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Abstract. In Service-Oriented Architectures (SOA), services are com-
posed by coordinating their communications into a flow of interactions.
Coloured Petri nets (CPN) offer a formal yet easy tool for modelling
interactions in SOAs, however mapping abstract SOAs into executable
ones requires a non-trivial and time-costly analysis. Here, we propose a
methodology that maps CPN-modelled SOAs into Jolie SOAs (our tar-
get language), exploiting a collection of recurring control-flow patterns,
called Workflow Patterns, as composable blocks of the translation. We
validate our approach with a realistic use case. In addition, we pragmat-
ically asses the expressiveness of Jolie wrt the considered WPs.

Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Coloured Petri Nets and Workflow Patterns . . . . . . . . . . . . . . . . . . . 3

2.2 Composing services in Jolie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 From Coloured Petri nets to Jolie SOAs . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Workflow Patterns in Jolie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 Basic Control-Flow Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Advanced Branching Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Advanced Synchronisation Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Advanced Partial Synchronisation Patterns . . . . . . . . . . . . . . . . . . . 25

5 The Upload Service Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



1 Introduction

Service-Oriented Computing (SOC) is a design methodology focused on the
realisation of systems by composing autonomous entities called services. In a
Service-Oriented Architecture [1] (SOA), services are composed by coordinating
their communications into a flow of interactions. Several tools have been pre-
sented [2–4] to assist the process of SOA design, each focusing on a particular
aspect of the system, e.g., the architectural composition, the interaction among
components, etc. Coloured Petri nets [5] (CPNs) are a formal yet intuitive graph-
ical tool, largely employed in business process modelling [6] and suitable for SOA
specification. Although in CPN models interactions are easy to understand, it
is unclear which components form the system, which implement the described
logic or whether it be spread among the components or centralised.

Therefore the aim of this work is to provide a methodology that allows the
translation of CPN-modelled SOAs into executable ones.

The Workflow Patterns Initiative (WPI) studied and collected a compre-
hensive set of recurring patterns of process-aware information systems, dubbed
Workflow Patterns [6] (WP). In particular we remark the exhaustive set of pat-
terns of interaction, dubbed Control-Flow Workflow Patterns [7]3, modelled as
CPNs. Since CPNs are composable, our idea, depicted by the scheme in Fig. 1,
is that an SOA, modelled as a CPN, can be described in terms of the Workflow
Patterns it is made of. Once the SOA is defined by a composition of WPs, the
developer only has to refer to the implementation of each WP to build the whole
system.

CPN-modelled 
SOA

WP-modelled 
SOA

Executable 
SOA

CPN specification of
Workflow Patterns

Implementation of
Workflow Patterns

Fig. 1: The scheme of translation from abstract to executable SOAs.

To realise our proposal, we provide the implementation of a substantial set
of WPs. Such implementation is not immediate since WPs are abstract spec-
ifications and it is unclear how they map into executable code for service co-
ordination. Moreover, although the same WP applies to different subnets of
interactions, its implementation may differ sensibly depending on whether its
logic is centralised in a single component or distributed among several ones.
Centralised and distributed approaches suit different contexts. E.g., if a vendor
wants to monitor its application he might prefer a single point of control to

3 here referred as Workflow Patterns for simplicity.
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track the whole system. On the other hand, some scenarios strictly require a
distributed approach, e.g., an interaction that comprehends different parties. In
§ 5 we consider a realistic use case that combines the two approaches.

We translate both the centralised and distributed versions of WPs as com-
posable and executable SOAs. In order to provide a consistent translation we
also define a procedure in § 3. Notably, such procedure might directly map a
CPN-modelled SOA to an executable one, thus skipping the said in-between
translation to a WP-modelled SOA. However, the behaviour of some WPs needs
ad-hoc solutions (see Table 1) not directly mapped by the presented procedure.
Thus, although providing an automatic procedure is an interesting challenge, in
this work we focus on the practical implications of enabling developers trans-
late CPN-modelled SOAs into executable ones by referring to our collection of
Workflow Patterns. Our procedure applies to any service-oriented language, e.g.,
BPEL [8] but we choose to implement WPs in Jolie [9,10] for two main reasons.
First Jolie supports several communication and serialisation protocols, thus the
same implementation applies to different application domains. Second Jolie is
based on a formal process calculus [11] which we plan to use to prove relevant
correctness properties of translated SOAs.

2 Background

2.1 Coloured Petri Nets and Workflow Patterns

In this section, we provide a brief introduction to the basic terminology and no-
tation of Coloured Petri Nets (CPN), which are used as specification language
for control-flow WPs, and to Jolie. CPNs are a modelling language that combine
elements inherited from Petri Nets [12] (PNs) and capabilities of high-level pro-
gramming languages that allow the construction of parametrised models. The
main ingredients of a CPNs are the following:

– places are locations where tokens reside. A place can have a cardinality asso-
ciated to it, expressing the maximum amount of tokens that it can contain.
Places represent the state of the system according to a specific marking,
which is a distribution of tokens among the places of a net at a given time.
Places are depicted as empty circles;

– tokens are used to mark when a certain state, i.e., a place, holds. In CPNs,
tokens have a data value attached to them, namely, a token colour. Tokens
are represented as filled circles and can only appear inside places;

– transitions are used to represent the dynamic behaviour of the system and
are depicted as boxes;

– arcs indicate the relations connecting transitions and places and specify the
“flow” of tokens through the net. Graphically, arcs are represented as di-
rected arrows. Each arc has an expression associated with it that defines its
binding policies and the quantity of tokens involved. Policies are expressed
on values of a specific data type, i.e., a specific token colour.
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Defined •t as the set of input places of a transition t and t• as the set of its
output places, t may fire if (i) all places in •t contain the amount of coloured
tokens that satisfy the expression associated with each arcs entering in t and
(ii) all places in t• can contain the specific amount of coloured tokens yielded
by t. When t fires, it removes tokens from places in •t and yields tokens in t•.
The number of tokens is described by the expressions on arcs. The control-flow
WPs that we use in this work are taken from [7] and we use the definitions and
the assumptions made in that paper on CPN models. In particular, tokens that
indicate control-flow are typed CID, input places are denoted by i1, ..., in,
output places by o1, ..., on, internal places by p1, ..., pn, and transitions
by A, ..., Z. Furthermore, we assume that, unless differently indicated, the
CPN that models a pattern is safe, i.e., each place in the model can only contain
at most one token.

2.2 Composing services in Jolie

We now present the basic concepts needed for understanding the behaviour of
services written in Jolie. Jolie programs contain two parts related to the be-
haviour of a service and to its deployment. Here we are interested only in the
behavioural aspect, which defines the instructions to be performed and the in-
put/output communications of a service. Remarkably, the independence of be-
haviour from deployment information in Jolie applications allows to seamlessly
integrate heterogeneous networks of Jolie and non-Jolie services that communi-
cate on different media (e.g., TCP/IP, Bluetooth, Java RMI, unix local sock-
ets, etc.) and with various protocols (e.g., SODEP, SOAP, HTTP, JSON-RPC,
XML-RCP, and their equivalent over SSL).

Jolie combines message-passing and imperative programming style and al-
lows scopes, indicated by curly brackets {...}, to represent proced ures. Pro-
cedures can be labelled with the keyword define. The name of a procedure is
unique within a service and is used to execute its code. The main procedure is
the entry point of execution for each service. Conditions, loops, and sequence
are standard. The parallel operator | states that both left and right operands
execute concurrently — note that parallel operator has always priority on se-
quence4. Jolie provides also an input-guarded choice with the following syntax:
[η1]{B1} . . . [ηn]{Bn}, where ηi, i ∈ {1, . . . , n}, is an input statement and Bi

is the related branch behaviour. When a message on ηi is received, all other
branches are deactivated and ηi is executed. Afterwards, Bi is executed. A static
check enforces all the input choices to have different operations to avoid ambigu-
ity. Jolie supports two kinds of message-passing operations, namely One-Ways
(OWs) and Request-Responses (RRs). On the sender’s side, the former operation
sends a message and immediately passes the thread of control to the subsequent
activity in the process, while the latter sends a request and keeps the thread of
control until it receives a response. On the receiver’s side, OWs receive a message

4 Scopes ease the definition of precedence between different code blocks, as shown at
Lines 2-5 in Listing 1.1.
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and store it into a defined variable, whilst RRs receive a message into a variable
and send the content of the second variable as response.

Listing 1.1 exemplifies an SOA consisting of two services A and B. A sends in
parallel the content of variables a and b through OW operations op1 and op2,
respectively, at (@) B. When B receives a message on one of the corresponding OW
operations, it stores the content of the message in the corresponding variable.
After the completion of scopes at Lines 2-5, A proceeds with the subsequent RR
operation op3. op3 sends the content of variable e and stores its response in h.
The scope linked to op3, in Lines 6-8 of service B, is the procedure executed
before sending the response to A. In the example, the procedure assigns a string
to g.

Listing 1.1: An example of composition and communication between services.

1 // serv ice A
2 {
3 op1@B( a )
4 | op2@B( b )
5 };
6 op3@B( e )( h )

1 // serv ice B
2 {
3 op1( c )
4 | op2( d )
5 };
6 op3( f )( g ){
7 g = "Hello , world"
8 }

In Jolie, variables are dynamically typed while OWs and RRs statically de-
fine the type of the message they carry. The language provides the interface

construct to declare a set of supported operations and the type of their messages.
Interfaces are specified in the deployment part of a Jolie service. Whenever a
message is sent or received, its type is checked against its specification and a
fault is raised in case of mistyping. The execution statement defines how the
behaviour of a Jolie service shall run. Allowed values are: single5, concurrent,
and sequential. Except for the single execution modality, a new instance of
the service starts whenever its first input operation is invoked. Concurrent in-
stances run immediately after their invocation. Sequential instances are queued
and run only when all previous instances terminated.

5 default, if the execution statement is omitted
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3 From Coloured Petri nets to Jolie SOAs

In this section we show how CPN models of Worklow Patterns can be translated
into SOAs implemented in Jolie. Our technique for translating CPNs into SOAs
is based on five principles:

i – transitions are services;
ii – places are message passing operations (i.e., communications);

iii – communications carry typed messages, as coloured tokens do;
iv – arcs are properties on communications: they express the type of carried mes-

sages and the conditions that fire the communication;
v – a CPN models an SOA composed by several services running in parallel.

Following these principles, CPN models of WPs are translated into Jolie SOAs as
follows. We map input i1, ..., in places, internal p1, ..., pn places, and
output places o1, ..., on into One-Way (OW) operations (principle ii). In
case other internal operations are needed, we use the notation pi1, ..., pin,
where i identifies a set of related operations. When it is compatible with the
behaviour of the pattern, we “coalesce” two round-trip OW operations between
two services into one Request-Response (RR) for brevity. Furthermore, since in
Jolie output operations define the service they communicate to, we map output
places into OWs on default output deployment locations DefaultOutput1, ...,

DefaultOutputn. This allows to compose patterns on the basis of the definition
of their deployment locations. As stated in principle (v), services in implemented
SOAs run in parallel. We set the default execution of each service of the system
as sequential to comply with the safety property defined in section 2.1. We also
omit the declaration of scope main if the realisation of a pattern is independent
from its position in the execution of a service.

In order to model WPs as SOAs, we relax the definition of instance given
by the workflow terminology in [13]. In our approach, an SOA instance is a
composition of instances of services which are related by messages carrying spe-
cific session identifiers or SIDs. Each SID identifies a unique execution of an
SOA and we employ correlation sets to identify and manage different sessions
(see [14] for more details). However here we omit the definition of correlation
sets in our implementations, as they are not necessary for the definition of the
behaviour of our services. An SOA can be realised by using a centralised or a
distributed approach, usually referred to with the terminology “orchestration”
and “choreography”. In the first case, an orchestrator, or master service, encodes
the whole behaviour of the SOA in terms of interactions among the different ser-
vices participating in the SOA. WS-BPEL [8] is the most known technology for
this approach. In the second case, a choreography specifies the global behaviour
of an SOA by defining, in an abstract way, the communication behaviour of
the single services participating to the SOA, without introducing centralization
points. Choreographic languages such as WS-CDL [15] have been specifically
designed for this purpose. Recent works [16,17] introduced automatic projection
techniques which allow to obtain executable services of an SOA from a chore-
ographic specification. In our work, we call choreography a set of coordinated
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services that implement the global behaviour in such a distributed way. For each
WP we provide both a centralised and a distributed implementation. In the cen-
tralised implementation the master service realises the behaviour of a pattern
and is the only service that receives and sends messages outside the SOA. In
the distributed approach we maintain a direct relation between transitions and
services, thus we impose no restriction on the scope of external input and output
operations. The implementation of each WP under both methodologies allows
us to achieve three results: first, designers can determine the components that
enact a specific pattern; second, developers have a standardised reference for
the implementation of patterns; third, from the differences in the two approach
emerge significative aspects concerning the expressive power of the implementa-
tion language (Jolie in our case), as we discuss in the Conclusions (§ 6).

Example Let us consider a graphical example of a translation from a CPN model
to its centralised and distributed implementations. We label A the CPN in box A
of Fig. 2. A reads: when a token reaches place i1, transition A can fire. A yields a
token in place p1 if condition cond1 holds, else it yields a token in p2. Transition
B or C fires concordantly, yielding a token in place p3. Finally, transition D fires
and yields a token in o1. The SOA in box B of Fig. 2 shows the centralised
realization of A. The orchestrator implements the behaviour of the pattern by
sending round-trip messages by means of RRs that invoke specific operations
on services, waiting for their responses. Diagram B reads: the orchestrator

receives a message on operation i1. It evaluates condition cond1 internally6 to
decide whether to invoke service B or C on operation p2 or p3, respectively. Then,
it invokes operation p4 on D that returns its output. Finally, it sends the output of
the system on o1. The distributed approach maintains a direct relation between
transitions and services as shown in box C of Figure 2. Services pass the thread
of control using OW operations. Service A receives a message on operation i1.
A evaluates condition cond1 internally and invokes service B or C, respectively,
on operation p1 or p2. The invoked service sends a message to service D that
sends its output on o1. The operations in boxes B and C show the type of the
message they carry between round brackets. The type is the same as the one of
c in the CPN. Listing 1.2 reports the corresponding code of, respectively, the
orchestrator of the centralised version and of the services in the distributed one.

Listing 1.2: Centralised (right) and distributed (left) implementations of CPN A.

1 //orchestrator
2 i1( c );
3 p1@A( c )( cond1 );
4 if( cond1 ){
5 p2@B( c )( c )
6 } else {
7 p3@C( c )( c )
8 };
9 p4@D( c )( c );

10 o1@DefaultOutput1( c )

1 // serv ice A
2 i1( c );
3 if( cond1 ){ p1@B( c ) }
4 else { p2@C( c ) }
5 // serv ice B
6 p1( c ); p3@D( c )
7 // serv ice C
8 p2( c ); p3@D( c )
9 // serv ice D

10 p3( c ); o1@DefaultOutput1( c )

6 not shown by the diagram
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Input Port
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CID if cond1 then emptyelse 1'c

CID

CID CID CID

A Service

Fig. 2: A CPN model, its centralised (B), and distributed (C) implementations.

4 Workflow Patterns in Jolie

In this section, we report the full discussion on the support and the implemen-
tations of basic and advanced branching and synchronisation control-flow WPs
in Jolie.

4.1 Basic Control-Flow Patterns

Sequence Definition The Sequence describes an activity in a workflow process
that is enabled after the completion of a preceding activity in the same process.

Fig. 3: Sequence pattern diagram

Implementation The Sequence pattern is directly supported by the sequence
operator ; presented in Section 2.2. The centralised version of this implemen-
tation coalesces couples of round-trip OWs into RRs. In the distributed each
service passes the thread of control to the subsequent service through a OW
message.
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Listing 1.3: Sequence — cen-
tralised

1 i1( c );
2 i1@A( c )( c );
3 p1@B( c )( c );
4 o1@DefaultOutput1( c )

Listing 1.4: Sequence —
distributed

1 // serv ice A
2 {
3 i1( c );
4 p1@B( c )
5 }
6 // serv ice B
7 {
8 p1( c );
9 o1@DefaultOutput1( c )

10 }

Parallel Split Definition The Parallel Split represents the divergence of a
branch into two or more parallel branches each of which executes concurrently.

Implementation The parallel operator |, presented in § 2.2, provides a direct
support to the Parallel Split pattern as it splits the thread of control between
two branches. Noticeably, the centralised version of this pattern makes use of
scopes ldots to manage the parallel execution of the two branches emanating
from transition A.

Fig. 4: Parallel Split pattern diagram

Listing 1.5: Parallel Split — cen-
tralised

1 i1( c );
2 {
3 p1@A( c )( c1 );
4 o1@DefaultOutput1( c1 )
5 }
6 |
7 {
8 p2@B( c )( c2 );
9 o2@DefaultOutput2( c2 )

10 }

Listing 1.6: Parallel Split
— distributed

1 // serv ice A
2 {
3 i1( c );
4 { p1@B( c ) | p2@C( c ) }
5 }
6 // serv ice B
7 {
8 p1( c ); o1@DefaultOutput1( c )
9 }

10 // serv ice C
11 {
12 p2( c ); o2@DefaultOutput2( c )
13 }
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Synchronisation Definition The Synchronisation represents the convergence
of two or more branches into a single subsequent branch such that the thread of
control is passed to the subsequent branch when all input branches have been
enabled. As context condition, only one incoming signal can reach each incoming
branch. Once the behaviour of the pattern has been reset, no other signal reaches
the input branches.

Fig. 5: Synchronisation pattern diagram

Implementation The Synchronisation complements the Parallel Split. The be-
haviour of the pattern is directly supported by the semantic of scopes ldots

presented in Section 2.2. In Jolie, the thread of control of a scope passes to
its parent only when its execution terminates. Synchronisation derives from a
composition of scopes with Parallel Split.

Listing 1.7: Synchronisation — centralised

1 {
2 {
3 i1( c1 );
4 p1@A( c1 )( c.c1 )
5 }
6 |
7 {
8 i2( c2 );
9 p2@B( c2 )( c.c2 )

10 }
11 };
12 p3@C( c )( c );
13 o1@DefaultOutput( c )

In the centralised implementation we used subnodes of variable c to store the
content of data belonging to different branches. In Jolie variables are organised
as data trees. Therefore a variable is a path for traversing the data tree. State
traversing is obtained through ., the dot operator.
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Listing 1.8: Synchronisation — distributed

1 // serv ice C
2 {
3 {
4 p1( c1 )
5 |
6 p2( c2 )
7 };
8 o1@DefaultOutput1( c )
9 }

10 // serv ice A
11 { i1( c ); p1@C( c ) }
12 // serv ice B
13 { i2( c ); p2@C( c ) }

Exclusive Choice Definition The Exclusive Choice represents the divergence
of a branch into two or more branches. When the incoming branch is enabled, the
thread of control is immediately passed to precisely one of the outgoing branches
based on the outcome of a logical expression associated with the branch.

Fig. 6: Exclusive Choice pattern diagram

Implementation Jolie directly supports the Exclusive Choice pattern in two
ways, whether the desired mechanism of selection is deterministic or non-deterministic.
The conditional statement if ...else performs a deterministic internal choice.
The input choice rule implements a non- deterministic choice. The condition
evaluated by the input choice is the invocation of one of the branched opera-
tions, which may derive either from an internal choice of the invoker or from
a race between several invokers. Both solutions apply to centralised and dis-
tributed approaches. For brevity, we show the internal choice in a centralised
architecture and the non- deterministic choice in choreography. In Listing 1.9,
the orchestrator evaluates the condition cond and chooses whether to proceed
on branch B or C. In Listing 1.10, we insert an additional service P that service
A invokes on operations p1 or p2 after the evaluation of condition cond.

11



Listing 1.9: Exclusive Choice — centralised

1 i1( c );
2 p1@A( c )( cond );
3 if ( cond ){
4 p2@B( c )( c );
5 o1@DefaultOutput1( c )
6 } else {
7 p3@C( c )( c );
8 o2@DefaultOutput2( c )
9 }

Listing 1.10: Exclusive Choice — distributed

1 // serv ice A
2 {
3 i1( c );
4 if ( cond ){ p1@P( c ) }
5 else { p2@C( c ) }
6 }
7 // serv ice P
8 {
9 [ p1( c ) ]{ p3@B( c ) }

10 [ p2( c ) ]{ p4@C( c ) }
11 }

Simple Merge Definition The Simple Merge represents the convergence of
two or more branches into a single subsequent branch. Each enablement of an
incoming branch results in the thread of control being passed to the subsequent
branch. There is one context condition associated with the pattern: the place at
which the merge occurs, i.e., place p1, is safe thus it cannot contain more than
one token.

Fig. 7: Simple merge pattern diagram

Implementation Jolie provides a direct support for this pattern as it can be
obtained from a composition of primitive constructs provided by the language
and directly supported patterns.
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We label s the subnet in Fig. 7 composed by the transitions A, B, and C and
place p1. s defines an OR- join since it allows the activation of C each time A

or B yields a token. Additionally, p1 is safe, which makes s become an exclusive
OR-join (XOR-join). The OR-join component derives from a Sequence of each
incoming branch followed by an OW operation towards the merging service C.
This holds for both orchestration and choreography.

The exclusive property forces each incoming operation to execute sequen-
tially and its implementation differs between the two approaches. The centralised
implementation composes the branches corresponding to services A and B in Syn-
chronisation. When each of them returns its response, the orchestrator invokes
p1 on service C. The synchronized scope, provided by Jolie, guarantees mutual
exclusion among branches that access the same resource (token). In the dis-
tributed implementation, the sequential execution modality queues multiple
firings of service C and executes them sequentially, guaranteeing mutual exclu-
sion. C have no dependency on the number of branches to be merged.

Listing 1.11: Simple Merge —
centralised

1 {
2 i1( c1 );
3 i1@A( c1 )( c1 );
4 synchronized ( token ){
5 p1@C( c1 )( c1 );
6 o1@DefaultOutput1( c1 )
7 }
8 }
9 |

10 {
11 i2( c2 );
12 i2@B( c2 )( c2 );
13 synchronized ( token ){
14 p1@C( c2 )( c2 );
15 o1@DefaultOutput1( c2 )
16 }
17 }

Listing 1.12: Simple Merge — distributed

1 // serv ice A
2 {
3 i1( c );
4 p1@C( c )
5 }
6 // serv ice B
7 {
8 i2( c );
9 p1@C( c )

10 }
11 // serv ice C
12 execution{ sequential }
13
14 {
15 p1( c );
16 o1@DefaultOutput1( c )
17 }

4.2 Advanced Branching Patterns

Multi-Choice Definition The divergence of a branch into two or more branches
such that when the incoming branch is enabled, the thread of control is imme-
diately passed to one or more of the outgoing branches based on a mechanism
that selects one or more outgoing branches.

Implementation Multi-Choice is supported directly and its implementation
derives from Exclusive Choices composed with a Parallel Split. This implemen-
tation holds for both centralised and distributed approaches.
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Fig. 8: Multi-Choice pattern diagram

Listing 1.13: Multi-Choice pattern — centralised

1 i1( c );
2 {
3 p@A( c )( cond1 );
4 if( cond1 ){
5 p1@B( c1 )( c1 );
6 o1@DefaultOutput1( c1 )
7 }
8 } | {
9 p@A( c )( cond2 );

10 if( cond2 ){
11 p2@C( c2 )( c2 );
12 o2@DefaultOutput2( c2 )
13 }
14 }

Listing 1.14: Multi-Choice pattern — distributed, service A

1 i1( c );
2 {
3 if( cond1 ){
4 p1@B( c )
5 }
6 }
7 |
8 {
9 if( cond2 ){

10 p2@C( c )
11 }
12 }

Thread Split Definition At a given point in a process, a nominated number
of execution threads can be initiated in a single branch of the same process
instance. There is a context condition for this pattern: the number of splitting
threads is known at design-time.

Implementation Jolie directly supports this pattern. Since the implementa-
tions for this pattern hold for both centralised and distributed approaches, we
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Fig. 9: Thread Split pattern diagram

provide the centralised only. Thread Split can be implemented in three ways:
iteratively, with parallel recursion, and with the spawn construct.

Listing 1.15: Thread Split — iterative implementation

1 i1( c );
2 p1@A( c )( c );
3 for( i=0, i<numinst , i++ ){
4 o1@DefaultPort1( c )
5 }

Listing 1.16: Thread Split — implementation with spawn

1 i1( c );
2 p1@A( c )( c );
3 spawn( i over numinst )
4 {
5 o1@DefaultOutput1( c )
6 }

Listing 1.17: Thread Split — recursive implementation

1 define thread_split
2 {
3 {
4 if ( i < numinst ){
5 i++;
6 {
7 o1@DefaultOutput1( c )
8 | thread_split
9 }

10 }
11 }
12 }
13
14 main
15 {
16 i1( c );
17 p1@A( c )( c );
18 i=0;
19 thread_split
20 }

Listing 1.15 shows the iterative solution via for statement. OWs in Jolie
are asynchronous and can start parallel executions of other processes. However,
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OWs pass the thread of control only after the reception of an acknowledgement.
Hence, this solution achieves only a partial rating. OWs composed inside an
iterative scope prevents a real parallel firing of threads, as the next thread is
started only after the acknowledgement of reception of the preceding one.

The recursive method, shown in Listing 1.17, consists of a recursive compo-
sition of Parallel Splits. This solution offers a direct support for this pattern. At
each execution, the branching procedure thread split creates a new invocation
and invokes itself in parallel, eventually creating numinst parallel branches of
the same procedure.

The solution that uses the spawn [18] primitive offers a direct support too.
Shown in Listing 1.16, the spawn statement creates a parallel composition of a
number of processes equal to the integer evaluation of the given expression.

4.3 Advanced Synchronisation Patterns

Generalised AND-Join. The convergence of two or more branches into a single
subsequent branch such that the thread of control is passed to the subsequent
branch when all input branches have been enabled. Additional triggers received
on one or more branches between firings of the join persist and are retained for
future firing. Unlike the Synchronization pattern, the Generalised AND- Join
supports non-safe contexts, i.e., one or more incoming branches may receive
multiple triggers in the same process instance. When the pattern executes, it
takes one token from each input place i1, ldots, in, ignoring additional tokens
that are left in place.

Fig. 10: Generalised AND-Join pattern diagram
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Listing 1.18: Generalised AND-Join — order assumption

1 {
2 i1( c.c1 )
3 |
4 i2( c.c2 )
5 |
6 i3( c.c3 )
7 };
8 p@A( c )( c );
9 o1@DefaultOutput1( c );

Listing 1.19: Generalised AND-Join

1 main
2 {
3 [ i1( c ) ]{
4 queueOp_i1;
5 check_and_send
6 }
7
8 [ i2( c ) ]{
9 queueOp_i2;

10 check_and_send
11 }
12
13 [ i3( c ) ]{
14 queueOp_i3;
15 check_and_send
16 }
17 }

Implementation We identify two implementations for the Generalised AND-
Join, although they respectively achieve a “not direct” and a “not supported”
rating for this pattern. The first solution composes input operations within a
Synchronisation scope and it is valid only if we assume an order among tu-
ples of received messages7. In Jolie, the order of consumed messages must be
coherent with the specification of execution, or the system ends in a deadlock
state [14]. Listing 1.18 shows the centralised implementation of this solution,
although it holds also for the distributed version. The second implementation,
in Listing 1.19, fully supports the pattern’s requirement and holds for both
centralised and distributed approaches. However, it achieves a “not supported”
rating due to the necessity of a dedicated queuing mechanism. In order to man-
age multiple unordered triggers on the same session, we employ input choice and
queues. Each time a new invocation arrives, it starts a new instance of the joining
service. The subsequent procedure (queueOp i1, ..., queueOp i3) stores the
carried message into an ad-hoc (FIFO) queue. Then, procedure check and send

controls if each queue has at least one element. If enough messages arrived, the

7 given two tuples of incoming messages s = (i1, . . . , in) and s′ = (i′1, . . . , i
′
n) on the

same session k, if a message of s reaches the service first, no message of s′ shall reach
the service before all remaining messages of s have reached the service.
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procedure pulls out the involved elements — one per queue — and triggers the
finalising behaviour. We purposely omit the definitions of any of the procedures.
Queuing functionalities can be implemented either within the joining service or
relying on auxiliary services.

Fig. 11: Multi-Merge pattern diagram

Multi-Merge Definition The convergence of two or more branches into a sin-
gle subsequent branch such that each enablement of an incoming branch results
in the thread of control being passed to the subsequent branch. The distinction
between this pattern and the Simple Merge is that it is possible for more than
one incoming branch to be active simultaneously and there is no necessity for
place p1 to be safe.

Implementation Remarkably, Jolie has a direct support for this pattern as the
centralised and distributed implementations provided for Simple Merge require
minimal changes to realise the behaviour of this pattern. Namely, the orches-
trator removes the mutually exclusive textttsynchronized scope whilst service
textttC switches its execution from textttsequential to textttconcurrent in the
distributed version.

Thread Merge Definition At a given point in a process, a nominated number
of execution threads in a single branch of the same process instance should
be merged together into a single thread of execution. There are two context
considerations for this pattern. (a) The number of threads to merge must be
known at design-time. (b) Only execution threads for the same process instance
can be merged. If the pattern merges independently executing threads arisen
from some form of activity spawning, it shall specifically identify the threads to
be coalesced.

Implementation We identify two implementations that offer direct support
to this pattern. One iterative, the other that uses multiple instances. Here, we
provide the solutions realised in a centralised architecture, although they hold
also for the distributed one. Both solutions make use of the knowledge at design-
time on the number of threads to merge (a). Remarkably, the employment of
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Fig. 12: Thread Merge pattern diagram

correlation sets [14] prevents non-correlated messages to be routed towards the
wrong instance of the merging service, identifying the threads to coalesce (b).

Listing 1.20 shows the iterative solution, realised by means of the for state-
ment. The service receives each input message on operation i1. For each in-
vocation, it stores the data of the incoming message into an array. After the
numinst-th invocation, it sends its output.

Similarly, the multi-instance implementation, in Listing 1.21, uses the se-
quential execution to receive one message per instance, storing the message in
structure c and counting their number with variable i. Both c and i alias a global
variable [10] to preserve the global status the system over multiple instances.

Listing 1.20: Thread Merge — iterative implementation

1 for( i=0, i<numinst , i++ ){
2 i1( c[ i ] )
3 };
4 p1@A( c )( c );
5 o1@DefaultOutput1( c )

Listing 1.21: Thread Merge — multi-instance implementation

1 main
2 {
3 i1( c[ i ] );
4 i++;
5 if( i == numinst ){
6 p@A( c )( c );
7 o1@DefaultOutput1( c )
8 }
9 }

Structured Synchronising Merge Definition The convergence of two or
more branches (which diverged earlier in the process at a uniquely identifiable
point) into a single subsequent branch such that the thread of control is passed
to the subsequent branch when each active incoming branch has been enabled.
The Structured Synchronising Merge occurs in a structured context, i.e., there
must be a single Multi- Choice construct earlier in the process model which
the Structured Synchronising Merge is associated with and it must merge all of
the branches emanating from the Multi-Choice. These branches must either flow
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from the Structured Synchronising Merge without any split or join or they must
be structured in form (i.e., balanced splits and joins).

Fig. 13: Structured Synchronising Merge pattern diagram

Implementation We mark the support for this pattern as direct because it
derives from a composition of Multi-Choice and Synchronised patterns.

One of the challenges of this pattern is knowing when it can execute, basing
this decision on local information available during the course of execution. Crit-
ical to this decision is the knowledge of how many branches emanating from the
Multi-Choice are active and require synchronisation. In [7] the authors define
several ways to tackle this issue. The best solution they propose is structuring
the process model following a Multi-Choice pattern such that the subsequent
Structured Synchronising Merge always receives precisely one trigger on each
of its incoming branches (cond1, ..., condn) and no additional knowledge is
required to decide whether it should be enabled. This approach makes sure the
merge construct always occurs in a structured context.

Our solution preserves a structure that requires no additional knowledge to
enact the Structured Synchronising Merge behaviour, yet being compositional
and providing a clear bypass path around each branch. Moreover, it inherits the
property of decoupling the evaluation of the conditions and their data from the
Multi-Choice block.

Both centralised and distributed implementations (respectively in Listings
1.22 and 1.23) of the Structured Synchronising Merge are composed by (i) a set
of non-splitting or balanced-splitting branches firing out of a Multi-Choice block
and (ii) a final Synchronisation block.
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Listing 1.22: Structured Synchronising Merge — centralised

1 i1( c );
2 p1@A( c )( c );
3 {
4 {
5 if( c.cond1 ){
6 p2@B( c.c1 )( c.c1 );
7 p4@D( c.c1 )( c.c1 )
8 };
9 p5@E( c.c1 )( c.c1 )

10 }
11 |
12 {
13 if( c.cond2 ){
14 p3@C( c.c2 )( c.c2 )
15 };
16 p6@E( c.c2 )( c.c2 )
17 }
18 };
19 o1@DefaultOutput1( c )

Listing 1.23: Structured Synchronising Merge — distributed

1 //Service A
2 main
3 {
4 i1( c );
5 {
6 if( cond1 ){
7 p1@B( c )
8 } else {
9 p4@E( c )

10 }
11 }
12 |
13 {
14 if( cond2 ){
15 p2@C( c )
16 } else {
17 p5@E( c )
18 }
19 }
20 }
21 //Service E
22 main
23 {
24 {
25 p4( c.c1 )
26 |
27 p5( c.c2 )
28 };
29 o1@DefaultOutput1( c )
30 }

Local Synchronizing Merge Definition The convergence of two or more
branches which diverged earlier in the process into a single subsequent branch
such that the thread of control is passed to the subsequent branch when each
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active incoming branch has been enabled. Determination of how many branches
require synchronization is made on the basis on information locally available to
the merge construct. This may be communicated directly to the merge by the
preceding diverging construct or alternatively it can be determined on the basis
of local data such as the threads of control arriving at the merge.
Implementation The requirement of this pattern is captured by the imple-
mentation given for the Structured Synchronizing Merge, where the information
about the enabled branches is communicated directly by the Multi-Choice com-
ponent.

General Synchronizing Merge Definition The convergence of two or more
branches which diverged earlier in the process into a single subsequent branch.
The thread of control is passed to the subsequent branch when each active in-
coming branch has been enabled or it is not possible that the branch will be
enabled at any future time.

Fig. 14: General Synchronising Merge pattern diagram

Implementation To support this pattern, we need change the structure of the
SOA derived from its CPN model. This is due to the races between services.
Hence, we assign a partial support for this pattern in Jolie. The graphical repre-
sentation of the General Synchronizing Merge highlights that there is no bypass
path for a false evaluation of cond1 or cond2, thus ending with transition E,
i.e., the synchronising construct, deadlocked. This derives from the requirement
of this pattern. It models an unstructured merge where E has no local knowl-
edge about which branch is enabled and if they will be enabled in the future,
respectively due to lack of bypass paths and allowance for diverging loops. The
centralised implementation, in Listing 1.24, is similar to the one provided for
the Structured Synchronizing Merge. However, in this case a false evaluation
of cond1 or cond2 shall lead to a stuck state. This is rendered by means of
the linkIn-linkOut constructs that Jolie provides for implementing a token-
request/token-release mechanism. The distributed version has no need for such
construct because if any condition evaluates to false, the subsequent services
hang waiting for an incoming message. Transitions F and E realise a race on
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place p4. In the orchestrator, the race condition (Lines 6-25) translates into a
parallel invocation of operation p4 on both services E and F, using a variation of
the Simple Merge to determine the winner of the race, i.e., the first that responds
to the request. Also the distributed version is similar to the one provided for the
Structured Synchronizing Merge. In particular, we realise the race between ser-
vices E and F in service D, Lines 17-35 of Listing 1.25. Noticeably, its realisation
is equivalent to the one provided for the orchestrator.

Listing 1.24: General Synchronising Merge — centralised

1 define branch_1
2 {
3 p1@B( c )( c1 ); p3@D( c1 )( c1 );
4 {
5 {
6 p4@F( c1 )( cF );
7 synchronized( race_token ){
8 if( !is_defined( f_branch ) ){
9 f_branch = true

10 }
11 }
12 }
13 |
14 {
15 p4@E( c1 )( cE );
16 synchronized( race_token ){
17 if( !is_defined( f_branch ) ){
18 f_branch = false
19 }
20 }
21 }
22 };
23 if( f_branch ){
24 undef( f_branch ); branch_1
25 }
26 }
27
28 define branch_2
29 {
30 p2@C( c )( c2 ); p5@E( c2 )( c2 )
31 }
32
33 main
34 {
35 i1( c );
36 p1@A( c )( c );
37 {
38 if( cond1 ){
39 branch_1; linkOut( token_cond1 )
40 }
41 |
42 if( cond2 ){
43 branch_2; linkOut( token_cond2 )
44 }
45 };
46 {
47 linkIn( token_cond1 ) | linkIn( token_cond2 )
48 };
49 o1@DefaultOutput1( c )
50 }
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Listing 1.25: General Synchronising Merge — distributed

1 // serv ice A
2 main
3 {
4 i1( c );
5 {
6 if( cond1 ){
7 p1@B( c )
8 }
9 |

10 if( cond2 ){
11 p2@C( c );
12 }
13 }
14 }
15 // serv ice D
16 main
17 {
18 p3( c );
19 {
20 {
21 race@F()();
22 synchronized( token ){
23 if( !is_defined( resp ) ){
24 branch_f = true
25 }
26 }
27 }
28 |
29 {
30 race@E()();
31 synchronized( token ){
32 if( !is_defined( resp ) ){
33 branch_f = false
34 }
35 }
36 }
37 };
38 if( branch_f ){
39 p4@F( c )
40 } else {
41 p4@E( c )
42 }
43 }
44 // serv ice E
45 main
46 {
47 [ race ()(){
48 nullProcess
49 }]{ nullProcess }
50 [ p4( c ) ]{
51 p5( c );
52 o1@DefaultPort1( c )
53 }
54 [ p5( c ) ]{
55 p4( c );
56 o1@DefaultPort1( c )
57 }
58 }
59 // serv ice F
60 main
61 {
62 [ p4( c ) ]{
63 p1@B( c )
64 }
65 [ race ()(){
66 nullProcess
67 }]{ nullProcess }
68 }
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4.4 Advanced Partial Synchronisation Patterns

In the context of WPs, a Discriminator describes a situation in which the con-
struct waits for 1 out of m branches to fire its output. The Partial Join is a gen-
eralisation of the Discriminator, where n out of m branches should be merged
before firing the output. Hence, since the Discriminator is a particular case of
partial join where n = 1, we do not directly discuss about Structure, Blocking,
and Cancelling Discriminator patterns as their behaviours are captured by their
Partial Join correspondent.

Structured Partial Join Definition The convergence of M branches into a
single subsequent branch following a corresponding divergence earlier in the pro-
cess model. The thread of control is passed to the subsequent branch when N
of the incoming branches have been enabled. Subsequent enablements of incom-
ing branches do not result in the thread of control being passed on. The join
construct resets when all active incoming branches have been enabled.

Fig. 15: Structured Partial Join pattern diagram

Implementation Both centralised and distributed implementations offer a di-
rect support for this pattern since it derives from a composition of directly
supported pattern.

The centralised solution, in Listing 1.26, composes into a Synchronisation
all the incoming branches i1, ..., im. Each time an incoming operation is
received, it enables a Thread Merge procedure, namely check and send. At the
n-th incoming operation, the procedure sends the collected messages to service B.
Noticeably, service reset is not present as its behaviour emerges from the Syn-
chronization pattern. When each scope has executed, procedure main terminates
and the master service can restart its behaviour.
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The distributed solution, in Listing 1.27, derives from a Sequence of Thread
Merges and also this implementation coalesces the behaviour of service reset

into service B.

Listing 1.26: Structured Partial Join — centralised

1 define check_and_send
2 {
3 if( i==n ){
4 p1@B( c )( c );
5 o1@DefaultPort1( c )
6 }
7 }
8
9 main

10 {
11 {
12 // code for op . i1
13 |
14 {
15 in( cn );
16 pn@An( cn )( cn );
17 synchronized( token ){
18 c[ i ] << cn;
19 i++;
20 check_and_send
21 }
22 }
23 |
24 // code for op . im
25 };
26 }

Listing 1.27: Structured Partial Join — distributed

1 //Service A1 , . . . ,Am
2 main
3 {
4 in( c );
5 p1@B( c )
6 }
7
8 //Service B
9 main

10 {
11 p1( c[ i ] );
12 for( i=1, i<n, i++ ){
13 p1( c[ i ] )
14 };
15 o1@DefaultOutput1( c );
16 for( i=0, i<m-n, i++){
17 p1()
18 }
19 }

Blocking Partial Join Definition The convergence of two or more branches
into a single subsequent branch following one or more corresponding divergences
earlier in the process model. The thread of control is passed to the subsequent
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branch when n of the incoming branches has been enabled (where 2 = n < m).
The join construct resets when all active incoming branches have been en-
abled once for the same process instance. Subsequent enablements of incoming
branches are blocked until the join has reset.

Fig. 16: Blocking Partial Join pattern diagram

Implementation We mark the support for this pattern as partial, due to its
dependency from the emphGeneralised AND-Join pattern.

The centralised implementation, in Listing 1.28, applies the same principle
described by the Generalised AND-Join. Each incoming operation i1, ..., im

can fire multiple times and each firing is stored for future executions. Proce-
dure queueOp in stores the message of operation in into a specific queue. Then,
procedure checkOp in controls the state of the queue to decide whether to fire
operation pn@An of the Structured Partial Join and updates the counter of the
fired operation accordingly. Procedure check and send enacts the behaviour of
the pattern depending on the number of fired operations. When the m-th op-
eration has fired, procedure reset removes the sent messages from the queues,
resets the counter of operations, and executes procedures checkOp i1, ...,

checkOp im in order to fire previously queued messages.

In the distributed approach, services T1, ..., Tm represent a distributed
version of the Generalised AND-join. In Listing 1.29, each Ti, i in {1, . . . , m},
controls the queue relative to its incoming operation i1, ..., im. Service B

implements the same merging behaviour as presented for the Structured Partial
Join, although after the reception of the m-th message, it invokes the operation
reset on all T1, ..., Tm for resetting the pattern. The operation reset re-
moves previously sent messages from the queues and checks if other messages
are present for subsequent executions.
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Listing 1.28: Blocking Partial Join – centralised

1 define checkOp_in
2 {
3 if( queueSizeOp_in == 1 ||
4 ( reset_token &&
5 queueSizeOp_in > 0 ) ){
6 peekQueueOp_in;
7 pn@An( c_loc )(c[counter ]);
8 counter ++
9 }

10 }
11
12 define reset
13 {
14 undef( counter );
15 {
16 dequeueOp_i1
17 | // . . .
18 | dequeueOp_im
19 };
20 reset_token = true;
21 {
22 checkOp_i1
23 | // . . .
24 | checkOp_im
25 };
26 undef( reset_token )
27 }
28
29 define check_and_send
30 {
31 if( counter == n ) {
32 p1@B( c )( c );
33 o1@DefaultOutput1( c )
34 };
35 if( counter == m ){
36 reset;
37 check_and_send
38 }
39 }
40
41 main
42 {
43 // [ i1 ]{ . . . }
44 // . . .
45 [ in( c_loc ) ]{
46 queueOp_in;
47 checkOp_in;
48 check_and_send
49 }
50 // . . .
51 // [ in ]{ . . . }
52 }
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Listing 1.29: Blocking Partial Join — distributed

1 // se rv i ce s T1 , . . . ,Tm
2 main
3 {
4 [ in( c ) ]{
5 queueOp_in;
6 if( queueSizeOp_in == 1 ){
7 p1n@An( c )
8 }
9 }

10 [ reset () ]{
11 dequeueOp_in;
12 if( queueSizeOp_in > 0 ){
13 peekQueueOp_in;
14 p1n@An( c )
15 }
16 }
17 }
18
19 // serv ice B
20 main
21 {
22 p3( c[ 0 ] );
23 for( i = 1, i < n, i++ ){
24 p3( c[ i ] )
25 };
26 o1@DefaultOutput1( c );
27 for( i = 0, i < m-n, i++ ){
28 p3()
29 };
30 {
31 reset@T1()
32 | // . . .
33 | reset@Tm()
34 }
35 }

Cancelling Partial Join. The convergence of two or more branches into
a single subsequent branch following one or more corresponding divergences
earlier in the process model. The thread of control is passed to the subsequent
branch when N of the incoming branches have been enabled. Triggering the join
also cancels the execution of all of the other incoming branches and resets the
construct.

Implementation The Cancelling Partial Join is built on top of the Structured
Partial Join and includes it as its subcomponent. We assign a “direct” support
to this pattern as it derives from the composition of directly supported pat-
terns. One of the difficulties with this pattern is that it realises a race among
transitions A1, ..., Am, S1, ..., Sm, and input places i1, ..., im. The cen-
tralised version renders the race as a parallel composition of Exclusive Choices
for evaluating the shared flag skip in each branch. When the n-th message ar-
rives, the procedure check and send sets the flag skip to true, routing the firing
of the remaining operations to S1, ..., Sm until the m-th messages reaches the
orchestrator and the pattern resets.
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Fig. 17: Cancelling Partial Join pattern diagram

Listing 1.30: Cancelling Partial Join
— orchestrator

1 define check_and_send
2 {
3 if( counter == n ){
4 p1@B( c )( c );
5 o1@DefaultPort1( c );
6 skip = true
7 }
8 }
9

10 main
11 {
12 {
13 // . . .
14 |
15 {
16 in( cn );
17 synchronized( token ){
18 if( skip ){
19 p2n@Sn( cn )( c2 )
20 } else {
21 p1n@An( cn )( cn );
22 c[ i ] << cn;
23 counter ++;
24 check_and_send
25 }
26 }
27 }
28 |
29 // . . .
30 };
31 undef( skip )
32 }

Listing 1.31: Cancelling Partial Join
— distributed SOA

1 // Services T1 , . . . ,Tm
2 main
3 {
4 i1( c );
5 p3@B( c )( skip );
6 if ( skip ){
7 p21@S1( c )
8 } else {
9 p11@A1( c )

10 }
11 }
12
13 // serv ice B
14 main
15 {
16 [ p1( c[ 0 ] )]{
17 for( i = 1, i < n, i++ ){
18 p1( c[ i ] )
19 };
20 o1@DefaultOutput1( c );
21 for( i = 0, i < m-n, i++){
22 p1()
23 };
24 undef( skip.( SID ) )
25 }
26 [ p3( c )( response ){
27 response = false;
28 local_skip -> skip.( SID );
29 synchronized( local_skip ){
30 local_skip ++;
31 if ( local_skip > n ){
32 response = true
33 }
34 }
35 }]{ nullProcess }
36 }
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We identify two difficulties in the distributed implementation of this pattern.
First, we need to coalesce the race into a service that evaluates whether to route
incoming messages on i1, ..., im towards A1, ..., Am or S1, ..., Sm. To
this end, we introduce in the SOA the services T1, ..., Tm. These services
encode the race into an internal Exclusive Choice. Second, we employ RRs to
implement the interaction described by the double-sided arcs between transi-
tions S1, ..., Sm and place p3. T1, ..., Tm invoke operation p3 each time
they receive a message on operation i1, ..., im. This guarantees a symmetric
knowledge on the state of the pattern between T1, ..., Tm and the joining
service B. Services T1, ..., Tm run simultaneously and invoke operation p3 in
parallel, possibly interleaving with joining operation p1. To prevent inconsis-
tencies between allowed firings on p3 and joined operations on p1, we need to
specify a mechanism that coordinates these two operations of service B. To this
end, we apply a modified version of the Thread Merge for the requests towards
p3. In this way, regardless to the number of invocations of p1, service T1, ...,

Tm would know whether to execute A1, ..., Am or S1, ..., Sm.

5 The Upload Service Use Case

Here we consider a realistic use case to illustrate how an SOA modelled as a
Coloured Petri net can be easily translated into an executable SOA by using our
design pattern implemented in Jolie. First we describe the communications in the
system by means of Coloured Petri nets, showing how the most relevant patterns
are employed. Then we provide the Jolie implementation of the commented
patterns. Our use case describes the interactions between a User, a file upload
Service Provider, and an Identity Provider. Figure 18 depicts the overall flow of
interaction. In the figure, for the sake of clarity, the double-line bordered boxes
act as placeholders for the two subnets reported in Figures 19 and 20.
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The interaction starts from the User that requests the service. The Service
Provider asks the User for authentication, redirecting the request to the Identity
Provider. The Identity Provider authenticates its users through a multi- factor
mechanism, allowing users to identify themselves with three different authen-
tication procedures: (i) HTTP basic access authentication, (ii) mobile phone,
and (iii) smart card. In order to authenticate the User, the Identity Provider re-
quires at least two successful authentications. Figure 19 describes the behaviour
of the multi- factor authentication in terms of the Cancelling Partial Join pat-
tern. In this case, the transition Receive Authentication Confirm fires as soon
as it receives two tokens of authentication. After such a transition has fired the
remaining authentication procedure is skipped. Listing 1.32 shows the imple-
mentation of the multi-factor authentication as an orchestrator.

After the successful authentication, the thread of control passes back to the
Service Provider with another distributed Sequence which notifies the User (s)he
can proceed to upload the file. The User and the Service Provider enter the
Multipart Upload interaction whose behaviour results from the composition of
several patterns. Fig. 20 depicts such interactions and highlights the most rele-
vant WPs. Fig. 21 depicts the architectural view of the translation following the
same informal representation used in Fig. 2.
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Listing 1.32: Multi-factor Authentication — Orchestrator

1 execution{ sequential }
2 constants { n = 2 }
3 init { receivedAuth -> global.receivedAuth }
4
5 define check_and_send
6 {
7 if( receivedAuth ==n ){
8 receiveIds@ReceiveAuthenticationConfirm( c )( c );
9 sendAuthentication@OUT( c );

10 skip = true
11 }
12 }
13
14 main
15 {
16 authenticationRedirectReceived( request );
17 {
18 {
19 sentUP( upData );
20 if( skip ){
21 sendUP@SkipUP( c1 )( c1 )
22 } else {
23 sendUP@ReceiveUP( c1 )( c1 );
24 c[ receivedAuth ] << c1;
25 receivedAuth ++;
26 check_and_send
27 }
28 }
29 |
30 {
31 sentPhone( phoneData );
32 if( skip ){
33 sendPhone@SkipPhone( c2 )( c2 )
34 } else {
35 sendPhone@ReceivePhone( c2 )( c2 );
36 c[ receivedAuth ] << c2;
37 receivedAuth ++;
38 check_and_send
39 }
40 }
41 |
42 {
43 sentSIM( simData );
44 if( skip ){
45 sendSIM@SkipSIM( c3 )( c3 )
46 } else {
47 sendSIM@ReceiveSIM( c3 )( c3 );
48 c[ receivedAuth ] << c3;
49 receivedAuth ++;
50 check_and_send
51 }
52 }
53 };
54 undef( skip );
55 receivedAuth =0;
56 }

The User-controlled part of the interaction mixes centralised and distributed
WPs. Listing 1.33 reports the code relative to the services orchestrator and
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SendChunks at User’s side. When the uploadRequest arrives (Line 1), the or-
chestrator requires the User to select a file, passing the thread of control as a
centralised Sequence to service SelectFile (Line 2). At file selection, the thread
of control returns to the orchestrator which passes it to service CreateChunks

(Line 3). The service employs a centralised Thread Split (A) to split the file into
n chunks. Then the orchestrator implements a centralised Thread Merge (B) to
collect triplets of chunks and send them to service SendChunks (Lines 5-7). No-
tably, since the orchestrator passes the thread of control to the invoked service
and waits for its response, we can coalesce the OW operations between them
into one RequestResponse. SendChunks implements a distributed Parallel Split
to forward each chunk in parallel to the Service Provider (Lines 11-13). At Ser-
vice Provider’s side the service StoreChunks employs a centralised Generalised
AND-Join (C) to receive the chunks (Listing 1.34 Lines 1-13). When the nth
chunk reaches the service, it passes the thread of control with a distributed Se-
quence to service ComposeFile (Listing 1.35) which employs a centralised Thread
Merge (D) to restore the chunks into a single file. Finally a distributed Sequence
returns the thread of control to the User, notifying the success of the upload
procedure.
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Fig. 20: Multipart Upload subnet

Send 
Chunks

uploadRequest(c)

Create 
Chunks

createChunks(c)(c)
sendFileChunk2(c)

Compose 
File

Store 
Chunks

composeFile(c)

notifyUpload(c)
Select 

FileselectFile(c)(c)

sendFileChunk1(c)

sendFileChunk3(c)

User Service Provider

orchestrator
sendTriplet(c)(c)

Fig. 21: The architectural view of Multipart Upload in Fig. 20
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Listing 1.33: User’s side

1 // orchestrator
2 uploadRequest(c);
3 selectFile@SelectFile(c)(c);
4 createChunks@CreateChunks(c)(c);
5 for( i=0, i<#c, i++ ){
6 r.c1=c[i++];r.c2=c[i++];r.c3=c[i];
7 sendTriplet@SendChunks(r)()
8 }
9 // SendChunks

10 sendTriplet(c)(){
11 sendFileChunk1@StoreChunk(c.c1)
12 | sendFileChunk2@StoreChunk(c.c2)
13 | sendFileChunk3@StoreChunk(c.c3)
14 }

Listing 1.34: Multipart Upload, StoreChunks

1 execution{ sequential }
2
3 define check_and_send
4 {
5 size@QueueUtils( queue1 )( chunk1_count );
6 size@QueueUtils( queue2 )( chunk2_count );
7 size@QueueUtils( queue3 )( chunk3_count );
8
9 if( chunk1_count > 0 && chunk2_count > 0 && chunk3_count > 0 ){

10 //Take c1 , c2 , and c3
11 poll@QueueUtils( queue1 )( chunks.c1 );
12 poll@QueueUtils( queue2 )( chunks.c2 );
13 poll@QueueUtils( queue3 )( chunks.c3 );
14 // and send them to ComposeFile
15 composeFile@ComposeFile( chunks )
16 }
17 }
18
19 main
20 {
21 [ sendFileChunk1( c ) ]{
22 qer.queue_name = queue1;
23 qer.element << c;
24 push@QueueUtils( qer )();
25 check_and_send
26 }
27
28 [ sendFileChunk2( c ) ]{
29 qer.queue_name = queue2;
30 qer.element << c;
31 push@QueueUtils( qer )();
32 check_and_send
33 }
34
35 [ sendFileChunk3( c ) ]{
36 qer.queue_name = queue3;
37 qer.element << c;
38 push@QueueUtils( qer )();
39 check_and_send
40 }
41 }
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Listing 1.35: Multipart Upload, ComposeFile

1 constants { chunksNumber = n, chunkThreads = 3 }
2
3 define storeChunks
4 {
5 fileChunks[ #fileChunks ] = c.c1;
6 fileChunks[ #fileChunks ] = c.c2;
7 fileChunks[ #fileChunks ] = c.c3
8 }
9

10 main
11 {
12 for( recChunks=0, recChunks < chunksNumber , recChunks += chunkThreads ){
13 composeFile( c );
14 storeChunks
15 };
16 receiveUploadNotification@User( c )
17 }

6 Conclusions

Workflow Patterns
Jolie

Support
Supported by and main components

centralised distributed

Sequence + sequence operator

Parallel Split + parallel operator

Synchronization + Parallel Split, scopes

Exclusive Choice + if ...else, input choice

Simple Merge +
Synchronization,

synchronized scope
Sequence, sequential

execution

Multi-Choice + Parallel Split, Exclusive Choice

Thread Split + iteration, recursion and Parallel Split, spawn

Generalised AND-Join +/– Synchronization, input choice and ad-hoc queues

Multi-Merge + Synchronization
Simple Merge,

concurrent execution

Thread Merge + iteration, multi-instances

Structured/Local
Synchronizing Merge

+ Multi-Choice, Synchronization

Generalised
Synchronizing Merge

+/– Structured Synchronizing Merge

Structured Partial Join +
Synchronization, Thread

Merge
Thread Merge, Sequence

Blocking Partial Join +/– Generalised AND-Join, Structured Partial Join

Cancelling Partial Join + Structured Partial Join

Table 1: Evaluation for basic and advanced branching and synchronization WPs in
Jolie.
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Contributions of this work are: (i) the definition of a methodology for translating
CPN-modelled SOAs into composable and executable ones. (ii) The creationof a
collection of implemented Workflow Patterns (reported in [19]). Such implemen-
tations follow both a centralised and a distributed approach to allow developers
the flexibility to choose one and to mix them. A realistic use case substanti-
ate our claim that the patterns obtained in this way can be effectively used for
building real SOAs starting from abstract specifications. In addition, (iii) our
work also allows us to provide a pragmatic assessment on the expressiveness of
the Jolie language. Table 1 summarizes the results of such an assessment. For
each pattern, we indicate in the second column the kind of support offered by
Jolie: “+” means direct support, i.e., the implementation of the pattern either
uses some specific primitives provided by the language or is a composition of
directly supported patterns. “+/–” indicates a “non direct” support, i.e., the
translation of the CPN of the pattern does not completely follow the rules de-
scribed in § 3 although it complies with the general structure of the pattern. In
the third column of Table 1 we indicate the specific Jolie primitive and/or the
other patterns used to implement a given pattern. Note that we report both the
centralised and distributed implementations which, as expected, in some cases
vary. As shown in Table 1 we can conclude that Jolie allows to implement most
WPs.

6.1 Related Work

A close concept to Workflow Pattern is that of service interaction pattern, intro-
duced in [20]. Service interaction patterns define recurring interaction patterns
among services but, differently from Workflow Patterns, they are informally
specified and therefore not employable in this work. Variants of Petri nets have
been used for system modelling [21] and static analysis [22]. An inspiring work
which considers a direct translation from Petri nets to a service-oriented language
(Abstract BPEL) is [23]. However the proposed translation do not automatically
derives all the details of the implementation, which prevents a direct execution
of the code. Finally WPI used WPs as a tool to evaluate the expressive power of
business process languages. Particularly relevant are the cases of WS-BPEL [24]
and of BPML [25].

6.2 Future Work

We plan to provide a formal definition of our technique for translating CPNs
into Jolie code. Such a formalisation would enable to mechanically translate
CPN-modelled SOAs into executable ones, also applying known methodologies
of static analysis to assess properties of SOAs implemented in Jolie. We also
plan to use the implemented Workflow Patterns developed in this work to offer
pattern composition as APIs [26] to clients. Finally, a natural extension of this
work is to investigate the implementations of the remaining patterns described
by the WPI that comprehend multiple-instances, state, cancellation, completion,
termination, and triggering patterns.
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