-1])
11 }
12
13 define pop_rid2{
14 if(#wi_stack.rid2>1){
15 for(rid2.i=0,rid2.i<#wi_stack.rid2,rid2.i++){
16 wi_stack.rid2[rid2.i]=wi_stack.rid2[rid2.i+1]
17 }};
18 undef(wi_stack.rid2[#wi_stack.rid2-1])
19 }
20
21 define pop_rid3{
22 if(#wi_stack.rid3>1){
23 for(rid3.i=0,rid3.i<#wi_stack.rid3,rid3.i++){
24 wi_stack.rid3[rid3.i]=wi_stack.rid3[rid3.i+1]
25 }};
26 undef(wi_stack.rid3[#wi_stack.rid3-1])
27 }
28
29 define create_and_offer_wi{
30 random@Math()(rid);
31 rid=1+int(rid*3);
32 getCurrentTimeMillis@Time()(id);
33 synchronized(wi_lock){
34 wi_stack.("rid"+rid)[#wi_stack.("rid"+rid)]=id
35 };
36 println@Console("Created wi "+id+" and offered to RID"+rid)();
37 sleep@Time(500)()

224

CHAPTER 3. Workflow Patterns for SOC

38 }
39
40 main{
41 {while(true){
42 create_and_offer_wi
43 }}|{
44 while(true){
45 if(#wi_stack.rid1>0){
46 random@Math()(rid1.deleg);
47 rid1.deleg=int(rid1.deleg*2);
48 if(rid1.deleg){
49 synchronized(wi_lock){
50 wi_stack.rid2[#wi_stack.rid2]=wi_stack.rid1[0];
51 println@Console("RID1 offered the wi "+wi_stack.rid1[0]+
52 " to RID2")();
53 sleep@Time(500)()
54 }
55 }
56 else{
57 println@Console("RID1 processes wi "+wi_stack.rid1[0])();
58 sleep@Time(1000)()
59 };
60 synchronized(wi_lock){
61 pop_rid1
62 }}
63 }
64 }|{
65 while(true){
66 if(#wi_stack.rid2>0){
67 random@Math()(rid2.deleg);
68 rid2.deleg=int(rid2.deleg*2);
69 if(rid2.deleg){
70 synchronized(wi_lock){
71 wi_stack.rid3[#wi_stack.rid3]=wi_stack.rid2[0];
72 println@Console("RID2 offered the wi "+wi_stack.rid2[0]+
73 " to RID3")();
74 sleep@Time(500)()
75 }
76 }
77 else{
78 println@Console("RID2 processes wi "+wi_stack.rid2[0])();
79 sleep@Time(1000)()
80 };
81 synchronized(wi_lock){
82 pop_rid2
83 }}
84 }
85 }|{
86 while(true){
87 if(#wi_stack.rid3>0){
88 random@Math()(rid3.deleg);

225

CHAPTER 3. Workflow Patterns for SOC

89 rid3.deleg=int(rid3.deleg*2);
90 if(rid3.deleg){
91 synchronized(wi_lock){
92 wi_stack.rid1[#wi_stack.rid1]=wi_stack.rid3[0];
93 println@Console("RID3 offered the wi "+wi_stack.rid3[0]+
94 " to RID1")();
95 sleep@Time(500)()
96 }
97 }
98 else{
99 println@Console("RID3 processes wi "+wi_stack.rid3[0])();

100 sleep@Time(1000)()
101 };
102 synchronized(wi_lock){
103 pop_rid3
104 }}
105 }
106 }
107 }

226

CHAPTER 3. Workflow Patterns for SOC

3.4.5.2 Distribution by Offer - Multiple Resources

The ability to distribute a work item to a group of selected resources on a non-
binding basis.

Motivation

This pattern provides a means of distributing a work item to multiple resources
on a non-binding basis. The resources are informed of the work item being of-
fered but are not committed to executing it and can either ignore the work item or
redistribute it to other resources should they choose not to undertake it.

JOLIE Implementation

Offering a work item to multiple resources is the process analogy to the act of
"calling for a volunteer" in real life. It provides a means of advising a suitably
qualified group of resources that a work item exists with the expectation that one
of them will actually commit to undertaking the activity although the onus is still
with the system to find a suitable resource should none of them agree to under-
take it. Once a task has been enabled that is distributed on this basis, a means of
actually informing the selected resources of the pending work item is required.
The mechanism chosen, should notify the resources that a work item exists that
they may wish to undertake, however it should not commit any of the resources
to its execution. Typically this is achieved by adding the work item to the work
lists of the selected resources with an offered status although other notification
mechanisms are possible.

An offering achieves full support if it satisfies the description of the pattern.

The JOLIE implementation of the Distribution by Offer - Multiple Resources pattern
is provided by means of a slight modification of the one given for the Distribution
by Offer - Multiple Resources pattern [3.4.5.1].

In this case the process which creates and offers work items to the resources sim-
ply adds the work item to a shared work item list that corresponds to a group of
resources. In this example the three available resources (RID1, RID2 and RID3)
share two lists of work items (one read by RID1 and RID2, one read by RID2 and
RID3).

In this particular example RID2 has the opportunity to choose among two lists of
work items and decide to process the first available work item of any of them.

JOLIE code example

227

CHAPTER 3. Workflow Patterns for SOC

Listing 65: Distribution by Offer - Multiple Resource code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define pop_lst1{
6 if(#wi.lst1>1){
7 for(l1i=0,l1i<#wi.lst1,l1i++){
8 wi.lst1[l1i]=wi.lst1[l1i+1]
9 }};

10 undef(wi.lst1[#wi.lst1-1])
11 }
12
13 define pop_lst2{
14 if(#wi.lst2>1){
15 for(l2i=0,l2i<#wi.lst2,l2i++){
16 wi.lst2[l2i]=wi.lst2[l2i+1]
17 }};
18 undef(wi.lst2[#wi.lst2-1])
19 }
20
21 define create_and_offer_wi{
22 random@Math()(lstid);
23 lstid=1+int(lstid*2);
24 getCurrentTimeMillis@Time()(id);
25 synchronized(lst_lock){
26 wi.("lst"+lstid)[#wi.("lst"+lstid)]=id
27 };
28 println@Console("Created wi "+id+" and offered to list"+lstid)();
29 sleep@Time(500)()
30 }
31
32 main{
33 {while(true){
34 create_and_offer_wi
35 }}|{
36 while(true){
37 synchronized(lst_lock){
38 if(#wi.lst1>0){
39 println@Console("RID1 has taken the wi "+wi.lst1[0])();
40 pop_lst1
41 }};
42 sleep@Time(500)()
43 }}|{
44 while(true){
45 synchronized(lst_lock){
46 if (#wi.lst1>0){
47 println@Console("RID2 has taken the wi "+wi.lst1[0]+
48 " from list1")();
49 pop_lst1

228

CHAPTER 3. Workflow Patterns for SOC

50 }
51 else if(#wi.lst2>0){
52 println@Console("RID2 has taken the wi "+wi.lst2[0]+
53 " from list2")();
54 pop_lst2
55 }};
56 sleep@Time(500)()
57 }}|{
58 while(true){
59 synchronized(lst_lock){
60 if(#wi.lst2>0){
61 println@Console("RID3 has taken the wi "+wi.lst2[0])();
62 pop_lst2
63 }};
64 sleep@Time(500)()
65 }}
66 }

229

CHAPTER 3. Workflow Patterns for SOC

3.4.5.3 Distribution by Allocation - Single Resource

The ability to distribute a work item to a specific resource for execution on a bind-
ing basis.

Motivation

This pattern provides a means of distributing a work item to a single resource on
a binding basis. The resource is informed of the work item being distributed to
them and is committed to executing it.

JOLIE Implementation

Allocating a work item to a single resource is the process analogy to the act of
"appointing an owner" in real life. It involves the system directly assigning a work
item to a resource without first offering it to other resources or querying whether
the resource will undertake it. In doing so, it passes the onus of ensuring the work
item is completed to the selected resource.

This approach to work distribution is also known as "heads down" processing as
it offers the resource little or no input in the work that they are allocated and the
main focus is on maximizing work throughput by keeping the resource busy. In
many implementations, resources are simply allocated a new work item once the
previous one is completed and they are not offered any insight into what work
items might lay ahead for them.

Once a task has been enabled that is distributed on this basis, a means of actu-
ally informing the selected resource of the pending work item is required. The
mechanism chosen, should notify the resource that a work item exists that they
must undertake. Typically this is achieved by adding the work item to the work
list of the selected resource with an allocated status although other notification
mechanism are possible.

An offering achieves full support if it satisfies the description of the pattern.

The JOLIE implementation of the Distribution by Allocation - Single Resource pattern
is the same given for the Direct Distribution pattern [3.4.4.1] where a work item is
specifically distributed (allocated) to a resource.

230

CHAPTER 3. Workflow Patterns for SOC

3.4.5.4 Random Allocation

The ability to allocate work items to a selected resource chosen from a group of
eligible resources on a random basis.

Motivation

Random Allocation provides a non-deterministic mechanism for allocating work
items to resources.

JOLIE Implementation

This pattern provides a means of restricting the distribution of a work item to
a single resource. Once the possible range of resources that a work item can be
distributed to have been identified at runtime, one of these is selected at random
to execute the work item.

An offering achieves full support if it satisfies the description for the pattern.

The JOLIE implementation of the Random Allocation pattern is provided by means
of a shared list of available work items, when a resource is ready to undertake a
new work item, it picks one of them randomly.

JOLIE code example

Listing 66: Random Allocation code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define pop_wi{
6 if(#wi>0){
7 for(pop.i=pop_wi_n,pop.i<(#wi-1),pop.i++){
8 wi[pop.i]<<wi[(pop.i+1)]
9 };

10 undef(wi[#wi-1])
11 }}
12
13 define create_and_offer_wi{
14 getCurrentTimeMillis@Time()(id);
15 synchronized(wi_lock){
16 wi[#wi]=id
17 };
18 println@Console("Created wi "+id)();
19 sleep@Time(200)()
20 }
21
22 main{

231

CHAPTER 3. Workflow Patterns for SOC

23 {while(true){
24 create_and_offer_wi
25 }}|{
26 while(true){
27 synchronized(wi_lock){
28 if(#wi>0){
29 random@Math()(wid);
30 wid=int(wid*#wi);
31 println@Console("RID1 has taken the wi "+wi[wid])();
32 pop_wi_n=wid;
33 pop_wi
34 }};
35 sleep@Time(500)()
36 }}|{
37 while(true){
38 synchronized(wi_lock){
39 if(#wi>0){
40 random@Math()(wid);
41 wid=int(wid*#wi);
42 println@Console("RID2 has taken the wi "+wi[wid])();
43 pop_wi_n=wid;
44 pop_wi
45 }};
46 sleep@Time(500)()
47 }}|{
48 while(true){
49 synchronized(wi_lock){
50 if(#wi>0){
51 random@Math()(wid);
52 wid=int(wid*#wi);
53 println@Console("RID3 has taken the wi "+wi[wid])();
54 pop_wi_n=wid;
55 pop_wi
56 }};
57 sleep@Time(500)()
58 }}
59 }

232

CHAPTER 3. Workflow Patterns for SOC

3.4.5.5 Round Robin Allocation

The ability to allocate a work item to a selected resource chosen from a group of
eligible resources on a cyclic basis.

Motivation

Round Robin Allocation provides a means of allocating work items to resources on
an equitable basis.

JOLIE Implementation

This pattern provides a fair means of restricting the distribution of a work item
to a single resource. Once the range of possible resources that a work item can be
distributed to has been identified at runtime, one of these is selected on a cyclic
basis to execute the work item. The intention is that, over time, each resource re-
ceives the same number of work items. One means of choosing the appropriate
resource is to select the resource that undertook the task least recently. An alter-
native to this is for the system to keep track of the number of times each resource
has completed each task, thus enabling the one who has undertaken it the least
number of times to be identified.

An offering achieves full support if it satisfies the description for the pattern.

A simple JOLIE implementation of the Round Robin Allocation pattern is provided
by means of a cyclic list of resource on which the resource creator allocates a work
item to a specific resource.

JOLIE code example

Listing 67: Round Robin code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define create_and_allocate_wi{
6 getCurrentTimeMillis@Time()(id);
7 rid++;
8 if(rid>3){rid=1};
9 synchronized(wi_lock){

10 wi.("rid"+rid)[#wi.("rid"+rid)]=id
11 };
12 println@Console("Created wi "+id+" in RID"+rid)();
13 sleep@Time(200)()
14 }

233

CHAPTER 3. Workflow Patterns for SOC

15
16 define pop_wi1{
17 if(#wi>0){
18 for(rid1.i=0,rid1.i<(#wi-1),rid1.i++){
19 wi.rid1[rid1.i]=wi.rid1[(rid1.i+1)]
20 };
21 undef(wi.rid1[#wi-1])
22 }}
23
24 define pop_wi2{
25 if(#wi>0){
26 for(rid2.i=0,rid2.i<(#wi-1),rid2.i++){
27 wi.rid2[rid2.i]=wi.rid2[(rid2.i+1)]
28 };
29 undef(wi.rid2[#wi-1])
30 }}
31
32 define pop_wi3{
33 if(#wi>0){
34 for(rid3.i=0,rid3.i<(#wi-1),rid3.i++){
35 wi.rid3[rid3.i]=wi.rid3[(rid3.i+1)]
36 };
37 undef(wi.rid3[#wi-1])
38 }}
39
40 main{
41 {while(true){
42 create_and_allocate_wi
43 }}|{
44 while(true){
45 if(#wi.rid1>0){
46 println@Console("RID1 has taken the wi "+wi.rid1[0])();
47 synchronized(wi_lock){
48 pop_wi1
49 };
50 sleep@Time(1000)()
51 }
52 }}|{
53 while(true){
54 if(#wi.rid2>0){
55 println@Console("RID2 has taken the wi "+wi.rid2[0])();
56 synchronized(wi_lock){
57 pop_wi2
58 };
59 sleep@Time(1500)()
60 }
61 }}|{
62 while(true){
63 if(#wi.rid3>0){
64 println@Console("RID3 has taken the wi "+wi.rid3[0])();
65 synchronized(wi_lock){
66 pop_wi3

234

CHAPTER 3. Workflow Patterns for SOC

67 };
68 sleep@Time(750)()
69 }
70 }}
71 }

235

CHAPTER 3. Workflow Patterns for SOC

3.4.5.6 Shortest Queue

The ability to allocate a work item to a selected resource chosen from a group of
eligible resources on the basis of having the shortest work queue.

Motivation

Shortest Queue provides a means of allocating work items to resources such that
the chosen resource should be able to undertake the work item as soon as possible.

JOLIE Implementation

Shortest Queue distribution provides a means of allocating work items to resources
with the intention of expediting the throughput of a process instance by ensuring
that work items are allocated to the resource that is able to undertake them in the
shortest possible timeframe. Typically the shortest timeframe means the resource
with the shortest work queue although other interpretations are possible.

An offering achieves full support if it satisfies the description for the pattern.

A simple JOLIE implementation of the Shortest Queue pattern is provided by means
of a construct in the allocation process which gets the shortest queue correspond-
ing to a specific resource and adds the new work item to it.

JOLIE code example

Listing 68: Shortest Queue code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define create_and_allocate_wi{
6 getCurrentTimeMillis@Time()(id);
7 rid=1;
8 for(ci=2,ci<4,ci++){
9 if(#wi.("rid"+rid)>#wi.("rid"+(ci))){

10 rid=ci}
11 };
12 synchronized(wi_lock){
13 wi.("rid"+rid)[#wi.("rid"+rid)]=id
14 };
15 println@Console("Created wi "+id+" in RID"+rid)();
16 sleep@Time(200)()
17 }
18
19 define pop_wi1{
20 if(#wi.rid1>0){

236

CHAPTER 3. Workflow Patterns for SOC

21 for(rid1.i=0,rid1.i<(#wi-1),rid1.i++){
22 wi.rid1[rid1.i]=wi.rid1[(rid1.i+1)]
23 };
24 undef(wi.rid1[#wi-1])
25 }}
26
27 define pop_wi2{
28 if(#wi.rid2>0){
29 for(rid2.i=0,rid2.i<(#wi-1),rid2.i++){
30 wi.rid2[rid2.i]=wi.rid2[(rid2.i+1)]
31 };
32 undef(wi.rid2[#wi-1])
33 }}
34
35 define pop_wi3{
36 if(#wi.rid3>0){
37 for(rid3.i=0,rid3.i<(#wi-1),rid3.i++){
38 wi.rid3[rid3.i]=wi.rid3[(rid3.i+1)]
39 };
40 undef(wi.rid3[#wi-1])
41 }}
42
43 main{
44 {while(true){
45 create_and_allocate_wi
46 }}|{
47 while(true){
48 if(#wi.rid1>0){
49 println@Console("RID1 has taken the wi "+wi.rid1[0])();
50 pop_wi1;
51 sleep@Time(1000)()
52 }
53 }}|{
54 while(true){
55 if(#wi.rid2>0){
56 println@Console("RID2 has taken the wi "+wi.rid2[0])();
57 pop_wi2;
58 sleep@Time(1500)()
59 }
60 }}|{
61 while(true){
62 if(#wi.rid3>0){
63 println@Console("RID3 has taken the wi "+wi.rid3[0])();
64 pop_wi3;
65 sleep@Time(750)()
66 }
67 }}
68 }

237

CHAPTER 3. Workflow Patterns for SOC

3.4.5.7 Early Distribution

The ability to allocate a work item to a selected resource chosen from a group of
eligible resources on the basis of having the shortest work queue.

Motivation

Early Distribution provides a means of notifying resources of upcoming work items
ahead of the time at which they need to be (or can be) executed. This is useful
where resources are able to provide some form of forward commitment (or book-
ing) indicating that they will execute and complete a work item at some future
time. It also provides a means of optimizing the throughput of a case by ensuring
that minimal time is spent waiting for resource allocation during case execution.

JOLIE Implementation

Where a process contains a task that is identified as being subject to Early Distribu-
tion, the existence of any work items corresponding to the task can be advertised
to resources as soon as an instance of a process is initiated. Depending on the
nature of that implementation, these advertisements may simply be an advance
notification or constitute an actual offer/allocation of a work item.

However in both cases, such notifications do not imply that the work item is ready
for execution and it is only when the process advances to the task to which the
work item corresponds, that the work item can actually be commenced.

An offering achieves full support if it satisfies the description for the pattern.

In most part of the JOLIE implementations provided previously (e.g. the one
given for the Shortest Queue pattern [3.4.5.6]), each resource has a work item queue
related to it, in which each resource takes a work item according to a generic first
in, first out (FIFO) policy. Such approach makes the resources themselves (and
the work item allocator) aware of information about their future work items and
workload.

238

CHAPTER 3. Workflow Patterns for SOC

3.4.5.8 Distribution on Enablement

The ability to advertise and distribute a work items to resources at the moment
that the task to which it corresponds is enabled for execution.

Motivation

The simultaneous advertisement and distribution of a work item when the task to
which it corresponds is enabled, constitutes the simplest approach to work distri-
bution from a resource perspective as it ensures that any work item that a resource
receives in its work list can be immediately acted upon.

JOLIE Implementation

Distribution of a work item at the time that the task to which it corresponds is
enabled for execution is effectively the standard mechanism for work distribution.

The enablement of a task serves as the trigger for the system to create an associ-
ated work item and make it available to resources for execution. This may occur
indirectly by placing it on the work lists for individual resources or on the global
work list or directly by allocating it to a specific resource for immediate execution.

An offering achieves full support if it satisfies the description for the pattern.

The JOLIE implementation of the History-based Distribution pattern [3.4.4.9] is an
example of a Distribution on Enablement pattern too.

As matter of facts, the distribution of the work item happens with the act of invo-
cation of the resource. In a more general context, the distribution on enablement
is the typical (and native) way a work item is distributed to its resource by means
of the resource enablement itself.

239

CHAPTER 3. Workflow Patterns for SOC

3.4.5.9 Late Distribution

The ability to advertise and distribute work items to resources after the task to
which the work item corresponds has been enabled for execution.

Motivation

Late Distribution of work items effectively provides a means of "demand driving"
a process by only advertising or allocating work items to resources after the tasks
to which they correspond have already been enabled for execution. This could
potentially be much later than the time the tasks were enabled. By adopting this
approach, it is possible to reduce the current volume of work in progress within a
process instance.

Often this strategy is undertaken with the aim of preventing resources from be-
coming overwhelmed by the apparent workload even though they may not be
required to undertake all of it themselves.

JOLIE Implementation

Where a task is identified as being subject to Late Distribution, the enablement of
the task does not necessarily result in the associated work items being distributed
to resources for execution.

Generally other factors are taken into consideration (e.g. number of active work
items, available resources, etc.) before the decision is made to advise resources of
its existence. This approach to work distribution provides the system with flexi-
bility in determining when work items are made available for execution and of-
fers the potential to reduce context switching when resources have multiple work
items that they are attempting to deal with.

This approach to work distribution is often used in conjunction with "heads down"
processing where the focus is on maximizing work throughput and the distribu-
tion of work is largely under the auspices of the system. At the other end of the
spectrum to this approach is the Case Handling patter [3.4.4.6] where the distribu-
tion and management of work is largely at the discretion of individual resources.

An offering achieves full support if it satisfies the description for the pattern.

The JOLIE implementation of the Late Distribution pattern is provided by means of
an additional queue, that acts as a unlimited buffer list, in which late-distributed
items are stored until the conditions of their execution are met.

JOLIE code example

240

CHAPTER 3. Workflow Patterns for SOC

Listing 69: Late Distribution code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define create_and_allocate_wi{
6 getCurrentTimeMillis@Time()(id);
7 random@Math()(rid);
8 rid=1+int(rid*2);
9 synchronized(wi_lock){

10 if (#wi.("rid"+rid)<5){
11 wi.("rid"+rid)[#wi.("rid"+rid)]=id;
12 println@Console("Created wi "+id+" in RID"+rid)()
13 }
14 else{
15 wi.("bufferRid"+rid)[#wi.("bufferRid"+rid)]=id;
16 println@Console("Created wi "+id+" in buffer RID"+rid)()
17 }};
18 sleep@Time(500)()
19 }
20
21 define print_stat{
22 println@Console("---=== BUFFERS AND QUEUES ===---")();
23 println@Console("\tRID1: q:"+#wi.rid1+" b:"+#wi.bufferRid1)();
24 println@Console("\tRID2: q:"+#wi.rid2+" b:"+#wi.bufferRid2)();
25 println@Console("---==========================---")()
26 }
27
28 define pop_wi1{
29 if(#wi.rid1>0){
30 for(rid1.i=0,rid1.i<(#wi-1),rid1.i++){
31 wi.rid1[rid1.i]=wi.rid1[(rid1.i+1)]
32 };
33 if(#wi.bufferRid1>0){
34 wi.rid1[#wi.rid1-1]=#wi.bufferRid1[0]
35 }
36 }}
37
38 define pop_wi2{
39 if(#wi.rid2>0){
40 for(rid2.i=0,rid2.i<(#wi-1),rid2.i++){
41 wi.rid2[rid2.i]=wi.rid2[(rid2.i+1)]
42 };
43 if(#wi.bufferRid2>0){
44 wi.rid2[#wi.rid2-1]=#wi.bufferRid2[0]
45 }
46 }}
47
48 define pop_buffer_wi1{
49 if(#wi.bufferRid1>0){
50 for(bufferRid1.i=0,bufferRid1.i<(#wi-1),bufferRid1.i++){

241

CHAPTER 3. Workflow Patterns for SOC

51 wi.bufferRid1[bufferRid1.i]=wi.bufferRid1[(bufferRid1.i+1)]
52 };
53 undef(wi.bufferRid1[#wi-1])
54 }}
55
56 define pop_buffer_wi2{
57 if(#wi.bufferRid2>0){
58 for(bufferRid2.i=0,bufferRid2.i<(#wi-1),bufferRid2.i++){
59 wi.bufferRid2[bufferRid2.i]=wi.bufferRid2[(bufferRid2.i+1)]
60 };
61 undef(wi.bufferRid2[#wi-1])
62 }}
63
64
65 main{
66 {while(true){
67 create_and_allocate_wi;
68 synchronized(wi_lock){print_stat}
69 }}|{
70 while(true){
71 if(#wi.rid1>0){
72 synchronized(wi_lock){
73 println@Console("RID1 has taken the wi "+wi.rid1[0])();
74 pop_wi1;
75 pop_buffer_wi1
76 };
77 sleep@Time(1000)()
78 }
79 }}|{
80 while(true){
81 if(#wi.rid2>0){
82 synchronized(wi_lock){
83 println@Console("RID2 has taken the wi "+wi.rid2[0])();
84 pop_wi2;
85 pop_buffer_wi2
86 };
87 sleep@Time(1500)()
88 }}}
89 }

242

CHAPTER 3. Workflow Patterns for SOC

3.4.6 Pull Patterns

Pull Patterns correspond to the situation where individual resources are made
aware of specific work items, that require execution, either via a direct offer from
the system or indirectly through a shared work list.

The commitment to undertake a specific task is initiated by the resource itself
rather than the system.

Generally this results in the work item being placed on the specific work list for
the individual resource for later execution although in some cases, the resource
may elect to commence execution on the work item immediately.

The various state transitions associated with pull patterns are illustrated in Figure
3.47.

Figure 3.47: Push Patterns

Six pull patterns have been identified. These divide into two distinct groups:

• the first three patterns identify the specifics of the actual "pull" action initi-
ated by the resource, with a particular focus on the work item state before
and after the interaction. These patterns correspond to the bold arcs in Fig-
ure 3.47;

• the second group of patterns focus on the sequence in which the work items
are presented to the resource and the ability of the system and the individual
resource to influence the sequence and manner in which they are displayed.
The final pattern in this group illustrates the degree of freedom that the re-
source has in selecting the next work item to execute. These patterns do not

243

CHAPTER 3. Workflow Patterns for SOC

have a direct analogue in Figure 3.47, but apply to all of the "pull" transitions
illustrated as bold arcs.

3.4.6.1 Resource-Initiated Allocation

The ability for a resource to commit to undertake a work item without needing to
commence working on it immediately.

Motivation

This pattern provides a means for a resource to signal its intention to execute a
given work item at some point, although it may not commence working on it
immediately.

JOLIE Implementation

There are two variants of this pattern as illustrated by the bold arcs in Figure
3.47, depending on whether the work item has been offered to a single resource (
R:allocate_s) or to multiple resources (R:allocate_m).

In both cases, the work item has its status changed from offered to allocated. It
remains in the work list of the resource which initiated the allocation.

In the latter case, the work item has been offered to multiple resources and it is
therefore necessary to remove it from all other work lists in which it may have ap-
peared as an offer. This ensures that only the resource to which it is now allocated
can actually commence working on it.

An offering achieves full support if it satisfies the description for the pattern. It
achieves a partial support rating if there are any side effects associated with the
implementation of the pattern.

Both the JOLIE implementations of the two variants of the Resource-Initiated Al-
location pattern (single and multiple) can be seen as a slight modification of the
paradigm provided by the two implementations of the Distribution by Allocation -
Single Resource [3.4.5.3] and Distribution by Offer - Multiple Resources [3.4.5.2] pat-
terns.

The modifications of both examples concern the event of work item allocation
(either directed or added into a shared work item list). In these cases it’s not the
system that independently allocates work items to resource(s) (push); instead it’s
the single resource that notifies the system about its availability to undertake a

244

CHAPTER 3. Workflow Patterns for SOC

work item, which compel the system to allocate a new work item to the resource
asking for it (pull).

As it follows, it’s provided the JOLIE code example of the single variant of the
Resource-Initiated Allocation pattern.

JOLIE code example

Listing 70: Resource-Initiated Allocation (single variant) code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 inputPort RIA{
6 Location:"socket://localhost:8000"
7 Protocol:sodep
8 OneWay: allocation_request
9 }

10
11 outputPort RIA{
12 Location:"socket://localhost:8000"
13 Protocol:sodep
14 OneWay: allocation_request
15 }
16
17 define pop_rid1{
18 if(#wi_stack.rid1>1){
19 for(rid1.i=0,rid1.i<#wi_stack.rid1,rid1.i++){
20 wi_stack.rid1[rid1.i]=wi_stack.rid1[rid1.i+1]
21 }};
22 undef(wi_stack.rid1[#wi_stack.rid1-1])
23 }
24
25 define create_and_allocate_wi{
26 getCurrentTimeMillis@Time()(id);
27 synchronized(wi_lock){
28 wi_stack.("rid"+rid)[#wi_stack.("rid"+rid)]=id
29 };
30 println@Console("Created wi "+id+" as requested from RID"+rid)()
31 }
32
33 main{
34 {while(true){
35 allocation_request(rid);
36 create_and_allocate_wi
37 }}|{{
38 while(true){
39 // WORK ITEM REQUEST
40 if(#wi_stack.rid1<5){
41 allocation_request@RIA(1)
42 }}}|{
43 while(true){

245

CHAPTER 3. Workflow Patterns for SOC

44 //WORK ITEM EXECUTION
45 if(#wi_stack.rid1>0){
46 println@Console("RID1 processes wi "+wi_stack.rid1[0])();
47 synchronized(wi_lock){
48 pop_rid1
49 };
50 sleep@Time(1000)()
51 }
52 }}}
53 }

246

CHAPTER 3. Workflow Patterns for SOC

3.4.6.2 Resource-Initiated Execution - Allocated Work Item

The ability for a resource to commence work on a work item that is allocated to it.

Motivation

Where a resource has work items that it has committed to execute, but has not yet
commenced, a means of signaling their commencement is required. This pattern
fulfills that requirement.

JOLIE Implementation

This pattern corresponds to the R:start transition illustrated in Figure 3.47. It
results in the status of the selected work item being changed from allocated to
started. It remains in the same work list.

The general means of handling that a work item has been allocated to a resource
is to place it on a resource-specific work queue. This ensures that the work item
is not undertaken by another resource and that the commitment made by the re-
source to which it is allocated is maintained.

No JOLIE specific implementation of this pattern is provided since, as seen until
this point, aside for the Direct Distribution [3.4.4.1] and the like (e.g. History-based
Distribution [3.4.4.9]), the most part of previously analyzed patterns (and their
corresponding implementations) defines the allocation of a work item as a queu-
ing operation whose complementary function, put in place by the resource, is the
withdrawal of a work item within its own work item list to execute it, which is ex-
actly the behavioral policy described by the Resource-Initiated Execution - Allocated
Work Item pattern.

247

CHAPTER 3. Workflow Patterns for SOC

3.4.6.3 Resource-Initiated Execution - Offered Work Item

The ability for a resource to select a work item offered to it and commence work
on it immediately.

Motivation

In some cases it is preferable to view a resource as being committed to undertaking
a work item only when the resource has actually indicated that it is working on it.
This approach to work distribution effectively speeds throughput by eliminating
the notion of work item allocation. Work items remain on offer to the widest range
of appropriate resources until one of them actually indicates they can commence
work on it. Only at this time is the work item removed from being on offer and
allocated to a specific resource.

JOLIE Implementation

There are two variants of this pattern as illustrated by the bold arcs in Figure
3.47, depending on whether the work item has been offered to a single resource
(R:start_s) or to multiple resources (R:start_m). In both cases, the work item has its
status changed from offered to started. It remains in the work list of the resource
which initiated the work item. In the latter case, the work item has been offered to
multiple resources and it is therefore necessary to remove it from all other work
lists in which it may have appeared as an offer. This ensures that only one resource
can actually work on it.

As stated for the previous Resource-Initiated Execution - Allocated Work Item pat-
tern [3.4.6.2], the policy defined by the Resource-Initiated Execution - Offered Work
Item pattern does not need any further implementation example, since its behav-
iors (either multiple and single) is exemplified by the Distribution by Offer - Single
Resource [3.4.5.1] and Distribution by Offer - Multiple Resources [3.4.5.2] patterns in
which each resource can choose and execute a work item offered into a specific or
shared work item list.

248

CHAPTER 3. Workflow Patterns for SOC

3.4.6.4 System-Determined Work Queue Content

The ability of the system to order the content and sequence in which work items
are presented to a resource for execution.

Motivation

This pattern provides the system with the ability to specify the ordering and con-
tent of work items in a resource’s work list. In doing so, the intention is that the
system can influence the sequence in which concurrent work items are executed
by resources by managing the information presented for each work item.

JOLIE Implementation

Where an offering provides facilities for specifying the default ordering in which
work items are presented to resources, the opportunity exists to enforce a work
ordering policy for all resources or on a group-by-group or individual resource
basis. Such ordering may be time-based (e.g. FIFO, LIFO, EDD) or relate to data
values associated with individual work items (e.g. cost, required effort, comple-
tion time). The ordering and content of work lists can be specified individually
for each user or on a whole-of-process basis.

The JOLIE code example provided for this pattern exemplifies processes execution
(work item) scheduling. If too much processes are in the execution queue, the
system reorders it according to their estimated computation time, this is done
to increase the process completion rate and thus lowering the queue size. Once
the size of the queue is lowered, the default order, based on processes submission
time, is restored. It’s worth noting that, to avoid long-computation-time processes
starvation, a counter is set to restore the default ordering of one iteration every ten.

JOLIE code example

Listing 71: System-Determined Work Queue Content code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define pop_rid1{
6 if(#wi_stack.rid1>0){
7 for(pop.i=0,pop.i<(#wi_stack.rid1-1),pop.i++){
8
9 wi_stack.rid1[pop.i]<<wi_stack.rid1[(pop.i+1)]

10 };
11 undef(wi_stack.rid1[#wi_stack.rid1-1])

249

CHAPTER 3. Workflow Patterns for SOC

12 }
13 }
14
15 define order_wi{
16 sort=true;
17 while(sort){
18 sort=false;
19 for(obd.i=0,obd.i<#wi_stack.rid1-1,obd.i++){
20 if(wi_stack.rid1[obd.i].(ord_arg)>
21 wi_stack.rid1[obd.i+1].(ord_arg)){
22 temp<<wi_stack.rid1[obd.i];
23 wi_stack.rid1[obd.i]<<wi_stack.rid1[obd.i+1];
24 wi_stack.rid1[obd.i+1]<<temp;
25 sort=true;
26 ordered=true
27 }}};
28 if(ordered){
29 println@Console("RID1 wi list reordered by "+ord_arg)()
30 }
31 }
32
33 define print_rid1_wi_stack{
34 println@Console("---=== RID1 WI STACK ===---")();
35 for(pi=0,pi<#wi_stack.rid1,pi++){
36 println@Console("id:"+wi_stack.rid1[pi].id+
37 " comp_time: "+(wi_stack.rid1[pi].comp_time)+"ms")()
38 };
39 println@Console("---=====================---")()
40
41 }
42
43 define create_and_allocate_wi{
44 random@Math()(wi.comp_time);
45 wi.comp_time=int(2000.0*wi.comp_time);
46 getCurrentTimeMillis@Time()(wi.id);
47 wi_stack.rid1[#wi_stack.rid1]<<wi;
48 println@Console("Created wi "+wi.id+
49 " with computation time: "+(wi.comp_time/1000)+"s")()
50 }
51
52 main{
53 {while(true){
54 synchronized(wi_lock){
55 create_and_allocate_wi;
56 if(#wi_stack.rid1>5 && starv<10){
57 ord_arg="comp_time";
58 starv++
59 }
60 else{
61 ord_arg="id"
62 };
63 order_wi;
64 print_rid1_wi_stack
65 };

250

CHAPTER 3. Workflow Patterns for SOC

66 sleep@Time(800)()
67 }}|{{
68 while(true){
69 // WORK ITEM REQUEST
70 if(#wi_stack.rid1>0){
71 synchronized(wi_lock){
72 undef(rid1.wi);
73 rid1.wi<<wi_stack.rid1[0];
74 println@Console("RID1 processes wi "+
75 rid1.wi.id)();
76 pop_rid1;
77 starv=0
78 };
79 sleep@Time(rid1.wi.comp_time)()
80 }
81 }}}
82 }

251

CHAPTER 3. Workflow Patterns for SOC

3.4.6.5 Resource-Determined Work Queue Content

The ability for resources to specify the format and content of work items listed in
the work queue for execution.

Motivation

Enabling resources to specify the format, content and ordering of their work queue
provides them with a greater degree of flexibility in both the selection of offered
work items for execution and also in how they tackle work items which they have
committed to execute or have been allocated to them.

JOLIE Implementation

Typically this pattern manifests itself as the availability of a range of sorting and
filtering options that resources can access to tailor the format of their work list.
These options may be either transient views that they can request or alternately
can take the form of permanent configuration options for their work lists.

The JOLIE code example provided for this pattern can be taken as a slight mod-
ification of the one given for the previous System-Determined Work Queue Content
pattern [3.4.6.4], where in this case is the resource the one who chooses what is the
best sorting policy for its own work items.

JOLIE code example

Listing 72: Resource-Determined Work Queue Content code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define pop_rid1{
6 if(#wi_stack.rid1>0){
7 for(pop.i=0,pop.i<(#wi_stack.rid1-1),pop.i++){
8
9 wi_stack.rid1[pop.i]<<wi_stack.rid1[(pop.i+1)]

10 };
11 undef(wi_stack.rid1[#wi_stack.rid1-1])
12 }
13 }
14
15 define order_wi{
16 sort=true;
17 while(sort){
18 sort=false;
19 for(obd.i=0,obd.i<#wi_stack.rid1-1,obd.i++){
20 if(wi_stack.rid1[obd.i].(ord_arg)>

252

CHAPTER 3. Workflow Patterns for SOC

21 wi_stack.rid1[obd.i+1].(ord_arg)){
22 temp<<wi_stack.rid1[obd.i];
23 wi_stack.rid1[obd.i]<<wi_stack.rid1[obd.i+1];
24 wi_stack.rid1[obd.i+1]<<temp;
25 sort=true;
26 ordered=true
27 }}};
28 if(ordered){
29 println@Console("RID1 wi list reordered by "+ord_arg)()
30 }
31 }
32
33 define print_rid1_wi_stack{
34 println@Console("---=== RID1 WI STACK ===---")();
35 for(pi=0,pi<#wi_stack.rid1,pi++){
36 println@Console("id:"+wi_stack.rid1[pi].id+
37 " comp_time: "+(wi_stack.rid1[pi].comp_time)+"ms")()
38 };
39 println@Console("---=====================---")()
40
41 }
42
43 define create_and_allocate_wi{
44 random@Math()(wi.comp_time);
45 wi.comp_time=int(2000.0*wi.comp_time);
46 getCurrentTimeMillis@Time()(wi.id);
47 wi_stack.rid1[#wi_stack.rid1]<<wi;
48 println@Console("Created wi "+wi.id+
49 " with computation time: "+(wi.comp_time/1000)+"s")()
50 }
51
52 main{
53 {while(true){
54 synchronized(wi_lock){
55 create_and_allocate_wi};
56 sleep@Time(800)()
57 }}|{
58 while(true){
59 // WORK ITEM REQUEST
60 if(#wi_stack.rid1>0){
61 if(#wi_stack.rid1>5 && starv<10){
62 ord_arg="comp_time";
63 starv++
64 }
65 else{
66 ord_arg="id"
67 };
68 order_wi;
69 print_rid1_wi_stack;
70 synchronized(wi_lock){
71 undef(rid1.wi);
72 rid1.wi<<wi_stack.rid1[0];
73 println@Console("RID1 processes wi "+

253

CHAPTER 3. Workflow Patterns for SOC

74 rid1.wi.id)();
75 pop_rid1;
76 starv=0
77 };
78 sleep@Time(rid1.wi.comp_time)()
79 }}}
80 }

254

CHAPTER 3. Workflow Patterns for SOC

3.4.6.6 Selection Autonomy

The ability for resources to select a work item for execution based on its charac-
teristics and their own preferences.

Motivation

The ability for a resource to select the work item that they will commence next
is a key aspect of the “heads up” approach to workflow execution. It aims to
empower resources and let them have the flexibility to prioritize and organize
their own individual work sequence.

JOLIE Implementation

This pattern is a common feature and it typically manifests itself in one of two
forms:

• a resource is able to execute multiple work items simultaneously and thus
can initiate additional work items of their choice at any time;

• resources are limited to executing one work item at a time, in which case they
can only commence a new work item when the previous one is complete,
although they can choose which work item they will commence next.

Where a system implements "heads down" processing, it is common for the Selec-
tion Autonomy pattern to be disabled and for the system to determine which work
item a resource will execute next.

The JOLIE code example provided for this pattern can be based upon the one
given for the System-Determined Work Queue Content pattern [3.4.6.4], where in
this case three resources can pick their preferred work items (sequentially), each
of them applying different policies: RID1 chooses randomly among the whole list
of work items, while RID2 and RID3 implement a deterministic behavior, RID2 al-
ways choosing the last (computationally longest) work item and RID3 that always
chooses the first (computationally shortest) work item of the list.

JOLIE code example

255

CHAPTER 3. Workflow Patterns for SOC

Listing 73: Selection Autonomy code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define pop_wi{
6 if(#wi_stack>0){
7 for(pop.i=pop_wi_n,pop.i<(#wi_stack-1),pop.i++){
8 wi_stack[pop.i]<<wi_stack[(pop.i+1)]
9 };

10 undef(wi_stack[#wi_stack-1])
11 }}
12
13 define order_wi{
14 sort=true;
15 while(sort){
16 sort=false;
17 for(obd.i=0,obd.i<#wi_stack-1,obd.i++){
18 if(wi_stack[obd.i].comp_time>
19 wi_stack[obd.i+1].comp_time){
20 temp<<wi_stack[obd.i];
21 wi_stack[obd.i]<<wi_stack[obd.i+1];
22 wi_stack[obd.i+1]<<temp;
23 sort=true
24 }}}
25 }
26
27 define print_wi_stack{
28 println@Console("---=== WI STACK ===---")();
29 for(pi=0,pi<#wi_stack,pi++){
30 println@Console("id:"+wi_stack[pi].id+
31 " comp_time: "+(wi_stack[pi].comp_time)+"ms")()
32 };
33 println@Console("---================---")()
34
35 }
36
37 define create_and_allocate_wi{
38 random@Math()(wi.comp_time);
39 wi.comp_time=int(3000.0*wi.comp_time);
40 getCurrentTimeMillis@Time()(wi.id);
41 wi_stack[#wi_stack]<<wi;
42 println@Console("Created wi "+wi.id+
43 " with computation time: "+wi.comp_time+"ms")()
44 }
45
46 main{
47 {while(true){
48 synchronized(wi_lock){
49 create_and_allocate_wi;
50 order_wi;

256

CHAPTER 3. Workflow Patterns for SOC

51 print_wi_stack
52 };
53 sleep@Time(500)()
54 }}|{
55 while(true){
56 synchronized(wi_lock){
57 if(#wi_stack>0){
58 random@Math()(wid);
59 wid=int(wid*#wi_stack);
60 println@Console("RID1 has taken the wi "+
61 wi_stack[wid].id)();
62 rid1.comp_time=wi_stack[wid].comp_time;
63 pop_wi_n=wid;
64 pop_wi
65 }};
66 sleep@Time(rid1.comp_time)()
67 }}|{
68 while(true){
69 synchronized(wi_lock){
70 if(#wi_stack>0){
71 println@Console("RID2 has taken the wi "+
72 wi_stack[#wi_stack-1].id)();
73 rid2.comp_time=wi_stack[#wi_stack-1].comp_time;
74 undef(wi_stack[#wi_stack-1])
75 }};
76 sleep@Time(rid2.comp_time)()
77 }}|{
78 while(true){
79 synchronized(wi_lock){
80 if(#wi_stack>0){
81 println@Console("RID3 has taken the wi "+
82 wi_stack[0].id)();
83 rid3.comp_time=wi_stack[0].comp_time;
84 pop_wi_n=0;
85 pop_wi
86 }};
87 sleep@Time(rid3.comp_time)()
88 }}
89 }

257

CHAPTER 3. Workflow Patterns for SOC

3.4.7 Detour Patterns

Detour Patterns refer to situations where work item distributions that have been
made for resources are interrupted either by the system or at the instigation of the
resource.

As a consequence of this event, the normal sequence of state transitions for a work
item is varied. The range of possible scenarios for detour patterns are illustrated
in Figure 3.48

Figure 3.48: Detour Patterns

There are a number of possible impacts on a work item, depending on its cur-
rent state of progression and whether the detour was initiated by the resource
with which the work item was associated or by the system. A brief definition of
these patterns has been given during the analysis of the possible user privileges
on tasks, in the Authorization pattern [3.4.4.4] description.

3.4.7.1 Delegation

The ability for a resource to allocate a not-started work item previously allocated
to it (but not yet commenced) to another resource.

Motivation

Delegation provides a resource with a means of re-routing work items that it is
unable to execute. This may be because the resource is going to be unavailable or
because it does not wish to take on any more work.

258

CHAPTER 3. Workflow Patterns for SOC

JOLIE Implementation

Delegation is usually initiated by a resource via their work list handler. It removes
a work item that is allocated to them (but not yet commenced) and inserts it into
the work list of another nominated resource. It is illustrated by the R:delegate
transition in Figure 3.48.

An offering achieves full support if it satisfies the description for the pattern.

The JOLIE implementation of this pattern has been already used in other patterns
implementations, e.g. the Distribution by Offer - Single Resource pattern [3.4.5.1]
where a work item is offered to a specific resource in a non-binding basis, such
that the interested resource can choose either to process the offered work item or
to offer it to another resource, by adding it to its work items list.

For the sake of brevity, snippet of code provided as it follows refers only to the
implementation of the Delegation pattern present in the Distribution by Offer - Single
Resource code example. In this particular example the resource RID1 can choose
(on random basis) whether to process a work item offered to it or to delegate it to
the resource RID2 .

JOLIE code example

Listing 74: Delegation code (snippet) example

1 ...
2 if(#wi_stack.rid1>0){
3 random@Math()(rid1.deleg);
4 rid1.deleg=int(rid1.deleg*2);
5 if(rid1.deleg){
6 synchronized(wi_lock){
7 wi_stack.rid2[#wi_stack.rid2]=wi_stack.rid1[0];
8 println@Console("RID1 offered the wi "+wi_stack.rid1[0]+
9 " to RID2")();

10 sleep@Time(500)()
11 }
12 ...

259

CHAPTER 3. Workflow Patterns for SOC

3.4.7.2 Escalation

The ability of a system to distribute a work item to a resource or group of resources
other than those it has previously been distributed to in an attempt to expedite the
completion of the work item.

Motivation

Escalation provides the ability for a system to intervene in the conduct of a work
item and assign it to alternative resources. Generally this occurs as a result of a
specified deadline being exceeded, but it may also be a consequence of preemptive
load balancing of work allocations undertaken by the system or manually by the
process administrator in an attempt to optimize workflow throughput.

JOLIE Implementation

There are various ways in which a work item may be escalated depending on its
current state of progression and the approach that is taken to identifying a suitable
party to which it should be reassigned.

The possible range of alternatives are illustrated by the S:escalate_(argument) tran-
sitions in Figure 3.48.

An escalation action is triggered by the system or process administrator and re-
sults in the work item being removed from the work lists of all resources to which
it was previously offered or allocated and added to the work lists of the users to
which it is being reassigned in either an offered or allocated state.

An offering achieves full support if it satisfies the description for the pattern.

The JOLIE implementation of this pattern is provided by means of a slight modi-
fication of the example given for the Selection Autonomy pattern [3.4.6.6] in which,
once the queue of work items assigned to RID1 and RID2 becomes longer than a a
guard value, the exceeding items in the queue are escalated (reassigned) into the
work items list of the resource RID3.

JOLIE code example

Listing 75: Escalation code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4

260

CHAPTER 3. Workflow Patterns for SOC

5 define pop_wi{
6 if(#wi_stack.main>0){
7 for(pop.i=pop_wi_n,pop.i<(#wi_stack.main-1),pop.i++){
8 wi_stack.main[pop.i]<<wi_stack.main[(pop.i+1)]
9 };

10 undef(wi_stack.main[#wi_stack.main-1])
11 }}
12
13 define pop_wi_rid3{
14 if(#wi_stack.rid3>0){
15 for(pop.i=0,pop.i<(#wi_stack.rid3-1),pop.i++){
16 wi_stack.rid3[pop.i]<<wi_stack.rid3[(pop.i+1)]
17 };
18 undef(wi_stack.rid3[#wi_stack.rid3-1])
19 }}
20
21 define order_wi{
22 sort=true;
23 while(sort){
24 sort=false;
25 for(obd.i=0,obd.i<#wi_stack.main-1,obd.i++){
26 if(wi_stack.main[obd.i].comp_time>
27 wi_stack.main[obd.i+1].comp_time){
28 temp<<wi_stack.main[obd.i];
29 wi_stack.main[obd.i]<<wi_stack.main[obd.i+1];
30 wi_stack.main[obd.i+1]<<temp;
31 sort=true
32 }}}
33 }
34
35
36 define print_wi_stack{
37 println@Console("---=== WI STACK ===---")();
38 for(pi=0,pi<#wi_stack.main,pi++){
39 println@Console("id:"+wi_stack.main[pi].id+
40 " comp_time: "+(wi_stack.main[pi].comp_time)+"ms")()
41 };
42 println@Console("---================---")()
43
44 }
45
46 define print_wi_stack_rid3{
47 println@Console("---=== RID3 WI STACK ===---")();
48 for(pi=0,pi<#wi_stack.rid3,pi++){
49 println@Console("id:"+wi_stack.rid3[pi].id+
50 " comp_time: "+(wi_stack.rid3[pi].comp_time)+"ms")()
51 };
52 println@Console("---================---")()
53
54 }
55
56 define escalate_to_rid3{
57 if(#wi_stack.rid3<#wi_stack.main){
58 wi_stack.rid3[#wi_stack.rid3]<<wi_stack.main[ei];
59 pop_wi_n=0;

261

CHAPTER 3. Workflow Patterns for SOC

60 pop_wi;
61 print_wi_stack_rid3
62 }
63 }
64
65 define create_and_allocate_wi{
66 random@Math()(wi.comp_time);
67 wi.comp_time=int(3000.0*wi.comp_time);
68 getCurrentTimeMillis@Time()(wi.id);
69 wi_stack.main[#wi_stack.main]<<wi;
70 println@Console("Created wi "+wi.id+
71 " with computation time: "+wi.comp_time+"ms")()
72 }
73
74 main{
75 {while(true){
76 synchronized(wi_lock){
77 create_and_allocate_wi;
78 order_wi;
79 if(#wi_stack.main>5){
80 escalate_to_rid3
81 };
82 print_wi_stack
83 };
84 sleep@Time(500)()
85 }}|{
86 while(true){
87 synchronized(wi_lock){
88 if(#wi_stack.main>0){
89 random@Math()(wid);
90 wid=int(wid*#wi_stack.main);
91 println@Console("RID1 has taken the wi "+
92 wi_stack.main[wid].id)();
93 rid1.comp_time=wi_stack.main[wid].comp_time;
94 pop_wi_n=wid;
95 pop_wi
96 }};
97 sleep@Time(rid1.comp_time)()
98 }}|{
99 while(true){

100 synchronized(wi_lock){
101 if(#wi_stack.main>0){
102 println@Console("RID2 has taken the wi "+
103 wi_stack.main[#wi_stack.main-1].id)();
104 rid2.comp_time=wi_stack.main[#wi_stack.main-1].comp_time;
105 undef(wi_stack.main[#wi_stack.main-1])
106 }};
107 sleep@Time(rid2.comp_time)()
108 }}|{
109 while(true){
110 synchronized(wi_lock){
111 if(#wi_stack.rid3>0){

262

CHAPTER 3. Workflow Patterns for SOC

112 println@Console("RID3 has taken the wi "+
113 wi_stack.rid3[0].id)();
114 rid3.comp_time=wi_stack.rid3[0].comp_time;
115 pop_wi_rid3
116 }};
117 sleep@Time(rid3.comp_time)()
118 }}
119 }

263

CHAPTER 3. Workflow Patterns for SOC

3.4.7.3 Deallocation

The ability of a resource (or group of resources) to relinquish a work item which
is allocated to it (but not yet commenced) and make it available for distribution to
another resource or group of resources.

Motivation

Deallocation provides resources with a means of relinquishing work items allo-
cated to them and making them available for re-distribution to other resources.
This may occur for a variety of reasons including insufficient progress, availabil-
ity of a better resource or a general need to unload work from a resource.

JOLIE Implementation

There are two possible variations to Deallocation either the work item can be of-
fered to a single resource or to multiple resources.

An offering achieves full support if it satisfies the description for the pattern.

The JOLIE code example provided for previous patterns, e.g. Escalation [3.4.7.2],
necessitated the implicit implementation of the Deallocation pattern since, while
work items are escalated from a list to another, each of these work items is deal-
located from the main list (the one shared between resources RID1 and RID2) and
consequently reallocated (see further) in the RID3 queue.

For the sake of brevity, only the snippet of code containing the operation of deal-
location is reported as it follows.

JOLIE code example

Listing 76: Deallocation code (snippet) example

1 ...
2 if(#wi_stack.rid3<#wi_stack.main){
3 wi_stack.rid3[#wi_stack.rid3]<<wi_stack.main[ei];
4 pop_wi_n=0;
5 pop_wi;
6 print_wi_stack_rid3
7 }
8 ...

264

CHAPTER 3. Workflow Patterns for SOC

3.4.7.4 Stateful Reallocation

The ability of a resource to allocate a work item that they are currently executing
to another resource without loss of state data.

Motivation

Stateful Reallocation provides a resource with the ability to offload currently exe-
cuting work items to other resources whilst maintaining the current state of the
work item and the results of work undertaken on it to date. In the main, this
focuses on the ability to retain the current values of all data elements associated
with the work item. It is motivated by the need for a resource to pass on a work
item to another resource without losing the benefit of any work that has already
been undertaken in regard to it.

JOLIE Implementation

Planned reallocation provides a resource with the ability to offload both pend-
ing and currently executing work items to other resources whilst maintaining the
current state of the work item and the results of work undertaken on it to date.

In the main, this centers on the ability to retain the current values of all data ele-
ments associated with the work item. This pattern corresponds to the R:reallocation
with state arc in Figure 3.48.

It is interesting to note the similarities between this pattern and the Delegation
pattern [3.4.7.1]. Both patterns result in a work item being reassigned to another
resource. The main difference is that Delegation can only occur for a work item
that has not yet commenced execution where as this pattern applies to work items
that are currently being executed.

An offering achieves full support if it satisfies the description for the pattern.

The JOLIE code example given for the implementation of this pattern is based
on a “parallel subordinated collaboration” (delegation/escalation) between two
resources RID1 and RID2.

Let’s see RID1 like an higher level employee (senior) which has to undertake sev-
eral work items, whose completion requires passing (and working on) three steps.
The first step is a general overview of the work that must be done on that work
item, and thus only RID1 can undertake it, because of its leading position.

After RID1 has done with the first step of a work item, it can choose either to un-
dertake each of the remaining steps of that work item, or to reallocate it to RID2

265

CHAPTER 3. Workflow Patterns for SOC

(one of its subordinates) which can complete the work on that item from the step
RID1 left (reallocated) it; this feature makes sure that the event of reallocating the
work item preserves its state. While RID2 is completing the work on the real-
located item, RID1 can continue working on other work items, still been able to
reallocate new work items to RID2, after the completion of the first step of that
work item.

JOLIE code example

Listing 77: Stateful Reallocation code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define pop_wi_rid1{
6 if(#wi_stack>0){
7 for(pop.i=0,pop.i<(#wi_stack.rid1-1),pop.i++){
8 wi_stack.rid1[pop.i]<<wi_stack.rid1[(pop.i+1)]
9 };

10 undef(wi_stack.rid1[#wi_stack.rid1-1])
11 }}
12
13 define pop_wi_rid2{
14 if(#wi_stack>0){
15 for(pop.i=0,pop.i<(#wi_stack.rid2-1),pop.i++){
16 wi_stack.rid2[pop.i]<<wi_stack.rid2[(pop.i+1)]
17 };
18 undef(wi_stack.rid2[#wi_stack.rid2-1])
19 }}
20
21 define print_wi_stack{
22 for(rids=1,rids<3,rids++){
23 println@Console("---=== WI STACK RID"+rids+"===---")();
24 for(pi=0,pi<#wi_stack.("rid"+rids),pi++){
25 println@Console("id: "+wi_stack.("rid"+rids)[pi].id)();
26 for(ri=1,ri<4,ri++){
27 print@Console("\tstep"+ri+" comp_time: "+
28 wi_stack.("rid"+rids)[pi].("step"+ri).comp_time
29 +"ms")();
30 if(wi_stack.("rid"+rids)[pi].("step"+ri).done){
31 println@Console(", done")()
32 }else{println@Console()()}
33 }
34 };
35 println@Console("---================---")()
36 }
37 }
38
39 define create_and_offer_wi{
40 getCurrentTimeMillis@Time()(wi.id);

266

CHAPTER 3. Workflow Patterns for SOC

41 random@Math()(wi.step1.comp_time);
42 wi.step1.comp_time=int(wi.step1.comp_time*500);
43 random@Math()(wi.step2.comp_time);
44 wi.step2.comp_time=int(wi.step2.comp_time*500);
45 random@Math()(wi.step3.comp_time);
46 wi.step3.comp_time=int(wi.step3.comp_time*500);
47 wi_stack.rid1[#wi_stack.rid1]<<wi;
48 println@Console("Created wi "+wi.id)()
49 }
50
51 define stateful_reallocate_to_rid2 {
52 if(#wi_stack.rid1>3){
53 println@Console("Reallocated to RID2 wi: "+
54 rid1.wi.id)();
55 synchronized(wi2_lock){wi_stack.rid2<<rid1.wi};
56 rid1.sr=true
57 }
58 }
59
60 main{
61 {while(true){
62 synchronized(wi_lock){
63 create_and_offer_wi;
64 synchronized(wi2_lock){
65 print_wi_stack
66 }
67 };
68 sleep@Time(500)()
69 }}|{
70 while(true){
71 rid1.sr=false;
72 synchronized(wi_lock){
73 if(#wi_stack.rid1>0){rid1.wi->wi_stack.rid1[0]}};
74 if(is_defined(rid1.wi)){
75 sleep@Time(rid1.wi.step1.comp_time)();
76 rid1.wi.step1.done=true;
77 for(rid1.step=2,rid1.step<4 && !rid1.sr,rid1.step++){
78 synchronized(wi_lock){stateful_reallocate_to_rid2};
79 if(!rid1.sr){
80 sleep@Time(rid1.wi.("step"+rid1.step).comp_time)();
81 rid1.wi.("step"+rid1.step).done=true
82 }};
83 println@Console("RID1 finished processing wi: "+
84 rid1.wi.id)();
85 pop_wi_rid1;
86 undef(rid1.wi)
87 }}}|{
88 while(true){
89 synchronized(wi2_lock){
90 if(#wi_stack.rid2>0){rid2.wi->wi_stack.rid2[0]}};
91 if(is_defined(rid2.wi)){
92 for(rid2.step=2,rid2.step<4,rid2.step++){

267

CHAPTER 3. Workflow Patterns for SOC

93 if(!rid2.wi.("step"+rid2.step).done){
94 sleep@Time(rid2.wi.("step"+
95 rid2.step).comp_time)();
96 rid2.wi.("step"+rid2.step).done=true
97 }};
98 println@Console("RID2 finished processing wi: "+
99 rid2.wi.id)();

100 pop_wi_rid2;
101 undef(rid2.wi)
102 }}}
103 }

268

CHAPTER 3. Workflow Patterns for SOC

3.4.7.5 Stateless Reallocation

The ability for a resource to reallocate a work item that it is currently executing to
another resource without retention of state.

Motivation

Stateless Reallocation provides a lightweight means of reallocating a work item to
another resource without needing to consider the complexities of state preserva-
tion. In effect, when this type of reallocation occurs all state information associ-
ated with the work item (and hence any record of effective progress) is lost and
the work item is basically restarted by the resource to which it is reassigned.

JOLIE Implementation

This pattern is illustrated by the R:reallocation_no_state arc in Figure 3.48. It has
similarities in terms of outcome with Delegation [3.4.7.1] and Escalation [3.4.7.2]
patterns in that the work item is restarted except that in this scenario, the work
item has already been partially executed prior to the restart. This pattern can
only be implemented for work items that are capable of being redone without any
consequences relating to the previous execution instance(s).

An offering achieves full support if it satisfies the description for the pattern.

Although easier examples of possible implementations in JOLIE of the Stateless
Reallocation patter can be given, it’s worth considering the relation between this
pattern and it’s stateful correspondent [3.4.7.4].

As stated previously, this pattern can be implemented for work items that are
capable of being redone without any consequences. Thus, w.r.t. the kind of work
items defined in Stateful Reallocation example, the Stateless implementation of the
same context example, consists in modifying the reallocating operation, which,
prior to reallocate the work item, resets all of the steps done by the resource.

Since the most part of the code example of this implementation is shared with the
one given for the Stateful Reallocation example, is made reference to it, stateless
reallocation operation apart, whose implementation is reported as it follows.

JOLIE code example

269

CHAPTER 3. Workflow Patterns for SOC

Listing 78: System-Determined Work Queue Content code example

1 define stateless_reallocate_to_rid2 {
2 if(#wi_stack.rid1>3){
3 println@Console("Reallocated to RID2 wi: "+
4 rid1.wi.id)();
5 rid1.wi.step1.done=false;
6 rid1.wi.step2.done=false;
7 rid1.wi.step3.done=false;
8 synchronized(wi2_lock){wi_stack.rid2<<rid1.wi};
9 rid1.sr=true

10 }
11 }

270

CHAPTER 3. Workflow Patterns for SOC

3.4.7.6 Suspension-Resumption

The ability for a resource to suspend and resume execution of a work item.

Motivation

In some situations, during the course of executing a work item, a resource reaches
a point where it is not possible to progress it any further. Suspension provides the
ability for the resource to signal a temporary halt to the system of any work on the
particular work item and switch its attention to another.

JOLIE Implementation

Suspension and Resumption actions are generally initiated by a resource from their
work list handler. A suspended work item remains in the resource’s work list but
its state is generally notated as suspended. It is able to be restarted at some future
time.

This pattern is illustrated by the R:suspend and R:resume arcs in Figure 3.48.

The use of JOLIE synchronization construct is very suitable for the implementation
of this pattern, since, “tokenizing” steps execution, the system can “stop” the re-
source while working on a work item completion, simply by “keeping” the token
of the execution synchronization for a certain time (or even waiting for an external
input and the like), after which the token is released and the resource can resume
the execution.

An offering achieves full support if it satisfies the description for the pattern.

Using the JOLIE synchronization construct concerns work item state consistency
too, because suspending a running execution might lead to data loss or inconsis-
tency. Contrariwise, if the execution of a step is completing and the synchronization
construct is used to “atomize” the step sequence, the system has to wait for that
step to complete its execution, which at last will release the synchronization to-
ken. Then the system can take that token and keep it for the whole time of the
execution suspension.

JOLIE code example

271

CHAPTER 3. Workflow Patterns for SOC

Listing 79: Suspension-Resumption code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define pop_wi{
6 if(#wi_stack>0){
7 for(pop.i=0,pop.i<(#wi_stack-1),pop.i++){
8 wi_stack[pop.i]<<wi_stack[(pop.i+1)]
9 };

10 undef(wi_stack[#wi_stack-1])
11 }}
12
13 define print_wi_stack{
14 println@Console("---=== WI STACK ===---")();
15 for(pi=0,pi<#wi_stack,pi++){
16 println@Console("id: "+wi_stack[pi].id)();
17 for(ri=0,ri<5,ri++){
18 print@Console("\tstep "+ri)();
19 if(wi_stack[pi].("step"+ri).done){
20 println@Console(", done")()
21 }else{println@Console()()}
22 }
23 };
24 println@Console("---================---")()
25 }
26
27 define create_and_offer_wi{
28 getCurrentTimeMillis@Time()(wi.id);
29 wi_stack[#wi_stack]<<wi;
30 println@Console("Created wi "+wi.id)()
31 }
32
33 main{
34 {while(true){
35 synchronized(wi_lock){
36 synchronized(exec_lock){
37 create_and_offer_wi;
38 print_wi_stack
39 }
40 };
41 sleep@Time(2500)()
42 }}|{while(true){
43 sleep@Time(7000)();
44 synchronized(exec_lock){
45 println@Console("System suspends execution for 3s.")();
46 sleep@Time(3000)();
47 println@Console("System resumes execution.")()
48 }
49 }}|{

272

CHAPTER 3. Workflow Patterns for SOC

50 while(true){
51 synchronized(wi_lock){
52 if(#wi_stack>0){rid1.wi->wi_stack[0]}};
53 if(is_defined(rid1.wi)){
54 for(step=0,step<5,step++){
55 synchronized(exec_lock){
56 sleep@Time(500)();
57 rid1.wi.("step"+step).done=true;
58 println@Console("RID1 completed step "+step+
59 " of wi: "+rid1.wi.id)()
60 }
61 };
62 synchronized(exec_lock){
63 println@Console("RID1 finished processing wi: "+
64 rid1.wi.id)();
65 pop_wi;
66 undef(rid1.wi)
67 }
68 }}}
69 }

273

CHAPTER 3. Workflow Patterns for SOC

3.4.7.7 Skip

The ability for a resource to skip a work item allocated to it and mark the work
item as complete.

Motivation

The ability to skip a work item reflects the common approach to expediting pro-
cess instances by simply ignoring non-critical activities and assuming them to
be complete such that work items associated with subsequent tasks can be com-
menced.

JOLIE Implementation

The Skip pattern is generally implemented by providing a means for a resource
to advance the state of a work item from allocated to completed. This pattern is
illustrated by the R:skip arc in Figure 3.4.7.7.

An offering achieves full support if it satisfies the description for the pattern.

The JOLIE code example provided for this pattern is based an a skipping policy
set upon the work item queue size. If too many work items are queued and wait
for execution, the two last steps of completion are marked as “skip-able”, skipped
and flagged as completed. Thus, skipping some of the last steps, the resource can
shorten the queue of work items waiting for execution.

JOLIE code example

Listing 80: Skip code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define pop_wi{
6 if(#wi_stack>0){
7 for(pop.i=0,pop.i<(#wi_stack-1),pop.i++){
8 undef(wi_stack[pop.i]);
9 wi_stack[pop.i]<<wi_stack[(pop.i+1)]

10 };
11 undef(wi_stack[#wi_stack-1])
12 }}
13
14 define print_wi_stack{
15 println@Console("---=== WI STACK ===---")();
16 for(pi=0,pi<#wi_stack,pi++){
17 println@Console("id: "+wi_stack[pi].id)();

274

CHAPTER 3. Workflow Patterns for SOC

18 for(ri=0,ri<5,ri++){
19 print@Console("\tstep "+ri)();
20 if(wi_stack[pi].("step"+ri).done){
21 println@Console(", done")()
22 }else{println@Console()()}
23 }
24 };
25 println@Console("---================---")()
26 }
27
28 define create_and_offer_wi{
29 getCurrentTimeMillis@Time()(wi.id);
30 wi_stack[#wi_stack]<<wi;
31 println@Console("Created wi "+wi.id)()
32 }
33
34 main{
35 {while(true){
36 synchronized(wi_lock){
37 create_and_offer_wi;
38 print_wi_stack
39 };
40 sleep@Time(1500)()
41 }}|{
42 while(true){
43 synchronized(wi_lock){
44 if(#wi_stack>0){rid1.wi->wi_stack[0]}};
45 if(is_defined(rid1.wi)){
46 for(step=0,step<5,step++){
47 if(step<3 || #wi_stack<2){
48 sleep@Time(500)()
49 }else{
50 synchronized(wi_lock){
51 println@Console(
52 "Too many WIs, skipping step "+ step)()}
53 };
54 synchronized(wi_lock){
55 rid1.wi.("step"+step).done=true;
56 println@Console("RID1 completed step "+step+
57 " of wi: "+rid1.wi.id)()
58 }
59 };
60 synchronized(wi_lock){
61 println@Console("RID1 finished processing wi: "+
62 rid1.wi.id)();
63 pop_wi;
64 undef(rid1.wi)
65 }}
66 }}
67 }

275

CHAPTER 3. Workflow Patterns for SOC

3.4.7.8 Redo

The ability for a resource to redo a work item that has previously been completed
in a case. Any subsequent work items (i.e. work items that correspond to subse-
quent tasks in the process) must also be repeated.

Motivation

The Redo pattern allows a resource to repeat a work item that has previously been
completed. This may be based on a decision that the work item was not under-
taken properly or because more information has become available that alters the
potential outcome of the work item.

JOLIE Implementation

The Redo pattern effectively provides a means of "winding back" the progress of
a case to an earlier task. Some difficulties are associated with doing this, in par-
ticular where a process instance involves multiple users, however for situations
where all of the work items in a case are allocated to the same user (e.g. in a case
handling system), the problem is more tractable.

One consideration in using this pattern is that, whilst it is possible to regress the
execution state in a case, it is generally not possible to wind back the state of data
elements, hence any necessary reversion of data values needs to be managed at
the level of specific applications. This pattern is illustrated by the R:redo arc in
Figure 3.48.

There is one context condition associated with this pattern: any shared data ele-
ments (i.e. block, scope, case data etc.) cannot be destroyed during the execution
of a case.

Full support for this pattern is demonstrated by any offering which provides a
construct which satisfies the description when used in a context satisfying the
context assumption.

The simple, but yet meaningful, Redo pattern realization in JOLIE provided as it
follows, takes into account the case of an external request, simulated by a waiting
operation which fires a Redo instruction each 3,5 seconds, that makes the step of
execution wind back to the desired (random) index and, updates (re-does) the
data of each work item until the end of the queue.

JOLIE code example

276

CHAPTER 3. Workflow Patterns for SOC

Listing 81: Redo code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define print_wi_stack{
6 println@Console("---=== WI STACK ===---")();
7 for(pi=0,pi<#wi_stack,pi++){
8 print@Console("id: "+wi_stack[pi].id)();
9 if(wi_stack[pi].done){

10 println@Console(", done at "+wi_stack[pi].step_comp+
11 " step")()
12 }
13 else{println@Console("")()}
14 };
15 println@Console("---================---")()
16 }
17
18 define create_and_offer_wi{
19 getCurrentTimeMillis@Time()(wi.id);
20 wi_stack[#wi_stack]<<wi;
21 println@Console("Created wi "+wi.id)()
22 }
23
24 main{
25 {while(true){
26 synchronized(wi_lock){
27 create_and_offer_wi;
28 print_wi_stack
29 };
30 sleep@Time(1500)()
31 }}|{while(true){
32 sleep@Time(3500)();
33 random@Math()(redo_from_step);
34 redo_from_step=int(redo_from_step*#wi_stack);
35 synchronized(wi_lock){
36 rid1.redo_step=redo_from_step;
37 println@Console("Redo from step "+redo_from_step)()
38 }
39 }}|{
40 rid1.step=0;
41 rid1.redo_step=0;
42 rid1.wi->wi_stack[rid1.redo_step];
43 while(true){
44 synchronized(wi_lock){
45 if(#wi_stack>rid1.redo_step){
46 sleep@Time(500)();
47 rid1.wi.done=true;
48 rid1.wi.step_comp=rid1.step;

277

CHAPTER 3. Workflow Patterns for SOC

49 println@Console("RID1 completed wi: "+
50 rid1.wi.id+" at step "+rid1.wi.step_comp)();
51 rid1.step++;
52 rid1.redo_step++
53 }
54 }}}
55 }

278

CHAPTER 3. Workflow Patterns for SOC

3.4.7.9 Pre-Do

The ability for a resource to execute a work item ahead of the time that it has been
offered or allocated to resources working on a given case. Only work items that
do not depend on data elements from preceding work items can be "pre-done".

Motivation

The Pre-Do pattern provides resources with the ability to complete work items in
a case ahead of the time that they are required to be executed i.e. prior to them
being offered or allocated to resources working on the case. The motivation for
this being that overall throughput of the case may be expedited by completing
work items as soon as possible regardless of the order in which they appear in the
actual process specification.

JOLIE Implementation

The Pre-Do pattern effectively provides a means of completing the work items in
a case in a user-selected sequence. There are difficulties associated with doing this
where later work items rely on data elements from earlier work items.

However for situations where all of the work items in a case are allocated to the
same user and there is less data coupling or the implications of shared data can
be managed by resources (e.g. in a case handling system), the problem is more
tractable. This pattern is not illustrated in Figure 3.48.

There is one context condition associated with this pattern: any shared data ele-
ments (i.e. block, scope, case data etc.) must be created at the beginning of the
case.

Full support for this pattern is demonstrated by any offering which provides a
construct which satisfies the description when used in a context satisfying the
context assumption.

The JOLIE code example for this pattern brings the situation in which a resource
(RID1) is composed by two “parts” that run in parallel:

• one, that’s the more common resource implementation as seen before, that
picks the first available (not taken, nor done) work item and executes it,
checking if its dependencies are met;

• the other, which implements the Pre-do behavior, picks the first available (not
taken, nor done) work item that has no dependencies and executes it.

279

CHAPTER 3. Workflow Patterns for SOC

JOLIE code example

Listing 82: Pre-Do code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define print_wi_stack{
6 println@Console("---=== WI STACK ===---")();
7 for(pi=0,pi<#wi_stack,pi++){
8 print@Console("id: "+wi_stack[pi].id)();
9 if(is_defined(wi_stack[pi].depends)){

10 print@Console(", depends from wi: "+
11 wi_stack[pi].depends)()
12 };
13 if(wi_stack[pi].done){
14 println@Console(", done")()
15 }
16 else{println@Console("")()}
17 };
18 println@Console("---================---")()
19 }
20
21 init{
22 getCurrentTimeMillis@Time()(wi.id);
23 wi_stack[#wi_stack]<<wi
24 }
25
26 define create_and_offer_wi{
27 undef(wi);
28 getCurrentTimeMillis@Time()(wi.id);
29 random@Math()(pd);
30 pd=int(pd*2);
31 if(pd){
32 random@Math()(wi.depends);
33 wi.depends=int(wi.depends*#wi_stack)
34 };
35 wi_stack[#wi_stack]<<wi;
36 print@Console("Created wi "+wi.id)();
37 if(pre_do){println@Console(", depending on: "+wi.depends)()}
38 else{println@Console("")()}
39 }
40
41 main{
42 {while(true){
43 synchronized(wi_lock){
44 create_and_offer_wi;
45 print_wi_stack
46 };
47 sleep@Time(1000)()
48 }}|{
49 while(true){

280

CHAPTER 3. Workflow Patterns for SOC

50 //DO
51 synchronized(wi_lock){
52 rid1.wi->wi_stack[do_i];
53 rid1.found=false;
54 if(#wi_stack>0){
55 for(do_i=0,do_i<#wi_stack && !rid1.found,do_i++){
56 if(!rid1.wi.done && !rid1.wi.taken){
57 if(!is_defined(rid1.wi.depends) ||
58 wi_stack[rid1.wi.depends].done){
59 rid1.found=true;
60 rid1.wi.taken=true;
61 do_i--
62 }}}}};
63 sleep@Time(1500)();
64 synchronized(wi_lock){
65 if(rid1.found){
66 rid1.wi.done=true;
67 println@Console("RID1 completed wi: "+
68 rid1.wi.id)();
69 undef(rid1.wi)
70 }
71 }
72 }|
73 while(true){
74 //PRE-DO
75 synchronized(wi_lock){
76 rid1.pre_do.wi->wi_stack[pre_do_i];
77 rid1.pre_do.found=false;
78 if(#wi_stack>0){
79 for(pre_do_i=0,pre_do_i<#wi_stack &&
80 !rid1.pre_do.found ,pre_do_i++){
81 if(!rid1.pre_do.wi.done &&
82 !rid1.pre_do.wi.taken){
83 if(!is_defined(rid1.pre_do.wi.depends)){
84 rid1.pre_do.found=true;
85 rid1.pre_do.wi.taken=true;
86 pre_do_i--
87 }}}}};
88 sleep@Time(1000)();
89 synchronized(wi_lock){
90 if(rid1.pre_do.found){
91 rid1.pre_do.wi.done=true;
92 println@Console("RID1 pre-done wi: "+
93 rid1.pre_do.wi.id)()
94 }
95 }
96 }
97 }
98 }

281

CHAPTER 3. Workflow Patterns for SOC

3.4.8 Auto-Start Patterns

Auto-start patterns relate to situations where execution of work items is triggered
by specific events in the lifecycle of the work item or the related process definition.
Such events may include the creation or allocation of the work item, completion of
another instance of the same work item or a work item that immediately precedes
the one in question.

The state transitions associated with these patterns are illustrated by bold arcs in
Figure 3.49.

Figure 3.49: Auto-start Patterns

3.4.8.1 Commencement on Creation

The ability for a resource to commence execution on a work item as soon as it is
created.

Motivation

The ability to commence execution on a work item as soon as it is created offers
a means of expediting the overall throughput of a case, as it removes the delays
associated with allocating the work item to a suitable resource and also the time
that the work item remains in the resource’s work queue, prior to it being started.

JOLIE Implementation

Where a task is specified as being subject to Commencement on Creation, when the
task is initiated in a process instance, the associated work item is created, allo-

282

CHAPTER 3. Workflow Patterns for SOC

cated and commenced simultaneously. This pattern is illustrated by the transition
S:start_on_create in Figure 3.49.

The JOLIE implementation of this pattern is the same discussed for the Direct Dis-
tribution pattern [3.4.4.1], in which the creation on the work item is followed di-
rectly by the execution of the resource which the work item is allocated to.

283

CHAPTER 3. Workflow Patterns for SOC

3.4.8.2 Commencement on Allocation

The ability to commence execution on a work item as soon as it is allocated to a
resource.

Motivation

Although combined creation, allocation and commencement of work items pro-
motes more efficient process throughput, it effectively requires "hard-coding" of
resource identities in order to manage work item allocation at creation time.

Commencing work items at the point of allocation does not require resource iden-
tity to be predetermined and offers a means of expediting throughput without
necessitating changes to the underlying process model.

JOLIE Implementation

Where a task is specified as being subject to Commencement on Allocation, the act
of allocating an associated work item in a process instance also results in it be-
ing commenced. In effect, it is put into the work list of the resource to which it
is allocated with a started status rather than an allocated status. This pattern is
illustrated by the transition S:start_on_create in Figure 3.49.

An offering achieves full support if it satisfies the description for the pattern.

The JOLIE implementation of this pattern uses the same structure discussed for
the implementation of the Recursion Pattern [3.2.8.3]. With this approach, every
time a new allocation is done, by the work item creator process, a new resource
branch is fired parallelly, thus guaranteeing the achievement of the behavior de-
scribed for the Commencement on Allocation pattern.

JOLIE code example

Listing 83: Commencement on Allocation code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 outputPort COA{
6 Location: "socket://localhost:8000"
7 Protocol: sodep
8 OneWay: rid,create
9 }

10
11 inputPort COA{

284

CHAPTER 3. Workflow Patterns for SOC

12 Location: "socket://localhost:8000"
13 Protocol: sodep
14 OneWay: rid,create
15 }
16
17 execution{concurrent}
18
19 define print_wi_stack{
20 println@Console("---=== WI STACK ===---")();
21 for(pi=0,pi<#wi_stack,pi++){
22 print@Console("id: "+wi_stack[pi].id)();
23 if(is_defined(wi_stack[pi].depends)){
24 print@Console(", depends from wi: "+
25 wi_stack[pi].depends)()
26 };
27 if(wi_stack[pi].done){
28 println@Console(", done")()
29 }
30 else{println@Console("")()}
31 };
32 println@Console("---================---")()
33 }
34
35 init{
36 wi_stack->global.wi_stack;
37 create@COA()
38 }
39
40 define create_and_offer_wi{
41 undef(wi);
42 getCurrentTimeMillis@Time()(wi.id);
43 wi_stack[#wi_stack]<<wi;
44 println@Console("Created wi "+wi.id)()
45 }
46
47 main{
48 [rid(wid)]{
49 sleep@Time(1000)();
50 wi_stack[wid].done=true;
51 println@Console("RID1 completed wi: "+
52 wi_stack[wid].id)()
53 }
54 [create()]{
55 {while(true){
56 random@Math()(new_wi);
57 new_wi=int(new_wi*10);
58 for(j=0,j<new_wi,j++){
59 create_and_offer_wi;
60 sleep@Time(500)()
61 };
62 print_wi_stack;
63 sleep@Time(1000)()
64 }}|{

285

CHAPTER 3. Workflow Patterns for SOC

65 while(true){
66 if(#wi_stack>0){
67 for(i=0,i<#wi_stack,i++){
68 if(!wi_stack[i].done && !wi_stack[i].started){
69 wi_stack[i].started=true;
70 rid@COA(i)
71 }}}}}}
72 }

286

CHAPTER 3. Workflow Patterns for SOC

3.4.8.3 Piled Execution

The ability to initiate the next instance of a task (perhaps in a different case) once
the previous one has completed, with all associated work items being allocated to
the same resource. The transition to Piled Execution mode is at the instigation of an
individual resource. Only one resource can be in Piled Execution mode for a given
task at any time.

Motivation

Piled Execution provides a means of optimizing task execution by pipelining in-
stances of the same task and allocating them to the same resource.

JOLIE Implementation

Piled Execution involves a resource undertaking work items corresponding to the
same task sequentially. These work items may be in different cases. Once a work
item is completed, if another work item corresponding to the same task is present
in the work queue, it is immediately started.

In effect, the resource attempts to work on piles of the same types of work items.
The aim with this approach to work distribution is to allocate similar work items
to the same resource, which aims to undertake them one after the other, thus gain-
ing from the benefit of exposure to the same task.

This pattern is illustrated by the transition R:piled_execution in Figure 3.49. It is
important to note that this transition is represented by a dashed line because it
jumps from one work item to another, i.e., it links the life-cycles of two different
work items in distinct cases.

To implement this pattern requires the work items to be allocated to the same
resource and the ability for the resource to undertake related work items on a
sequential basis, immediately commencing the next one when the previous one is
complete.

This is a relatively sophisticated requirement and none of the other offerings ex-
amined support it. It is included in this taxonomy as it constitutes a logical exten-
sion of the concepts that underpin the Commencement on Creation pattern [3.4.8.1]
enabling instances of the same task across multiple cases to be allocated to a single
resource.

An offering achieves full support if it satisfies the description for the pattern.

287

CHAPTER 3. Workflow Patterns for SOC

To implement this kind of pattern, keeping it’s realization as strict as possible
to the definition given above, the JOLIE code example provided as it follows is
divided into two parts:

• client(s), which represents the multiple case instances that create new work
items and allocate them to the resource;

• server, which includes both the piled allocation/execution of tasks of the
same kind (in this example based on the process architecture) and the (two)
resources. It exposes an allocation operation that can be invoked indepen-
dently by each client. Parallelly the two resources can pick each work item
in a sequential basis and run its task until completion.

JOLIE code example

Listing 84: Piled Execution (server) code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 inputPort PE{
6 Location: "socket://localhost:8000"
7 Protocol: sodep
8 OneWay: allocate,runRID1,runRID2
9 }

10
11 outputPort PE{
12 Location: "socket://localhost:8000"
13 Protocol: sodep
14 OneWay: runRID1,runRID2
15 }
16
17 execution{concurrent}
18
19 define print_wi_stack{
20 println@Console("---=== WI STACK ===---")();
21 for(pi=0,pi<#wi_stack,pi++){
22 print@Console("id: "+wi_stack[pi].id)();
23 if(wi_stack[pi].done){
24 println@Console(", done")()
25 }
26 else{println@Console("")()}
27 };
28 println@Console("---================---")()
29 }
30
31 init{
32 wi_stack->global.wi_stack;

288

CHAPTER 3. Workflow Patterns for SOC

33 runRID1@PE()|runRID2@PE()
34 }
35
36 main{
37 [runRID1()]{
38 while(true){
39 synchronized(rid1_lock){
40 for(i=0,i<#wi_stack.rid1 && #wi_stack.rid1>0,i++){
41 if(!wi_stack.rid1[i].done){
42 sleep@Time(wi_stack.rid1[i].comp_time)();
43 wi_stack.rid1[i].done=true;
44 println@Console("RID1 completed wi: "+
45 wi_stack.rid1[i].id+", arch:"+wi_stack.rid1[i].arch)()
46 }}}}}
47 [runRID2()]{
48 while(true){
49 synchronized(rid2_lock){
50 for(j=0,j<#wi_stack.rid2 && #wi_stack.rid2>0,j++){
51 if(!wi_stack.rid2[j].done){
52 sleep@Time(wi_stack.rid2[j].comp_time)();
53 wi_stack.rid2[j].done=true;
54 println@Console("RID1 completed wi: "+
55 wi_stack.rid2[j].id+", arch:"+wi_stack.rid2[i].arch)()
56 }}}}}
57 [allocate(wi)]{
58 if(wi.arch=="x86"){
59 synchronized(rid1_lock){
60 wi_stack.rid1[#wi_stack.rid1]<<wi
61 }
62 }
63 else{
64 synchronized(rid2_lock){
65 wi_stack.rid2[#wi_stack.rid2]<<wi
66 }
67 }
68 }
69 }

Listing 85: Piled Execution (client) code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 outputPort PE{
6 Location: "socket://localhost:8000"
7 Protocol: sodep
8 OneWay: allocate
9 }

10
11 init{

289

CHAPTER 3. Workflow Patterns for SOC

12 random@Math()(arch);
13 arch=int(arch*2);
14 if(arch){arch="x86"}else{arch="x64"};
15 wi.arch=arch
16 }
17
18 define create_and_allocate_wi{
19 getCurrentTimeMillis@Time()(wi.id);
20 random@Math()(wi.comp_time);
21 wi.comp_time=int(wi.comp_time*1000);
22 allocate@PE(wi);
23 println@Console("Created wi "+wi.id+", arch:"+wi.arch+
24 ", comp_time:"+wi.comp_time)()
25 }
26
27 main{
28 while(true){
29 create_and_allocate_wi;
30 sleep@Time(500)()
31 }
32 }

290

CHAPTER 3. Workflow Patterns for SOC

3.4.8.4 Chained Execution

The ability to automatically start the next work item in a case once the previous
one has completed. The transition to Chained Execution mode is at the instigation
of the resource.

Motivation

The rationale for this pattern is that case throughput is expedited when a resource
has sequential work items allocated within a case and when a work item is com-
pleted, its successor is immediately initiated. This has the effect of keeping the
resource constantly progressing a given case.

JOLIE Implementation

Chained Execution involves a resource undertaking work items in the same case in
"chained mode" such that the completion of one work item immediately triggers
its successor which is immediately placed in the resource’s work list with a started
status. This pattern is illustrated by the transition R:chained_execution in Figure
3.49.

It is important to note that this transition is represented by a dashed line because
it jumps from one work item to another, i.e., it links the life-cycles of two different
work items.

Chained Execution offers a means of achieving rapid throughput for a given case
however, in order to ensure that this does not result in an arbitrary delay of other
cases, it is important that cases are distributed across the widest possible range
of resources and that the distribution only occurs when a resource is ready to
undertake a new case.

An offering achieves full support if it satisfies the description for the pattern.

The JOLIE code example for this pattern is obtained by linking a case value to each
work item which, once found, instigates the resource to complete, sequentially,
each work item that’s present in the work queue within that case.

After all work items for that case are exhausted, the case of the next (not done)
work item is taken and the Chained Execution is repeated.

JOLIE code example

291

CHAPTER 3. Workflow Patterns for SOC

Listing 86: Chained Execution code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define print_wi_stack{
6 println@Console("---=== WI STACK ===---")();
7 for(pi=0,pi<#wi_stack,pi++){
8 print@Console("id: "+wi_stack[pi].id)();
9 print@Console(", of case: "+

10 wi_stack[pi].c_case)();
11 if(wi_stack[pi].done){
12 println@Console(", done")()
13 }
14 else{println@Console("")()}
15 };
16 println@Console("---================---")()
17 }
18
19 define create_and_offer_wi{
20 undef(wi);
21 getCurrentTimeMillis@Time()(wi.id);
22 random@Math()(wi.c_case);
23 wi.c_case=int(wi.c_case*10);
24 wi_stack[#wi_stack]<<wi
25 }
26
27 define chained_execution{
28 println@Console("Chained execution on case: "+ce.c_case)();
29 for(ci=0,ci<#wi_stack,ci++){
30 if(!wi_stack[ci].done &&
31 wi_stack[ci].c_case==ce.c_case){
32 sleep@Time(500)();
33 wi_stack[ci].done=true
34 }
35 }
36 }
37
38 main{
39 {while(true){
40 synchronized(wi_lock){
41 for(cr=0,cr<20,cr++){
42 create_and_offer_wi
43 }
44 };
45 sleep@Time(5000)()
46 }}|{
47 while(true){
48 //CHAINED EXECUTION
49 if(#wi_stack>0){

292

CHAPTER 3. Workflow Patterns for SOC

50 for(i=0,i<#wi_stack,i++){
51 if(!wi_stack[i].done){
52 synchronized(wi_lock){
53 ce.c_case=wi_stack[i].c_case;
54 chained_execution;
55 print_wi_stack
56 }
57 }}}}}
58 }

293

CHAPTER 3. Workflow Patterns for SOC

3.4.9 Visibility Patterns

Visibility Patterns classify the various scopes in which work item availability and
commitment are able to be viewed by resources.

3.4.9.1 Configurable Unallocated Work Item Visibility

The ability to configure the visibility of unallocated work items by process partic-
ipants.

Motivation

The pattern denotes the ability to limit the visibility of unallocated work items, ei-
ther to potential resources to which they may subsequently be offered or allocated
to, or to completely shield knowledge of created but not yet allocated work items
from all resources.

JOLIE Implementation

The ability to view unallocated work items is usually implemented as a config-
urable option on a per-user basis.

Of most interest is the ability to view work items in an offered state.

The JOLIE implementation of this pattern is archived by the language’s tree-like
data structures which enables to create easily taxonomies and scoped views, ac-
cording to the visibility each resource is allowed to have over the work items in
the system.

In the example of structure provided as it follows - created by means of the with

statement of the language, which implements a shortcut for repetitive variable
paths -, a resource whose scope is set to the whole structure has the complete
visibility over all of the work items present in the stack.

The navigation among all of the elements (from the root to a leaf and vice-versa)
of the structure can be both static and dynamic, by means of JOLIE’s dynamic
look-up feature.

Other resource that shall have a restricted view over the whole stack of work items
are able only to navigate within a branch of the whole structure, e.g. the resource
RID1 shall be able to browse the wi_stack.rid1 branch only, likewise the resource
RID2 will be allowed to do the same only over its own branch wi_stack.rid2.

294

CHAPTER 3. Workflow Patterns for SOC

Each item’s view remains highly configurable since structure alias (->) and deep-
copy (<�<) statements can be used to temporary grant access to a scoped resource
to view and interact with a whole sub-structure or a single work item.

JOLIE code example

Listing 87: Configurable Unallocated Work Item Visibility code example

1 include "console.iol"
2
3 main{
4 with (wi_stack){
5 .created[0]="8205930411";
6 .created[1]="5450147330";
7 .created[2]="4463849723";
8
9 .rid1[0]="8265330677";

10 .rid1[1]="5473457670";
11
12 .rid2[3]="3457654532";
13 .rid2[4]="3138763121";
14 }}

295

CHAPTER 3. Workflow Patterns for SOC

3.4.9.2 Configurable Allocated Work Item Visibility

The ability to configure the visibility of allocated work items by process partici-
pants.

Motivation

The pattern indicates the ability to limit the visibility of allocated and started work
items.

JOLIE Implementation

The ability to view allocated work items is usually implemented as a configurable
option on a per-user basis. It provides resources with the ability to view work
items in an allocated or started state.

An offering achieves full support if it provides a construct that satisfies the de-
scription for the pattern.

The JOLIE implementation of this pattern is equal to the one provided for the
previous Configurable Unallocated Work Item Visibility pattern [3.4.9.1], thus is made
reference to the one provided for the latter.

296

CHAPTER 3. Workflow Patterns for SOC

3.4.10 Multiple Resource Patterns

In situations where people are not restricted by information technology, there is
often a many-to-many correspondence between the resources and work items in a
given allocation or execution. Therefore, it may be desirable to support this using
process technology.

Simultaneous Execution is a one-to-many correspondence between the resources
and work items in a given allocation or execution. The opposite approach, the
many-to-one correspondence, i.e. multiple resources working on the same work
item, is more difficult to achieve and poses some concerns about work division
and work item state preservation. This is a typical situation of activities in which
people tend to work in teams and collaborate to jointly executed work items.

3.4.10.1 Simultaneous Execution

The ability for a resource to execute more than one work item simultaneously.

Motivation

In many situations, a resource does not undertake work items allocated to it on
a sequential basis, but rather it commences work on a series of work items and
multitasks between them.

JOLIE Implementation

The Simultaneous Execution pattern recognizes more flexible approaches to work
item management, where the decision as to which combination of work items will
be executed and the sequence in which they will be interleaved is at the discretion
of the resource rather than the system.

An offering achieves full support if it satisfies the description for the pattern. It
achieves a partial support rating if there are any limitations on the range of work
items that can be executed simultaneously.

An offering achieves full support if it satisfies the description for the pattern.

The JOLIE code example for this pattern is provided by the implementation of a
resource which have to process several steps of a single work item to mark it as
completed.

297

CHAPTER 3. Workflow Patterns for SOC

Instead of dedicating all of its computation time to the completion of one work
item only (single burst), the resource tries to work on as many work items as
possible, completing one of the “not-done” steps of each work item present in its
queue (multitask).

JOLIE code example

Listing 88: Simultaneous Execution code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4
5 define print_wi_stack{
6 println@Console("---=== WI STACK ===---")();
7 for(pi=0,pi<#wi_stack,pi++){
8 print@Console("id: "+wi_stack[pi].id)();
9 if(wi_stack[pi].done){

10 println@Console(", done")()
11 }else{
12 println@Console()();
13 for(ri=1,ri<4,ri++){
14 print@Console("\tstep "+ri+", comp_time: "+
15 wi_stack[pi].step[ri].comp_time
16 +"ms")();
17 if(wi_stack[pi].step[ri].done){
18 println@Console(", done")()
19 }else{println@Console()()}
20 }}};
21 println@Console("---===============---")()
22 }
23
24
25 define create_and_offer_wi{
26 getCurrentTimeMillis@Time()(wi.id);
27 for(ci=0,ci<4,ci++){
28 random@Math()(comp_time);
29 wi.step[ci].comp_time=int(comp_time*1000)
30 };
31 wi_stack[#wi_stack]<<wi;
32 println@Console("Created wi "+wi.id)()
33 }
34
35 main{
36 {while(true){
37 synchronized(wi_lock){
38 create_and_offer_wi;
39 print_wi_stack
40 };
41 sleep@Time(1000)()
42 }}|{

298

CHAPTER 3. Workflow Patterns for SOC

43 while(true){
44 for(i=0,i<#wi_stack,i++){
45 if(!wi_stack[i].done){
46 println@Console("Working on "+wi_stack[i].id)();
47 step_done=false;
48 for(j=0,j<#wi_stack[i].step && !step_done,j++){
49 if(!wi_stack[i].step[j].done){
50 sleep@Time(wi_stack[i].step[j].comp_time)();
51 synchronized(wi_lock){
52 wi_stack[i].step[j].done=true;
53 if(j==#wi_stack[i].step-1){
54 wi_stack[i].done=true
55 }};
56 step_done=true
57 }}}}}}
58 }

299

CHAPTER 3. Workflow Patterns for SOC

3.4.10.2 Additional Resources

The ability for a given resource to request additional resources to assist in the
execution of a work item that it is currently undertaking.

Motivation

In more complex scenarios, a given work item may require the services of multiple
resources in order for it to be completed (e.g. a machine operator, machine and
fuel).

These resources may be durable in nature and capable of continual reuse or they
may be consumable. By providing the ability to model scenarios such as these,
a more accurate depiction of the way in which work is actually undertaken in a
production environment is made possible.

JOLIE Implementation

This pattern recognizes more complex work distribution and resource manage-
ment scenarios where simply unitary resource allocation is not sufficient to deal
with the constraints that tasks may experience during execution.

An offering achieves full support if it provides a construct that satisfies the de-
scription for the pattern. It achieves a partial support rating if there are limitations
on the situations in which multiple resources can be modeled or utilized.

The JOLIE realization for this pattern is provided by the presence of two resources:
RID1 which is the “main” resource, that has the capability to call for Additional
Resources to join it’s work queue and help it executing all of its tasks. Contrariwise,
RID2 is a callable (additional) resource, which has the capability to collaborate in
completing RID1 work items’ steps.

The implementation of this pattern is provided by means of a “shared” state vari-
able linked to each work item, in this way resources allowed or dedicated to exe-
cute shared work items can access and work on them.

JOLIE code example

Listing 89: Additional Resources code example

1 include "console.iol"
2 include "time.iol"
3 include "math.iol"
4

300

CHAPTER 3. Workflow Patterns for SOC

5 define print_wi_stack{
6 println@Console("---=== WI STACK ===---")();
7 for(pi=0,pi<#wi_stack.rid1,pi++){
8 print@Console("id: "+wi_stack.rid1[pi].id)();
9 if(wi_stack.rid1[pi].done){

10 println@Console(", done")()
11 }else{
12 println@Console()();
13 for(ri=1,ri<4,ri++){
14 print@Console("\tstep "+ri+", comp_time: "+
15 wi_stack.rid1[pi].step[ri].comp_time
16 +"ms")();
17 if(wi_stack.rid1[pi].step[ri].done){
18 println@Console(", done by "+
19 wi_stack.rid1[pi].step[ri].by)()
20 }else{println@Console()()}
21 }}};
22 println@Console("---===============---")()
23 }
24
25 define create_and_offer_wi{
26 getCurrentTimeMillis@Time()(wi.id);
27 for(ci=0,ci<4,ci++){
28 random@Math()(comp_time);
29 wi.step[ci].comp_time=int(comp_time*1000)
30 };
31 wi_stack.rid1[#wi_stack.rid1]<<wi;
32 println@Console("Created wi "+wi.id)()
33 }
34
35 define add_resource{
36 done_wi=0;undone_wi=0;
37 for(adi=0,adi<#wi_stack.rid1,adi++){
38 if(wi_stack.rid1[adi].done){
39 done_wi++
40 }else{undone_wi++}
41 };
42 if(undone_wi>((3/4)*done_wi)+1){
43 for(adi=0,adi<#wi_stack.rid1,adi++){
44 if(!wi_stack.rid1[adi].shared
45 && !wi_stack.rid1[adi].done){
46 wi_stack.rid1[adi].shared=true;
47 println@Console("Added wi:"+
48 wi_stack.rid1[adi].id+
49 " to RID2 queue")()
50 }}}}
51
52 main{
53 {while(true){
54 synchronized(wi_lock){
55 create_and_offer_wi;
56 print_wi_stack

301

CHAPTER 3. Workflow Patterns for SOC

57 };
58 sleep@Time(1500)()
59 }}|{
60 while(true){
61 for(i=0,i<#wi_stack.rid1,i++){
62 if(!wi_stack.rid1[i].done){
63 synchronized(wi_lock){add_resource};
64 println@Console("RID1 Working on "+
65 wi_stack.rid1[i].id)();
66 step_done=false;
67 for(j=0,j<#wi_stack.rid1[i].step && !step_done,j++){
68 if(!wi_stack.rid1[i].step[j].done){
69 sleep@Time(wi_stack.rid1[i].step[j].comp_time)();
70 synchronized(wi_lock){
71 wi_stack.rid1[i].step[j].done=true;
72 wi_stack.rid1[i].step[j].by="RID1";
73 if(j==#wi_stack.rid1[i].step-1){
74 wi_stack.rid1[i].done=true
75 }};
76 step_done=true
77 }}}}}}|{
78 while(true){
79 for(x=0,x<#wi_stack.rid1,x++){
80 if(!wi_stack.rid1[x].done
81 && wi_stack.rid1[x].shared){
82 println@Console("RID2 Working on "+
83 wi_stack.rid1[x].id)();
84 step_done=false;
85 for(y=0,y<#wi_stack.rid1[x].step && !step_done,y++){
86 if(!wi_stack.rid1[x].step[y].done){
87 sleep@Time(wi_stack.rid1[x].step[y].comp_time)();
88 synchronized(wi_lock){
89 wi_stack.rid1[x].step[y].done=true;
90 wi_stack.rid1[x].step[y].by="RID2";
91 if(y==#wi_stack.rid1[x].step-1){
92 wi_stack.rid1[x].done=true
93 }};
94 step_done=true
95 }}}}}}
96 }

302

CHAPTER 3. Workflow Patterns for SOC

3.5 Summary Table of JOLIE Resource Patterns Sup-
port

Resource Pattern JOLIE Support
Direct Distribution [3.4.4.1] +
Role-Based Distribution [3.4.4.2] +
Deferred Distribution [3.4.4.3] +
Authorization [3.4.4.4] +/-
Separation of Duties [3.4.4.5] +/-
Case Handling [3.4.4.6] +
Retain Familiar [3.4.4.7] +
Capability-Based Distribution [3.4.4.8] +
History-Based Distribution [3.4.4.9] +
Organizational Distribution [3.4.4.10] +
Automatic Execution [3.4.4.11] +
Distribution by Offer - Single Resource [3.4.5.1] +
Distribution by Offer - Multiple Resources [3.4.5.2] +
Distribution by Allocation - Single Resource [3.4.5.3] +
Random Allocation [3.4.5.4] +
Round Robin Allocation [3.4.5.5] +
Shortest Queue [3.4.5.6] +
Early Distribution [3.4.5.7] +
Distribution on Enablement [3.4.5.8] +
Late Distribution [3.4.5.9] +

Table 3.3: The table provided lists all of Resource patterns analyzed previously. Follow-
ing the same convention adopted by WPI if a pattern can be realized in JOLIE directly it is
rated +, if is not directly supported, but has been realized through a workaround is rated
+/-, finally if no implementation is supported is rated -.

303

CHAPTER 3. Workflow Patterns for SOC

Resource Pattern JOLIE Support
Resource-Initiated Allocation [3.4.6.1] +
Resource-Initiated Execution - Allocated Work Item [3.4.6.2] +
Resource-Initiated Execution - Offered Work Item [3.4.6.2] +
System-Determined Work Queue Content [3.4.6.4] +
Resource-Determined Work Queue Content [3.4.6.5] +
Selection Autonomy [3.4.6.6] +
Delegation [3.4.7.1] +
Escalation [3.4.7.2] +
Deallocation [3.4.7.3] +
Stateful Reallocation [3.4.7.4] +
Stateless Reallocation [3.4.7.5] +
Suspension-Resumption [3.4.7.6] +
Skip [3.4.7.7] +
Redo [3.4.7.8] +
Pre-Do [3.4.7.9] +
Commencement on Creation [3.4.8.1] +
Commencement on Allocation [3.4.8.2] +/-
Piled Execution [3.4.8.3] +
Chained Execution [3.4.8.4] +
Configurable Unallocated Work Item Visibility [3.4.9.1] +
Configurable Allocated Work Item Visibility [3.4.9.2] +
Simultaneous Execution [3.4.10.1] +
Additional Resources [3.4.10.2] +

Table 3.4: The table provided lists all of Resource patterns analyzed previously. Follow-
ing the same convention adopted by WPI if a pattern can be realized in JOLIE directly it is
rated +, if is not directly supported, but has been realized through a workaround is rated
+/-, finally if no implementation is supported is rated -.

304

Chapter 4

Conclusions

4.1 On Workflow Patterns & JOLIE

The Third Chapter proves the high customizability of the solutions composable
with the SOC approach and JOLIE.

It’s interesting to take into account that, as aforementioned in JOLIE’s patterns
support summary tables, the WPI did not only enunciate an wide and finely de-
clined plethora of patterns, organized in four areas according to their role in sys-
tem designing, but evaluated an extensive list of workflow products, either com-
mercial, open-source or (proposed) standards, against the feasibility of its own
workflow patterns. Finally each evaluation has been used to compile a general
list for comparison purposes.

Based on this list, whose rating is the same applied for the evaluation tables of
JOLIE, the bobble chart in Figure 4.1 has been created to summarize and provide
a means to realized at glance, the degree of adaptability of JOLIE compared to the
other language.

The bobble chart reported has been obtained by taking all of the evaluation of
languages provided by the WPI, whose summary tables were compiled both for
Control-Flow and Resource patterns.

Then, the “+, +/-, -” label rating has been converted into a countable “1, 1/2, 0”
rating, where concordantly, 1 is assigned for each “+” (full support) rating, while
1/2 replaces the “+/-” (half support) rating and 0 replaces “-” (no support).

305

CHAPTER 4. Conclusions

Finally, for each language has been compiled a summary table, reporting an aggre-
gate number linked to the support degree of that language against a specific kind
of patterns. This evaluations is made by summing the rating values (1 and 1/2)
of a specific kind of patterns, and diving it by the total number of those patterns,
ultimately this value is put into percentage.

As aforementioned, the bobble chart is the result of the percentage values of any
language where the center of each language’s bobble is set in the (x,y) coordinates
that correspond to the percentage of support of the specific kind of patterns by
the language - x for Control-flow patterns and y for Resource patterns. The area of
each bobble represents the total number of patterns supported by each language.

Thanks to this chart, it’s a lot easier to understand the general degree of sup-
port given by a specific language and it becomes even easier to understand if a
language is more suitable for resource management rather than for control-flow
purposes.

Clearly JOLIE appears as the all-winning competitor of this challenge, but it’s
better not to draw hasty conclusions and to think about the work conducted on
the language.

The main difference between JOLIE and any other language taken into account
by the WPI (and thus, the chart), is that JOLIE is a service-oriented imperative
language whose main area is not BPM but SOC.

The difference between these two areas is clearly defined in section 1.1, and, al-
though an high degree of overlap stands between the two, it would be better not
to merge them.

On the contrary, BPM languages are actually used to implement SOC solutions,
but, as demonstrated, they do not reach the same level of customizability and
adaptation of a service oriented language. Furthermore BPM languages used for
SOC purposes suffer form behavior realization uncertainty of the functionality
defined at design-time. This behavior is caused by the declarative approach of
these languages, which requires engines that interpret the solutions proposed by
means of not-always-standard heuristics. Such interpretation is sometime unclear
and different engines made by different organization may bring to different be-
haviors, although based on the same language solution.

The conclusions that can be drawn from the work done on workflow patterns and
JOLIE, confirm that, to maximize the results from SOC (and SOA) integration, is

306

CHAPTER 4. Conclusions

Figure 4.1: Languages Patterns Support

307

CHAPTER 4. Conclusions

necessary to develop and use specific languages designed on its principles.

This is not a criticism about BPM languages, but its intended as recall of the prin-
ciple of appropriateness: if satisfactory results are to be achieved, it’s fundamental
to understand what is the context of the sought solution, and therefore, adopt an
approach strictly linked to the rules and principles of that specific field of work.

BPM languages have proved to be extremely useful in the context of business
abstract modeling, but, as a matter of facts, they all fall short when running their
models as composition of services, due to both uncertainty of results and language
constraints.

4.1.1 Future works

The next step of this work shall be the completion of JOLIE support evaluation
with relation to the remaining patterns (data and exception handling). Finally the
whole work should to be validated from the WPI both to confirm the results ob-
tained and to highlight the possible lack of functionality by an outer organization
from the one leading the development project.

Once all of the implementations have been validated, a more business-oriented
realization can be assembled, to take advantage of the wide range of language’s
advanced functionality, not used in this work for simpleness purposes. Done that,
the patterns can be employed in the constitution of an extremely useful knowl-
edge base of solutions, which can be applied by developers to structure their own
systems, according to the requirements of their models.

4.2 On JOLIE language

JOLIE is a young but powerful and highly adaptive language, which can be used
to easily achieve complex results.

As proved in this work, the language, even at its basics, provides both a strong
theoretical structure (via SOCK) and a wide range of constructs that overcome the
performances of the most part of languages used for SOC purposes.

308

CHAPTER 4. Conclusions

However a lot of work on the development and evolution of the language has
to be done but, it’s extremely important to keep in mind that, besides of a solid
theoretical basis, any successful project need the support of a strong community.

Thus the work on the language must be undoubtedly carried on together with the
constitution of a strong community of developers and users of the language, since,
as seen in many other open-source projects, community support and extensive
viral spread of use of a language are the springboard for the success of the project
itself and, finally, its adoption in the world of industry.

4.3 On Service Oriented Computing and Business Pro-
cess Automation

The evolution of the SOC is still in progress and the development of JOLIE and
other technologies which support this new paradigm is only a small part of a
larger revolution that will lead to the next evolutionary step of BPA.

In this sense, the efforts of W3C and other leading open-source and industry as-
sociations are producing more and more "intelligent" tools for the computational
logic, semantics and business management.

In the near future business processes will seamlessly couple to achieve the goals
proposed by their companies, in an autonomous and “conscious” manner, boost-
ing storage, management and fusion of diverse and heterogeneous knowledge in
order to let emerge non trivial and strategic information.

The human beings in charge, those who need to take important strategic decisions,
can make use of these tools to focus their cognitive skills on real business prob-
lems and not, as today, on issue connected to processes realization and limitations
derived from data overload and the effort required to manage it.

Systems endowed with semantic and computational logic can “understand” each
other, compose themselves and respond, within a few seconds, to questions that,
in contrast, have an high impact in the organization’s budget (such as quality
control, monitoring of business functions, etc.).

As aforementioned this new step in BPA will “augment” the skills of business
management and even of each “service” that composes a firm. Helping man in

309

CHAPTER 4. Conclusions

information management, BPA is the key to manage a fast-changing world whose
complexity requires a more integrated synergy between human decision-making
systems and information systems.

To boldly go, where no business process has gone before.

310

Acknowledgments

“It’s the end of the world as we know it and I feel fine”

R.E.M.

I dare to cite the R.E.M. and the last line of the refrain which names their homony-
mous song, why? Because preparing for the future always means looking back,
wrapping up your things, taking a deep breath and jumping almost blindfolded
in a totally different and unknown world. And I think this case applies perfectly.

But that’s ok, it’s the life, and I think a life is worth living if, left behind your
uncertainties, you can “feel fine” even if it’s the end of the world, as you’ve known
it.

That’s all about change, evolution, discovery and passion for life itself.

Back to the main subject, these are the acknowledgments, maybe the most read
part of any thesis, probably second only to the cover and the dedication. And the
scientific topic? Leave it to those freaky nerds like... me?! Ouch, it hurt. Let’s go
on.

My acknowledgments starts with the smallest, unique and most important of all
the communities I belong to: my Family.

Mom, Dad, I do not really know how to thank you for all the sacrifices you’ve
done to raise me. The older I get, the more I understand that parenting is the
hardest job in the world. But you tackled it, like Olympic champions, and re-
nounced to the most part of your passions to make me the most loved of yours.
Thank you for favoring my aspirations, feeding my appetite for knowledge and
for letting me draw my own path, constantly suggesting the best for me.

311

CHAPTER 4. Conclusions

Thank you for all of this and even more, I hope to make you proud of me, every
day of my life.

To my little, sweet, lovely Danny.

You complete me, you link me to my deepest humanity and you make me appre-
ciate the life for all the little, silly and irrational things it’s made by. Thank you,
thank you, thank you. My beloved fellow traveler in this journey called existence,
I hope to pursue my adventure with you, for still a long, long time.

Next I want to thank the professors of the University of Bologna and in particular
those who deeply believed and gave birth to a no-ordinary course like Scienze di
Internet. I thank you for giving me the chance to work, learn and above all “grow
up” in a multidisciplinary context such the one of Scienze di Internet.

I want to thank all the people linked to JOLIE, for having created such an interest-
ing, innovative and “cool” project and for having accepted me in it. In particular
I want to thank my supervisor, Prof. Maurizio Gabbrielli, Fabrizio Montesi and
Claudio Guidi for all the time dedicated to me and the interesting discussions
about the project and our future works.

Finally I want to thank all friends of mine for all of the adventures, the passionate
confabulations and world-conquering plans we assembled in all these years. I
swear you guys, without you, life would be really, really boring.

312

Ringraziamenti

“It’s the end of the world as we know it and I feel fine”

R.E.M.

Mi sono permesso di citatare i R.E.M e l’ultima riga del ritornello dell’omonima
canzone, perché? Perché prepararsi al futuro riguarda sempre il guardarsi indi-
etro, raccogliere le proprie cose, prendere un profondo respiro e fare un salto nel
buio in un mondo totalmente differente e sconosciuto. E penso che questa cir-
costanza si applichi perfettamente.

Ma va bene, è la vita, e penso che una vita valga la pena di essere vissuta se,
abbandonate le proprie incertezze, ci si “sente bene” anche se è la fine del mondo,
per come lo hai conosciuto.

Tutto ciò riguarda il cambiamento, l’evoluzione, la scoperta e la passione per la
vita stessa.

Tornando all’argomento principale, questi sono i ringraziamenti, forse la parte
più letta di ogni tesi, probabilmente seconda solo dopo la copertina e la dedica. E
l’argomento scientifico? Lasciamolo a quei bizzarri nerd come. . . me?! Questa ha
fatto male. Andiamo avanti.

I miei ringraziamenti iniziano con la più piccola, unica e importante delle comu-
nità di cui faccio parte: la mia Famiglia.

Mamma, Papà, non so veramente come ringraziarvi per tutti i sacrifici fatti per
crescermi. Più avanzo negli anni e più capisco come fare il genitore sia il lavoro
più difficile del mondo. Ma voi l’avete affrontato, da campioni olimpici, ed avete
rinunciato alla maggior parte delle vostre passioni per fare di me la principale.

313

CHAPTER 4. Conclusions

Grazie per incoraggiare le mie aspirazioni, per nutrire la mia voglia di conoscenza
e per lasciarmi tracciare il mio cammino, elargendomi sempre i migliori consigli.

Grazie per tutto questo e tanto altro ancora, spero di rendervi fieri di me, ogni
giorno della mia vita.

Alla mia piccola, dolce, amorevole Danny.

Tu mi completi, mi colleghi alla mia umanità più profonda e mi fai apprezzare la
vita per tutte le piccole, stupide ed irrazionali cose di cui è fatta. Grazie, grazie,
grazie. Mia amata compagna di viaggio, spero di proseguire con te quest’avventura
per ancora molto, molto tempo.

In seguito voglio ringraziare i professori dell’Università di Bologna e in particolare
quelli che hanno creduto profondamente e dato la luce ad un corso inconsueto
come Scienze di Internet. Vi ringrazio per avermi dato la possibilità di lavorare,
imparare e soprattutto “crescere” con voi in un tale ambito multidisciplinare .

Voglio ringraziare anche tutte le persone collegate a JOLIE, per aver creato un
progetto così interessante, innovativo e “figo” e per avermi accolto in esso. In
particolare voglio ringraziare il mio relatore, il Prof. Maurizio Gabbrielli, Fabrizio
Montesi e Claudio Guidi per tutto il tempo dedicatomi e le interessanti discussioni
sul progetto e i nostri lavori futuri.

Infine voglio ringraziare tutti i miei amici per tutte le avventura, le appassionanti
confabulazioni e i piani di conquista del mondo che abbiamo concepito in tutti
questi anni. Ve lo giuro ragazzi, senza di voi, la vita sarebbe molto ma molto
noiosa.

314

Bibliography

[1] F. Daniel, B. Pernici (2006), Insights into Web Service Orchestration and Choreog-
raphy, International Journal of E-Business Research, 2(1), 58-77.

[2] Y. Vasiliev (2007), SOA and WS-BPEL Composing Service-Oriented Solutions
with PHP and ActiveBPEL, Packt Publishing.

[3] C. Peltz (2003), Web Services Orchestration and Choreography, IEEE Computer
Society.

[4] J. Mendling, M. Hafner, From WS-CDL Choreography to BPEL Process Orches-
tration, Vienna University of Economics and Business Administration - WU
Wien, Austria.

[5] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro (2006), Choreogra-
phy and Orchestration conformance for system design, Department of Computer
Science, University of Bologna, Italy.

[6] A. Barros, M. Dumas, P. Oaks (2005), A Critical Overview of the Web Services
Choreography Description Language (WS-CDL), BPTrends.

[7] M. zur Muehlen, J.V. Nickerson, K.D. Swenson (2004), Developing Web Services
Choreography Standards The Case of REST vs. SOAP, Decision Support Systems
37, Elsevier, North Holland.

[8] C. Peltz (2003), Web Services Orchestration and Choreography - A look at WSCI
and BPEL4WS, IEEE Computer Society.

[9] C. Abrams, R.W. Schulte (2008), Service-Oriented Architecture Overview and
Guide to SOA Research, Gartner.

315

BIBLIOGRAPHY

[10] T. Erl (2009), SOA design patterns, SOA Systems Inc.

[11] T. Erl (2008), SOA Principles of Service Design, SOA Systems, Inc.

[12] M.P. Singh, M.N. Huhns (2005), SERVICE-ORIENTED COMPUTING Seman-
tics, Processes, Agents, John Wiley & Sons Ltd.

[13] D. Georgakopoulos and M. P. Papazoglou (2009), Service-Oriented Computing,
The MIT Press.

[14] C. Guidi, R. Lucchi, G. Zavattaro, N. Busi, R. Gorrieri (2006), SOCK: a calculus
for service oriented computing, Technical Report UBLCS-2006-20.

[15] K. Ryan, L. KoA (2009), Computer scientist’s introductory guide to business pro-
cess management (BPM), ACM Digital Library.

[16] S. Giallorenzo (2012), Java Orchestration Language Interpreter Engine - a Tutorial
for the Service-Oriented JOLIE language.

[17] F. Montesi, C. Guidi, G. Zavattaro (2010), JOLIE: a Service-oriented Program-
ming Language, Alma Mater Studiorum Università di Bologna.

[18] F. Montesi, C. Guidi, R. Lucchi, G. Zavattaro (2006), JOLIE: a Java Orches-
tration Language Interpreter Engine, Electronic Notes in Theoretical Computer
Science.

[19] P. Anedda, M. Gaggero, S. Manca (2008), A general Service Oriented Approach
for managing virtual machines allocation, SAC’09.

[20] F. Montesi, C. Guidi, G. Zavattaro (2007), Composing services with JOLIE, De-
partment of Computer Science, University of Bologna, Italy.

[21] F. Montesi, C. Guidi, I. Lanese and G. Zavattaro, Dynamic fault handling mech-
anisms for service-oriented applications, Department of Computer Science, Uni-
versity of Bologna, Italy.

[22] C. Guidi, F. Montesi (2009), Reasoning About a Service-oriented Programming
Paradigm, M.H. ter Beek (Ed.): Young Researchers Workshop on Service-
Oriented Computing.

[23] W.M.P. van der Aalst, C. Stahl (2011), Modeling Business Processes – A Petri
Net-Oriented Approach, The MIT Press.

316

BIBLIOGRAPHY

[24] K. Jensen, L. M. Kristensen, L. Wells (2007), Coloured Petri Nets and CPN Tools
for modelling and validation of concurrent systems, Springer-Verlag.

[25] K. Jensen (1997), A Brief Introduction to Coloured Petri Nets, Computer Science
Department, University of Aarhus.

[26] W. Nauber (2010), Design and Analysis with Petri Nets, Technische Universität
Dresden Faculty Of Computer Science.

[27] K. Jensen (1998), An Introduction to the Practical Use of Coloured Petri Nets, De-
partment of Computer Science, University of Aarhus.

[28] W.M.P. van der Aalst, K.M. van Heem, G.J. Houben (2000), Modelling and
analysing workflow using a Petri-net based approach, Eindhoven University of
Technology, Dept. of Mathematics and Computing Science.

[29] K. Jensen, Lars M. Kristensen (2009),Coloured Petri Nets Modelling and Valida-
tion of Concurrent Systems, Springer.

[30] A. H. M. ter Hofstede, W.M. P. van der Aalst, M. Adams, N. Russell
(2009), Modern Business Process Automation YAWL and its Support Environment,
Springer.

[31] N.A. Mulyar and W.M.P. van der Aals (2005), Patterns In Colored Petri Nets,
Department of Technology Management, Eindhoven University of Technol-
ogy.

[32] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, N. Mulyar (2006),
Workflow Control-Flow Patterns : A Revised View, BPM Center Report BPM-06-
22.

[33] W.M.P van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A.P. Barros
(2003), Workflow Patterns, Distributed and Parallel Databases.

[34] B. Kiepuszewski, A.H.M. ter Hofstede, C. Bussler (2000), On Structured Work-
flow Modelling, Proceedings Twelfth International Conference on Advanced
Information Systems Engineering (CAiSE’), volume 1789 of Lecture Notes in
Computer Science, pages 431-445, Springer Verlag.

[35] B. Kiepuszewski, A.H.M. ter Hofstede, W.M.P. van der Aalst (2003), Funda-
mentals of Control Flow in Workflows, Acta Informatica, 39(3):143-209.

317

[36] P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, N. Russell
(2006), Pattern-based Analysis of BPMN - An extensive evaluation of the Control-
flow, the Data and the Resource Perspectives (revised version), BPM Center
Report.

[37] P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede (2003), Anal-
ysis of Web Services Composition Languages: The Case of BPEL4WS, In I.Y. Song,
S.W. Liddle, T.W. Ling, and P. Scheurmann, editors, 22nd International Con-
ference on Conceptual Modeling, volume 2813 of Lecture Notes in Computer
Science, pages 200-215. Springer-Verlag.

[38] W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede (2003), Web Service
Composition Languages: Old Wine in New Bottles?, In G. Chroust and C. Hofer,
editors, Proceedings of the 29th EUROMICRO Conference: New Waves in
System Architecture, pages 298-305. IEEE Computer Society.

[39] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A.P. Barros
(2000), Advanced Workflow Patterns, In O. Etzion and P. Scheuermann, editors,
7th International Conference on Cooperative Information Systems, volume
1901 of Lecture Notes in Computer Science, pages 18-29. Springer-Verlag.

[40] N. Russell, A.H.M. ter Hofstede, D. Edmond (2004), and W.M.P. van der
Aalst, Workflow Resource Patterns, BETA Working Paper Series, WP 127, Eind-
hoven University of Technology.

[41] Workflow Patterns Initiative, Workflow Patterns home page, http://www.

workflowpatterns.com.

[42] JOLIE, JOLIE: Java Orchestration Language Interpreter Engine, http://www.

workflowpatterns.com.

[43] W3C Web Services Choreography Description Language, Web Services Chore-
ography Description Language Version 1.0, http://www.w3.org/TR/ws-cdl-10/.

[44] W3C Web Services Description Language, Web Services Description Language
(WSDL) 1.1, http://www.w3.org/TR/wsdl.

[45] W3C Web Services Architecture, Web Services Architecture, http://www.w3.
org/TR/ws-arch/.

[46] Semantic Web, Semantic Web, http://semanticweb.org.

318

http://www.workflowpatterns.com
http://www.workflowpatterns.com
http://www.workflowpatterns.com
http://www.workflowpatterns.com
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/
http://semanticweb.org

	Service Oriented Computing
	A bit of history
	A quantum leap in Business Process Automation
	Business Process Management
	Computational Logic
	Semantics
	Service Oriented Computing

	Service Oriented Computing Preconditions
	Autonomy
	Heterogeneity
	Dynamism

	What a ``service'' is
	Principles of Service Oriented Computing
	Service Oriented Architectures
	Loose Coupling
	Service Contract
	Abstraction
	Reusability
	Autonomy
	Statelessness
	Discoverability
	Composability

	Composing Services
	Choreography
	Orchestration

	In the shoes of an entrepreneur
	Long-lasting, easy changing
	Enterprise Integration
	When it's good to go SOC
	Never change a winning team (Legacy Systems)

	A Java Orchestration Language Interpreter Engine
	Dealing with services
	SOCK & JOLIE
	Services and Operations
	Interfaces
	Composition of statements and services
	Sequence operator
	Parallel operator
	Mixing Parallel and Sequential composition
	Non-deterministic input choice

	Sessions
	Correlation sets
	The init scope
	The global scope

	Fault Handling
	Scope, Install and Throw

	Termination

	Data structures and Flow Control operators in JOLIE
	JOLIE approach to structured data.
	Basic data types and methods
	Every JOLIE variable is a vector
	JOLIE data structures and data structures' operators
	Including default interfaces

	Flow Control Operators
	Conditional operators
	Loop statements
	Synchronization statements

	Workflow Patterns for SOC
	Workflow Patterns and the Workflow Patterns Initiative
	Control-Flow Patterns
	Control-Flow Patterns and Colored Petri-Nets
	From Petri-Nets to Colored Petri-Nets
	Representing Control-Flow in Colored Petri-Nets

	Adopted Conventions
	Dealing with simultaneous reaching branches
	Dealing with fault handling operations

	Basic Control-Flow Patterns
	Sequence
	Parallel Split
	Synchronization
	Exclusive Choice
	Simple Merge

	Advanced Branching and Synchronization Patterns
	Multi-Choice
	Structured Synchronizing Merge
	Multi-Merge
	Structured Discriminator
	Blocking Discriminator
	Canceling Discriminator
	Structured Partial Join
	Blocking Partial Join
	Canceling Partial Join
	Generalized AND-Join
	Local Synchronizing Merge
	General Synchronizing Merge
	Thread Merge
	Thread Split

	Multiple Instance Patterns
	Multiple Instances without Synchronization
	Multiple Instances with a priori Design-Time Knowledge
	Multiple Instances with a priori Run-Time Knowledge
	Multiple Instances without a priori Run-Time Knowledge
	Static Partial Join for Multiple Instances
	Canceling Partial Join for Multiple Instances
	Dynamic Partial Join for Multiple Instances

	State-based Patterns
	Deferred Choice
	Interleaved Parallel Routing
	Milestone
	Critical Section
	Interleaved Routing

	Cancellation and Force Completion Patterns
	Cancel Task
	Cancel Case
	Cancel Region
	Cancel Multiple Instance Activity
	Complete Multiple Instance Activity

	Iteration Patterns
	Arbitrary Cycles
	Structured Loop
	Recursion

	Termination Patterns
	Implicit Termination
	Explicit Termination

	Trigger Patterns
	Transient Trigger
	Persistent Trigger

	Summary Table of JOLIE Control-Flow Patterns Support
	Resource Patterns
	What a ``Resource'' is
	Adopted Conventions
	Human resources, non-Human resources and patterns implementations in JOLIE

	Resource Patterns and Workflow Structures
	Work distribution to resources

	Creation Patterns
	Direct Distribution
	Role-Based Distribution
	Deferred Distribution
	Authorization
	Separation of Duties
	Case Handling
	Retain Familiar
	Capability-Based Distribution
	History-Based Distribution
	Organizational Distribution
	Automatic Execution

	Push Patterns
	Distribution by Offer - Single Resource
	Distribution by Offer - Multiple Resources
	Distribution by Allocation - Single Resource
	Random Allocation
	Round Robin Allocation
	Shortest Queue
	Early Distribution
	Distribution on Enablement
	Late Distribution

	Pull Patterns
	Resource-Initiated Allocation
	Resource-Initiated Execution - Allocated Work Item
	Resource-Initiated Execution - Offered Work Item
	System-Determined Work Queue Content
	Resource-Determined Work Queue Content
	Selection Autonomy

	Detour Patterns
	Delegation
	Escalation
	Deallocation
	Stateful Reallocation
	Stateless Reallocation
	Suspension-Resumption
	Skip
	Redo
	Pre-Do

	Auto-Start Patterns
	Commencement on Creation
	Commencement on Allocation
	Piled Execution
	Chained Execution

	Visibility Patterns
	Configurable Unallocated Work Item Visibility
	Configurable Allocated Work Item Visibility

	Multiple Resource Patterns
	Simultaneous Execution
	Additional Resources

	Summary Table of JOLIE Resource Patterns Support

	Conclusions
	On Workflow Patterns & JOLIE
	Future works

	On JOLIE language
	On Service Oriented Computing and Business Process Automation

