
Reachability Analysis of
Function-as-a-Service Scheduling Policies

Giuseppe De Palma1,2 , Saverio Giallorenzo1,2 ,

Jacopo Mauro3 , Matteo Trentin1,2,3 , and Gianluigi Zavattaro1,2

1 Università di Bologna, Italy{giuseppe.depalma2,saverio.giallorenzo2,
matteo.trentin2,gianluigi.zavattaro}@unibo.it

2 OLAS research team, INRIA, France
3 University of Southern Denmark, Denmark mauro@imada.sdu.dk

Abstract. Functions-as-a-Service (FaaS) is a Serverless Cloud paradigm
where a platform manages the execution (e.g., scheduling, runtime environ-
ments) of stateless functions. Recently, domain-specific languages like APP
and aAPP have been developed to express per-function scheduling policies,
e.g., enforcing the allocation of functions on nodes that enjoy low data-access
latencies thanks to proximity and connection pooling.
Reachability analysis of FaaS scheduling policies is fundamental to check
quality-of-service properties, like preventing the scheduling of functions on
workers which cannot sustain expected performance levels, or verifying se-
curity properties, e.g., that safety-critical functions cannot run on nodes with
untrusted ones. We investigate the complexity of reachability analysis for APP
and aAPP– the latter extends APP with constraints for placing functions ac-
cording to the absence/presence of other (anti-)affine functions on workers. We
show that reachability analysis has linear time complexity in APP, while the
addition of affinities (in aAPP) makes reachability PSPACE. Given the com-
putational complexity correspondence between reachability analysis in aAPP
and automatic planning problems (both are in PSPACE), we investigate the
exploitability of planners, i.e., tools specialised for solving planning problems
for the realisation of static analysers of reachability-like problems for aAPP.

1 Introduction

Functions-as-a-Service (FaaS) is a programming paradigm supported by the Serverless
Cloud execution model [30]. In FaaS, developers implement a distributed architecture
by composing stateless functions and delegate concerns like execution runtimes and
resource allocation to the serverless platform, thus focusing on writing code that imple-
ments business logic rather than worrying about infrastructure management. The main
cloud providers offer FaaS [5,25,38] and open-source alternatives exist too [6,42,27,22].

A common denominator of these platforms is that they manage the allocation
of functions over the available computing resources, also called workers, following
opinionated policies that favour some performance principle. Indeed, effects like code
locality [27] – due to latencies in loading function code and runtimes – or session

https://orcid.org/0000-0002-3016-0115
https://orcid.org/0000-0002-3658-6395
https://orcid.org/0000-0002-5285-2868
https://orcid.org/0000-0003-3305-2758
https://orcid.org/0000-0003-3313-6409

2 G. De Palma et al.

locality [27] – due to the need to authenticate and open new sessions to interact with
other services – can substantially increase the run time of functions. The breadth
of the design space of serverless scheduling policies is witnessed by the growing
literature focused on techniques that mix one or more of these locality principles
to increase the performance of function execution, assuming some locality-bound
traits of functions [45,41,35,1,47,55,40,31,53,50,51,54,48,12,32,9,10,29,33,52]. Besides
performance, functions can have functional requirements that the scheduler shall con-
sider. For example, users might want to ward off allocating their functions alongside
“untrusted” ones – common threat vectors in serverless are limited function isolation
and the ability of functions to (surreptitiously) gather weaponisable information on
the runtime, the infrastructure, and the other tenants [8,57,4,15].

Although one can mix different principles to expand the profile coverage of a
given platform-wide scheduler policy, the latter hardly suits all kinds of scenarios.
This shortcoming motivated the introduction of a domain-specific, platform-agnostic,
declarative language for expressing Allocation Priority Policies (which inspired the
name of the language APP), for specifying custom function allocation policies [21,17].
Thanks to APP, the same platform can support different scheduling policies, each
tailored to meet the specific needs of a set of related functions. APP has been validated
by implementing a serverless platform as an extension of the open-source Apache
OpenWhisk project – the APP-based variant outperforms vanilla OpenWhisk in
several locality-bound scenarios [21,17].

Recently, De Palma et al. [20] presented an extension of APP for expressing
affinity-aware policies for serverless function scheduling (the addition of affinity-
awareness to APP inspired the name aAPP for this language extension). Specifically,
aAPP extends APP with the possibility to impose that one function can be placed
on a worker only if another function is present (affinity) or absent (anti-affinity) on
that worker. These constraints are useful to avoid the co-location of functions (e.g.,
trusted functions cannot be placed on a worker which is executing untrusted ones)
or to guarantee their co-location (e.g., a function accessing a database can be placed
on a worker only if it hosts a function able to open a connection with that database).

Contributions. APP and its extension aAPP have been validated experimen-
tally [21,17,20] via FaaS benchmarks and case studies. However, there is no formal
study nor comparison between the two. We cover this gap by presenting the aAPP-
calculus, in Sec. 2, which is an abstract formal model of function scheduling in FaaS sys-
tems where functions are scheduled following aAPP scripts. Since aAPP is an extension
of APP, we identify a fragment of the aAPP-calculus corresponding to APP, that we
name APP-calculus. We use our formal model to investigate whether aAPP is more ex-
pressive than APP by showing that static verification of properties of policies, relevant
in the context of function scheduling, is more complex in aAPP than in APP. Namely,
we formally define, in Sec. 5, the properties of reachability, i.e., checking if a function f
can be deployed on a targeted worker, and of co-occurrence, i.e., checking if two func-
tions f and g can be co-located, so they can run simultaneously on a targeted worker.

In Sec. 4, we start by investigating reachability and co-occurrence in the APP-
calculus, and we prove that both problems have linear-time complexity. Then, in
Sec. 5, we show that the problems become PSPACE-complete when we move to the

Reachability Analysis of Function-as-a-Service Scheduling Policies 3

aAPP-calculus – for presentation, here we discuss proof strategy insights while detailed
proofs can be found in the companion paper [19]. These results formally witnesses
the increase in expressiveness from APP to aAPP, given that the latter can specify
scheduling policies much harder to formally verify. In Sec. 6, we further solidify the
above results by showing that the jump in complexity comes from affinity constraints.
Indeed, we show that in aAPP without affinity reachability and co-occurrence preserve
a linear complexity while in aAPP without anti-affinity the problems become NP-hard.

The proof of PSPACE-completeness of the reachability problems in the aAPP-
calculus formalises a complexity correspondence with automated planning prob-
lems [24]. In the light of the rich literature on automated planning and the availability
of planners (tools for solving such problems), in Sec. 7, we introduce a static analyser
for aAPP scripts which leverages planners. In particular, our analyser translates
both the semantics of aAPP (scripts) and the reachability problems of interest into
PDDL [23], the de-facto standard input language for planners. In this way, the
analyser can use any planner capable of solving the problems we express in PDDL
with numeric fluents – the latter are necessary for modelling function occurrences
on workers and their resource usage.

We position our contributions in Sec. 8 and discuss future steps in Sec. 9.

2 Preliminaries: the APP Language and the aAPP Extension

We present APP [21,17] and its affinity-aware extension aAPP [20].
Since aAPP is a syntactic extension of APP, we directly report in Fig. 1 the

syntax of aAPP, which APP shares, except for the affinity clause in the syntax
of blocks. From here on, we indicate syntactic units in italics, optional fragments
in grey , terminals in monospace, and lists with bars. The syntax draws inspiration

from YAML [58], a renowned data-serialisation language for configuration files—e.g.,
many modern tools use the format, like Kubernetes, Ansible, and Docker.4 The idea is
that an APP/aAPP script defines a scheduling policy where functions have associated
a tag that identifies their scheduling information. Essentially, a tag corresponds to
a list of blocks that indicate either some collection of workers, each identified by a
worker id, or the universal *. The scheduling of a function works by retrieving its tag
and then its scheduling information, which includes one or more blocks of possible
workers. Worker selection happens by iteratively checking the blocks from top to
bottom, picking the first block with a non-empty list of valid workers and selecting
one worker of that list according to the strategy defined by the block (described later).

In case all the blocks associated with a tag fail, the followup clause specifies what
to do next: either fail, to terminate the attempt to schedule the function, or default,
to try scheduling the function as if associated with the special default tag. More
precisely, we consider default as a special tag name with which we can associate
generic scheduling policies which are independent of the function peculiarities; if the
specific function scheduling policies fail, the followup clause set to default indicates
that the generic default policy can be used.

4 While aAPP scripts are YAML-compliant, for presentation, we slightly stylise the syntax
to increase readability. For instance, we omit quotes around strings, e.g., * instead of "*".

4 G. De Palma et al.

id∈Identifiers n ∈ N

app ::= −tag

tag ::= id : − block followup : f opt

block ::= workers : w opt strategy : s opt

invalidate : − i opt affinity : − a opt

w opt ::= * | − id
s opt ::= any | best first
i opt ::= capacity used n% | max concurrent invocations n
a opt ::= id | !id
f opt ::= default | fail

Fig. 1. aAPP syntax (APP omits the affinity clause).

- f_tag:
- workers:

- local_w1
- local_w2

strategy: best first
invalidate:

- capacity used 80%
affinity: g_tag ,! h_tag

- workers:
- public_w1

followup: fail

Fig. 2. Example aAPP script.

Each block can define a strategy for worker selection (any selects one of the
available workers non-deterministically from the list; best first selects the first
available worker in the list), a list of constraints that invalidates a worker for the
allocation (capacity used invalidates a worker if its resource occupation reaches the
set threshold; max concurrent invocations invalidates a worker if it hosts more than
the specified number of functions). The aAPP extension includes the affinity clause,
which carries a list containing affine tag identifiers id and anti-affine tags, repre-
sented by negated tag identifiers !id. This clause introduces an invalidation condition
determined by the absence (affinity) or presence (anti-affinity) of functions on workers.

As an example, Fig. 2 shows an aAPP script carrying the scheduling information
for functions tagged f tag, which includes two blocks. The first restricts the allocation
of the function on the workers labelled local_w1 and local_w2 and the second on
public_w1. The first block specifies as invalid (i.e., unable to host the function under
scheduling) the workers that reach a memory consumption above 80%. Since the
strategy is best first, we allocate the function on the first valid worker; if none
are valid, we proceed with the next block. The function has affinity with g tag and
anti-affinity with h tag. Hence, a worker is valid if it hosts at least a function with
tag g tag and no functions with tag h tag. If both the first and second blocks did
not find a valid worker, the scheduling of the function fails.

As a final remark, note that the (anti-)affinity relation in aAPP is “directional”—
similarly to the one introduced by Microsoft in its IaaS offering [37]. In particular, it
does not impose any properties like symmetry on affinity or anti-affinity. The reason
for avoiding these additional constraints is to allow aAPP to capture as many useful
scenarios as possible, which imposing properties like symmetry would prevent.5

3 The aAPP-calculus and its Fragment APP-calculus

We introduce the aAPP-calculus to formally model function scheduling in FaaS sys-
tems governed by aAPP scripts. We represent the states of the FaaS systems with pairs

5 For example, if we had symmetric anti-affinity, it would not capture typical scenarios
where e.g., init is a seeder for a database and query manipulates that data. We need
init to run before query but not where query is already running, while query shall run
where init is present, i.e., init is anti-affine with query but query is affine with init.

Reachability Analysis of Function-as-a-Service Scheduling Policies 5

⟨N,∆⟩ where N is a network of workers and ∆ is a scheduling policy. The calculus

defines labelled transitions ⟨N,∆⟩ α−→⟨N ′,∆⟩ that indicate that the state ⟨N,∆⟩ can
change into ⟨N ′,∆⟩ as effect of the occurrence of the event α. The events ranged by
α are either f

→

w, denoting the scheduling of function f on worker w, and f →w, repre-
senting the removal of function f from worker w because f terminated its execution.

The definition of the calculus is parametric w.r.t. the workers and the functions.

Definition 1 (Workers and Functions). We assume given the set W (ranged
over by w) of the worker identifiers and the set F (ranged over by f) of the function
identifiers. For each w∈W we use cap(w) to denote the capacity of the worker w
(i.e., a strictly positive number quantifying the total resources of the worker w) and
for each f∈F we use res(f) to denote the resources needed by the function f (i.e.,
a strictly positive number quantifying the resources that the function f must acquire
from the worker where it is scheduled).

We also use two additional sets: the selection strategies, S≜{any, best first}
(ranged over by s), and the set of the invalidation conditions, I≜{capacity used n%,
max concurrent invocations n, affine F, anti affine F | n∈N,F ⊆F} (ranged
over by i). Note that the selection strategies, any and best first, as well as the
invalidation conditions, capacity used n%, max concurrent invocations n, precisely
correspond to the syntactic elements of aAPP/APP (cf. Fig. 1). Contrarily to aAPP’s
syntax, we do not treat affinity as a separate entity and include it with the other
invalidation conditions by adding affine F , meaning that at least one function in F
should be present, and anti affine F , requiring the absence of all the functions in F .

We start by defining the network of workers N, which intuitively associates to
each worker the list of functions currently scheduled on it.

Definition 2 (Network of workers). A network of workers N∈N ≜W→List(F)
is a function that associates to a worker the list f of functions currently scheduled on
that worker.

In the following, N∪(w 7→f) denotes a network of workers obtained by extending
the network N with the mapping from the worker w to the list of functions f.6

Moving on to the definition of the scheduling policy ∆, it intuitively associates to
each function its list of scheduling blocks, each carrying the list of workers, strategies,
and invalidation conditions that determine the scheduling of the function.

Definition 3 (Scheduling blocks and policy). A scheduling block b ∈ B ≜
(List(W),S,List(I)) is a triple (w,s,i) where w is a list of workers, s is a selection
strategy, and i is a list of invalidation conditions. A scheduling policy ∆∈D≜F→
List(B) is a mapping that associates to each function f∈F the list b of blocks that
define the scheduling of f on workers.

As for networks, in the following, we denote with ∆∪(f 7→b) a policy obtained by
extending the policy ∆ with the mapping from function f to the the list of blocks b.7

6 The notation assumes that w does not belong to the domain of N.
7 The notation assumes that f does not belong to the domain of ∆.

6 G. De Palma et al.

[[
− tag :: − default:− block

]]
=
[[
− tag :: − default:− block followup: fail

]]
[[
− tag :: − default:− block followup: f opt

]]
=

⋃
t ∈ tag

{
[[t]][[block]]

}
[[
id : − block

]]
b=

[[
id : − block followup : default

]]
b =

⋃
f ∈ id

{
(f 7→ [[block]] ::b)

}
[[
id : − block followup : fail

]]
b =

⋃
f ∈ id

{
(f 7→ [[block]])

}
[[workers: w opt •]]=

{
([[w opt]],s,i) if (s,i)=[[•]]
([[w opt]],any,ε) otherwise

[[strategy : s opt •]]=

{
(s opt,i) if (−,i)=[[•]]
(s opt,ε) otherwise

[[
invalidate : − i opt •

]]
=

{
(any,i opt ::i) if (−,i)=[[•]]
(any,i opt) otherwise

[[
affinity: a opt

]]
=(any,

[[
a opt

]]
)

[[
a opt ::a opt

]]
=

{
affine id ::

[[
a opt

]]
if a opt=id

anti affine id ::
[[
a opt

]]
if a opt=!id

[[ε]] = ε
[[
− id

]]
= id

[[*]]=w1 ::w2 :: ··· ::wn with W={w1,w2,···,wn}

Fig. 3. aAPP syntax encoding.

From aAPP to ∆ The straightforward encoding [[]] – defined inductively in Fig. 3
– determines the relationship between an aAPP script and its formal representation
within a policy ∆ in the aAPP-calculus. The encoding formalises the translation from
aAPP to ∆, assuming a sorting of aAPP scripts where the default tag is the last
element – to keep the definition in Fig. 3 compact, we use • as a pattern-matching
variable. We slightly abuse the notation so that a tag f tag denotes also the set of
functions tagged with f tag. Moreover, we extend the notation of lists, denoting with ε
the empty list and with e ::l a list obtained by adding the element e in front of the list l.

For instance, f ∈ f tag means that f has tag f tag. For each f ∈ f tag we
simply add in ∆ a mapping from f to the list of blocks associated with f tag in the
aAPP script. We implement the semantics of the followup clause – where the policy
follows the logic of the default blocks if none of the tag’s blocks led to a successful
scheduling – by appending the list of blocks of the default tag to the tag’s blocks.
This concatenation happens only when the followup value of the tag is set to default.

Formally, for each block in the aAPP script, we consider a corresponding aAPP-
calculus block (w,s,i), where w is the list of the specified workers (all the workers, in
case of *), s is the selection strategy, and i contains all the invalidation conditions in the
aAPP script. These conditions include the sequence of affinity-based invalidations of the
form affine g tag and anti affine h tag resp. for each g tag and !h tag occurring
in the affinity clause – affine g tag indicates affinity with functions tagged g tag
and anti affine h tag indicates anti-affinity with functions tagged h tag.

Operational semantics We are ready to define the operational semantics of aAPP-
calculus. Formally, we define a labelled transition system on the set of states States≜
{⟨N,∆⟩ | N∈N ,∆∈D,} (which contains the set of possible configurations of the mod-
elled FaaS system represented as pairs ⟨N,∆⟩ where N is a network of workers and ∆
is a scheduling policy) and the set of labels Labels≜{f → w,f →w | f∈F,w∈W} (where
f

→

w represents the scheduling of an instance of function f on worker w while f →w rep-
resents the removal of f from w, occurring when the execution of f on w terminates).

Reachability Analysis of Function-as-a-Service Scheduling Policies 7

[start]
b ▷(w,s,i)::b′ valid(f,w,i,f)

⟨N∪(w 7→f), ∆∪(f 7→b)⟩
f

→

w

−−−→⟨N∪(w 7→f ::f), ∆∪(f 7→b)⟩

[rm]
f∈f

⟨N∪(w 7→f), ∆⟩
f →w−−−→⟨N∪(w 7→f\f), ∆⟩

[next]
⟨N, ∆∪(f 7→b′)⟩

f

→

w

−−−→⟨N ′, ∆′⟩ b ▷(w′,s,i)::b′ ¬valid(f,w′,i,N(w′))

⟨N, ∆∪(f 7→b)⟩
f

→

w

−−−→⟨N ′, ∆∪(f 7→b)⟩
▷ relation(

s=any ∧ w∈w
)
∨
(
s=best first ∧ w=w ::w′

)
(w,s,i)::b ▷ (w,s,i)::(w\w,s,i)::b

b ▷(w,s,i)::b′

(ε,s′,i′)::b ▷ (w,s,i)::b′

valid predicate

valid(f,w,i1 :: ··· ::in,f) = occ(f ::f)≤cap(w) ∧
∧

j∈{1,..,n}

check(f,w,ij,f)

check(f,w,i,f)=



true if i=capacity used n% ∧ 100∗occ(f ::f)/cap(w) ≤n

true if i=max concurrent invocations n ∧ |f ::f|≤n

true if i=anti affine F ∧ ∀g∈F.g∉f

true if i=affine F ∧ ∃g∈F.g∈f

false otherwise

occ(f)=
∑
f∈f

res(f)

Fig. 4. aAPP semantics.

Definition 4 (aAPP-calculus and APP-calculus). The aAPP-calculus models
function scheduling in FaaS systems by means of a labelled transition system (States×
Labels×States) defined as the minimal transition system satisfying the rules in
Fig. 4. We call APP-calculus the fragment of the aAPP-calculus where the invalidation
conditions affine F and anti affine F are not used.

Before discussing the formal definition of the semantics of the calculus, we extend
the notation for lists so that: e∈l means that e belongs to l (e∉l is its negation), l\e
is a list obtained by removing the first occurrence of e from l, and |l| is the length of l.

In the definition, we use the auxiliary ▷ relation and valid predicate, specified in
Fig. 4. The relation ▷ is defined on lists of scheduling blocks with the aim of extracting,
from a given list, one worker to be considered for scheduling. Namely, b ▷(w,s,i)::b′

means that w is one of the workers that can be selected from the first (non-empty)
scheduling block of b, and s and i are the selection strategy and the invalidation
conditions of the block from which w has been extracted. The list b′ contains the
remaining workers and scheduling blocks. The predicate valid(f,w,i1 :: ··· :: in,f)

8 G. De Palma et al.

checks whether a function f can be scheduled on w assuming invalidation conditions
i1 :: ··· ::in, and that the worker w currently hosts the functions f, i.e., N(w)=f. In
the definition of the predicate, occ returns the occupancy of a list of functions (using
res to obtain the occupancy of a single function), cap calculates the capacity of a
worker, and check verifies whether a condition i the scheduling of a function f on
a worker w, given a list of functions f already present on w.

We are now ready to discuss the operational semantics rules. Rule [start] states that
if the worker w (extracted from the list of scheduling blocks of f via the ▷ relation) is
valid for the scheduling of the function f (validity is checked with the valid predicate)
then the current state can evolve by adding an instance of f to the list of functions
currently scheduled on w. Rule [rm] simply removes an instance of function f from
the list of functions currently scheduled on a worker w. This rule models the removal
of a function from a worker when its execution has been completed. Lastly, rule [next]

models the case when an attempt to schedule a function f fails (due to the invalidation
conditions) and it allows the remaining workers/scheduling blocks to schedule f.

We present a couple of examples of derivations which involve the rules [start] and
[next] (rule [rm] has a rather straightforward application). We consider the function
f with consumed resources res(f)=5 and scheduling policy ∆=(f 7→b), where b=
(w ::w′, best first, capacity used 50%), and initial network N=(w 7→ε)∪(w′ 7→ε),
with workers w and w′ with capacity cap(w)=cap(w′)=10.

First, we can schedule f on w using the rule [start] (for brevity, we use f to denote
the list f ::ε in networks).

[start]

b ▷(w,best first,capacity used 50%)::(w′,best first,capacity used 50%)
valid(f,w,capacity used 50%,ε)

⟨(w 7→ε)∪(w′ 7→ε), (f 7→b)⟩
f

→

w
−−−→⟨(w 7→f)∪(w′ 7→ε), (f 7→b)⟩

Let N ′ be the reached network (w 7→ f)∪(w′ 7→ ε). If we try to schedule f in
⟨N ′, (f 7→ b)⟩, we will allocate it on w′ since w cannot host f without exceeding
the capacity used 50% condition. This is formalised by the transition below, where
s=best first and i=capacity used 50%, for brevity.

[next]

[start]
b ▷(w′,s,i)::ε valid(f,w′,i,ε)

⟨N ′, (f 7→(w′,s,i))⟩
f

→

w′

−−−→⟨(w 7→f)∪(w′ 7→f), (f 7→(w′,s,i))⟩
b ▷(w,s,i)::(w′,s,i) ¬valid(f,w,i,f)

⟨N ′, (f 7→b)⟩
f

→

w′

−−−→⟨(w 7→f)∪(w′ 7→f), (f 7→b)⟩

In the remainder, we use the following notation: given the sequence of labels α=

α1...αn, we use ⟨N,∆⟩ α
↪−→⟨Nn,∆⟩ to denote that ⟨N,∆⟩ α1−−→ ⟨N1,∆⟩ ... αn−−→ ⟨Nn,∆⟩.

We close the section with the definition of the problems we consider in our
development: reachability concerns checking whether a function f can be scheduled
on a worker w starting from an initial network of workers, while co-occurrence checks
whether two functions f and g can be both present in the list of functions scheduled

Reachability Analysis of Function-as-a-Service Scheduling Policies 9

on a worker w. By initial network of workers, we mean a network N where all workers
have no functions already scheduled, i.e., N(w)=ε for every available worker w.

Definition 5 (Reachability). Given a scheduling policy ∆, an initial network N,
a function f, and a worker w, the reachability problem Reach(∆,N,f,w) consists

of checking if there exists a sequence of labels α such that ⟨N,∆⟩ α
↪−→ ⟨N ′,∆⟩ with

N ′(w)=f such that f∈f.

Definition 6 (Co-occurrence). Given a scheduling policy ∆, an initial network N,
two functions f and g, and a worker w, the co-occurrence problem CoOccur(∆,N,f,g,w)

consists of checking if there exists a sequence of labels α such that ⟨N,∆⟩ α
↪−→⟨N ′,∆⟩

with N ′(w)=f such that f∈f and g∈f\f.

4 Reachability and Co-occurrence in the APP-calculus

We prove that both reachability and co-occurrence have linear time complexity in the
APP-calculus.8 The result follows from two properties formalised in Lemmas 1 and 2.

Lemma 1 formalises a sort of anti-monotonic property of scheduling: if we can
schedule a function f on a worker, we can do it if the worker hosted fewer functions.

Lemma 1. Let i be a list of invalidation conditions that does not contain invali-
dations of the kind affine F , N a network of workers, ∆ a scheduling policy, w a
worker belonging to the domain of N, and f, g functions belonging to the domain
of ∆. We have that valid(f,w,i,f) implies valid(f,w,i,f\f ′), for every function f ′.

Notice that Lemma 1 does not hold if we consider also the invalidation conditions
affine F . In fact, if f ∈ F , the check predicate in Fig. 4 checks whether f ∈ f,
and if there is only one occurrence of f in f we have that f ∉(f\f). We can then
conclude that the property stated by the above lemma does not hold in the full
aAPP-calculus due to the presence of the invalidation conditions affine F , while it
holds in the APP-calculus (and in a fragment of the aAPP-calculus which does does
not use affine F , named negatively-polarised fragment of aAPP in Sec. 6).

Lemma 2 intuitively states that, when considering the reachability on a worker w,
we can consider a simpler script with only the blocks that involve w and remove the
other workers from said blocks; as defined by the auxiliary function simple. Formally,
simple(∆,w)=∆′ where ∆′ has the same domain as ∆ and if ∆(f)=b then ∆′(f)=

fltr(b,w) where fltr(ε,w)=ε and fltr((w,s,i)::b,w)=

{
(w,s,i)::fltr(b,w) if w∈w

fltr(b,w) otherwise

Intuitively, Lemma 2 holds because the other workers (not w) that have higher priority
than w can be invalidated by assigning functions to them until they reach full capacity.

Lemma 2. Given a scheduling policy ∆, an initial network of workers N, a function
f, and a worker w, we have that Reach(∆,N,f,w) iff Reach(simple(∆,w),N,f,w).

8 We recall that details about the proofs of our results are in the companion paper [19]. In
this paper, we give an idea of the proof structure and discuss the proof techniques.

10 G. De Palma et al.

We now move to the proof that the reachability problem has linear time com-
plexity in the APP-calculus. Intuitively, the proof proceed as follows. In the light
of Lemma 2 we can restrict to the simplest simple(∆,w) scheduling policy which
considers only the target worker w. If simple(∆,w) contains at least one scheduling
block capable of scheduling the function f on w when w is empty, then we know
that Reach(∆,N,f,w). On the opposite direction, if Reach(∆,N,f,w) we know that
there is a sequence of scheduling events ending with the scheduling of f on w. By
the anti-monotonic property formalized in Lemma 1, we have that the scheduling
of f on w can be anticipated at the beginning (when w is empty). Verifying whether
there is a scheduling blocks for function f on an empty worker w in simple(∆,w)
corresponds to a linear-time check of the lists of invalidation policies associated with
blocks of f and check if the invalidation conditions are not met.

Theorem 1. Reach(∆,N,f,w) has linear time complexity in the APP-calculus.

Similarly, we prove that also co-occurrence has linear time complexity by reducing
the problem to solving the reachability problem twice.

Theorem 2. CoOccur(∆,N,f,g,w) has linear time complexity in the APP-calculus.

5 Reachability and Co-occurrence in the aAPP-calculus

We now prove that both reachability and co-occurrence become PSPACE-complete
in the full aAPP-calculus, i.e., when consider (anti-)affinity constraints. While this
result formalises the expressiveness gap – i.e., aAPP can specify more sophisticated
scheduling policies than APP– it severely complicates reachability verification, which
motivates the introduction of our planner-based tool in Sec. 7.

To prove that reachability is PSPACE-complete in the aAPP-calculus we first
need to show that the problem is in PSPACE. This first result follows from the
following observations: (i) a network N ∈N can be represented in memory by a
matrix (with a row for each worker, a column for each function, and the number of
instances of a function on a worker stored in the corresponding cell) which occupies a
polynomial amount of space; (ii) reachability can be detected with a nondeterministic
algorithm using that amount of space; (iii) NPSPACE coincides with PSPACE [46].
Then we need to prove that the problem is PSPACE-hard. This can be proved by
reduction from the single post-condition variant of PLANSAT which was proved to
be PSPACE-hard by Bylander [11]. In a few words, this problem consists of checking
whether a target state can be reached starting from an initial state represented
by a finite set of ground atomic conditions that are considered initially true, by
applying operators that change the current state by checking some positive and
negative pre-conditions (the positive ones should hold, the negative ones should not
hold) and then modifying the state by making a ground atomic condition either
true or false. This problem can be modeled in aAPP by means of an appropriate
encoding which represents each ground atomic condition with two possible functions,
one representing the condition true and one representing the condition false. The
operators are modeled by means of a scheduling policy capable of: (i) scheduling a

Reachability Analysis of Function-as-a-Service Scheduling Policies 11

specific function fo representing one operator o only if the functions representing the
corresponding pre-conditions are already scheduled, and (ii) scheduling the function
representing the post-condition of o only if the function fo is already scheduled. We use
affinity to check the presence of the functions representing the pre-conditions, while
anti-affinity is used to guarantee that if the post-condition requires to change the value
of a ground atomic condition, the function representing the new value true (resp. false)
is not scheduled contemporaneously with the opposite previous value false (resp. true).

Theorem 3. Reach(∆,N,f,w) is PSPACE-complete in the aAPP-calculus.

We have that the co-occurrence problem can be reduced to the reachability
problem. This allows us to conclude the following.

Corollary 1. CoOccur(∆,N,f,g,w) is PSPACE-complete in the aAPP-calculus.

6 Reachability and Co-Occurence with Polarised Affinities

We move to investigate polarised aAPP sublanguages, where one can express either
affinity or anti-affinity but not mix them. Practically, we want to understand if we can
use algorithmically tractable analyses with fragments of aAPP, e.g., when a script uses
only the syntax of a polarised fragment. We call positively-polarised aAPP the variant
with only affinity and negatively-polarised aAPP the one with only anti-affinity.

The calculus corresponding to positively-polarised aAPP is the fragment of the
aAPP-calculus that does not contain invalidation conditions of the kind anti affine F
(generated by the forbidden anti-affinity requirements); while the calculus correspond-
ing to negatively-polarised aAPP is the fragment of the aAPP-calculus that does not
contain invalidation conditions of the kind affine F (generated by the forbidden
affinity requirements). We study the complexity of the reachability and co-occurrence
problems for the two fragments. We show that in the positively-polarised fragment
the problems are NP-hard (hence not tractable unless P=NP), while in the negatively-
polarised fragment both problems have linear time complexity.

First, we prove that in the positively-polarised fragment of the aAPP-calculus the
reachability and co-occurrence problems are NP-hard. The proof is by reduction from
3SAT, a well known NP-hard problem [14] consisting of checking the satisfiability of
a boolean formula in conjunctive normal form, where each clause has at most three
literals (where a literal is a boolean variable or its negation). The reduction is based on
a scheduling policy which allows for the initial scheduling of functions which represent
a possible assignment of boolean values to the variables in the formula. Then, affinity
is used to allow the scheduling of functions representing whether a given clause is
satisfied by the assignment. These functions are forced to be scheduled in sequence,
from the first clause to the last one. In this way, the functions corresponding to the
last clause can be scheduled if-and-only-if all the clauses can be satisfied, i.e., the
formula is satisfiable.

Theorem 4. Reach(∆,N, f, w) and CoOccur(∆,N, f, g, w) are NP-hard in the
positively-polarised fragment of the aAPP-calculus.

12 G. De Palma et al.

1 (:goal
2 (= (number_of_f_in_W f w) 1)
3)

1 (:goal
2 (and (= (number_of_f_in_W f1 w) 1)
3 (= (number_of_f_in_W f2 w) 1)
4))

Fig. 5. Encoding of Reach and CoOccur in PDDL, on the left and right side respectively.

Note that the proof of linear time complexity of Reach(∆,N,f,w) and CoOc-
cur(∆,N,f, g,w) cannot be applied to the positively-polarised fragment of the
aAPP-calculus because Lemma 1 considers scheduling policies that do not contain
invalidations of the kind affine F . On the other hand, the proof can be applied to the
negatively-polarised fragment of the aAPP-calculus, thus we can conclude the following.

Theorem 5. Reach(∆,N,f,w) and CoOccur(∆,N,f,g,w) have linear time complexity
in the negatively-polarised fragment of the aAPP-calculus.

7 Automated verification of aAPP scripts

Given the results of the Reach and CoOccur problems for APP and aAPP, we have a
firmer grasp of how to automate their analysis, provided an initial configuration. Since
we proved that the complexity of this analysis for aAPP is PSPACE-hard, we present
a proof-of-concept solution developed on existing solvers for that class of problems.

Specifically, we encode the Reach and CoOccur problems as automated planning
tasks. We choose to use PDDL [23], i.e., the de-facto standard for encoding planning
problems. Mainly, PDDL specifications include two parts: a domain description, regard-
ing all available actions and their preconditions and effects, and a problem description,
modelling the initial state of the specific problem instance and the desired goals.

The choice of PDDL has many advantages, the main ones include: i) it lets us use
different dedicated and efficient planning solvers, ii) it naturally provides a witness
(i.e., a sequence of actions) leading to the violation of some desired property (e.g., if two
functions shall be anti-affine and we find an instance where they co-occur, we can see
a trace that produces the offending result), and iii) it lets users express more elaborate
goal configurations than reachability and co-occurrence (e.g., we can ask if there exists
a worker that can host a given set of functions and still preserve a certain capacity).

7.1 Encoding of the PDDL domain

To define the domain, we encoded the semantic rules reported in Fig. 4. The two
main encoded actions are the (start, ,) and (done, ,) transitions. Each action
alters the state appropriately, e.g., removing a function from a worker increases
its available capacity accordingly. The encoding of the rules uses a combination of
boolean predicates (e.g., for the affinity of a block) and numerical functions (e.g., for
capacity constraints). We did not encode the (fail, ,) transition since it does not
affect the state– it is equivalent to a null operation in the context of a plan.

Reachability Analysis of Function-as-a-Service Scheduling Policies 13

7.2 Encoding of the PDDL problems

Since aAPP’s semantics works on aAPP scripts and configurations (cf. Fig. 4), we
define the problem by encoding an input aAPP script with a companion configuration
definition, which describes the existing workers and functions with the respective
capacities/occupancies – the latter, defined using PDDL numeric fluents to model non-
binary, discrete resources. Given a configuration, in its initial state workers have no allo-
cated functions and maximal capacity. We define the Reach and CoOccur problems us-
ing of the proposition number of f in W, which indicates the number of copies of a func-
tion on a given worker in the final state. The code on the left of Fig. 5 exemplifies the
Reach problem, where we check if we can satisfy the goal of allocating at least one copy
of function f on worker w; on the right of Fig. 5, we realise CoOccur as the conjunction
of two number of f in W, checking if worker w can host both functions f1 and f2.

7.3 Tool Components and Support for Advanced Queries, an Example

To provide a smoother experience to users, we provide users with a simple, YAML-like
notation for configurations (exemplified in Fig. 6) and translators that generate the
PDDL encoding of part of the problem, given a configuration file and an aAPP script.
The last piece of the problem, required from the user, is the definition of the goal, which
uses the PDDL notation. The encoding and its companion tools are available at [16].

We illustrate the experience of using our analysis tool by defining a configuration,
an aAPP script, and a property. Let us consider the configuration in Fig. 6, with two
workers, local and public, and three functions f, u and g, resp. tagged private,
unsafe, and generic. We want to define an aAPP script such that it never happens
that we allocate fs with other non-f functions. We encode this property in Fig. 7,
where we use existential quantifiers to range over both workers and functions and check
whether we can find a worker that can host both f and a function different from f. If
the planner is unable to find a solution, the property holds for the provided aAPP script.

In Fig. 8, we show a possible candidate script. Running the planner with (the
encodings of) the excerpts in Fig. 6 and Fig. 8 and the goal from Fig. 7, we obtain
the output in the red box at the centre of Fig. 10. The output is a trace of actions
that satisfies the goal; namely, the allocation of f with another function on the same
worker. Specifically, we found that f can co-occur with a function g, tagged generic,
on the local worker. Hence, we need to fix our candidate aAPP script to prevent the
allocation of generic functions with fs. Looking closely at Fig. 8, we indeed notice
that we forgot to indicate that also the generic (tagged) functions are anti-affine
with the private ones. Remember that affinity in aAPP is not symmetric, so, to
ensure that private functions are anti-affine with the other functions, we need to
mark also all the latter anti-affine with the private ones.

Fig. 9 shows a fixed version of the aAPP script from Fig. 8 where we add mutual
anti-affinity – the new affinity clause under the generic block. The new constraint
makes the goal from Fig. 7 unsatisfiable, as shown in the green box next to Fig. 9.

Performance-wise, we tested our encoding using the MetricFF [28] planner on
examples similar to Fig. 10, obtaining results (either providing a solution or proving

14 G. De Palma et al.

Fig. 6.
Configuration.

1 workers:
2 - name: local
3 capacity: 20
4 - name: public
5 capacity: 20
6 functions:
7 - name: f
8 tag: private
9 occupancy: 5

10 - name: u
11 tag: unsafe
12 occupancy: 5
13 - name: g
14 tag: generic
15 occupancy: 5

Fig. 7. Checker predicate.

1 (:goal
2 (exists
3 (?w - worker ?f2 - function)
4 (and (not (= ?f2 f))
5 (=(number_of_f_in_W f ?w)1)
6 (=(number_of_f_in_W ?f2 ?w)

1)
7)))

step
0: ADD_F_TO_W_WITH_BLOCK

F LOCAL PRIVATE_B0
1: ADD_F_TO_W_WITH_BLOCK

G LOCAL GENERIC_B0
2: REACH -GOAL

Fig. 8. APP script.

1- private:
2- workers:
3- local
4affinity:
5- !unsafe
6- !generic
7- unsafe:
8- workers:
9- public
10affinity:
11- !private
12- generic:
13- workers: *

Fig. 9. Fixed APP script.

- private:
- workers:

- local
affinity:

- !unsafe
- !generic

- unsafe:
- workers:

- public
affinity:

- !private

- generic:
- workers: *

affinity:
- !private

+ Fig. 6
+ Fig. 7

Enforced Hill -climbing failed!
switching to Best -first Search

now.

advancing to distance: 3

best first search space empty!
problem proven unsolvable .

Fig. 10. Example of incorrect aAPP script for the singleton example (top) and fix (bottom).

its non-existence) within a few milliseconds – we obtain a solution in 2.4ms for the
script in Fig. 8 and the exhaustion for the one in Fig. 9 in 4ms, averaged over 104 runs.

Here, we focus on the feasibility of our approach based on using off-the-shelf
planning solvers, hence we leave as future work the study of which planners work best
and how well they scale under different cases. Like SAT solvers, which can solve large
SAT problems despite their NP-hardness, we conjecture that planners can efficiently
solve the majority of reachability and co-occurrence problems. Intuitively, except for
those combinations of configuration, script, and predicates that require the saturation
of workers to reach the goal, the plan to prove the violation of the property is rather
short and therefore solvers can find it quickly.9

8 Related Work and Discussion

Common scheduling problems are renownedly NP-complete [56]. However, we are not
aware of results on the complexity of scheduling problems where affinity is the key
point for turning the complexity of the problem from linear-time to PSPACE-hard
(as formalised by Theorems 3 and 4). We consider these result an interesting point
to highlight in relation to other computational models. We initially thought that the

9 The complexity of the planning problem becomes pseudo-polynomial with bounded plan
length – O(nk) with n size of the planning encoding and k maximal length of the plan.

Reachability Analysis of Function-as-a-Service Scheduling Policies 15

source of the increase of complexity was mainly due to anti-affinity (i.e., check the
absence of a set of functions F before scheduling another function g on a worker). In
fact, in many computational models, “negative” tests increase the complexity of ver-
ifying properties. For example, it is well-known that in register-based computational
models (RAMs) the ability to test whether a register is empty is necessary for RAMs
to be Turing complete, while in Petri nets reachability and coverability problems are
decidable, but they become undecidable in Petri nets extended with inhibitor arcs
(i.e., the ability to test whether a place is empty).

Regarding Petri nets, it is interesting to observe that our results exhibit notable
differences compared to the known complexity/undecidability results in that context.
Our reachability problems are expressed as the possibility to reach a configuration
with at least some given functions on some given worker. This formulation has a strong
correspondence with the coverability problem in Petri nets, consisting of checking the
reachability of a marking with at least a given amount of tokens in some given places.
Coverability is EXPSPACE-hard in Petri nets [36] while our reachability problems
are PSPACE-complete as in 1-safe Petri nets [13], the fragment of Petri nets where
places can contain at most one token. Our calculus is significantly different from
1-safe Petri nets because we need to count how many instances of a function are
present in a worker. Moreover, our semantics also incorporates priorities because the
scheduling blocks must be considered in order, i.e., a block is considered only if the
previous ones fail. Differently from our context, the addition of priorities to Petri
nets makes them Turing complete [26], hence coverability becomes undecidable.

Another interesting highlight concerns the linear time complexity of co-occurrence
in the APP-calculus (Theorem 2) and in negatively-polarised aAPP (Theorem 4). On
the positive side, we have that we can efficiently check possible violations of security
properties of scripts, like the co-location of “trusted” and “untrusted” functions. How-
ever, this efficiency comes at a cost, i.e., the impossibility to express any reasonable

form of affinity. As a corollary of Lemma 1, we have that if ⟨N,∆⟩
f

→

w
−−−→ ⟨N1,∆⟩

in a network N where the worker w already hosts instances of g, we have that also

⟨N ′,∆⟩
f

→

w
−−−→ ⟨N ′

1,∆⟩ where ⟨N ′,∆⟩ is the same as ⟨N,∆⟩, but with all occurrences
of g removed from w. Such property implies that scheduling policies expressed in
APP, or in the negatively-polarised fragment of aAPP, cannot admit the scheduling of
a function f in case we want f to be affine with g, i.e., we want the guarantee that f
can be scheduled only on workers which already host instances of another function g.

Looking at the industry, we see platforms using both affinity and anti-affinity.
Azure Service Fabric [39] provides a notion of service affinity that ensures the place-
ment of replicas of a service on the same nodes as those of another, affine service.
Another example is Kubernetes, which has a notion of node affinity and inter-pod
(anti-)affinity to express advanced scheduling logic for the optimal distribution of
pods [34]. Affinity and anti-affinity have been also studied in the context of mi-
croservices. Proposals in this direction are by Baarzi and Kesidis [7], who present
a framework for the deployment of microservices that infers and assigns affinity
and anti-affinity traits to microservices to orient the distribution of resources and
microservices replicas on the available machines; Sampaio et al. [44], who introduce an

16 G. De Palma et al.

adaptation mechanism for microservice deployment based on microservice affinities
(e.g., the more messages microservices exchange the more affine they are) and resource
usage; Sheoran et al. [49], who propose an approach that computes procedural affinity
of communication among microservices to make placement decisions. Overall, the
mentioned work proves the usefulness of affinity-aware deployments at lower layers
than FaaS (e.g., VMs, containers, microservices) but we are not aware of any formal
study on the semantics and expressiveness of these constructs.

In the literature on serverless, proposals might adopt affinity and anti-affinity rela-
tions to encode and complement desirable properties of function scheduling, otherwise
implemented via ad-hoc, platform-wide policies. For instance, some works present
serverless architectures that enable the efficient composition of functions co-located
on the same host [3,50,43]. Here, aAPP can help to parametrise the co-location of
functions, expressed in terms of affinity and anti-affinity constraints. Another example
regards security, e.g., Pubali et al. [15] present a serverless platform where developers
can constrain the information flow among functions to avoid attacks due to container
reuse and data exfiltration. In this case, aAPP can complement flow policies with affin-
ity and anti-affinity constraints that restrict the co-tenancy of functions and their flows
of communication. Another interesting proposal, Palette [2], uses optional opaque pa-
rameters in function invocations to inform the load balancer of Azure Functions on the
affinity with previous invocations and the data they produced. While Palette does not
support (anti-)affinity constraints, it allows users to express which invocations benefit
from running on the same node. We deem an interesting future work extending aAPP
to support a notion of (anti-)affinity that considers the history of scheduled functions.

Closing our revision of related work, we mention our previous publication [18], that
presents an alternative definition of a semantics for the APP language. The differences
between that work and the aAPP-calculus we present are twofold. First, we consider
also affinity-aware scheduling policies, i.e., we model APP’s semantics and extend it
with affinities, giving us the aAPP language. Second, we define a more elegant and sim-
plified semantics. Indeed, the previous semantics definition [18] considers three distinct
layers (for [Workers], [Blocks], and [Configurations]), while the semantics we propose
has just one layer. Moreover, our semantics omits the transition (fail,f) – used in the
alternative semantics [18] to model the failure of an attempt to schedule a function f
– because it is irrelevant for the study of the reachability and co-occurrence problems.

9 Conclusion and Future Work

We shed some light on formal characterisations of reachability analysis of FaaS
scheduling policies and show immediate application of these mathematical results. We
first introduce the aAPP-calculus to rigorously reason on the semantics of function
scheduling that includes affinity constraints and then proceed to study the expressive-
ness of aAPP. We start with APP, which is a subset of aAPP that does not express
either affinity or anti-affinity constraints. Performing our analysis of APP, we show
that it is unfit for expressing interesting (anti-)affinity constraints between functions.
Turning to aAPP, we formally prove the increment of expressiveness of adding affinity
by showing that affinity-aware reachability problems, having linear time complexity

Reachability Analysis of Function-as-a-Service Scheduling Policies 17

in APP, turn out to be PSPACE-complete in aAPP. The proof of PSPACE-hardness
is by reduction from PLANSAT, a well-known planning problem. We complement
the above results by studying fragments of aAPP that can only express either affinity
or anti-affinity constraints, proving that the complexity increase derives from affinity.

We summarise the complexity bounds of the co-occurrence (and reachability)
problem of APP, aAPP, and the latter’s affinity-only and anti-affinity-only fragments.

APP neg. polarised aAPP pos. polarised aAPP aAPP

Lowerbound Linear Linear NP PSPACE
Upperbound Linear Linear PSPACE PSPACE

Given the above results, we define a relationship from aAPP to PDDL – a standard
language for planning problems – and realise a tool for automatic verification of
scheduling properties for aAPP that exploits off-the-shelf PDDL solvers.

Directions for future work include capturing configurations whose workers can
change, i.e., when workers (dis)appear while the platform is running. In such dynamic
scenarios, the configuration space is infinite, which could have repercussions on the
complexity/decidability of the reachability and co-occurrence problems. We also plan
to define a timed semantics for aAPP, e.g., to specify the expected execution time
of functions on workers. One such model could support quantitative analysis, e.g.,
to estimate the completion time of a FaaS application or the distribution of workers’
load over time, i.e., it would allow us to quantitatively reason on policies, e.g., whether
they could lead to bad performance or underutilisation of workers.

References

1. Abad, C.L., Boza, E.F., Eyk, E.V.: Package-Aware Scheduling of FaaS
Functions. In: Proc. of ACM/SPEC ICPE. pp. 101–106. ACM (2018).
https://doi.org/10.1145/3185768.3186294

2. Abdi, M., Ginzburg, S., Lin, X.C., Faleiro, J., Chaudhry, G.I., Goiri, I., Bianchini, R.,
Berger, D.S., Fonseca, R.: Palette load balancing: Locality hints for serverless functions.
In: Proceedings of the Eighteenth European Conference on Computer Systems. pp.
365–380 (2023)

3. Akkus, I.E., Chen, R., Rimac, I., Stein, M., Satzke, K., Beck, A., Aditya, P., Hilt, V.:
SAND: Towards High-Performance Serverless Computing. In: 2018 Usenix Annual
Technical Conference (USENIX ATC 18). pp. 923–935 (2018)

4. Alpernas, K., Flanagan, C., Fouladi, S., Ryzhyk, L., Sagiv, M., Schmitz, T., Winstein,
K.: Secure serverless computing using dynamic information flow control. Proceedings
of the ACM on Programming Languages 2(OOPSLA), 1–26 (2018)

5. Amazon Web Services: AWS Lambda Getting Started. https://aws.amazon.com/lam
bda/getting-started/ (2024), accessed: Aug 2025

6. Apache Software Foundation: Apache OpenWhisk. https://openwhisk.apache.org/
(2025), accessed: Aug 2025

7. Baarzi, A.F., Kesidis, G.: Showar: Right-sizing and efficient scheduling of microservices.
In: Proceedings of the ACM Symposium on Cloud Computing. pp. 427–441 (2021)

8. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N.,
Muthusamy, V., Rabbah, R., Slominski, A., et al.: Serverless computing: Current trends
and open problems. In: Research advances in cloud computing, pp. 1–20. Springer (2017)

https://doi.org/10.1145/3185768.3186294
https://doi.org/10.1145/3185768.3186294
https://aws.amazon.com/lambda/getting-started/
https://aws.amazon.com/lambda/getting-started/
https://openwhisk.apache.org/

18 G. De Palma et al.

9. Banaei, A., Sharifi, M.: ETAS: predictive scheduling of functions on worker
nodes of Apache OpenWhisk platform. The Journal of Supercomputing (9 2021).
https://doi.org/10.1007/s11227-021-04057-z

10. Baresi, L., Quattrocchi, G.: PAPS: A serverless platform for edge computing
infrastructures. Frontiers in Sustainable Cities 3, 690660 (2021)

11. Bylander, T.: The Computational Complexity of Propositional STRIPS Planning. Artif.
Intell. 69(1-2), 165–204 (1994). https://doi.org/10.1016/0004-3702(94)90081-7,
https://doi.org/10.1016/0004-3702(94)90081-7

12. Casale, G., Artač, M., Van Den Heuvel, W.J., van Hoorn, A., Jakovits, P., Leymann,
F., Long, M., Papanikolaou, V., Presenza, D., Russo, A., et al.: Radon: rational
decomposition and orchestration for serverless computing. SICS Software-Intensive
Cyber-Physical Systems 35(1), 77–87 (2020)

13. Cheng, A., Esparza, J., Palsberg, J.: Complexity Results for 1-safe Nets. In:
Shyamasundar, R.K. (ed.) Foundations of Software Technology and Theoretical
Computer Science, 13th Conference, Bombay, India, December 15-17, 1993, Proceedings.
Lecture Notes in Computer Science, vol. 761, pp. 326–337. Springer (1993). https:
//doi.org/10.1007/3-540-57529-4 66, https://doi.org/10.1007/3-540-57529-4 66

14. Cook, S.A.: The Complexity of Theorem-Proving Procedures. In: Harrison, M.A., Banerji,
R.B., Ullman, J.D. (eds.) Proceedings of the 3rd Annual ACM Symposium on Theory
of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA. pp. 151–158. ACM (1971).
https://doi.org/10.1145/800157.805047, https://doi.org/10.1145/800157.805047

15. Datta, P., Kumar, P., Morris, T., Grace, M., Rahmati, A., Bates, A.: Valve: Securing
function workflows on serverless computing platforms. In: Proceedings of The Web
Conference 2020. pp. 939–950 (2020)

16. De Palma, G., Giallorenzo, S., Mauro, J., Trentin, M., Zavattaro, G.:
Reachability Analysis of Function-as-a-Service Scheduling Policies (Artifact).
https://zenodo.org/records/17047090, accessed: Aug 2025

17. De Palma, G., Giallorenzo, S., Mauro, J., Trentin, M., Zavattaro, G.: A Declarative
Approach to Topology-Aware Serverless Function-Execution Scheduling. In: IEEE
International Conference on Web Services, ICWS 2022, Barcelona, Spain, July 10-16,
2022. pp. 337–342. IEEE (2022). https://doi.org/10.1109/ICWS55610.2022.00056

18. De Palma, G., Giallorenzo, S., Mauro, J., Trentin, M., Zavattaro, G.: Function-as-a-
Service Allocation Policies Made Formal. In: Margaria, T., Steffen, B. (eds.) Leveraging
Applications of Formal Methods, Verification and Validation. REoCAS Colloquium in
Honor of Rocco De Nicola - 12th International Symposium, ISoLA 2024, Crete, Greece,
October 27-31, 2024, Proceedings, Part I. Lecture Notes in Computer Science, vol.
15219, pp. 306–321. Springer (2024). https://doi.org/10.1007/978-3-031-73709-1 19

19. De Palma, G., Giallorenzo, S., Mauro, J., Trentin, M., Zavattaro, G.: On the
Complexity of Reachability Properties in Serverless Function Scheduling. CoRR
abs/2407.14159 (2024). https://doi.org/10.48550/ARXIV.2407.14159,
https://doi.org/10.48550/arXiv.2407.14159

20. De Palma, G., Giallorenzo, S., Mauro, J., Trentin, M., Zavattaro, G.: Affinity-
aware Serverless Function Scheduling. In: 22nd IEEE International Conference
on Software Architecture, ICSA 2025, Odense, Denmark, March 31 - April 4,
2025. pp. 49–59. IEEE (2025). https://doi.org/10.1109/ICSA65012.2025.00015,
https://doi.org/10.1109/ICSA65012.2025.00015

21. De Palma, G., Giallorenzo, S., Mauro, J., Zavattaro, G.: Allocation Priority Policies for
Serverless Function-Execution Scheduling Optimisation. In: Service-Oriented Computing
- 18th International Conference, ICSOC 2020, Dubai, United Arab Emirates, December
14-17, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12571, pp. 416–430.
Springer (2020). https://doi.org/10.1007/978-3-030-65310-1 29

https://doi.org/10.1007/s11227-021-04057-z
https://doi.org/10.1007/s11227-021-04057-z
https://doi.org/10.1016/0004-3702(94)90081-7
https://doi.org/10.1016/0004-3702(94)90081-7
https://doi.org/10.1016/0004-3702(94)90081-7
https://doi.org/10.1007/3-540-57529-4_66
https://doi.org/10.1007/3-540-57529-4_66
https://doi.org/10.1007/3-540-57529-4_66
https://doi.org/10.1007/3-540-57529-4_66
https://doi.org/10.1007/3-540-57529-4_66
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://zenodo.org/records/17047090
https://doi.org/10.1109/ICWS55610.2022.00056
https://doi.org/10.1109/ICWS55610.2022.00056
https://doi.org/10.1007/978-3-031-73709-1_19
https://doi.org/10.1007/978-3-031-73709-1_19
https://doi.org/10.48550/ARXIV.2407.14159
https://doi.org/10.48550/ARXIV.2407.14159
https://doi.org/10.48550/arXiv.2407.14159
https://doi.org/10.1109/ICSA65012.2025.00015
https://doi.org/10.1109/ICSA65012.2025.00015
https://doi.org/10.1109/ICSA65012.2025.00015
https://doi.org/10.1007/978-3-030-65310-1_29
https://doi.org/10.1007/978-3-030-65310-1_29

Reachability Analysis of Function-as-a-Service Scheduling Policies 19

22. Fission Project: Fission. https://fission.io/ (2024), accessed: Aug 2025

23. Fox, M., Long, D.: PDDL2. 1: An extension to PDDL for expressing temporal planning
domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)

24. Ghallab, M., Nau, D.S., Traverso, P.: Automated planning - theory and practice.
Elsevier (2004)

25. Google: Google Cloud Functions. https://cloud.google.com/functions/ (2024),
accessed: Aug 2025

26. Hack, M.: PETRI NET LANGUAGE. Tech. rep., USA (1976)

27. Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau, A.C.,
Arpaci-Dusseau, R.H.: Serverless computation with openlambda. In: 8th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 16) (2016)

28. Hoffmann, J.: Extending FF to Numerical State Variables. In: Proceedings of the
15th European Conference on Artificial Intelligence (ECAI-02). pp. 571–575. wil, Lyon,
France (Jul 2002)

29. Jia, Z., Witchel, E.: Boki: Stateful Serverless Computing with Shared Logs. In:
Proc. of ACM SIGOPS SOSP. pp. 691–707. ACM, New York, NY, USA (2021).
https://doi.org/10.1145/3477132.3483541

30. Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.C., Khandelwal, A., Pu, Q.,
Shankar, V., Menezes Carreira, J., Krauth, K., Yadwadkar, N., Gonzalez, J., Popa,
R.A., Stoica, I., Patterson, D.A.: Cloud Programming Simplified: A Berkeley View on
Serverless Computing. Tech. Rep. UCB/EECS-2019-3, EECS Department, University
of California, Berkeley (02 2019)

31. Kehrer, S., Scheffold, J., Blochinger, W.: Serverless skeletons for elastic parallel
processing. In: 2019 IEEE 5th International Conference on Big Data Intelligence and
Computing (DATACOM). IEEE. pp. 185–192 (2019)

32. Kelly, D., Glavin, F., Barrett, E.: Serverless computing: Behind the scenes of major
platforms. In: 2020 IEEE 13th International Conference on Cloud Computing (CLOUD).
pp. 304–312. IEEE (2020)

33. Kotni, S., Nayak, A., Ganapathy, V., Basu, A.: Faastlane: Accelerating Function-as-a-
Service Workflows. In: Proc. of USENIX ATC. pp. 805–820. USENIX Association (2021)

34. Kubernetes: Assign Pods to Nodes using Node Affinity. https://kubernetes.io/docs
/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/ (2025),
accessed: Aug 2025

35. Kuntsevich, A., Nasirifard, P., Jacobsen, H.A.: A Distributed Analysis and Benchmark-
ing Framework for Apache OpenWhisk Serverless Platform. In: Proc. of Middleware
(Posters). pp. 3–4 (2018)

36. Lipton, R.: The reachability problem requires exponential space. Research report (Yale
University. Department of Computer Science), Department of Computer Science, Yale
University (1976), https://books.google.it/books?id=7iSbGwAACAAJ

37. Microsoft: Configuring and using service affinity in Service Fabric. https:
//learn.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-res
ource-manager-advanced-placement-rules-affinity (2025), accessed: Aug 2025

38. Microsoft: Microsoft Azure Functions. https://azure.microsoft.com/ (2025), accessed:
Aug 2025

39. Microsoft: Microsoft Azure Service Fabric Overview. https://learn.microsoft.com/
en-us/azure/service-fabric/service-fabric-overview (2025), accessed: Aug 2025

40. Mohan, A., Sane, H., Doshi, K., Edupuganti, S., Nayak, N., Sukhomlinov, V.: Agile
Cold Starts for Scalable Serverless. In: Proc. of HotCloud 19. USENIX Association,
Renton, WA (jul 2019)

https://fission.io/
https://cloud.google.com/functions/
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3477132.3483541
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
https://books.google.it/books?id=7iSbGwAACAAJ
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-advanced-placement-rules-affinity
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-advanced-placement-rules-affinity
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-advanced-placement-rules-affinity
https://azure.microsoft.com/
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-overview
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-overview

20 G. De Palma et al.

41. Oakes, E., Yang, L., Zhou, D., Houck, K., Harter, T., Arpaci-Dusseau, A., Arpaci-
Dusseau, R.: SOCK: Rapid task provisioning with Serverless-Optimized containers.
In: 2018 USENIX Annual Technical Conference (USENIX ATC 18). pp. 57–70 (2018)

42. OpenFaaS Ltd.: OpenFaaS. https://www.openfaas.com/ (2024), accessed: Aug 2025
43. Sabbioni, A., Rosa, L., Bujari, A., Foschini, L., Corradi, A.: A shared memory approach

for function chaining in serverless platforms. In: 2021 IEEE Symposium on Computers
and Communications (ISCC). pp. 1–6. IEEE (2021)

44. Sampaio, A.R., Rubin, J., Beschastnikh, I., Rosa, N.S.: Improving microservice-based
applications with runtime placement adaptation. Journal of Internet Services and
Applications 10(1), 1–30 (2019)

45. Sampé, J., Sánchez-Artigas, M., Garćıa-López, P., Paŕıs, G.: Data-Driven Serverless Func-
tions for Object Storage. In: Middleware. pp. 121–133. Middleware ’17, ACM (2017). ht
tps://doi.org/10.1145/3135974.3135980, https://doi.org/10.1145/3135974.3135980

46. Savitch, W.J.: Relationships Between Nondeterministic and Deterministic Tape
Complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970). https://doi.org/10.101
6/S0022-0000(70)80006-X, https://doi.org/10.1016/S0022-0000(70)80006-X

47. Shahrad, M., Balkind, J., Wentzlaff, D.: Architectural implications of function-as-a-
service computing. In: Proc. of MICRO. pp. 1063–1075 (2019)

48. Shahrad, M., Fonseca, R., Goiri, Í., Chaudhry, G., Batum, P., Cooke, J., Laureano,
E., Tresness, C., Russinovich, M., Bianchini, R.: Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud provider. In: Proc. of USENIX
ATC. pp. 205–218 (2020)

49. Sheoran, A., Fahmy, S., Sharma, P., Modi, N.: Invenio: Communication Affinity
Computation for Low-Latency Microservices. In: Proceedings of the Symposium on
Architectures for Networking and Communications Systems. pp. 88–101 (2021)

50. Shillaker, S., Pietzuch, P.: Faasm: Lightweight Isolation for Efficient Stateful Serverless
Computing. In: Proc. of USENIX ATC. pp. 419–433. USENIX Association (2020)

51. Silva, P., Fireman, D., Pereira, T.E.: Prebaking Functions to Warm the Serverless Cold
Start. In: Proc. of Middleware. pp. 1–13. Middleware ’20, ACM, New York, NY, USA
(2020). https://doi.org/10.1145/3423211.3425682

52. Smith, C.P., Jindal, A., Chadha, M., Gerndt, M., Benedict, S.: Fado: Faas functions
and data orchestrator for multiple serverless edge-cloud clusters. In: 2022 IEEE 6th
International Conference on Fog and Edge Computing (ICFEC). pp. 17–25. IEEE (2022)

53. Solaiman, K., Adnan, M.A.: WLEC: A Not So Cold Architecture to Mitigate Cold Start
Problem in Serverless Computing. In: 2020 IEEE International Conference on Cloud En-
gineering (IC2E). pp. 144–153 (2020). https://doi.org/10.1109/IC2E48712.2020.00022

54. Sreekanti, V., Wu, C., Lin, X.C., Schleier-Smith, J., Gonzalez, J.E., Hellerstein, J.M.,
Tumanov, A.: Cloudburst: Stateful Functions-as-a-Service. Proc. VLDB Endow. 13(12),
2438–2452 (Jul 2020). https://doi.org/10.14778/3407790.3407836

55. Suresh, A., Gandhi, A.: FnSched: An Efficient Scheduler for Server-
less Functions. In: WOSC@Middleware. pp. 19–24. ACM (2019). h t t p s :
//doi.org/10.1145/3366623.3368136

56. Ullman, J.D.: NP-Complete Scheduling Problems. J. Comput. Syst. Sci.
10(3), 384–393 (1975). https://doi.org/10.1016/S0022-0000(75)80008-0,
https://doi.org/10.1016/S0022-0000(75)80008-0

57. Wang, L., Li, M., Zhang, Y., Ristenpart, T., Swift, M.: Peeking behind the curtains
of serverless platforms. In: 2018 USENIX Annual Technical Conference (USENIX ATC
18). pp. 133–146 (2018)

58. YAML: YAML Specification. https://yaml.org/spec/ (2025), accessed: Aug 2025

https://www.openfaas.com/
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1145/3423211.3425682
https://doi.org/10.1145/3423211.3425682
https://doi.org/10.1109/IC2E48712.2020.00022
https://doi.org/10.1109/IC2E48712.2020.00022
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.1145/3366623.3368136
https://doi.org/10.1145/3366623.3368136
https://doi.org/10.1145/3366623.3368136
https://doi.org/10.1145/3366623.3368136
https://doi.org/10.1016/S0022-0000(75)80008-0
https://doi.org/10.1016/S0022-0000(75)80008-0
https://doi.org/10.1016/S0022-0000(75)80008-0
https://yaml.org/spec/

	Reachability Analysis of Function-as-a-Service Scheduling Policies

