
Data Flooding against Ransomware: Concepts and Implementations
Davide Berardia, Saverio Giallorenzoa,b, Andrea Melisa, Simone Mellonic, Loris Onoria and
Marco Prandinia

aAlma Mater Studiorum — Università di Bologna, Italy
bINRIA, France
cARPAE Emilia-Romagna, Italy

A R T I C L E I N F O
Keywords:
Ransomware
Detection
Mitigation
Restoration
Honeypot
Moving-target Defence
Resource Contention
Ranflood

A B S T R A C T
Ransomware is one of the most infamous kinds of malware, particularly the “crypto” subclass, which
encrypts users’ files, asking for some monetary ransom in exchange for the decryption key. Recently,
crypto-ransomware grew into a scourge for enterprises and governmental institutions. The most recent
and impactful cases include an oil company in the US, an international Danish shipping company, and
many hospitals and health departments in Europe. Attacks result in production lockdowns, shipping
delays, and even risks to human lives.

To contrast ransomware attacks (crypto, in particular), we propose a family of solutions, called
Data Flooding against Ransomware, tackling the main phases of detection, mitigation, and restoration,
based on a mix of honeypots, resource contention, and moving target defence. These solutions hinge
on detecting and contrasting the action of ransomware by flooding specific locations (e.g., the attack
location, sensible folders, etc.) of the victim’s disk with files. Besides the abstract definition of this
family of solutions, we present an open-source tool that implements the mitigation and restoration
phases, called Ranflood.

In particular, Ranflood supports three flooding strategies, apt for different attack scenarios. At
its core, Ranflood buys time for the user to counteract the attack, e.g., to access an unresponsive,
attacked server and shut it down manually. We benchmark the efficacy of Ranflood by performing a
thorough evaluation over 6 crypto-ransomware (e.g., WannaCry, LockBit) for a total of 78 different
attack scenarios, showing that Ranflood consistently lowers the amount of files lost to encryption.

1. Introduction
Liska and Gallo (2016) define ransomware as a “blan-

ket term used to describe a class of malware that is used to
digitally extort victims into payment of a specific fee”.

A common kind of ransomware is of the crypto class,
which holds hostage the files of the victim by encrypting
them and then asking for a ransom for their decryption.
Background In the last 10 years, the advent of new tech-
nologies changed the approach of ransomware (Greengard,
2021). Specifically, two innovations represented the turn-
ing point for the latest generation of ransomware: more ef-
ficient encryption mechanisms and the widespread adoption
of cryptocurrencies. More efficient encryption increased ran-
somware dangerousness both thanks to algorithms’ speed,
which shortened the useful timeframe that detectors have to
trigger users and/or mitigations, and their strength, thwarting
any attempts at reversing the process without a key. Cryp-
tocurrencies provided criminals with reliable means to mon-

davide.berardi6@unibo.it (D. Berardi);
saverio.giallorenzo2@unibo.it (S. Giallorenzo); a.melis@unibo.it (A.
Melis); smelloni@arpae.it (S. Melloni); loris.onori@studio.unibo.it (L.
Onori); marco.prandini@unibo.it (M. Prandini)

http://cs.unibo.it/~davide.berardi6 (D. Berardi);
https://saveriogiallorenzo.com (S. Giallorenzo);
https://www.unibo.it/sitoweb/a.melis/en (A. Melis);
https://scholar.google.com/citations?user=F4-_jnwAAAAJ (S. Melloni);
https://www.unibo.it/sitoweb/marco.prandini/en (M. Prandini)

ORCID(s): 0000-0002-2473-2439 (D. Berardi); 0000-0002-3658-6395 (S.
Giallorenzo); 0000-0002-0101-2551 (A. Melis); 0000-0002-9535-8747 (S.
Melloni); 0000-0002-3962-5513 (M. Prandini)

etise attacks and protect their anonymity.
Just considering the last 5 years, we saw attacks becom-

ing more and more frequent, with successful ones having
strong side effects in global logistics, markets, and health-
care. NotPetya, which heavily targeted Ukraine in 2017 (tak-
ing offline some Chernobyl nuclear plant monitors (Griffin,
2017) and ministries, banks, and metro systems (Perlroth
et al., 2017)), impacted at the global scale by blocking the
logistics operations (and, thus, the hubs shared with other
collaborators/competitors) of the Danish shipping company
Maersk (Chappell and Dwyer, 2017), among many others.
The attack, in 2021, on the US Colonial Pipeline companies
caused fuel shortages in 5 states, leading to panic-buying,
a surge in fuel prices, and fuelling disruptions (Joe et al.,
2021). Attackers did not spare the health sector, which, since
2020, has been undergoing heavy pressures due to mass hos-
pitalisation of COVID-19 cases and the management of na-
tional vaccination campaigns. Attacks have been worldwide
— the heaviest happening in Ireland (Person and Padraic Halpin,
2021) and Italy (Abrams, 2021), similarly to the infamous
WannaCry, which targeted in 2017 the UK healthcare sys-
tem (Sheila A. and Tracy P., 2017) — and resulted in outages
and delays of vital medical procedures.
Honeypot Techniques against Ransomware In this ar-
ticle, we focus on the usage of honeypot mechanisms for
contrasting ransomware, and we introduce an advanced hon-
eypot modality, which overcomes the limitations of current
honeypot-based solutions.

In general, honeypots represent sacrificial resources that

Davide Berardi et al.: Preprint submitted to Elsevier Page 1 of 17

http://cs.unibo.it/~davide.berardi6
https://saveriogiallorenzo.com
https://www.unibo.it/sitoweb/a.melis/en
https://scholar.google.com/citations?user=F4-_jnwAAAAJ
https://www.unibo.it/sitoweb/marco.prandini/en

Data Flooding against Ransomware: Concepts and Implementations

administrators use to either detect and/or ward off malicious
intrusions. The idea is to provide easy-to-access decoy re-
sources that, once accessed, expose the attacker and possibly
slow it down.

We dedicate Section 3.1 to discuss in detail the limita-
tions of existing honeypot techniques and Section 2 to pro-
vide a general review of the existing proposals. Briefly, basic
honeypot techniques detect ransomware by deploying hon-
eypot nodes, e.g., in the same network as those of real users,
that contain decoy data. Advanced techniques (Moore, 2016;
Al-rimy et al., 2018; Kok et al., 2019) omit using honeypot
nodes and rather inject decoy files directly into real systems
(e.g., the computers of the users). While these solutions in-
crease the available detection surface (essentially, they make
any node of a network a honeypot), they present problems
linked to the pervasiveness of the honeypot files. For exam-
ple, to cover the entire attack surface of a node one would
need decoy files in all possible folders of that node and keep
track of actions on all those files (Moore, 2016).
Contribution To overcome the limitations of existing
honeypot techniques, we present a family of solutions based
on a mix of honeypots, resource contention, and moving tar-
get defence. The underlying principle is that of flooding
specific locations of the disk (e.g., the attack location, user
folders, etc.) with decoy files. Interestingly, our technique
extends the coverage of honeypot mechanisms to the three
main phases of ransomware contrast: detection, mitigation,
and restoration. We call this new family of solutions Data
flooding against Ransomware (DFaR). We dedicate Section 3
to introduce and discuss the concepts that characterise the
DFaR approach.

Then, we put into practice our theory by introducing an
open-source tool, called Ranflood, which implements the
mitigation and restoration phases of DFaR.

At its core, Ranflood buys time for the user to counteract
an ongoing attack, e.g., to access an unresponsive, attacked
server and shut it down manually. In detail, Ranflood im-
plements a dynamic honeypot approach, which consists in
generating decoy files and confusing the genuine files of the
user with bait ones that the ransomware is lured into encrypt-
ing (making it waste time on them rather than on the actual
files of the user). This confusion constitutes the moving-
target-defence part of the approach. The third prong, that of
resource contention, happens over IO access (e.g., for read-
ing and writing on disk), which the ransomware must share
with the (IO-heavy) Ranflood flooding routines.

The generation of (bait) files affords a wide design space
spanning different formats, structures, and contents. In this
article, we present three novel strategies, briefly introduced
hereinafter and fully detailed in Section 4:

• Random generates files of different sizes and formats
(those mostly targeted by ransomware (Lee et al., 2019))
with random content. The strategy has no prerequi-
sites besides the provision of a disk location to flood;

• On-the-fly performs a copy-based flooding using the

actual files of the user. Besides requiring a target lo-
cation, this strategy can entail a preliminary procedure
(which shall run under ordinary situations, i.e. not
during an attack) that collects lightweight file integrity
information (e.g., checksum) of the user’s files. This
preliminary part is optional, but it can increase the ef-
fectiveness of the strategy by avoiding copying files
that have already been encrypted by ransomware;

• Shadow is also a kind of copy-based flooding strategy.
Besides the target location, Shadow entails a neces-
sary preliminary procedure that creates backups of the
user’s files—usually heavier than the integrity infor-
mation collected by the On-the-Fly strategy—which it
uses as the source for the copies. This strategy trades
disk occupancy for increased effectiveness w.r.t. On-
the-Fly, since all files in a backup are available for the
flooding routine.

After presenting the general approach of Ranflood, its
flooding strategies, and its software architecture in Section 4,
we dedicate Section 5 to present a thorough benchmark of
the efficacy of Ranflood. To perform this task, we consider
6 pieces of crypto-ransomware and measure the loss rate of
user files (due to encryption) first without Ranflood and then
using each of the three flooding strategies. Since the time-
frame of execution can also be important, we simulate four
incremental delays in the triggering of Ranflood, after the
start of the ransomware. This amounts to 78 different sce-
narios. The results from Section 5 confirm our hypothesis:
Ranflood consistently lowers the number of files lost to en-
cryption.

While studying and investigating the approach we de-
veloped for Ranflood, we found interesting future research
directions on detection, restoration, and on applications on
kinds of ransomware other than crypto ones. We report these
along with our concluding remarks in Section 6.

2. Related Work
Before presenting the contributions of this article, we

discuss related work on the existing techniques for contrast-
ing ransomware and relate these to our proposal.

Tracing an overview of the literature on anti-ransomware
techniques means dealing with two main branches. The first
regards work created specifically for a family of ransom-
ware, while the second—like the family of solutions pre-
sented here—is of general application.

Within the first branch, we find mitigation techniques for
the Cryptolocker ransomware. For example, Chew and Ku-
mar (2019) presented a preventative technique based on al-
tering access control levels of files and folders to revoke writ-
ing privileges during an attack. Lee et al. (2018) proposed a
different approach, again targeting Cryptolocker, to recover
from a ransomware attack by intercepting the decryption key
of the ransomware either when the latter sends or receives it
to/from its control server.

Davide Berardi et al.: Preprint submitted to Elsevier Page 2 of 17

Data Flooding against Ransomware: Concepts and Implementations

Strategy D
et

ec
tio

n

M
iti

ga
tio

n

Re
st
or

at
io
n

Ge
ne

ric

D
ro

p-
in

so
lu
tio

n

Publications

Monitoring files

Scaife et al. (2016a)
Andronio et al. (2015)
Kharraz et al. (2015)
Kharaz et al. (2016)

Key acquisition Hassan (2019)
Kolodenker et al. (2017)

Targeting files

Kharraz et al. (2015)
Moussaileb et al. (2018)

Moore (2016)
El-Kosairy and Azer (2018)

Ransomware specific Chew and Kumar (2019)
Lee et al. (2018)

SDN traffic monitoring Cabaj et al. (2018)
Akbanov et al. (2019)

Restrict permissions Microsoft (2022)

Extension randomisation Evans et al. (2011)
Lee et al. (2019)

Honeypot files Gómez-Hernández et al. (2018)

Self-Healing file system Continella et al. (2016)

Data flooding † ‡ This Work

†not implemented in this article, ‡copy-based flooding cf. Section 4

Table 1
Table comparing related works. Each row in the Table corresponds to a strategy found
in one or more works related to ours—the last row corresponds to this article, for
comparison—reported in the rightmost column. The other columns report properties of
the strategy: to what actions it applies (detection, mitigation, restoration), whether it
is generic () or specific () to a family of ransomware, and whether it is a drop-in
solution (i.e., that only requires the user to install some software, as it happens e.g., for
antiviruses).

The other, larger branch of anti-ransomware solutions re-
gards techniques that one can deploy regardless of a given
family of ransomware.

For a general survey on (Windows-based) ransomware
and the existing techniques for their detection and contrast,
we point the reader to the thorough work recently published
by Al-rimy et al. (2018), Kok et al. (2019), and Moussaileb
et al. (2021). In the rest of this section, we focus on works
that are the closest to ours. We organise the comparison
with related work following the classification of the main
phases of vulnerability management: detection, mitigation,
and restoration.

We summarise our analysis in Table 1 to provide an over-
view and comparison of our proposal against the existing,
related solutions, looked from the perspective of their con-
trast strategy, the phases they apply to, their coverage, and
the knowledge/effort that the solution requires for deploy-
ing/using it.

Detection Detection schemes aim to identify ransom-
ware attacks by monitoring specific activities. Some propos-
als use decoy files to detect ransomware. Moussaileb et al.
(2018) use decoy folders and trigger a warning when a pro-
cess passes through more than three of those folders. Moore
(2016) proposed File Server Resource Manager (FSRM), a
tool that triggers alerts when specific folders are modified
in ways that are perceived as unusual w.r.t. the regularly-
observed behaviour of the user. El-Kosairy and Azer (2018)
worked on the placement of decoy folders to increase their
likelihood of being the first victims of the ransomware, thus
triggering a timely alert.

Scaife et al. (2016a) presented CryptoDrop, a tool that
performs the detection of ransomware following three main
principles—detect file format change, measure the change
distance between files, measure the change of file entropy—
and two secondary ones—detect file elimination and identi-
fication of a program that reads files of multiple formats but

Davide Berardi et al.: Preprint submitted to Elsevier Page 3 of 17

Data Flooding against Ransomware: Concepts and Implementations

writes files in a single one. Another work in this category
is HelDroid (Andronio et al., 2015), which works on mobile
systems, and detects if an application attempts to lock or en-
crypt the device without the user’s consent or if it displays
some ransom request.

Kharaz et al. (2016) introduced a dynamic analysis sys-
tem, called UNVEIL, based on the idea that, to mount a suc-
cessful attack, ransomware must tamper with the user’s files.
UNVEIL automatically generates an artificial user environ-
ment able to monitor processes’ interactions with user data
and changes to the system’s desktop as telltale signs of ran-
somware-like behaviour.

Other solutions, e.g., the ones surveyed by Kharraz et al.
(2015), hinge on detecting and preventing (zero-day) ran-
somware attacks by looking at I/O requests and protecting
the Master File Table (MFT) in the NTFS file system.

While the majority of proposals is host-based, network
activity too can offer opportunities for ransomware detec-
tion. Recently, some solutions proposed to use Software
Defined Networks (SDN) to detect ransomware. For exam-
ple, Cabaj et al. (2018) proved that an SDN-based analysis
of HTTP message sequences and of their respective content
sizes can lead to detecting ransomware from the CryptoWall
and Locky families. In a similar work, Akbanov et al. (2019)
use OpenFlow (an enabler of SDN) traffic analysis to detect
suspicious activities and to block infected hosts.

As seen here, honeypots are usually employed for detec-
tion. The approach of Data Flooding against Ransomware
can be seen as a new, dynamic interpretation of honeypots
that overcome the limitations of the existing approaches. We
review these more in depth in Section 3.1, followed by a de-
scription of how detection works in our paradigm in Sec-
tion 3.2.2.
Mitigation Mitigation schemes strive to contrast the ef-
fects of ransomware attacks.

Works in this category frequently adopt some declina-
tion of the moving target technique (also part of the Data
Flooding against Ransomware mitigation mechanism), e.g.,
“masking” user files, so that the ransomware skips them dur-
ing the attack.

For example, Lee et al. (2019) analysed ransomware fam-
ilies and proposed a method that changes the extensions of
files to formats normally skipped by ransomware.

Another example is Gómez-Hernández et al. (2018) where
the authors proposed a general methodology called R-Locker
to thwart crypto-ransomware actions. It is based on the de-
ployment of honeypot archives, designed for the Linux sys-
tem, to expose the ransomware when it accesses these. In
addition to that, this approach can automatically launch steps
to solve the infection.

This category hosts also OEM-provided solutions, e.g.,
Microsoft Windows 10 includes a “controlled folder access”
feature (Microsoft, 2022), which works by allowing only trust-
ed applications to access protected folders, configured by the
user.

Here, the work closest to our tool for ransomware miti-

gation, Ranflood, is the one by Lee et al. (2019), since they
both implement a moving target strategy. In addition to the
latter, Ranflood deploys a resource contention countermea-
sure that further mitigates the action of the malware. The
principle exploited by Microsoft’s solution is different: it re-
lies on user permissions to stop the action of a possible rogue
program, but it does not prevent it from acting on any other,
unprotected location.
Restoration Restoration schemes concentrate on recov-
ery the encrypted data after attacks.

An example of solutions in this category is ShieldFS (Con-
tinella et al., 2016), which relies on the integration between
an ad-hoc file system and a detector (we list ShieldFS here
since its main focus is recovery). When the detector recog-
nises a running ransomware, it activates a function of the file
system that copies the data significant to the user to a loca-
tion not reachable by the ransomware, for later restoration.

Also Ranflood, through its copy-based strategies (On-
The-Fly and Shadow, cf. Section 4), provides a kind of re-
covery feature: if the original files are lost to the attack, the
user has some chance to retrieve their content in the copies.
One can refine this technique, e.g., by using the Shadow
archive (if any) to restore files lost after the attack and by
unifying replicas and offering post-attack file-recovery sup-
port (see Section 3.2.4).

While both ShieldFS and Ranflood are reactive recovery
systems—that enact a response to an attack—the main differ-
ence with ShieldFS is that the latter is not a drop-in solution,
since it entails switching to the namesake file system.

This comes with several disadvantages. First, the user
needs to recompile the operating system kernel to correctly
configure the ShieldFS solution. Second, being file-system-
dependent, the solution is specific to the supported formats.
Third, continuous porting between different versions of the
same kernel is necessary to adapt ShieldFS to the latest ver-
sion.

Contrarily to ShieldFS, the solution we propose is generic—
this is witnessed also by the implementation of Ranflood (cf.
Section 4), which uses the Java Virtual Machine for porta-
bility on any system that supports it—and requires only some
preliminary configuration—similar to mainstream drop-in soft-
ware applications, like antiviruses.

3. Data Flooding against Ransomware
Before presenting relevant details of Ranflood, we intro-

duce the family of techniques, called Data Flooding against
Ransomware (DFaR), where Ranflood comes from—hinged
on the dynamic honeypot approach. We start by positioning
DFaR against the existing work on honeypots used to con-
trast ransomware. Then, we discuss how DFaR represents
a family of techniques which includes applications to three
main areas of vulnerability management: detection, mitiga-
tion, and restoration.

Davide Berardi et al.: Preprint submitted to Elsevier Page 4 of 17

Data Flooding against Ransomware: Concepts and Implementations

3.1. Dynamic Honeypots and Data Flooding
against Ransomware

The essence of honeypots relies on the renowned scheme
where administrators deploy easy-to-access computer resour-
ces that emulate the real ones present within the same net-
work. These dummy resources must look as indistinguish-
able from the actual ones as possible to an external intruder.
Administrators isolate these resources from the real system
to detect and slow down intrusions, setting up monitors to
notify any suspicious activity (which is illicit by definition,
since there is no reason for legitimate users to access the
honeypot).

Previous works analysed the use of honeypots to detect
ransomware (Moore, 2016; Al-rimy et al., 2018; Kok et al.,
2019). The simplest declination of this approach lies in de-
ploying one or more honeypot nodes that contain data pro-
files similar to the ones attacked by ransomware. Then, mon-
itors on the honeypot nodes can detect any changes to these
static, isolated files and warn the administrators of the pres-
ence of malware in the network.

More advanced techniques rely on using honeypots di-
rectly on the real nodes. The core of these solutions is to cre-
ate honeypot folders and monitor them for changes. While
the idea seems promising—essentially, making any node of
the network a possible honeypot monitor for ransomware—
the analysis performed by Moore (2016) on the existing tech-
niques revealed a strong limitation to the approach. The
problem, here, is that these solutions rely on static files al-
ways present on the disk of the user. Since the honeypot files
can mix with the actual ones of the user, a solution that im-
plements this technique must balance between its available
trapping surface and the encumbrance it causes to the users.
In essence, if one wanted to have complete monitoring of a
whole machine, there should be at least one honeypot file
in each of its folders. However, this quickly becomes in-
convenient when mixing honeypot files with users’ data. In-
deed, users create, move, and delete folders in their ordinary
work routines and they could trip the alarm of the detector.
One could think of excluding these frequently used folders,
but it would be a strong limitation of the range of the detec-
tor, since most ransomware attacks those locations (Rossow
et al., 2012; Y. Connolly and Wall, 2019; Continella et al.,
2016) which hold content sensitive to the user. Hence, hon-
eypot solutions resort to using seldom-browsed (and attacked)
locations and folders, thus limiting their trapping surface and
strongly restraining their detecting ability: in the words of
Moore (2016) “there is no way to influence the malware to
access the area containing the monitored files”.

The idea behind Data Flooding against Ransoware devel-
ops this take on ubiquitous honeypots against ransomware
and gives it a Muhammad-and-the-Montain kind of twist:

if the ransomware will not come to the trap,
then the trap must go to the ransomware

Instead of using static files and incurring in the related
trap-surface limitations, our intuition is to adopt a dynamic
approach, where detection works by monitoring the activity

of processes and by generating “floods” of honeypot files. If
the process under inspection modifies the honeypot files—
refined instantiations can analyse the patterns of data trans-
formation to minimise false positives—we have strong evi-
dence that it is some malware trying to lock the files of the
user.

Working on the above idea, we found that one can use
data flooding not only to detect ransomware, but also to con-
trast their action by mitigating their attacks and recovering
from these.

The essence of the approach behind Data Flooding against
Ransomware (DFaR) is to generate a deluge of honeypot files
on demand in sensible locations, such as where the ransom-
ware is executing or user folders, to detect and contrast the at-
tacks. DFaR detection overcomes the limitations of existing
honeypot solutions by adopting a dynamic stance towards
decoy file deployment and their monitoring. DFaR mitiga-
tion (i.e., the contrast of an ongoing attack) has two benefits.
On the one hand, it generates resource contention (Hunger
et al., 2015) with the ransomware: its I/O operations com-
pete on accessing the disk against the many ones induced by
the flooder, slowing down the action of the former; on the
other hand, data flooding performs a moving target defence
action (Evans et al., 2011): the legit files of the users mix
with the many decoy ones generated by the flooder, leading
the ransomware to spend time (and I/O access) harmlessly
working on honeypot files rather than on the sensitive ones.
Recovery in DFaR can happen when mitigation used flood-
ing techniques that generate files as copies of existing files
of the user. Here, the idea is that, even if the ransomware
encrypts the original copies of the user, we can recover the
missing files using their pristine copies (if any).
3.2. Phases of Data Flooding against Ransomware

Before delving into the details of Ranflood—which im-
plements an instance of the mitigation phase of DFaR—we
focus on the main three phases that characterise vulnerabil-
ity management through data flooding against ransomware:
detection, mitigation, and restoration.
3.2.1. Three Phases of Data Flooding Against

Ransomware
We report in Figure 1 a depiction of the relationship among

the detection, mitigation, and restoration phases of Data Flood-
ing against Ransomware. In the figure, we start (the top-most
element) with a choice which asks whether we want to follow
the automatic or manual triggering of the mitigation phase.
As depicted in Figure 1, the Manual and Automatic activa-
tion modalities are mutually exclusive. The automatic acti-
vation implies the usage of a detector component that is able
to identify the presence of an ongoing attack and triggers the
mitigation phase.

The detection behaviour represented in Figure 1 is spe-
cific to DFaR. This is evident both by reading the callouts
that explain the behaviour of the elements and the relation-
ship that the detection has with the restoration. However,
in principle, one can use other, non-DFaR-based detection

Davide Berardi et al.: Preprint submitted to Elsevier Page 5 of 17

Data Flooding against Ransomware: Concepts and Implementations

Mitigation

Detection

Restoration
False

False

Continue
Flooding?

True

True

Flooding of target
directory with

decoy files

Removal of decoy files and
possible recovery of the
original files of the user

Automatic or
manual triggering

of Mitigation?

AutomaticManual

If the decoy files are
not encrypted we did
not detect an attack

Detected
attack?

False

Need
Restoration?

True

Generation of sample
decoy files in a target

directory

Figure 1: Flowchart of the relationship among the detection,
mitigation, and restoration phases of Data Flooding against
Ransomware.

techniques (e.g., some of those reviewed in Section 2) to trig-
ger the mitigation phase. In those cases, the detection would
not necessarily interact with the restoration.

Looking at Figure 1, DFaR-based detection works by
generating decoy files given a target location. Ideally, the de-
tector would consider a time-window within which it expects
the decoy files to be encrypted. If this happens, the detector
trips an alarm (and possibly triggers the mitigation phase),
otherwise, the detector enters the restoration phase, which
restores the original state of the target location as before the
triggering of the detection, i.e., it safely removes the gen-
erated decoy files. When the mitigation phase starts, either
triggered manually or by an automatic detector, it floods one
or more target folders (e.g., where the ransomware is attack-
ing, but also critical locations, independently of where the
attack is running, such as the personal folders of the user).
This happens until the emission of a signal to stop the flood-
ing (represented by the “Continue Flooding?” decision in
Figure 1). After the mitigation phase, one can decide to run
a restoration routine that removes the flooding files. Depend-
ing on the flooding technique employed, this phase can also
restore the files of the user that might have been encrypted
by ransomware.

We dedicate the remainder of this section to providing
further details on how we envision the implementation of
these three phases.
3.2.2. Detection

Regarding the practice of detection, we distinguish two
modalities for the implementation of the detection phase,
which hinges on how one defines the target location of the
detection—i.e., where the detector deploys its decoy files.

The static modality is a mix between the traditional way
of using honeypot files for ransomware and the novel dy-
namic take we present in this article. In this case, the user
defines a set of target locations that the detector periodically
floods to spot possible ongoing attacks. This happens by
having the detector perform what we call “mini-floods”: it
generates sets of random files in the target location(s) and
monitors any activities on those files. If a program modi-
fies said generated files in a way compatible with a ransom-
ware (e.g., by replacing them with encrypted copies), then
we have strong evidence that the suspect is indeed ransom-
ware, against which we can launch the mitigation phase (e.g.,
Ranflood).

This modality partially overcomes the limitations of the
traditional way of using honeypot files to detect ransomware.
Indeed, classic honeypot techniques for ransomware detec-
tion have the limitation of targeting seldom-used folders to
minimise interactions with the user (that can result in false
positives). On the contrary, the dynamic loop of flood-based
detection (deploy files, monitor within a time-window, re-
store) makes it easier to monitor more trafficked, and more
likely-to-be-attacked locations (such as the Desktop folder
of the user).

Alternative to the static modality is the dynamic modal-
ity. In this case, we envision a complementary process that
“patrols” the system and triggers the detector on a specific set
of locations. An example of one such patroller is a process
that monitors the activities of the other running processes
to spot behaviours that align with the execution profile of
ransomware. In this case, the flood-based detector comple-
ments the activity of the patroller by dissipating the uncer-
tainty of its detection logic, testing the hypothesis that the
suspicious process is ransomware.

Of course, the design space of the patrolling process is
quite wide, since it does not necessarily need to follow the
flooding approach—we actually advise against using it as a
patrolling routine, to avoid incurring the limitations reported
by Moore (2016) and discussed for the static modality—but
can rather use complementary technologies such as process
and file monitoring (Mehnaz et al., 2018) and machine learn-
ing (Gharib and Ghorbani, 2017).

The dynamic modality is the one we consider the most
advanced and refined, which minimises the problems of clas-
sical honeypot techniques for detecting ransomware.
3.2.3. Mitigation

The mitigation phase represents a reaction to an ongoing
ransomware attack, which a DFaR-based tool counteracts by

Davide Berardi et al.: Preprint submitted to Elsevier Page 6 of 17

Data Flooding against Ransomware: Concepts and Implementations

~

~ R

scenario without RanFlood

scenario with RanFlood

RRR

Figure 2: Depictions of the action of a crypto-ransomware (top) and the interaction
between a DFaR-based mitigation tool (viz. Ranflood) and a crypto-ransomware (bottom).

flooding target folders—such as where the ransomware is
performing its attack but also, as a preventative measure, lo-
cations with files critical to the user—with decoy files. The
principle is to stall the attack by confounding the authentic
files of the user with a multitude of decoy ones, which the
malware would waste time encrypting.

Since Ranflood builds on the principles of DFaR miti-
gation, we use the description of this phase to introduce the
general behaviour of Ranflood and dedicate Section 4.1 and
Section 4.2 to respectively detail the three flooding strate-
gies we implemented in Ranflood and the salient points of
its software architecture.

To aid our presentation, we depict in Figure 2 a scheme
of the action of some representative ransomware (top) and its
interaction with a DFaR-based mitigation tool (bottom)—in
the picture, we represent this tool with the Ranflood logo .

In the top part of the Figure, at time 𝑡0 (the left-most
block on the line), the ransomware starts its attack on a target
folder by encrypting the files therein (the green documents
represent the authentic files of the user). At time 𝑡1, the ran-
somware has encrypted some files (viz., the red icons with
a lock badge) and continues its action on the next ones. At
time 𝑡𝑛, the ransomware has terminated the attack, and en-
crypted all files.

At the bottom of Figure 2, we show how a DFaR-based
tool—specifically, Ranflood—contrasts the action above. In
the Figure, the tool appears only after some detection mech-
anism activated it (as discussed in Section 3.2.2), at 𝑡1.

The detection phase can instruct the tool to act on a spe-

cific set of folders, where the ransomware is performing its
attack. However, this mitigation technique can also work
under the weaker assumption that the detector found an on-
going attack, without indicating where this is happening,
but the user specified sensitive folders to defend against the
ransomware (e.g., the “Home” folder, “Documents”, etc.),
which the tool floods with files. We respectively call these
activity- and location-based activation modalities, and we
deem both of them valid.

Of course, the activity-based modality is the most fo-
cussed of the two, as it contrasts the action of the ransom-
ware in the location where it is deploying its attack. When
one cannot rely on a detector able to spot where the ransom-
ware is acting, the location-based mode provides a way to
(preemptively) ward sensitive folders. Concretely, we also
use the location-based modality in Section 5 to simplify the
evaluation process of Ranflood, since it is not affected by
the possible flakiness of activity-based flooding—which can
change the target location of the countermeasure over differ-
ent runs.

In general, one can even decide to deploy both activity-
and location-based countermeasures to increase the effec-
tiveness of the mitigation. The conjecture, here, is that the
mix would simultaneously contrast the attack of the ransom-
ware where it is causing damage, and flooding the critical
folders to the user in advance. Since this is an advanced com-
position of those modalities, we leave the empirical study of
the effectiveness of their combination as future work.

Back to Figure 2, upon activation, the mitigation tool

Davide Berardi et al.: Preprint submitted to Elsevier Page 7 of 17

Data Flooding against Ransomware: Concepts and Implementations

generates honeypot files (the documents marked with the
“R” badge). The assumption we make is that, by generating
a number of copies significantly greater than the number of
legit files, the ransomware will more likely spend time on the
former than on the latter. The ongoing action at 𝑡𝑛 represents
the mitigation effect of the tool, which hinders the attack of
the ransomware and buys time for the users/administrators
to intervene.
3.2.4. Restoration

After understanding how the detection and mitigation
phases of DFaR work, one might wonder:

“Once we stopped the flooding of files, how do we
restore the system as close as possible to the original

state?”
A possible answer to this question is what we dub the

outflow, i.e., a restoration procedure tailored for DFaR-based
detectors and mitigation tools. The principle backing this
phase is the ability to discriminate between authentic and
decoy files, to safely and effectively remove the latter.

When we consider flooding with decoy files filled with
random content, restoration is a simple mark-and-sweep kind
of task. However, this becomes an additional design dimen-
sion when paired with copy-based flooding modalities—where
the decoy files are copies of the original files of the user;
examples of these modalities are the On-The-Fly and the
Shadow flooding modalities of Ranflood (presented in Sec-
tion 4.1).

Indeed, in cases where we performed the flooding with
copies of the original files, the decoy files may be the only
valid copies of the original ones, of which we want to pre-
serve one and use it in place of the lost original. In this case,
one can define an outflow routine able to recognise when
the authentic files of the user have been compromised and,
if pristine copies of these are available as decoy files, use
these to restore the former.

As expected, the implementation of the file-discrimination
logic behind the outflow phase has many alternatives. A
naïve solution can rely on storing (preferably in a remote,
safe location) the list of generated files, which we can later
provide to the outflow. This is the logic implemented by the
DFaR restoration tool (called “Filechecker”) we employ in
our experiments in Section 5 to measure the effectiveness of
Ranflood.

More advanced techniques can rely on digital fingerprint-
ing (Stinson and Paterson, 2018, Chapter 13) to mark the
flooding files in a way that prevents ransomware from per-
forming quick analyses to detect a common signature and
exclude them from its action. The idea, here, is to avoid
saving any information on the fingerprinting process (e.g.,
the position of the fingerprints in the files) but rather rely
on expensive fingerprint-inference procedures that statisti-
cally analyse the files and reconstruct the list of the gener-
ated ones.1 Besides working as a watermarking procedure,

1To harden the task for the ransomware, one can use sets of fingerprints,
which forces the ransomware to either spend time on piecemeal inference
computations or give up.

we can use fingerprinting to hide some additional flooding
information in the generated files. For example, for the file-
copying flooding modalities, one can include in the gener-
ated files the path of the original copy, to help automatising
the comparison-and-replacement process on the encrypted
sources.

As a closing note on Data Flooding against Ransom-
ware techniques, we highlight that these do not have partic-
ularly demanding prerequisites or dependencies (as opposed
to some techniques reviewed in Section 2, e.g., which require
the user to format the disk using a dedicated file system), and
they work with the traditional file-access APIs provided by
common operating systems. This positive trait makes DFaR-
based tools (such as Ranflood) drop-in solutions, akin to the
regular antiviruses users and administrators install on home
and work computers.

4. Ranflood
We now focus our presentation on the relevant imple-

mentation details of Ranflood. Namely, we present the three
novel flooding strategies that Ranflood provides and its soft-
ware architecture.
4.1. Three Data Flooding Strategies

To streamline the presentation of the three flooding strate-
gies we designed and implemented in Ranflood, we delin-
eate these via simplified pseudocode, useful to pinpoint their
qualitative differences, pros, and cons. We provide more de-
tails on their actual, more sophisticated implementation in
Section 4.2.
4.1.1. Random

Nomen omen, the Random flooding strategy, sketched in
Algorithm 1, floods a given location (𝑝𝑎𝑡ℎ, in the pseudo-
code) with randomly-generated files. It incarnates the ba-
sic form of flood-based mitigation: slowing down the ran-
somware via resource contention and moving-target defence.
The strategy has the smallest friction to its deployment among
the three we are presenting, as it does not entail pre-flooding
configurations by the user (as discussed for the On-The-Fly
and the Shadow strategies, below).

We expect the implementation of the strategy to be ef-
fective if it meets three conditions: (1) it generates files us-
ing extensions that ransomware usually target (Rossow et al.,
2012; Y. Connolly and Wall, 2019; Continella et al., 2016)
(e.g., in Algorithm 1, and in Ranflood, we use common for-
mats such as “.pdf” and “.jpg”); (2) the generated content
of the files does not give way to analyses that let the mal-
ware suspect of their synthetic nature (e.g., reusing the same
sequences over and over or having file headers that do not
match the standard format of their related extension); (3) it
produces large amounts of such files in a short timeframe.

The code in Algorithm 1 achieves (1), (2), and (3) to
a satisfying degree. In particular, we deem (2) and (3) of
good level for two reasons. One, because we use a variant
of Xorshift (Marsaglia, 2003) for fast randomness (the first
for loop in Algorithm 1) to quickly generate random content

Davide Berardi et al.: Preprint submitted to Elsevier Page 8 of 17

Data Flooding against Ransomware: Concepts and Implementations

Algorithm 1: Random Data Flooding
input: path, minSize, maxSize
FILE_EXT ← [“.doc”,“.pdf”,“.xls”,“.jpg”,“.mp4”,..];
while keepFlooding do

f_size ← randomInt(minSize,maxSize);
cnt ← newByteArray(f_size);
ext ← rndSelect(FILE_EXT);
append(cnt, getHeader(ext));
seed ← random64Seed() ; // 64-bit number

for i ← 0 to i < (capacity(cnt) / 64) do
seed ← seed ^ (seed ≪ 13);
seed ← seed ^ (seed ⋙ 7);
seed ← seed ^ (seed ≪ 17);
append(cnt, seed);

end
if capacity (cnt) > 0 then

r ← newByteArray(capacity(cnt));
r ← fillWithRandomBytes(r);
append (cnt, r);

end
writeFile(rndFilePath(path, ext), cnt);

end

for files of random sizes—in the [𝑚𝑖𝑛𝑆𝑖𝑧𝑒,𝑚𝑎𝑥𝑆𝑖𝑧𝑒] inter-
val, e.g., Ranflood uses file sizes in the range 𝑚𝑖𝑛𝑆𝑖𝑧𝑒 = 28
and 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 = 222 as default values, but the user can also
configure these. Moreover, we make the format of the file
(declared by its extension) and its header match—the first
instruction that appends to the 𝑐𝑛𝑡 array the byte sequence
related to its 𝑒𝑥𝑡ension (getHeader). The rndFilePath func-
tion generates a random file path (location, file name) under
the given 𝑝𝑎𝑡ℎ and with the given 𝑒𝑥𝑡ension.
4.1.2. On-The-Fly

The On-The-Fly flooding strategy is the first we present
that performs a copy-based flooding. Essentially, we replace
the generation of synthetic files performed by the Random
strategy with the generation of copies of actual files found at
a flooding location. File replication adds a layer of defence
to the Random strategy, as it helps to increase the likelihood
of preserving the users’ files by generating additional, valid
copies that might escape the ransomware.

Not all files have equal importance for this strategy. The
basic rule we introduce, here, is skipping the replication of
encrypted files, since they worsen the performance of the
strategy; copying these files is detrimental in two ways: a) it
wastes the time of the flooder on files useless to the user and
b) it generates files that the malware would skip, recognising
them as already encrypted.

The solution we develop to tackle this issue is to add a
preliminary “snapshooting phase” to save a list of the valid
files, later used during flooding for efficient discrimination.
Saving such a list trades a small occupation footprint on the
disk with an increase in the efficacy of the flooding.

Specifically, the snapshooting procedure reported in Al-
gorithm 2 saves a digest (e.g., MD5) of the content of the

user files and uses it as an integrity verification code to val-
idate the files during the flooding phase (Algorithm 3).

For simplicity, in Algorithm 3, at each iteration we read
(readBytes) the files from disk and write (copy) them, if valid.
While this could be a reasonable implementation, it leaves
open the possibility to lose files between iterations.2 To avert
this risk, Ranflood runs a more sophisticated version of Al-
gorithm 3, not shown here for the sake of clarity, that caches
the content of the files read once from the disk and then it-
erates their replication (trading memory occupation for effi-
ciency).

We close the description of On-The-Fly noting a subtle
detail: saving snapshot lists exposes the strategy to failure
due to the action of the ransomware, which could encrypt
the list itself. This is a general problem of any software that
uses secondary memory for its functionality (e.g., for config-
uration, runtime, etc.) and one can mitigate it a) via remote
file storage, like NAS and the Cloud, and b) using locations
and (random, exotic) file extensions for lists, which ransom-
ware usually skip. We omit to discuss this problem here and
plan to address the subject in future extensions.

Algorithm 2: On-the-fly Snapshooting.
input: path
for file in walkFiles (path) do

if isFile(f) then
saveOTFSnapshot(path, f,

digest(readBytes(path, f)));
end

end

Algorithm 3: On-the-fly Data Flooding
input: path
while keepFlooding do

for f in walkFiles (path) do
b ← readBytes(path, f);
if getOTFSnaphot(path, f) = digest(b) then
copy(b, randomFilePath(path));

end
end

end

4.1.3. Shadow
The Shadow strategy is a variant of the On-The-Fly one

(indeed, Algorithms 4 and 5 of Shadow are close to, respec-
tively, Algorithms 2 and 3 of On-The-Fly), where snapshots
save the full content of the files of the user rather than more
lightweight information, such as their fingerprint.

Since the Shadow snapshooting phase follows the tradi-
tional process of backup systems, it also suffers the same,

2Imagine, in the first iteration, that we replicate the valid file 𝑓 in 𝑓 ′,
the ransomware encrypts both of them, and we lose (the possibility of copy-
ing) the content of 𝑓 .

Davide Berardi et al.: Preprint submitted to Elsevier Page 9 of 17

Data Flooding against Ransomware: Concepts and Implementations

known trade-offs of local, on-site, and remote backup stor-
age/retrieval. In Ranflood, we use (tar.gz) archives to try to
minimise the space required for snapshots and preserve those
archives on the same disk of the original copies, both for
simplicity and to minimise loading times. More advanced
implementations could use secondary disks, NAS, and the
Cloud to mitigate the possibility of losing the local backups,
if targeted by the ransomware.

Algorithm 4: Shadow Snapshooting.
input: path
for file in walkFiles (path) do

if isFile(f) then
saveShadowSnapshot(path, readBytes(f));

end
end

Algorithm 5: Shadow Data Flooding
input: path
while keepFlooding do

for cnt in getShadowSnapshots (path) do
writeFile(rndFilePath(path), cnt);

end
end

4.2. Software Architecture
The implementation of the strategies from Section 4.1 in

Ranflood are more sophisticated, technically complex, and
tuned to exploit the maximal degree of concurrency avail-
able on the attacked node—maximising both IO access con-
tention and the file generation rate. Hereinafter, we report on
the salient elements of the software architecture of Ranflood
which supports this high degree of concurrency.
The Ranflood Architecture Two components determine
the behaviour of Ranflood.

First, the Ranflood engine implements refined versions
of the algorithms shown in Section 4.1. We call these ele-
ments operations, e.g., one operation can be an instance of
the Random flooding strategy or the snapshooting routine of
the On-The-Fly strategy. While in Section 4.1 we represent
strategies as indivisible units, in Ranflood one operation cor-
responds to several executable tasks without a priori bounds,
e.g., once we execute a Random flood operation, it generates
an unlimited amount of tasks (until the user commands the
termination of that operation) and each task carries the code
for the generation of one, specific random file. Since we en-
vision the Ranflood engine to manage multiple concurrent
commands, possibly launched from different sources (e.g.,
the user, an automatic detector, etc.), we opted for a Client-
Daemon model (Tanenbaum, 2009, Chapter 2). Specifically,
the engine works as a daemon process in the background, not
associated with a particular user, and users/programs inter-
act with it with lightweight, asynchronous clients/interfaces.

settings
file

Client CLI

On-the-Fly
snapshooter

Shadow
snapshooter

Random
Flooder

Shadow
Flooder

On-the-Fly
Flooder

Interprocess
communication

«interface»
Snapshooter

File IO

«interface»
Flooder

Task
Manager

disk read

disk write

«interface»
Detector

Daemon

Figure 3: Model of Ranflood’s Architecture.

The second component is the task manager, which han-
dles the scheduling of operations and their tasks. Indeed, at
runtime, we equate launched operations and their tasks as
generic work that the task manager schedules for execution.
The difference between an operation and a task is that the
former generates other tasks, while the latter performs I/O
interactions. Concretely, we implemented the task manager
following the Proactor (Pyarali et al., 1997) event-handling
pattern. The Proactor decouples the task demultiplexing and
the task-handler scheduling logic from the actual behaviour
enacted by the single tasks, asynchronously. This execution
method helps in further exploiting the parallelism available
on the attacked node and in minimising the effect of I/O
overhead and latency. Moreover, isolating tasks makes op-
erations more resilient: if a task fails, it does not affect its
operation or the other tasks.

We further clarify the architecture of Ranflood by de-
picting a model of it in Figure 3. In the Figure, we high-
light the (interprocess communication) interaction between
the Client Command-line Interface (Client CLI) and the Dae-
mon. Besides issuing commands for contrasting ransom-
ware, the Client can also set configurations of the Daemon,
which the latter stores in a settings file. The other main com-
ponents are dedicated to implementing the different flood-
ing strategies. The basic interface for the latter is Flooder,
which the Random, On-the-Fly, and Shadow flooders im-
plement. The On-the-Fly and Shadow strategies also have
a snapshooting phase, which they realise by implementing
the Snapshooter interface. The Daemon interacts with these
components to obtain tasks that operate on files, ran in par-
allel by the Task Manager—which implements the Proac-
tor’s logic. The faded Detector interface indicates that the
Ranflood Daemon is organised to support the integration of
(generic, i.e., not necessarily DFaR-based) detectors.

Davide Berardi et al.: Preprint submitted to Elsevier Page 10 of 17

Data Flooding against Ransomware: Concepts and Implementations

Ranflood (both its client and daemon) (at the time of
writing at version 0.5.9-beta) is an open-source project3 writ-
ten in Java, uses the RxJava4 library for the basic compo-
nents of its task manager and, through the GraalVM5 com-
piler, it is available as native binaries for Windows, macOS,
and Linux systems, besides its Java executable.

5. Evaluation
We now present our evaluation of the effectiveness of

Ranflood in lowering the loss rate of files due to ransom-
ware attacks. To perform a thorough evaluation, we test
Ranflood under different conditions: we select 6 ransomware
samples, we consider 4 increasing activation delays of Ran-
flood (which simulate in a deterministic way the triggering
by a detector), and test each of its 3 flooding strategies.

The 4 increasing activation delays are important to in-
vestigate the relationship between the time it can take detec-
tion to activate Ranflood (i.e., to account for different time-
frames for the automatic triggering of the mitigation, cf. Fig-
ure 1) and the effectiveness of the Ranflood action. In this
article, we ditched the use of some specific detection tech-
nology to avoid introducting additional variables into our
experiments—the most prominent of these being the vari-
ance in detection times. Hence, we take 4 fixed delays which
represent increasing worst-case activation scenarios (we dis-
cuss the actual times in Section 5.1, which are inspired by
studies from the literature). Future work can focus on study-
ing the relationship between different families and imple-
mentations of detection techniques and Ranflood. To this
aim, one would need to systematically review the literature
on ransomware detection, select a set of representative fam-
ilies of detectors, select implementations for each of these
families, and establish and run statistically-relevant batter-
ies of benchmarks.

The combination of the ransomware samples, the activa-
tion delays, and the flooding strategies gives us 72 different
run scenarios, totalling 78 considering also the 6 baseline
runs where we do not let any Ranflood strategy run (called
“None” configurations). We run each scenario 4 times, re-
porting the averages. Before showing the results, we detail
the target operating system and data used in the tests, the se-
lected piece of ransomware, and how we measure the loss
rate in the tests.
5.1. Benchmarking Method
Target Operating System and Data To select the tar-
get operating system, we choose to adopt the one with the
wider market share on desktop machines in the last year (at
the time of writing). To find it, we used the data made avail-
able by StatCounter6, which reports a marked share of around
75% held by Microsoft Windows 10. Thus, we use this op-
erating system as the target.

3https://github.com/Flooding-against-Ransomware/ranflood.
4https://github.com/ReactiveX/RxJava.
5https://www.graalvm.org/.
6https://gs.statcounter.com/os-market-share#monthly-201807-20211

1.

The target data is the set of files attacked by ransomware.
Since the ransomware samples we consider mainly attack the
profile of the user in the machine, our target data corresponds
to a representative set of files of an ordinary user (Continella
et al., 2016; Kharaz et al., 2016; Akbanov et al., 2019).

There are mainly two ways to obtain a profile of this type.
The first is organic, i.e., drawn from a real environment

used by a regular user for a certain amount of time. Con-
tinella et al. (2016) and other authors (Kharaz et al., 2016;
Akbanov et al., 2019) followed this approach, using in their
tests the profiles of some users who worked on the test en-
vironment e.g., a week. Two main drawbacks of this ap-
proach are: a) it might not generate a significant amount of
data, since it depends on the type of activity of the user and
the recording timeframe, and b) it requires precautions, e.g.,
we need to make sure the data is anonymised, to avoid, e.g.,
spreading sensible information of the user. The second ap-
proach is to create the profile synthetically, but starting from
real-world skeletons and populating them. Here, the draw-
back is that the generated data is not organic. On the positive
side, we do not depend on some selection of users or some
timeframe.

Since we choose to ditch using a detector, which would
instruct Ranflood to act on the attack location of the ransom-
ware, we just need to have an ordinary user profile skeleton
and command Ranflood to ward/flood those sensible fold-
ers (the location-based activation modality discussed in Sec-
tion 3.2.3). Hence, we deem it appropriate to follow the sec-
ond approach and build a synthetic, but realistic target pro-
file.

To do this, we built on the skeleton reported by Halsey
(2016), who identified the main user paths and folders of the
Windows 10 File System. Then, for the user files, we gen-
erated 2GB of data, following the indications of Kaspersky
(2021) and Scaife et al. (2016b) on the formats most subject
to ransomware attacks. Besides the format, we also followed
other guidelines to tune the profile for the task: we created
files with names usually preferred by ransomware (Kroll,
2021; Anderson and McGrew, 2016) and, following the sug-
gestions by (Rossow et al., 2012), we gave to the profile a
user-interactivity imprint by installing a set of applications
among the most used, like a browser and an office suite.

In the generated profile, we have 13 folders, among which
“Documents”, “Desktop”, “Music”, and “Pictures”, which
we consider sensible to the user and which we flood and
monitor to calculate the loss rate after each attack.
Ransomware To identify the ransomware samples for
the tests, we used the VirusTotal Intelligence API to obtain
the current Windows executables associated with the main
ransomware families. We obtained a set of samples (includ-
ing CryptoWall, TeslaCrypt, WannaCry, Certbot, NotPetya,
and Critoni), which we tested to actually execute in our tar-
get environment. Not all samples worked, e.g., some sam-
ples did not receive instructions and public encryption keys
from their control servers and did not perform any attack.
We filtered out these samples, to only focus on active ones.

Davide Berardi et al.: Preprint submitted to Elsevier Page 11 of 17

https://github.com/Flooding-against-Ransomware/ranflood
https://github.com/ReactiveX/RxJava
https://www.graalvm.org/
https://gs.statcounter.com/os-market-share#monthly-201807-202111
https://gs.statcounter.com/os-market-share#monthly-201807-202111

Data Flooding against Ransomware: Concepts and Implementations

Moreover, we excluded ransomware that forced the machine
to restart. This is not a problem from the functional point of
view of Ranflood (which we could instruct to start its routine
after the reboot), but it would make the tests more unreliable
since we would not know any more the exact delay between
the start of the ransomware and Ranflood. Thus, we also re-
moved these samples. The resulting set of samples includes
6 pieces of ransomware: GandCrab, LockBit, Phobos, Ryuk,
Vipasana, and WannaCry.
Logs and Metrics The final ingredients of our evalua-
tion method are 1) the execution timeframe, i.e., how much
time we let the ransomware and Ranflood execute and 2) the
4 activation delays of Ranflood, to simulate the triggering
from a detector. For the timeframe, we run preliminary ex-
periments and saw that 10 minutes are generally appropriate
to witness the full extent of a ransomware attack on users’
folders—this is matched by results from other researchers
who verified that the action timeframe of different families
of ransomware is within 4 to 9 minutes (Zuhair and Selamat,
2019; Ahmed et al., 2020). For the delay, we consider de-
tectors that respectively require the ransomware to run for
5%, 10%, 30%, and 50% of the timeframe before trigger-
ing Ranflood, hence 1∕2, 1, 3, and 5 minutes. We selected
these delays to look at the worst-case scenarios, starting from
the high-end values of the detection time spectrum, ranging
around 30–40 seconds (Zuhair and Selamat, 2019; Ahmed
et al., 2020), and looking at even less performant cases with
the 1-, 3-, and 5-minute delays.

The data points we want to collect in the tests are two:
the number of files lost to encryption and, for copy-based
strategies, the number of files saved through copying (i.e.,
when we lost the original file but have a pristine copy). To
compute this data, we let the piece of ransomware and Ran-
flood run for the length of the timeframe, we shut the test
machine down, and then mount the disk on a different ma-
chine to analyse it (this is necessary to make sure that the
piece of ransomware cannot modify the files any more). To
calculate the data loss, we compare the digests of all the files
in the target profile (collected beforehand) against the files in
the mounted drive—we use this method to find all valid files,
both the original and the replicas, counted once (i.e., all files
with the same digest count as one).
5.2. Testbed

To run the tests, we assembled a testbed made of a clus-
ter of test nodes with hardware representative of today’s or-
dinary office/desktop personal computers. The test nodes
ran isolated Windows 10 virtual-machines, orchestrated by
a central gateway running Ubuntu 21.04 (to further avoid
possible interactions with ransomware samples in the clus-
ter). The gateway of the testbed was the only terminal with
network access (this avoided problems like the escape of
some ransomware, e.g., due to unknown network exploits,
and the execution of unexpected processes, e.g., update rou-
tines, which might interfere with the performance). Figure 4
reports a schema of the testbed, where “PVE” prefixes the
test nodes. The main point of assembling this testbed was

to automatise and standardise the tests and make our data as
reliable as possible.

Regarding the nodes, we used four desktop computers
each equipped with an Intel i3-4170 (3.70GHz) dual-core,
four-thread CPUs, 12GB of RAM, and a Hard Disk Drive7
(HDD) of 500GB. These machines run ProxMox version 7.0-
8 on GNU/Linux. We built the template for the virtual ma-
chines from the one provided by Microsoft of Windows ver-
sion 10 (x64) Stable 1809. Each node runs one virtual ma-
chine with a dual-core, four-thread CPU, 12GB of RAM, and
40GB of disk.

The test configurations using Ranflood are 72. In ad-
dition to these, we gather baseline rate-loss values for each
ransomware, run without Ranflood, totalling 78 configura-
tions. We run each configuration 4 times for a total of 312
runs and gather the results for each scenario as the average
of the related runs.

Each test run follows the steps:
1. we start the virtual machine and wait that the envi-

ronment is ready to run the set malware of the run and
Ranflood (i.e., we wait for Windows to boot properly);

2. we start the ransomware sample and wait for the set
delay of the run;

3. we start Ranflood (Windows native version) with the
set flooding strategy of the run. To maximise resource
occupation, we launch all 13 flooding instances in par-
allel, each targeting the sensible folders mentioned in
Section 5.1;

4. after 10 minutes since we started the virtual machine,
we shut it down;

5. we access the disk from the gateway and run an anal-
yser, called the Filechecker (available as a companion,
open-source tool to Ranflood3) to calculate the data
points of the run;

6. we delete the virtual machine and start the next test
run.

Notably, the Filechecker can restore the system to the
state before the attack by removing all files except the orig-
inal, valid ones and the decoy ones, which it can use to re-
place the originals if lost (this requires the usage of some
copy-based flooding strategy, cf. Section 3.2.4). Concretely,
the Filechecker includes two phases. First, before an attack,
it records all the signatures (hashes) of the files in the tar-
get directories in a reference database (this is similar to how
OTF snapshooting works, cf. Algorithm 2). Second, after
an attack, it checks the files present on the disk against the
recorded signatures. The Filechecker preserves a file if its
signature corresponds to a recorded one. In the case of de-
coy files that are copies of the original ones (which have a
different path than the one corresponding to a recorded sig-
nature), if the original is missing we replace it with the copy.

7Since IO contention is a fundamental element of the Ranflood contrast
action, future empirical studies can extend the types of storage devices used
for the testbed to other technologies like Solid-State Drives (SSD), Non-
Volatile Memory Express (NVMe) drives.

Davide Berardi et al.: Preprint submitted to Elsevier Page 12 of 17

Data Flooding against Ransomware: Concepts and Implementations

PVE1

PVE2
VM2

PVE3

PVE4

VM1

VM3

VM4

ReportsOperator Gateway

Figure 4: Testbed schema. The operator connects to the Gateway to run the tests and retrieve the reports. The test nodes
(PVE*) host one virtual machine each.

5.3. Results and Analysis
The complete set of data gathered from our experiments

is available at https://doi.org/10.5281/zenodo.6587519. We
report the results of our tests in Figure 5, as percentages of
lost, saved, and copied files in each attack scenario. For the
sake of clarity, we included only the average result computed
across the multiple runs of each test, because the standard
deviation is generally low among the cases. Specifically, the
highest standard deviation occurs in tests related to Phobos,
whose average percentage standard deviation is ca. 8% (with
average standard deviation of 13).

The cells in Figure 5 are composed as follows: the cen-
tral area shows the percentage of valid (non-encrypted) files.
Since copy-based flooding strategies allow the restoration of
lost original files, we break down the percentage of valid files
into a blue one (original) and green one (restored), reporting
the related percentages respectively at the bottom and at the
top of the bar. The red part completes the picture, represent-
ing the percentage lost.

The first pieces of ransomware we comment on are Gand-
Crab (GC), Ryuk, and Vipasana, which share similar be-
haviour and thus can be reported as one, for the sake of
brevity. They encrypt only files that we do not consider as
being sensitive for the user (i.e., outside the 13 folders mon-
itored by the test cf. Section 5.1). Hence, we report 100%
saved files.

LockBit encrypts files following a strategy where the mal-
ware quickly skims through the folders of the user, only en-
crypting the first 4 KB of each file. This behaviour, in uni-
son with the relatively slow response of Ranflood (which in
our tests is set to start, at the earliest, 30 seconds after the
activation of the ransomware) makes LockBit the toughest
among the opponents—in the future we intend to deepen our
research on this kind of attack modality, e.g., proposing ad-
hoc, copy-based strategies able to quickly contrast the mal-

ware by restoring just the compromised portion of the en-
crypted files. Both the Random and On-The-Fly strategies
fail to contrast it—the ransomware leaves a constant 9% of
valid files, which it does not consider as its targets (e.g., con-
figuration files). The Shadow strategy is the only one able to
partially hinder LockBit (reaching a 48% of recovery of only
copied files) since it uses separate copies of the files for the
flooding.

Phobos is designed to encrypt all files in the system when
no countermeasure is put in place, as shown by the 0% of
valid files in the “None” column of the figure. The interac-
tion with the Random strategy shows an unexpected pattern.
Its earliest activation achieves the lowest score (0%), while
late activations produce better results, yet not amounting to
some regular pattern: the percentage of valid files jumps to
13% when the delay is 60 seconds, decreases to 10% for 180
seconds, to reach the best value of 14% for 300 seconds.
We attribute this behaviour to some internal delays of the
ransomware (e.g., to elude detection), which makes the 60s
and 300s activation time the fittest to contrast it. This phe-
nomenon is more or less repeated in the Shadow modality,
where the 30-second delay achieves a 22% recovery while
the later 60-second delay reaches 29%, before falling to a
meagre 2% for higher delays.

WannaCry behaves like LockBit, but it is less aggres-
sive, leaving more than half of the user’s files untouched
when left free to roam (see the “None” column). Among
our ransomware samples, WannaCry seems the one which
Ranflood can contrast the best. Similarly to Phobos, we no-
tice that we hit the “sweet spot” for the activation delay when
it matches with some internal delay of the malware. The ef-
fectiveness of the Random modality peaks at 73% saved files
when activated with a 180-second delay, On-The-Fly peaks
at 67% saved files when activated with a 60-second delay,
and Shadow reaches 94% at its earliest activation time.

Davide Berardi et al.: Preprint submitted to Elsevier Page 13 of 17

https://doi.org/10.5281/zenodo.6587519

Data Flooding against Ransomware: Concepts and Implementations

Delay None Random On-The-Fly Shadow
G

C
/R

yu
k/

V
ip

as
an

a 30 𝟏𝟎𝟎% 𝟏𝟎𝟎% 𝟏𝟎𝟎% 𝟏𝟎𝟎%

60 - 𝟏𝟎𝟎% 𝟏𝟎𝟎% 𝟏𝟎𝟎%

180 - 𝟏𝟎𝟎% 𝟏𝟎𝟎% 𝟏𝟎𝟎%

300 - 𝟏𝟎𝟎% 𝟏𝟎𝟎% 𝟏𝟎𝟎%

Lo
ck

B
it

30 𝟗% 𝟗% 𝟗%
𝟒𝟖%

𝟗%
𝟓𝟕%

60 - 𝟗% 𝟗%
𝟒𝟎%

𝟗%
𝟒𝟗%

180 - 𝟗% 𝟗%
𝟏𝟏%

𝟗%
𝟐𝟎%

300 - 𝟗% 𝟗% 𝟗%

P
ho

bo
s

30 𝟎% 𝟎% 𝟎%
𝟐𝟏%

𝟏%
𝟐𝟐%

60 - 𝟏𝟑% 𝟎%
𝟐𝟑%

𝟔%
𝟐𝟗%

180 - 𝟏𝟎%
𝟏%

𝟐𝟒%
𝟐𝟓%

𝟐%

𝟐%

300 - 𝟏𝟒% 𝟎%
𝟐%

𝟐%

W
an

na
C
ry

30 𝟓𝟏% 𝟓𝟖% 𝟔𝟕%
𝟏%

𝟗𝟑%
𝟗𝟒%

60 - 𝟔𝟖% 𝟔𝟕%
𝟏%

𝟗𝟎%
𝟗𝟏%

180 - 𝟕𝟑% 𝟓𝟖%
𝟐%

𝟕𝟗%
𝟖𝟏%

300 - 𝟔𝟔% 𝟓𝟓%
𝟕%

𝟔𝟗%
𝟕𝟔%

Figure 5: Results of the aggregated tests, loss-rate percentage—each cell shows the percentage of valid (non-encrypted) files. For
copy-based strategies we break down the percentage of valid files into a blue one (original) and a green one (restored), reporting
the related percentages respectively at the bottom and at the top of the bar. The longer the blue/green bar, the better.

Copy-based Overhead and Restoration Aside from
the performance benchmarks of the mitigation, we bench-
mark both the initial overhead derived from the snapshoot-
ing routines of the On-The-Fly and Shadow flooding strate-
gies and the performance of the Filechecker (i.e., a possible
implementation of the restoration phase). In particular, the
former is interesting to describe the footprint of the software
during the normal operations of the user.

We present the performances in Table 2 as the average
over eight experiments and the standard deviation of these
samples (we report the baseline in the first row (30 sec.) of
each table for reference).

We deem the overhead of both the On-The-Fly and the
Shadow strategies compatible with the regular operations of
users (interactive) and servers (batch), as they allow for other
processes to execute concurrently and not take a lot of time

Avg. (s) SD (s)
OTF snapshooting 22.15 13.96

Shadow snapshooting 38.69 12.23
Filechecker restoration 573.9 18.38

Table 2
Average time and standard deviation in seconds of the copy-
based snapshooting and restoration (Filechecker).

to complete—this is not different from having an antivirus
scan running alongside other processes.

Finally, we notice that the reported measures have a small-
yet-non-negligible standard deviation. Indeed, the measures
are influenced by several factors which increases the stability
of the performance. In particular, regarding the performance
of the Filechecker, we notice:

Davide Berardi et al.: Preprint submitted to Elsevier Page 14 of 17

Data Flooding against Ransomware: Concepts and Implementations

• differences between the operating systems: the File-
checker runs on Linux, where we mount the NTFS
disk of the virtual machine through the “qcow2” driver,
while the signatures and archive generations run di-
rectly in the Windows virtual machine, using the vir-
tual device;

• scheduling and parallelism: the Filechecker runs in se-
quential mode while the signatures and archive gener-
ation run in a multithreading application.

While these performance results are encouraging, we deem
an important future work setting out specific tests that would
allow us to profile the algorithms and runtimes of the tools,
refine them, and increase their performance.
5.4. Comparison with Empirical Evaluations of

Related Work
To conclude our empirical assessment of Ranflood, we

put our results in perspective against those from empirical
evaluations of related work. In doing so, we underline that
it is not possible to directly compare the results of the con-
sidered evaluations, given that they have been drawn from
diverse hardware and software settings, on different sets of
ransomware samples, and with disparate experimental set-
ups. Moreover, the considered tools are sensibly different
in terms of the phases they target to contrast ransomware
(detection, mitigation, restoration), the technique they rely
upon, and the usage requirement—e.g., a solution like Ran-
flood is closer to installing an antivirus while e.g., ShieldFS
is a more involved one, which requires the user to recompile
the operating system kernel.

Considering the works covered in Section 2, summarised
in Table 1, we compare with those proposals that, like Ran-
flood, are marked as generic (not tailored to any specific ran-
somware family) and that implement the mitigation and/or
restoration phases. These requirements give us four items:
ShieldFS (Continella et al., 2016), R-Locker (Gómez-Hernández
et al., 2018), the tool by Lee at al. (Lee et al., 2019), and Mi-
crosoft controlled folder access (Microsoft, 2022). Unfortu-
nately, we could not retrieve experimental data regarding the
last item (Microsoft’s), excluding it from this comparison.
ShieldFS The evaluation done by Continella et al. (2016)
comes the closest to ours, since they also measure the perfor-
mance based on the ratio of recovered data. Thanks to its de-
tection and shadowing capabilities, ShieldFS reaches an ag-
gregated recovery rate of more than 90% (the authors do not
provide the breakdown of the considered ransomware fami-
lies). Quantitatively, aggregating the data from our experi-
ments gives us an 80% recovery rate for Ranflood. Notwith-
standing the good figures of the two proposals, we stress that
our comparison can only be at the qualitative level, because
quantitative comparisons would entail the definition of com-
mon testing environments and infrastructures.
R-Locker R-Locker implements a detection and mitigation
mechanism, based on the distribution/spread of honeypot files

used for both the detection and mitigation phases. The au-
thors only report the aggregated detection rate, 100%, but
do not report the ratio of saved-vs-lost files. While the re-
ported figure is impressive, there is a caveat, reported by the
same authors, which is that the detection phase can be by-
passed by any ransomware that encrypts the files randomly,
making the performance drop significantly. Since Gómez-
Hernández et al. (2018) focus on the performance of detec-
tion while we benchmark the mitigation phase, we cannot
directly compare with their results.
Tool by Lee et al. The tool by Lee et al. implements a Mov-
ing Target Defence strategy, based on changing the type or
extension of the file to deceive the ransomware. Lee et al. re-
port aggregated data as “defence rate”, where they preemp-
tively run their solution (changing the type and extension of
a set of selected files), then, they let the ransomware run for
5 minutes and calculate the number of encrypted files. They
report a total of 98.6% “defence rate”.

Also comparing our evaluation of Ranflood and that of
Lee et al. is difficult, since the latter run the tool before the
ransomware, while we test Ranflood after the ransomware
started the attack, simulating the triggering from a detector.

6. Discussion and Conclusion
We presented Data Flooding against Ransomware (DFaR)

as a family of methods to contrast ransomware that mixes
dynamic honeypots, resource contention, and moving target
defence. We detailed the three phases of detection, miti-
gation, and restoration of DFaR. To show the applicability
of DFaR we also introduced instantiations of the mitigation
and restoration phases as implemented within a tool called
Ranflood—specifically Ranflood implements three flooding
strategies of which two enable the restoration phase. We also
showed preliminary but thorough benchmarks that demon-
strate that Ranflood (and its three flooding strategies) is ef-
fective in contrasting the action of different kinds of ransom-
ware.

Ranflood is more of a stepping stone than the end of
the road. Indeed, as presented in Section 3.2.2, one can
use DFaR to detect ransomware. Future work in this di-
rection goes towards studying different instantiations of the
DFaR detection paradigm and investigating their interplay:
a) developing work similar to the one we undertook with
Ranflood—implementing and empirically studying the ef-
fectiveness of the static and dynamic modalities of detection
(cf. Section 3.2.2); b) investigating ways of mixing DFaR
detection with other existing approaches from the literature,
in particular, to implement the patrolling process of the dy-
namic modality; c) testing the effectiveness of detection in-
stantiations based on different combinations of the dynamic
and static modalities, depending on disparate platforms of
execution, contexts of application, and ransomware families.
Exfiltration ransomware While, in this work, we focussed
on crypto-ransomware, there is another growing category of
ransomware that is becoming more and more threatening

Davide Berardi et al.: Preprint submitted to Elsevier Page 15 of 17

Data Flooding against Ransomware: Concepts and Implementations

for organisations: exfiltration-based ransomware. Indeed,
given the constant threat of crypto-ransomware, organisa-
tions started contrasting them with backup plans. Of course,
the latter do not hinder the diffusion of ransomware, but they
curb the motivation of the attackers to strike; the victims are
less likely to pay if they can restore (most of) their encrypted
files from backups. This motivated the recent surge of new
exfiltration ransomware, whose objective is not to prevent
users from accessing their data but to abduct their sensi-
tive files and threaten to disclose their contents, unless the
victims pay the proverbial ransom (Michael, 2021). While
currently tailored for crypto-ransomware, we conjecture that
DFaR and Ranflood can also effectively contrast exfiltration-
based attacks by inducing the malware to transmit decoy
files rather than those of the user. In the process, the tool
would make the ransomware waste disk and network IO ac-
cess, slowing down the exfiltration of worthy payload. Given
the rising importance of exfiltration-based attacks, we envi-
sion future work also in this direction. Work, here, can start
by benchmarking the performance of the available flooding
strategies of Ranflood in limiting data exfiltration. Then, one
can introduce new or refined versions of the presented flood-
ing strategies to maximise the contrast they provide against
exfiltration-based attacks (e.g., on the content of decoy files,
their folders layouts, etc.). To do this, advanced versions of
Ranflood (in synergy with detectors) can profile the type of
malware that is attacking and tune flooding strategies that
minimise its effect. For example, one can refrain from us-
ing copy-based strategies when dealing with exfiltration, to
avoid the possibility of providing sensible content to the ran-
somware via decoy copies of the actual files of the user.
However, we underline that the matter can be more nuanced
than this. Indeed, when we induce the ransomware to ex-
filtrate the same content over and over, we are making the
ransomware waste time and bandwidth to obtain the same
information. Future work on exfiltration ransomware shall
investigate this matter, e.g., quantify the ratio between exfil-
trated content and wasted bandwidth/time due to copy-based
flooding strategies.

On a more general note, we foresee studying the inter-
play between detection and mitigation, so that the former can
tune the flooding strategy of the latter. The main example,
here, is a detector that “understands” the patterns of the at-
tacking ransomware, and informs the mitigation to use spe-
cific flooding modalities that have been empirically demon-
strated to work best against that kind of ransomware. Refer-
ring to the previous paragraph, a detector able to discrimi-
nate between crypto- and exfiltration-based ransomware can
instruct the mitigation tool to use copy-based strategies rather
than random-based ones.

Besides investigating the functional aspects of DFaR so-
lutions, we deem it important to study the aspects related to
human-computer interaction with Ranflood and other DFaR-
based prototypes. These aspects include letting the user know
when a detection instance starts, on which folders the detec-
tor operates, and what files the software creates as decoys.
The same goes for the mitigation, where we should inform

the user of the ongoing attack and the fact that the software
is flooding which folders of the attacked machine. Experi-
ments should investigate both what are the best techniques
to communicate this information to the user and what are the
best ways to stimulate the user in adopting secure behaviour,
e.g., to inform users of the ongoing attack and report the is-
sue to system administrators.

Finally, future work can focus on the restoration phase of
DFaR, e.g., following the idea of implementing a fingerprint-
ing feature in the mitigation and restoration phases, which
dispenses the user from relying on additional resources than
the decoy files themselves (cf. Section 3.2.4). This is exem-
plified by our naïve implementations—e.g., the On-The-Fly
copy-based strategy and the restoration tool (Filechecker)—
which rely on a list of signatures of the original files, whose
loss could prevent us from executing the flooding/restoration
step in our experiments.

Acknowledgement
We thank Stefano Cattani for supporting and encourag-

ing the collaboration between ARPAE and UniBo, Claudio
Dall’Osso for creating the context that sparked this project,
Laura Pozzessere for proofreading the first version of the
manuscript, and the anonymous reviewers whose construc-
tive feedback contributed to the improvement of the article.

References
Lawrence Abrams. 2021. Ransomware attack hits Italy’s Lazio region, af-

fects COVID-19 site. https://www.bleepingcomputer.com/news/securi

ty/ransomware-attack-hits-italys-lazio-region-affects-covid-19-s

ite/

Yahye Abukar Ahmed, Baris Kocer, and Bander Ali Saleh Al-rimy. 2020.
Automated analysis approach for the detection of high survivable ran-
somware. KSII Transactions on Internet and Information Systems (TIIS)
14, 5 (2020), 2236–2257.

Maxat Akbanov, Vassilios G. Vassilakis, and Michael D. Logothetis. 2019.
Ransomware detection and mitigation using software-defined network-
ing: The case of WannaCry. Computers & Electrical Engineering 76
(2019), 111–121. https://doi.org/10.1016/j.compeleceng.2019.03.012

Bander Ali Saleh Al-rimy, Mohd Aizaini Maarof, and Syed Zain-
udeen Mohd Shaid. 2018. Ransomware threat success factors, taxonomy,
and countermeasures: A survey and research directions. Computers &
Security 74 (2018), 144–166.

Blake Anderson and David McGrew. 2016. Identifying Encrypted Mal-
ware Traffic with Contextual Flow Data. In Proceedings of the 2016
ACM Workshop on Artificial Intelligence and Security (Vienna, Aus-
tria) (AISec ’16). Association for Computing Machinery, New York, NY,
USA, 35–46. https://doi.org/10.1145/2996758.2996768

Nicoló Andronio, Stefano Zanero, and Federico Maggi. 2015. HelDroid:
Dissecting and Detecting Mobile Ransomware. In Research in Attacks,
Intrusions, and Defenses, Herbert Bos, Fabian Monrose, and Gregory
Blanc (Eds.). Springer International Publishing, Cham, 382–404.

Krzysztof Cabaj, Marcin Gregorczyk, and Wojciech Mazurczyk. 2018.
Software-defined networking-based crypto ransomware detection using
HTTP traffic characteristics. Computers & Electrical Engineering 66
(2018), 353–368. https://doi.org/10.1016/j.compeleceng.2017.10.012

Bill Chappell and Colin Dwyer. 2017. Massive ransomware attack hits
Ukraine; experts say it’s spreading globally. https://www.npr.org/

sections/thetwo-way/2017/06/27/534560169/large-cyberattack-hits-u

kraine-snarling-electric-grids-and-airports?t=1643028558133

Christopher JW Chew and Vimal Kumar. 2019. Behaviour based ransom-
ware detection. (2019).

Davide Berardi et al.: Preprint submitted to Elsevier Page 16 of 17

https://www.bleepingcomputer.com/news/security/ransomware-attack-hits-italys-lazio-region-affects-covid-19-site/
https://www.bleepingcomputer.com/news/security/ransomware-attack-hits-italys-lazio-region-affects-covid-19-site/
https://www.bleepingcomputer.com/news/security/ransomware-attack-hits-italys-lazio-region-affects-covid-19-site/
https://doi.org/10.1016/j.compeleceng.2019.03.012
https://doi.org/10.1145/2996758.2996768
https://doi.org/10.1016/j.compeleceng.2017.10.012
https://www.npr.org/sections/thetwo-way/2017/06/27/534560169/large-cyberattack-hits-ukraine-snarling-electric-grids-and-airports?t=1643028558133
https://www.npr.org/sections/thetwo-way/2017/06/27/534560169/large-cyberattack-hits-ukraine-snarling-electric-grids-and-airports?t=1643028558133
https://www.npr.org/sections/thetwo-way/2017/06/27/534560169/large-cyberattack-hits-ukraine-snarling-electric-grids-and-airports?t=1643028558133

Data Flooding against Ransomware: Concepts and Implementations

Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro, Giulio De
Pasquale, Alessandro Barenghi, Stefano Zanero, and Federico Maggi.
2016. ShieldFS: a self-healing, ransomware-aware filesystem. In Pro-
ceedings of the 32nd Annual Conference on Computer Security Appli-
cations, ACSAC 2016, Los Angeles, CA, USA, December 5-9, 2016,
Stephen Schwab, William K. Robertson, and Davide Balzarotti (Eds.).
ACM, 336–347. http://dl.acm.org/citation.cfm?id=2991110

Ahmed El-Kosairy and Marianne A Azer. 2018. Intrusion and ransomware
detection system. In 2018 1st International Conference on Computer Ap-
plications & Information Security (ICCAIS). IEEE, 1–7.

David Evans, Anh Nguyen-Tuong, and John Knight. 2011. Effectiveness of
moving target defenses. In Moving target defense. Springer, 29–48.

Amirhossein Gharib and Ali Ghorbani. 2017. Dna-droid: A real-time an-
droid ransomware detection framework. In International Conference on
Network and System Security. Springer, 184–198.

José Antonio Gómez-Hernández, L Álvarez-González, and Pedro García-
Teodoro. 2018. R-Locker: Thwarting ransomware action through a
honeyfile-based approach. Computers & Security 73 (2018), 389–398.

Samuel Greengard. 2021. The worsening state of Ransomware. https://ca

cm.acm.org/news/251337-the-worsening-state-of-ransomware/fulltext

Andrew Griffin. 2017. ’Petya’ cyber attack: Chernobyl’s radiation moni-
toring system hit by worldwide hack. https://techbeacon.com/securit

y/ransomware-rise-evolution-cyberattack.
Mike Halsey. 2016. Windows 10 File Structure in Depth. Apress, Berkeley,

CA, 449–457. https://doi.org/10.1007/978-1-4842-0925-7_27

Nihad A Hassan. 2019. Ransomware Decryption Tools. In Ransomware
Revealed. Springer, 191–201.

Casen Hunger, Mikhail Kazdagli, Ankit Rawat, Alex Dimakis, Sriram Vish-
wanath, and Mohit Tiwari. 2015. Understanding contention-based chan-
nels and using them for defense. In 2015 IEEE 21st International Sympo-
sium on High Performance Computer Architecture (HPCA). IEEE, 639–
650.

Carroll Joe, Guerra Luz Andres, and R Shah Jill. 2021. Gas Stations Run
Dry as Pipeline Races to Recover From Hacking - Bloomberg. https:

//www.bloomberg.com/news/articles/2021-05-09/u-s-fuel-sellers-scr

amble-for-alternatives-to-hacked-pipeline.
Kaspersky. 2021. Ransomware Attacks and Types. https://www.kaspersk

y.com/resource-center/threats/ransomware-attacks-and-types

Amin Kharaz, Sajjad Arshad, Collin Mulliner, William Robertson, and En-
gin Kirda. 2016. UNVEIL: A Large-Scale, Automated Approach to De-
tecting Ransomware. In 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin, TX, 757–772. https:

//www.usenix.org/conference/usenixsecurity16/technical-session

s/presentation/kharaz

Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and En-
gin Kirda. 2015. Cutting the Gordian Knot: A Look Under the Hood of
Ransomware Attacks. In Detection of Intrusions and Malware, and Vul-
nerability Assessment, Magnus Almgren, Vincenzo Gulisano, and Fed-
erico Maggi (Eds.). Springer International Publishing, Cham, 3–24.

S Kok, Azween Abdullah, N Jhanjhi, and Mahadevan Supramaniam. 2019.
Ransomware, threat and detection techniques: A review. International
Journal of Computer Science and Network Security 19, 2 (2019), 136.

Eugene Kolodenker, William Koch, Gianluca Stringhini, and Manuel
Egele. 2017. Paybreak: Defense against cryptographic ransomware. In
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. 599–611.

Kroll. 2021. Data Exfiltration Ransomware Attacks. https://www.kroll.co

m/en/insights/publications/cyber/data-exfiltration-ransomware-att

acks

Kyungroul Lee, Kangbin Yim, and Jung Taek Seo. 2018. Ransomware
prevention technique using key backup. Concurrency and Computation:
Practice and Experience 30, 3 (2018), e4337.

Suhyeon Lee, Huy Kang Kim, and Kyounggon Kim. 2019. Ransomware
protection using the moving target defense perspective. Comput. Electr.
Eng. 78 (2019), 288–299. https://doi.org/10.1016/j.compeleceng.20

19.07.014

Allan Liska and Timothy Gallo. 2016. Ransomware: Defending against
digital extortion. " O’Reilly Media, Inc.".

George Marsaglia. 2003. Xorshift RNGs. Journal of Statistical Software 8,
14 (2003), 1–6. https://doi.org/10.18637/jss.v008.i14

Shagufta Mehnaz, Anand Mudgerikar, and Elisa Bertino. 2018. Rwguard:
A real-time detection system against cryptographic ransomware. In In-
ternational Symposium on Research in Attacks, Intrusions, and De-
fenses. Springer, 114–136.

Melissa Michael. 2021. Episode 49: Ransomware 2.0, with Mikko Hyppo-
nen - F-Secure blog. https://blog.f-secure.com/podcast-ransomware-m

ikko/

Microsoft. 2022. Protect important folders with controlled folder access.
https://docs.microsoft.com/en-us/microsoft-365/security/defender-e

ndpoint/controlled-folders?view=o365-worldwide.
Chris Moore. 2016. Detecting ransomware with honeypot techniques. In

2016 Cybersecurity and Cyberforensics Conference (CCC). IEEE, 77–
81.

Routa Moussaileb, Benjamin Bouget, Aurélien Palisse, Hélène Le Bouder,
Nora Cuppens, and Jean-Louis Lanet. 2018. Ransomware’s early mitiga-
tion mechanisms. In Proceedings of the 13th International Conference
on Availability, Reliability and Security. 1–10.

Routa Moussaileb, Nora Cuppens, Jean-Louis Lanet, and Hélène Le
Bouder. 2021. A survey on windows-based ransomware taxonomy and
detection mechanisms. ACM Computing Surveys (CSUR) 54, 6 (2021),
1–36.

Nicole Perlroth, Mark Scott, and Sheera Frenkel. 2017. Cyberattack hits
Ukraine then spreads internationally. https://www.nytimes.com/2017/0

6/27/technology/ransomware-hackers.html

Person and Conor Humphries Padraic Halpin. 2021. Irish Health Service
hit by ’very sophisticated’ ransomware attack. https://www.reuters.co

m/technology/irish-health-service-hit-by-ransomware-attack-vaccine

-rollout-unaffected-2021-05-14/

Irfan Pyarali, Tim Harrison, Douglas C. Schmidt, and Thomas D. Jordan.
1997. Proactor - An Object Behavioral Pattern for Demultiplexing
and Dispatching Handlers for Asynchronous Events. Technical Report.
Washington University.

Christian Rossow, Christian J Dietrich, Chris Grier, Christian Kreibich,
Vern Paxson, Norbert Pohlmann, Herbert Bos, and Maarten Van Steen.
2012. Prudent practices for designing malware experiments: Status quo
and outlook. In 2012 IEEE symposium on security and privacy. IEEE,
65–79.

Nolen Scaife, Henry Carter, Patrick Traynor, and Kevin R. B. Butler. 2016a.
CryptoLock (and Drop It): Stopping Ransomware Attacks on User Data.
In 36th IEEE International Conference on Distributed Computing Sys-
tems, ICDCS 2016, Nara, Japan, June 27-30, 2016. IEEE Computer
Society, 303–312. https://doi.org/10.1109/ICDCS.2016.46

Nolen Scaife, Henry Carter, Patrick Traynor, and Kevin R. B. Butler. 2016b.
CryptoLock (and Drop It): Stopping Ransomware Attacks on User Data.
In 2016 IEEE 36th International Conference on Distributed Computing
Systems (ICDCS). 303–312. https://doi.org/10.1109/ICDCS.2016.46

Millar Sheila A. and Marshall Tracy P. 2017. WannaCry: Are your security
tools up to date? https://www.natlawreview.com/article/wannacry-are

-your-security-tools-to-date

Douglas Robert Stinson and Maura Paterson. 2018. Cryptography: Theory
and Practice (Textbooks in Mathematics) (hardcover ed.). Chapman and
Hall/CRC. 598 pages.

Andrew Tanenbaum. 2009. Modern operating systems. Pearson Education,
Inc.,.

Lena Y. Connolly and David S. Wall. 2019. The rise of crypto-ransomware
in a changing cybercrime landscape: Taxonomising countermeasures.
Computers & Security 87 (2019), 101568. https://doi.org/10.1016/j.

cose.2019.101568

Hiba Zuhair and Ali Selamat. 2019. RANDS: A machine learning-based
anti-ransomware tool for windows platforms. In Advancing Technology
Industrialization Through Intelligent Software Methodologies, Tools and
Techniques. IOS Press, 573–587.

Davide Berardi et al.: Preprint submitted to Elsevier Page 17 of 17

http://dl.acm.org/citation.cfm?id=2991110
https://cacm.acm.org/news/251337-the-worsening-state-of-ransomware/fulltext
https://cacm.acm.org/news/251337-the-worsening-state-of-ransomware/fulltext
https://techbeacon.com/security/ransomware-rise-evolution-cyberattack
https://techbeacon.com/security/ransomware-rise-evolution-cyberattack
https://doi.org/10.1007/978-1-4842-0925-7_27
https://www.bloomberg.com/news/articles/2021-05-09/u-s-fuel-sellers-scramble-for-alternatives-to-hacked-pipeline
https://www.bloomberg.com/news/articles/2021-05-09/u-s-fuel-sellers-scramble-for-alternatives-to-hacked-pipeline
https://www.bloomberg.com/news/articles/2021-05-09/u-s-fuel-sellers-scramble-for-alternatives-to-hacked-pipeline
https://www.kaspersky.com/resource-center/threats/ransomware-attacks-and-types
https://www.kaspersky.com/resource-center/threats/ransomware-attacks-and-types
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.kroll.com/en/insights/publications/cyber/data-exfiltration-ransomware-attacks
https://www.kroll.com/en/insights/publications/cyber/data-exfiltration-ransomware-attacks
https://www.kroll.com/en/insights/publications/cyber/data-exfiltration-ransomware-attacks
https://doi.org/10.1016/j.compeleceng.2019.07.014
https://doi.org/10.1016/j.compeleceng.2019.07.014
https://doi.org/10.18637/jss.v008.i14
https://blog.f-secure.com/podcast-ransomware-mikko/
https://blog.f-secure.com/podcast-ransomware-mikko/
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/controlled-folders?view=o365-worldwide
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/controlled-folders?view=o365-worldwide
https://www.nytimes.com/2017/06/27/technology/ransomware-hackers.html
https://www.nytimes.com/2017/06/27/technology/ransomware-hackers.html
https://www.reuters.com/technology/irish-health-service-hit-by-ransomware-attack-vaccine-rollout-unaffected-2021-05-14/
https://www.reuters.com/technology/irish-health-service-hit-by-ransomware-attack-vaccine-rollout-unaffected-2021-05-14/
https://www.reuters.com/technology/irish-health-service-hit-by-ransomware-attack-vaccine-rollout-unaffected-2021-05-14/
https://doi.org/10.1109/ICDCS.2016.46
https://doi.org/10.1109/ICDCS.2016.46
https://www.natlawreview.com/article/wannacry-are-your-security-tools-to-date
https://www.natlawreview.com/article/wannacry-are-your-security-tools-to-date
https://doi.org/10.1016/j.cose.2019.101568
https://doi.org/10.1016/j.cose.2019.101568

