
A Declarative Approach to Topology-Aware Serverless Function-Execution Scheduling

Giuseppe De Palma
Università di Bologna, Italy

giuseppe.depalma2@unibo.it

Saverio Giallorenzo
Univ. di Bologna, Italy and INRIA, France

saverio.giallorenzo2@unibo.it

Jacopo Mauro
University of Southern Denmark, Denmark

mauro@imada.sdu.dk

Matteo Trentin
Università di Bologna, Italy

matteo.trentin@studio.unibo.it

Gianluigi Zavattaro
Università di Bologna, Italy and INRIA, France

gianluigi.zavattaro@unibo.it

Abstract—State-of-the-art serverless platforms use hard-
coded scheduling policies that are unaware of the possible
topological constraints of functions. Considering these con-
straints when scheduling functions leads to sensible performance
improvements, e.g., minimising loading times or data-access
latencies. This issue becomes more pressing when considered in
the emerging multi-cloud and edge-cloud-continuum systems,
where only specific nodes can access specialised, local resources.
To address this problem, we present a declarative language for
defining serverless scheduling policies to express constraints on
topologies of schedulers and execution nodes. We implement
our approach as an extension of the OpenWhisk platform.

I. INTRODUCTION

Serverless is a cloud service that lets users deploy archi-
tectures as compositions of stateless functions, delegating all
system administration tasks to the serverless platform [1].
This has two benefits for users. First, they save time by del-
egating resource allocation, maintenance, and scaling to the
platform. Second, they pay only for the resources that perform
actual work, and eschew the costs of running idle servers.

For example, Amazon AWS Lambda, Google Cloud
Functions, and Microsoft Azure Functions1 are managed
serverless offers by popular cloud providers, while
OpenWhisk, OpenFaaS, OpenLambda, and Fission2 are
open-source alternatives, used also in private deployments.

In all these cases, the platform manages the allocation of
function executions over the available computing resources,
also called workers. However, not all workers are equal when
allocating functions. Indeed, effects like data locality [2]—
due to high latencies to access data—or session locality [2]—
due to the need to authenticate and open new sessions to
interact with other services—can sensibly increase the run
time of functions. These issues become more prominent when
considered in multi-cloud and edge-cloud-continuum systems,
where only specific workers can access some local resources.

1Resp. https://aws.amazon.com/lambda/, https://cloud.google.com/
functions/, https://azure.microsoft.com/.

2Resp. https://openwhisk.apache.org/, https://www.openfaas.com/,
https://github.com/open-lambda/open-lambda, https://fission.io/

#edge

#local

#cloud

#cloud

#local

#edge

!

!

!

!

Figure 1: Representation of the case study.

To tackle this problem, we present a solution that lets
users define topology-aware scheduling policies able to
mitigate and/or rule out inefficient function allocations.

More specifically, with “topology” of a serverless platform
we mean: 1) the deployment of the platform over different
zones, i.e., sets of resources geographically located in the
same area, 2) the presence in such zones of several controllers,
i.e., the components that manage the scheduling of functions,
and 3) the availability of different workers, each one located
in one zone but potentially reachable by all the controllers.

Motivating example: We clarify the concepts above
with a case study from a company among our industry
partners. We deem the case useful to clarify the motivation
behind our work and help understand our contribution.

The case concerns an edge-cloud-continuum system to
control and perform both predictive maintenance and anomaly
detection over a fleet of robots in the production line. The
system runs three categories of computational tasks: i) predic-
tions of critical events, performed by analysing data produced
by the robots, ii) non-critical predictions and generic control
activities, and iii) machine learning tasks. Tasks i) follow a
closed-control loop between the fleet that generates data and
issues these tasks and the workers that run these tasks and can
act on the fleet. Since tasks i) can avert potential risks, they
must execute with the lowest latency and their control signals
must reach the fleet urgently. The users of the system launch
the other categories of tasks. These are not time-constrained,

but tasks iii) have resource-heavy requirements.
We depict the solution that we have designed for the

deployment of the system in Figure 1. We consider three
kinds of functions, one for each category of tasks: critical
functions ! (in Figure 1), generic functions , and machine
learning functions . To guarantee low-latency and the pos-
sibility to immediately act on the robots, we execute critical
functions ! on edge devices (workers W1,...,Wi in Figure 1)
directly connected to the robots. Since machine-learning
algorithms require a considerable amount of resources that
the company prefers to provision on-demand, we execute the
machine-learning functions on a public cloud, outside
the company’s perimeter (Wk+1,...,Wj in Figure 1). The
generic functions do not have specific, resource-heavy
requirements. Hence, we schedule these preferably on the
local cluster (Wi+1,...,Wk in Figure 1) and use on-demand
public-cloud workers when the local ones are at full capacity.

For performance and reliability, our solution considers
two function-scheduling controllers for the internal workers,
i.e., the controllers LocalCtl1 and LocalCtl2 , and one for
cloud workers, i.e., the controller CloudCtl . One local
controller, namely LocalCtl1 , has a dedicated low-latency
connection with the edge devices able to act on the fleet.

Finally, a Gateway balances the load among the con-
trollers. To follow the requirements of the company, instead
of adopting a generic round-robin policy, we need to instruct
the Gateway to forward critical functions ! to LocalCtl1 ,
the generic functions to one between LocalCtl1 and
LocalCtl2 , and the cloud functions to CloudCtl (or to
any other controller when the latter is not available).

Contribution of the paper: The case above presents a
scenario with a multi-zone serverless platform deployment
(local network and public cloud) and where the function-
execution scheduling policy depends on a topology of
different clusters (edge-devices, local cluster, and cloud
cluster). The scheduling policies influence the behaviour of
both the gateway and the controllers, which need to know
the current status of the workers (e.g., to execute generic
functions in the cloud when the local cluster is overloaded).

Instead of hard-coding the desired behaviour in the
deployment of the serverless platform, the approach that
we propose in this paper is based on a new declarative
language, called TAPP (Topology-aware Allocation Priority
Policies), used to write configuration files describing
topology-aware function-execution scheduling policies. In
this way, following the Infrastructure-as-Code philosophy,
users (typically DevOps) can keep all relevant scheduling
information in a single repository (in one or more TAPP files)
which they can version, change, and run without incurring in
downtimes due to system restarts to load new configurations.

We also implement a serverless platform that supports
TAPP-specified scheduling policies. We avoid starting
from scratch and we build upon the serverless platform

authorisation, functions, responses

balancing

executionqueuing

nodes status, script repository status monitoring

scheduling

DevOps

Figure 2: Architectural scheme of our extension of
OpenWhisk. Modified components from OpenWhisk are in
light blue and new components are highlighted in yellow .

presented in [3], which is an extension of OpenWhisk where
worker-selection happens via tags associated with functions.

II. PRELIMINARIES

The main proprietary serverless platforms are AWS
Lambda, Google Cloud Functions, and Azure Functions.
Despite their large user base, these solutions do not provide
source code. Also open-source alternatives are gaining
traction in the serverless market. The most popular ones are
Apache OpenWhisk, OpenFaaS, and OpenLambda. Since
these platforms have similar architectures [4] we focus on
the most popular, open-source one: Apache OpenWhisk.

Apache OpenWhisk is an open-source, serverless platform
initially developed by IBM and donated to the Apache
Software Foundation. We report in Figure 2 a scheme of the
architecture of OpenWhisk. For compactness, we include in
Figure 2 the modified and new elements introduced by our ex-
tension, which we describe in Section IV. Here, we focus only
on the original components and functionalities of OpenWhisk.

In Figure 2, from left to right, we first find Nginx, which
acts as the gateway and load balancer to distribute the
incoming requests. Nginx forwards each request to one of the
Controllers in the current deployment. The Controllers are the
components that decide on which of the available computation
nodes, called Workers, to schedule the execution of a given
function. Controllers and Workers do not interact directly
but use Apache Kafka [5] and CouchDB [6] to respectively
handle the routing and queueing of execution requests and
to manage the authorisations, the storage of functions and
of their outputs/responses. Workers execute functions using
Docker containers. To schedule executions, Controllers follow
a hard-coded policy that mediates load balancing and caching.
This works by trying to allocate requests to the same functions
on the same Workers3, hence saving time by skipping the
retrieval of the function from CouchDB and the instantiation
of the container already cached in the memory of the Worker.

3The OpenWhisk allocation policy, called “co-prime scheduling”, asso-
ciates a function to a hash and a step size to identify a sequence of possible
workers able to run the function (assigned to the first non-overloaded one).

policy_tag∈ Identifiers ∪ {default} label∈ Identifiers n ∈ N

app ::= tag

tag ::= policy_tag : - controller? workers strategy? invalidate? strategy? followup?
controller ::= controller : label (topology_tolerance : (all | same | none))?
workers ::= workers: - label

| workers: - *(label)? strategy? invalidate?
strategy ::= strategy : (random | platform | best_first)
invalidate ::= invalidate : (capacity_used : n% | max_concurrent_invocations : n | overload)
followup ::= followup : (default | fail)

Figure 3: The syntax of TAPP (the extensions from APP are highlighted).

III. TOPOLOGY-AWARE SERVERLESS SCHEDULING

We now present our approach to topology-aware
function-execution scheduling and the TAPP language.

The approach relies on policy tags that associate functions
to scheduling policies. A tag identifies a policy (e.g., we
can use a tag “critical” to identify the scheduling behaviour
of the critical functions of our case study) and it marks
all those functions that shall follow the same scheduling
behaviour (e.g., any kind of critical function of the study).

Topologies are part of policies and come in two facets.
Physical topologies relate to zones, which can represent
availability zones in public clouds and plants in multi-plant
industrial settings. Logical topologies instead represent
partitions of workers. The logical layer expresses the
constraints of the user and identifies the pool of workers
which can execute a given function (e.g., for performance).
The smallest logical topology is the singleton, i.e., a worker,
which we identify with a distinct label (e.g., W1 in Figure 1).
In general, policies can target lists of singletons as well as
aggregate multiple workers in different sets.

The interplay between the two topological layers deter-
mines which workers a controller can use to schedule a func-
tion. For example, we can capture the scheduling behaviour of
the critical functions of our case study in this way: 1) we as-
sign LocalCtl1, LocalCtl2, and W1,...,Wk to the same zone,
2) we configure said workers to only accept requests from co-
located controllers (this, e.g., excludes access to CloudCtl),
and 3) we set the policy of the critical functions to only use
the workers tagged with the edge label—#edge in Figure 1.

Besides expressing topological constraints, policies can
include other directions such as the strategy followed by the
controller to choose a worker within the pool of the available
ones (e.g., to balance the load evenly among them) and when
workers are ineligible (e.g., w.r.t. their resource quotas).

To the best of our knowledge, the serverless platform by
De Palma et al [3] is the only one that supports declaratively,
customised function-execution scheduling policies by using
an ad-hoc language dubbed Allocation Priority Policies
(APP). APP lets users associate workers to functions,
but it does not include any notion of physical topology

(the language has no visibility over controllers, which all
behave the same) and it supports only the singleton and
universal logical topologies (either single workers or all
of them). Notwithstanding these limitations, we deemed it
feasible to use APP as basis for our approach and propose
a topology-aware extension called TAPP.

In the following, we report a summary of the main compo-
nents of APP, we describe TAPP, and discuss a TAPP script
that implements the semantics of the case study in Section I.

The APP language [3]: We report the syntax of (T)APP
in Figure 3—the highlighted parts belong to TAPP. An APP
script essentially pairs two entities: i) scheduling policies,
identified by a policy tag which represents some functions,
and ii) a list of workers which can execute those functions—
in Figure 3, bars indicate non-empty lists. More in general,
a policy tag points to a list of policy blocks. Each block
involves a list of workers, each identified by a distinct
label. Optional elements (marked with ?) modify the default
semantics of the block: strategy and invalidate. The first
defines the strategy that the controller follows to choose
among the workers in the block (e.g., random randomly
selects one worker of the block, best_first selects workers
following their descending order of appearance in the block).
The invalidate option defines when one worker is invalid
(e.g., capacity_used when it reaches a maximal % of CPU,
max_concurrent_invocations when it reaches a maximal
number of buffered concurrent invocations). When a selected
worker is invalid, we try to schedule the function on the other
(valid) workers of the block following the strategy, until
exhaustion. If all workers in the policy tag are invalid, the pol-
icy fails and we execute the (optionally) specified followup
rule: the default option tries to execute the function via
the (special) default tag (if any); the fail option skips the
default block and aborts the scheduling of the function.

The TAPP language: The syntax of TAPP (Figure 3)
results from extending APP with (the highlighted) parts,
which capture topology-aware function scheduling policies.
First, we introduce the controller . This is an optional,
block-level parameter that identifies which of the possible,
available controllers in the current deployment we want
to target to execute the scheduling policy of the current tag.

Similarly to workers, we identify controllers with a label.
A controller clause can have topology_tolerance as

optional parameter. This additional parameter allows users
to further refine how TAPP handles failures (of controllers).
Indeed, when deploying controllers and workers, users can
label them with the topological zone they belong in4. Hence,
when the designated controller is unavailable, TAPP can
use this topological information to try to satisfy the schedul-
ing request by forwarding it to some alternative controller.

The topology_tolerance option specifies what workers
an alternative controller can use: all is the default and most
permissive option and imposes no restriction on the topology
zone of workers; same constrains the function to run on
workers in the same zone of the faulty controller (e.g., for
data locality); none forbids the forward to other controllers.

TAPP expands the expressiveness of the universal selector
* found in APP—corresponding to the second, highlighted
workers:. . . fragment in Figure 3). In APP, assigning * to

the workers parameter indicates that the policy encompasses
all available workers. In TAPP, users can restrict the scope
of * by suffixing it with a label, e.g., workers:*local
selects only those workers associated to the local label.

The scheduling on *-induced worker-sets follows the
same logic of block-level worker selection: it exhausts all
workers before deeming the block invalid. Since worker-set
policies could differ from block-level ones, we allow users
to define the strategy and invalidate policies to select
the worker in the set. For example, if we pair the above
selection with a strategy and an invalidate options, e.g.,
workers:*local strategy:random invalidate:capacity_used:50%

we tell the scheduler to adopt the random strategy and the
capacity_used invalidation policy when selecting the work-
ers in the local set. When worker-sets omit strategies or in-
validation options, they follow those of their enclosing block.

Lastly, TAPP extends APP by letting users express a
selection strategy for policy blocks. This is represented by
the highlighted, optional strategy fragment of the tag rule.
The extension is backwards compatible, i.e., when we omit
to define a strategy policy for blocks, TAPP has the same
semantics as APP, trying to allocate functions following the
blocks from top to bottom—i.e., best_first is the default
policy. Here, for example, setting the strategy to random
captures the simple load-balancing strategy of uniformly
distributing requests among the available controllers.

A. Case Study

We exemplify TAPP by showing and commenting on the
salient parts of a TAPP script—reported in Figure 4—that
captures the scheduling semantics of the case in Figure 1.

In the script, at lines 1–6, we define the tag associated to
critical (!) functions: only LocalCtl_1 can manage their

4TAPP neglects zone labels of controllers and workers, which is
infrastructure-level information, and it only specifies co-location constraints.

1 critical:
2 - controller: LocalCtl_1
3 workers:
4 - *edge
5 strategy: random
6 followup: fail
7 machine_learning:
8 - controller: CloudCtl
9 workers:

10 - *cloud
11 topology_tolerance: same
12 followup: default

13 default:
14 - controller: LocalCtl_1
15 workers:
16 - *internal
17 strategy: random
18 - *cloud
19 strategy: random
20 strategy: best_first
21 - controller: LocalCtl_2
22 workers: # same as above
23 strategy: best_first
24 strategy: random

Figure 4: A TAPP script that implements the scheduling
semantics of the case study in Section I (Figure 1).

scheduling, they can only execute on #edge/*edge workers
(W1,...,Wi in Figure 1), and no other policy can manage them
(followup:fail). At line 5 we specify to evenly distribute
the load among all *edge workers with strategy:random.

At lines 7–12, we find the tag of the machine_learning
() functions. We define CloudCtl as the controller and
consider all #cloud workers (Wk+1,...,Wj in Figure 1) as
executors, i.e., any worker in the public cloud Wk+1,...,Wj .
Notice that at line 12 we specify to use the default
policy as the followup, in case of failure. The interaction
between the followup and the topology_tolerance (line
11) parameters makes for an interesting case. Since the
topology_tolerance is (the) same (zone of the controller
CloudCtl), we allow other controllers to manage the
scheduling of the function (in the default tag) but we
continue to restrict the execution of machine-learning
functions only to workers within the same zone of CloudCtl,
which, here, coincide with #cloud-tagged workers.

Lines 13–24 define the special, default policy tag, which
is the one used with tag-less functions (here, our generic
ones) and with failing tags targeting it as their followup
(as seen above, line 12). In particular, the instruction at
line 24 indicates that the default policy shall randomly
distribute the load on both worker blocks (lines 14–20 and 21–
23), respectively controlled by LocalCtl_1 and LocalCtl_2.
Since the two blocks at lines 14–20 and 21–23 are the same,
besides the controller parameter, we focus on the first one.
There, we indicate two sets of valid workers: the #internal
ones (line 16, Wi+1,...,Wk in Figure 1) and the #cloud ones
(as seen above, for lines 9–10). The instruction at line 20
(strategy:best_first) indicates a precedence: first we try
to run functions on the #local cluster and, in case we fail to
find valid workers, we offload on the #cloud workers—in
both cases, we distribute the load randomly (lines 17 and 19).

IV. TAPP IN OPENWHISK

We modified OpenWhisk to support TAPP-based schedul-
ing (available at https://github.com/mattrent/openwhisk). In
particular, to manage the deployment of components, we
pair OpenWhisk with the popular and widely-supported
container orchestrator Kubernetes. The extended platform

is available as an open-source project.
Figure 2 depicts the architecture of our OpenWhisk exten-

sion, where we reuse the Workers and the Kafka components,
we modify Nginx and the Controllers (light blue in the
picture), and we introduce two new services: the Watcher
and the NFS Server (in the highlighted area of Figure 2).

The modifications mainly regard letting Nginx and
Controllers retrieve and interpret both TAPP scripts and data
on the status of nodes, to forward requests to the selected
controllers and workers. Concerning the new services, the
Watcher monitors the topology of the Kubernetes cluster
and collects its current status into the NFS Server, which
provides access to TAPP scripts and the collected data to the
other components. Below, we detail the two new services, we
discuss the changes to the existing OpenWhisk components,
and we conclude by describing how the proposed system
supports live-reloading of TAPP configurations.

Watcher and NFS Server Services: To support
TAPP-based scheduling, we need to map TAPP-level
information, such as zones and controllers/workers labels, to
deployment-specific information, e.g., the name Kubernetes
uses to identify computation nodes. The new Watcher service
fits this purpose: it gathers deployment-specific information
and maps it to TAPP-level properties. To realise the Watcher,
we rely on the APIs provided by Kubernetes, which we
use to deploy our OpenWhisk variant. In Kubernetes,
applications are collections of services deployed as “pods”,
i.e., a group of one or more containers that must be placed
on the same node and share network and storage resources.
Kubernetes automates the deployment, management, and
scaling of pods on a distributed cluster and one can use its
API to monitor and manipulate the state of the cluster.

Our Watcher polls the Kubernetes API, asking for pod
names and the respective labels and zones of the nodes (cf.
Figure 2), and stores the mapping into the NFS Server.

As shown in Figure 2, Nginx uses the output of the
Watcher to forward function-execution requests to controllers.
This allows TAPP scripts to define which controller to target
without the need to specify a pod identifier, but rather use
a label (e.g., CloudCtl in Figure 4). Besides abstracting
deployment details, this feature supports dynamic changes
to the deployment topology, e.g., when Kubernetes decides
to move a controller pod at runtime on another node.

Nginx, OpenWhisk’s Entry Point: OpenWhisk’s Nginx
forwards requests to all available controllers, following a hard-
coded round-robin policy. To support TAPP, we intervened on
how Nginx processes incoming request of function execution.

To do this, we used njs5: a subset of the JavaScript
language that Nginx provides to extend its functionalities.
Namely, we wrote a njs plug-in to analyse all requests passing
through Nginx. The plug-in extracts any tag from the request
parameters and compares it against the TAPP scripts. If the

5https://nginx.org/en/docs/njs/index.html

extracted tag matches a policy-tag, we interpret the associated
policy, resolve its constraints, and find the related node label.
The last step is translating the label into a pod name, done
using the label-pod mapping produced by the Watcher service.

Since Nginx manages all inbound traffic, we strived to
keep the footprint of the plug-in small, e.g., we only interpret
TAPP scripts and load the mappings when requests carry
some tags and we use caching to limit retrieval downtimes
from the NFS Server. From the user’s point of view, the only
visible change regards the tagging of requests. When tags are
absent, Nginx follows the default policy or, when no TAPP
script is provided, it falls back to the built-in round-robin.

Topology-based Worker Distribution: To associate
labels with pods, we exploit the topology labels provided by
Kubernetes. These labels are names assigned to nodes and
they are often used to orient pod allocation. Labels offer
an intuitive way to describe the structure of the cluster, by
annotating their zones and attributes. In Figure 2 we represent
labels as boxes on the side of the controllers and workers.

Since OpenWhisk does not have a notion of topology, all
controllers can schedule all functions on any available worker.
Our extension unlocks a new design space that administrators
can use to fine-tune how controllers access workers, based
on their topology. At deployment, DevOps define the access
policy used by all controllers. Our investigation led us to
identify four topological-deployment access policies:

• the default policy is the original one of OpenWhisk,
where controllers have access to a fraction of all workers’
resources. This policy has two drawbacks. First, it tends to
overload workers, since controllers race to access workers
without knowing how the other controllers are using them.
Second, it gives way to a form of resource grabbing,
since controllers can access workers outside their zone,
effectively taking resources away from “local” controllers;

• the min_memory policy is a refinement of the default
policy and it mitigates overload and resource-grabbing by
assigning only a minimal fraction of the worker’ resources
to “foreign” controllers. For example, in OpenWhisk the
resources regard the available memory for one invocation
(in OpenWhisk, 256MB). When workers have no controller
in their topological zone, or no topological zone at all, we
follow the default policy. Also this policy has a drawback:
it can lead to scenarios where smaller zones quickly
become saturated and unable to handle requests;

• the isolated policy lets controllers access only co-located
workers. This reduces overloading and resource grabbing
but accentuates small-zone saturation effects;

• the shared policy allows controllers to access primarily
local workers and let them access foreign ones after
having exhausted the local ones. This policy mediates
between partitioning resources and the efficient usage of
the available ones, although it suffers a stronger effect
of resource-grabbing from remote controllers.

To schedule functions, controllers follow the policies
declared in the TAPP scripts (if any), accessing both these
and topological information in the same way as described for
Nginx. When no TAPP script is available, controllers resort
to their original, hard-coded logic (explained in Section II)
but still prioritise scheduling functions on co-located workers.

Dynamic update of topologies and TAPP scripts: Since
both the cluster’s topology, its attributes, and the related TAPP
scripts can change (e.g., to include a new node or a new policy
tag), we designed our TAPP-based prototype to dynamically
support such changes, avoiding stop-and-restart downtimes.

To do this, we chose to store a single global copy of the
policies into the NFS Server, while we keep multiple, local
copies in Nginx and each controller instance. When we update
the reference copy, we notify Nginx and the controllers of the
change and let them handle cache invalidation and retrieval.

V. RELATED WORK

The proposal closest to ours is [3], on which we build
to implement our approach and prototype. As mentioned in
Section III, the solution by De Palma et al. [3], although not
explicitly stated by the authors, captures some degenerate
cases of topology-aware scheduling, which TAPP generalises.
Besides these commonalities, [3] lacks any other notion of
topology from this work and does not distinguish among
(located) controllers. Another work close to ours is by
Sampé et al. [7], who present an approach that allocates
functions to storage workers, favouring data locality. The
main difference with our work is that the one by Sampé
et al. focusses on topologies induced by data-locality issues,
while we consider topologies to begin with, and we capture
data locality as an application scenario.

More in general, Banaei et al. [8] introduce a scheduling
policy that governs the order of invocation processing
depending on the availability of the resources they use. Abad
et al. [9] present a package-aware technique that favours
re-using the same workers for the same functions to cache
dependencies. Suresh and Gandhi [10] show a scheduling
policy oriented by resource usage of co-located functions
on workers. Other scheduling policies exploit the state and
relation among functions. For example, Kotni et al. [11]
present an approach that schedules functions within a single
workflow as threads within a single process of a container
instance, reducing overhead by sharing state among them.

The main difference between these works and ours is that
in the former topologies (if any) emerge as implicit, runtime
artefacts and scheduling do not directly reason on them.
Moreover, being a general approach to scheduling, future
work on TAPP can include scheduling policies proposed in
these works, e.g., as strategies for worker selection.

VI. CONCLUSION

We introduced TAPP, a declarative language that provides
DevOps with finer control on the scheduling of serverless

functions. Being topology-aware, TAPP scripts can restrict
the execution of functions within zones and help improve the
performance (e.g., exploiting data or code locality properties),
security, and resilience of serverless applications. To validate
our approach, we presented a prototype TAPP-based
serverless platform, developed on top of OpenWhisk.

Due to space limitations, we have not discussed the
experimental validation of our implementation, reported for
reference in the companion technical report [12]. Here we
simply report the final conclusions of our experiments: our
topology-aware scheduling is usually on par or outperforms
hard-coded, vanilla OpenWhisk scheduling, in particular in
tests that stress data locality.

Future work includes applying TAPP on different
platforms, e.g., OpenLambda, OpenFAAS, and Fission
and to formalise the semantics of TAPP, e.g., building on
existing “serverless calculi” [13], [14].

REFERENCES

[1] J. M. Hellerstein et al., Serverless computing: One
step forward, two steps back, 2019.

[2] S. Hendrickson et al., “Serverless computation with
openlambda,” in Proc. of USENIX HotCloud, 2016.

[3] G. De Palma et al., “Allocation priority policies for
serverless function-execution scheduling optimisation,”
in Proc. of ICSOC, ser. LNCS, Springer, 2020.

[4] H. B. Hassan et al., “Survey on serverless computing,”
Journal of Cloud Computing, 2021.

[5] J. Kreps et al., “Kafka: A distributed messaging system
for log processing,” in Proc. of NetDB, 2011.

[6] J. C. Anderson et al., CouchDB: the definitive guide:
time to relax. " O’Reilly Media, Inc.", 2010.

[7] J. Sampé et al., “Data-driven serverless functions for
object storage,” in Middleware, ACM, 2017.

[8] A. Banaei and M. Sharifi, “Etas: Predictive scheduling
of functions on worker nodes of apache openwhisk
platform,” The Journal of Supercomputing, Sep. 2021.

[9] C. L. Abad et al., “Package-aware scheduling of faas
functions,” in Proc. of ACM/SPEC ICPE, ACM, 2018.

[10] A. Suresh and A. Gandhi, “Fnsched: An efficient
scheduler for serverless functions,” in Proc. of
WOSC@Middleware, ACM, 2019.

[11] S. Kotni et al., “Faastlane: Accelerating function-as-a-
service workflows,” in Proc. of USENIX ATC, USENIX
Association, 2021.

[12] G. De Palma et al., Topology-aware
serverless function-execution scheduling,
https://arxiv.org/abs/2205.10176, 2022.

[13] M. Gabbrielli et al., “No more, no less - A formal
model for serverless computing,” in Proc. of COOR-
DINATION, ser. LNCS, Springer, 2019.

[14] A. Jangda et al., “Formal foundations of serverless
computing,” Proc. of ACM on Prog. Lang., 2019.

