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1 INTRODUCTION
Choreographic Programming (CP) is a language paradigm whereby software artefacts, called
choreographies, specify the behaviour of communicating participants. Choreographic programming
is famous for its correctness-by-construction approach to the development of concurrent, distributed
systems. In this paper, we illustrate FaaSChal, a proposal for a CP language tailored for the case of
serverless Function-as-a-Service (FaaS). In FaaS, developers define a distributed architecture as a
collection of stateless functions, leaving to the serverless platform the management of deployment
and scaling [9]. We provide a first account of a CP language tailored for the FaaS case via examples
that present some of its relevant features, including projection. In addition, we showcase a novel
application of CP. We use the choreography as a source to extract information on the infrastructural
relations among functions so that we can synthesise policies that strive to minimise their latency
while guaranteeing the respect of user-defined constraints.

2 BACKGROUND ON SERVERLESS
We start with a brief overview of serverless computing and the platforms that support it.

Developers make a serverless application out of software units called functions, which run in
short-lived environments triggered by different kinds of events. When an event such as an HTTP
request, database change, file upload or scheduled trigger occurs, the FaaS platform runs an instance
of the function(s) liked to that event. The platform runs the code after initialising an execution
environment, which is a secure and isolated context that provides all the resources needed for the
function lifecycle, typically implemented with virtual machines and containers.

We use Figure 1, which depicts a typical serverless platform architecture, to briefly introduce the
components and processes behind the execution of serverless functions, useful to contextualise our
contribution. The main components of a serverless platform, as shown in Figure 1, are the Controller
and the Workers. The Controller can receive requests to execute functions from various media, e.g.,
an HTTP gateway or a publish-subscribe messaging service like the Simple Notification Service
(SNS), by AWS. These media expose endpoints which entities—like Web applications, IoT devices,
and databases, as well as running serverless functions—can trigger to invoke the execution of a
function. The Controller handles the allocation of functions on Workers based on the latter’s status
(given a set of metrics like CPU and memory usage, collected by the Controller). The Controller also
handles the storage/retrieval of the invocation/result from/to the caller. In particular, the scheduler
determines which Worker should execute an invoked function based on factors such as current
load, function requirements, and resource availability. Once it receives the request to execute a
function, the Worker creates a new instance of that function, handling its execution environment
lifecycle, including provisioning, scaling, and teardown.
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Fig. 1. A typical serverless platform architecture.

3 FAASCHAL BY EXAMPLE
We introduce FaaSChalwith the example shown in Fig. 2, where a function orchestrates (a simplified
version of) the training of an image AI model. The whole routine is started by a user, who defines
the queries to extract from some databases the labels and images used in the training. The user
sends to a serverless function, called f, the queries, which f uses to access two separate databases
and obtain the images and labels (ordered and paired). The function then launches the training of
each pair image-label in a separate function, called g, which finally triggers a third function, called
h, that acts as merger/integrator of the trained weights of the model into a third database. The
training process is asynchronous, i.e., the user receives a response from the orchestrator function
as soon as it terminates the launching of the training of all image-label pairs.

In the choreography, we distinguish three main kinds of entities, found in the preamble at lines
1–3. We start commenting on them from line 3 upwards. The first kind is that of services, which
are passive entitites that interact in the choreography providing labelled inbound request-response
operations—enumerated within curly brackets in the preamble. For example, in Fig. 2, the service
DB1 offers a request-response operation labelled getData. In general, the caller can discard the
response in a request-response interaction, consuming the operation in a one-way fashion. Going up,
we find FaaS stateless functions which: a) must be triggered/started by some other active entity
via their media endpoints, declared within brackets (e.g., Gateway, SNS and the trigger endpoint
annotations), b) provide a request-response triggering behaviour (which the triggerer can invoke
in a one-way fashion, discarding their response), c) after their triggering, they cannot receive other
messages (but they can send outbound requests, in both one-way and request-response fashion).
The last kind of entity is that of stateful participants, which are traditional active processes (no
triggering) that can interact with the other entities.
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1 stateful: user

2 stateless: f{ Gateway }, g{ SNS:"aws:sns" }, h{ SNS:"aws:sns" }

3 services: DB1{ getData }, DB2{ getData }, DB3{ storeData }

4 import Collections::zip as zip@f

5 import Model::fit as fit@g

6 import Model::integrate as int@h

6 def main( queries@user )

7 queries@user <-Gateway-> f do | queries@f |

8 queries@f.labels <-> DB1: getData ▶ labels@f

9 queries@f.images <-> DB2: getData ▶ images@f

10 for pair@f in zip(labels@f, images@f) do

11 pair@f

12 ▶ -SNS-> g ▶ fit

13 ▶ -SNS-> h ▶ int

14 ▶ -> DB3: storeData

15 end

16 end with "All training jobs started"@f

17 end

Fig. 2. The choreography of the serverless AI training program.

In the choreography, we can import operations (e.g., from libraries), as showcased at lines 4–6,
where the stateless functions f, g, and h resp. import the operations zip from the Collections
library, fit and int(egrate) from the Model one. Since the import instruction has a target function
(e.g., f), that functionality is available/imported only at/by that function.

The statement we find at line 7 (closing at line 16) is a request-response from the user to the
stateless function f, of the form

exp1@role1 <- MEDIUM -> role2 do [| opt_var@role2 |] ... end [ with exp2@role2 ]

From left to right, we evaluate the expression exp at @role1 and send its value via the MEDIUM
the function is available at (e.g., the Gateway at line 7 of Fig. 2) to trigger the execution of function
role2. This function can optionally bind the data sent from role1 to a local variable (opt_var)
and execute the code within the block until its closure (end). The function sends back a response,
which is empty unless specified through the suffix of the closure with the clause with followed by
an expression at that function (exp@role2) evaluated to return a response—considering the body
of the triggering block and the initial binding within its scope.

Within the body of the block, we first find the request-response invocations (<->) to the respective
operations getData of DB1 and DB2 to retrieve the data (resp. labels and images) by f.1

To bind to a variable the value received by f as the response to the request to the databases (both
for DB1 and DB2), we use the forward operator ▶. The idea behind ▶, inspired by Choral [7], is to
naturally support a left-to-right reading of the interactions in a choreography. Without ▶, one

1The operation getData in the example is blocking and, thus, the second call to DB2 waits until the completion of the
previous call (which might take a long time) to proceed. To increase efficiency, a simple extension of the language can
include a parallel operator, like the one found in AIOCJ [2], to send the two getData calls in parallel, realising a join pattern.
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would need to write an assignment like var@b = data@a <- MEDIUM -> @b, forcing the user to
first parse the expression on the right2 and then go back to the assignment of the resulting value to
the variable on the left.

Like in Choral, users can call unary functions with▶ in a point-free style—i.e., exp ▶ f1 ▶ f2 is
syntactic sugar for f2(f1(exp))—which we extend to also work as a variable assignment operator.

At lines 11–15, after the retrieval of the labels and images, f zips them together and, for each
pair, it triggers a new instance of the function g, sending to it the pair. Note that the triggering
of g is one-way, (represented by the communication -MEDIUM-> ), which allows us to adopt the
lightweight notation found, e.g., at line 12, instead of the more complex one for request-responses
we commented for f, above. At triggering/reception, g performs the training (via the fit operation)
and then triggers function h to integrate the data into DB3 (invoking storeData as a one-way
operation).
A notable characteristic of FaaSChal is that there is no need for coordination in constructs

such as loops and conditionals when the interaction concerns only stateless functions. Indeed,
choreographic languages where processes are stateful (and usually engage in a kind of session-
oriented interaction) need either the enforcement of knowledge of choice or amendments such
as auxiliary communications to ensure the causality/connectedness of the actions among the
processes [1, 2, 7, 10]. When conditionals/loops concern only stateless functions (which, once
triggered, cannot engage in further synchronisations except for outbound request-responses) these
issues do not arise. As a consequence of this triggering behaviour for stateless functions, at each
loop at lines 11–15, we bind the identifiers g and h to resp. new function instances, i.e., at each
loop f requests the instantiation of new copies of said functions. To further clarify the relationship
between knowledge of choice and stateless functions, consider the example below

if exp@f then f -SNS-> g else f -SNS-> h

If g and h were stateful processes, we would need to inform them both on which direction the
choreography shall proceed, according to the choice taken by f (resulting from the evaluation of
exp). Lacking this piece of coordination, depending on the choice made by f, either g or h would
wait for f’s call indefinitely (since either of them does not know that f selected the other branch),
exposing the program to deadlocks. On the contrary, since all roles are stateless functions, there
is no need to inform, e.g., g that f is choosing the else branch, because g is not running (it is
triggered by f’s call) and has no risk of ending up in a deadlock state.

4 PROJECTION
We show one of the typical applications of choreographic programming, which is the generation of
local code that implements the semantics of the source choreography. In particular, this section aims
to provide code examples that FaaS developers can use to get a better grasp of the semantics of the
example in Fig. 2. In the following, we use pseudocode inspired by Ruby and Python and annotate
the code to indicate to which entity it corresponds and other information useful for deployment,
e.g., the name that the FaaS platform shall bind to the function and how it shall expose the function
for consumption (its MEDIUM).

We remind that services are passive entities which the other participants use as always-available
operations, thus, the produced local code does not include the sources for DB1, DB2, and DB3.

Without going too much into the details of the pseudocode, we notice the most salient features
linked to serverless function programming. First, in the code of functions, note the presence of a
main procedure, which is the one canonically invoked by the platform to execute the behaviour

2Left-to-right: take the data from a, send it via MEDIUM, instantiate b and return the data sent by a to b as the expression’s
result.
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1 # user code

2 def main( queries )

3 Gateway.invoke( "f", queries )

4 end

1 # deploy as f, trigger GATEWAY

2 def main( queries )

3 labels = DB1.getData( queries.labels )

4 images = DB2.getData( queries.images )

5 for pair in labels.zip( images ) do

6 triggerFn( "g", "aws:sns", pair )

7 end

8 return { code: 200, body: "All training jobs started" }

9 end

1 # deploy as g, trigger SNS

2 import Model::fit as fit

3

4 def main( _ )

5 return triggerFn( "h", "aws:sns", fit( _ ) )

6 end

1 # deploy as h, trigger SNS

2 import Model::integrate as int

3

4 def main( _ )

5 return DB3.storeData( int( _ ) )

6 end

Fig. 3. Projections of the example from Fig. 2.

of the function. Second, we find the automatic injection of FaaS platform auxiliary functionalities
(one can make these functionalities platform-agnostic by providing different implementations
of the same API parametrised w.r.t. specific deployments) provided to trigger the functions, e.g.,
Gateway.invoke and triggerFn resp. found in the user’s and functions’ code. To keep the example
lightweight, we did not introduce distinct syntaxes for one-ways and request-responses—e.g., one
can provide the same API parametrised to either send a request and wait for a response to return it
or return immediately.

5 APPLICATIONS: THE CASE OF FUNCTION SCHEDULING POLICIES
The scheduling of functions, i.e., the allocation of functions over the available workers, can sub-
stantially influence their performance. Indeed, effects like code locality [8]—due to latencies in
loading function code and runtimes—or session locality [8]—due to the need to authenticate and
open new sessions to interact with other services—can substantially increase the run time of func-
tions. Usually, serverless platforms implement opinionated policies that favour some performance
principle tailored for one or more of these locality principles. Besides performance, functions can
have functional requirements that the scheduler shall consider. For example, users might want to
ward off allocating their functions alongside “untrusted” ones—common threat vectors in serverless
are limited function isolation and the ability of functions to (surreptitiously) gather weaponisable
information on the runtime, the infrastructure, and the other tenants.

Although one can mix different principles to expand the profile coverage of a given platform-wide
scheduler policy, the latter hardly suits all kinds of scenarios. This shortcoming motivated De Palma
et al. [3–6] to introduce a YAML-like declarative language used to specify scheduling policies to
govern the allocation of serverless functions on the nodes that make up a cluster, called Allocation
Priority Policies (APP). Thanks to APP, the same platform can support different scheduling policies,
each tailored to meet the specific needs of a set of related functions.

As an example of an application of FaaSChal, we introduce a variant of APP. We extract locality
principles that emerge from the choreography—e.g., the loop where f spawns many gs and hs
presents a locality linked to the time it takes f to contact SNS and issue the call. Then, given a
description of the infrastructure topology and possible user-defined constraints on the allocation of
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functions, we synthesise an APP script that strives to orient the scheduling of functions to minimise
their latency of execution, while guaranteeing the respect of the constraints imposed by the user.

5.1 The APP Language
To define function-specific policies, APP assumes the association of each function with a tag. In
our examples, we directly use the function’s reference name as the tag, but the relation can be
one-to-many to specify a policy shared among a set of functions. Then, APP associates a tag to a
policy, so that, at runtime, the scheduler of the platform can pair each function with its APP policy
and follow the latter’s scheduling logic.
In the APP variant we showcase, we assume to have the nodes of the cluster associated with a

label, i.e., several nodes can share the same label, e.g., group1. In an APP script, users can specify
a sequence of blocks (each identified by YAML’s list unit -) associated with a tag. Each block
indicates on which nodes the scheduler can allocate the function. At function invocation, the
scheduler tries to allocate the function following the logic in the first block, passing to the next
only if none of the machines specified in that block can host the function, and so on (exhausting all
blocks causes the invocation’s failure). In APP, these nodes take the name of workers, which is also
the keyword used in the scripts to specify the label of the nodes for that block. Besides workers,
APP lets users specify the strategy the scheduler shall use to select among the indicated workers
(e.g., choose at random, for load-balancing) and when a worker becomes invalid (e.g., setting a
maximal threshold of concurrent functions running on it). The variant we present does not use
these options—but it is valid APP code nonetheless, since, when omitted, APP uses default strategy
and invalidation rules. The only additional element in our variant’s syntax is that of affinity. This
option accepts a list of tags, where each tag can be prefixed by a !. For instance, if we have a tag a
with affinity: b, !c, it means that function a is affine with b-tagged functions and anti-affine
with c-tagged ones. Schedule-wise, “anti-affine” means that we cannot allocate the function we
want to schedule on a worker that contains instances of any of its anti-affine functions—from the
example, we cannot allocate an instance of a on workers hosting instances of c. Complementarily,
“affine” means that we can allocate the function under scheduling only on workers that host at least
one instance of each of its affine functions—from the example, we can allocate an instance of a only
on workers which have at least one instance of b running on them. These (anti-)affinity constraints
are useful to specify e.g., security concerns (like separating the execution of trusted from untrusted
functions to avoid possible security risks) and performance (like the allocation of functions on the
same worker to let them reuse a pool of connections to a database). In APP, affinity constraints
are not symmetric, i.e., if we set f affine with g it does not imply that g is affine with f (but one can
symmetrise the relation by adding the complementary constraint).

5.2 Extraction of Locality Principles and Generation of APP Scripts
Briefly, we define the extraction of locality principles from a choreography by attributing data
locality—the principle that the closer the function is to the data the lower its latency, proportional
to faster access to the data repository—to all functions that access a database (we omitted this
information from Fig. 2, but it is simple to annotate services accordingly); call locality comes
from interactions among functions, in particular the repeated ones, which can benefit from running
on machines with faster access to the medium that accepts/delivers the call; code locality comes
from the re-use of loaded code in a worker’s memory (i.e., avoiding fetching and loading times).
On the right of Fig. 4, we find an example of the extracted localities from Fig. 2.
The last ingredient is the infrastructure topology and the constraints that users might want to

impose on the functions.We report on the right of Fig. 4 an example of such a schema. In the example,
the writing ( a, b ): N indicates that a and b have a connection speed (symmetric) of N (we can
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1 # Extracted localities from choreo

2 data locality:

3 ( f, DB1 ),

4 ( f, DB2 ),

5 ( h, DB3 ),

6 call locality:

7 ( f, g, SNS, 1:n ) # n = n. of labels/imgs

8 ( g, h, SNS, 1:1 )

9 code locality:

10 ( g, h ) # Model

1 # Infrastructure topology (speed)

2 ( DB1, group1 ): 100

3 ( DB2, group2 ): 80

4 ( DB2, group1 ): 20

5 ( DB3, group2 ): 50

6 ( SNS, group1 ): 50

7 ( SNS, group2 ): 50

8

9 # User-defined constraints

10 anti-affine: ( f, g ), ( g, g ), ( h, g )

Fig. 4. Left: locality principles extracted from the example from Fig. 2. Right: infrastructure topology and
user-defined function scheduling constraints.

1 f:

2 - workers: group1

3 affinity: f, !g

4 - workers: group1

5 affinity: !g

6 g:

7 - workers: *

8 affinity: !f, !g, !h

9 h:

10 - workers: group2

11 affinity: h, !g

12 - workers: group2

13 affinity: !g

Fig. 5. APP script generated from the localities, topology, and user-defined constraints from Fig. 4

abstract away the unit of measure, as long as all items use the same), e.g., ( DB1, group1 ): 100
means that the machines in group1 have a (fast) connection of 100 with DB1. Note that the absence
of infrastructural pairs are as important as the present ones, e.g., the fact that there is no couple
( DB3, group1 ) in the schema means that no machine in group1 can reach DB3.

For compactness, we understand the specification of user-defined (anti-)affinity constraints of
the schema as symmetric, e.g., if (a, b) are anti-affine, we read this constraint as “neither a can
run on a worker where a b is running nor b can run on a worker where an a is running”. Above,
we set f and g anti-affine to avoid running f on a worker loaded with g (which performs heavy
computations to train the model) and vice versa. Similarly, we avoid placing more instances of the
function g on the same worker and placing the functions g and h together.

Given the ingredients from Fig. 4, we can obtain the APP script reported in Fig. 5. In the script, we
have two subsequent blocks for the allocation of function f. In both blocks, we try to allocate f on
group1 because this is the only group of machines that can access both DB1 and DB2. Considering
affinities, in the first block, we try to allocate f with other instances of the same function to exploit
connection pooling to DB1 and DB2. Following the user-defined constraints, we set a negative
affinity with function g (written !g). In the second block, f can run on a worker without another
instance of the same function running on it (this item avoids the problem of self-affinity, which
would prevent the allocation of an initial f), yet we preserve the anti-affinity with g.

Since g has no “favourite” group in the infrastructure (both group1 and group2 reach the same
speed w.r.t. the only infrastructural locality it presents, SNS), the policy for g allocates the function
on any available worker *. Following the anti-affinity constraints specified by the user, we mark g
anti-affine with f (as per the symmetric interpretation of the anti-affinity constraints above), itself,
and h (similarly to the anti-affinity with f).
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Finally, we specify that function h can only run on machines of group2 since these are the only
ones that can reach DB3. Following the user-defined constraints, we have h anti-affine with g and h
affine with itself to exploit connection pooling.

Note that the synthesis of the APP script does not include all extracted localities (cf. Fig. 4). For
instance, call locality did not influence the script, due to the fact that group1 and group2 have
the same speed w.r.t. SNS. Another example is the code locality between g and h, which share the
same code dependency (Model, cf. Fig. 2) but which we could not indicate as affine in the APP script
due to the user-defined anti-affinity constraints (which have priority over the extracted localities).

6 CONCLUSION
We illustrate FaaSChal, a language proposal for exploring the design space of applying CP to
FaaS programming. Besides showcasing relevant features of a CP language for FaaS, we provide
application examples that target projection and the management of the scheduling of functions.

In the future, we plan to conduct a formal investigation into the expressiveness and limitations
of FaaSChal, considering other use cases taken from realistic FaaS architectures and deepening
the analysis of the interplay between services, stateful participants, and stateless functions.
Another interesting direction is to formally analyse the processes of extraction of locality principles
from choreographies and the mechanisation of the synthesis of APP scripts.
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