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Abstract. APP is a declarative language for the definition of custom
function scheduling on the worker nodes available in serverless Function
as a Service (FaaS) platforms. Current APP implementations assume
a central control point that users can access to issue the execution of
functions. We propose an extension of APP’s implementation to allow
for multiple control points, tackling both scaling and resilience issues
of existing implementations. To substantiate our proposal, we present
an implementation of our extension using the FunLess FaaS platform,
tailored for private edge-cloud and multi-cloud environments. We show
initial experiments that indicate performance improvements in setups
where both the platform and function invocations are spread across
multiple locations.
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1 Introduction

This paper has been devised for the Jean-Bernard Stefani’s festschrift, as it
presents research conducted within our group that aligns closely with his in-
terests. Jean-Bernard has long been an advocate for innovative approaches to
the development of distributed software systems, particularly those grounded
in modular and compositional principles. Recent trends in modular and compo-
sitional distributed software developments tend to minimise the complexity of
the components and limit (and possibly avoid) component’s interdependencies.
This property allows components in the system to autonomously scale in order
to make the entire system more resilient. However, as these components scale,
the complexity in the management of the overall system, including its computing
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infrastructure, also increases, creating the need for efficient — ideally automatic
— management systems. Serverless computing emerged to address these challenges
by offering a model that abstracts away the underlying infrastructure, allowing
developers to build applications as compositions of stateless (hence, less complex),
event-driven functions, determining the paradigm of Function-as-a-Service (FaaS),
that a platform can automatically scale up and down based on demand.

The language of Allocation Priority Policies (APP) (and its variants) emerged
as a declarative solution allowing developers to define custom function schedul-
ing policies and placement constraints across worker nodes in serverless plat-
forms [16,9,10,8,11,13,7,15]. Thanks to APP, developers can express fine-grained
placement preferences, enabling improved execution performance on diverse cri-
teria, including resource requirements and locality principles. This declarative
approach abstracts away the complexities of infrastructure management while
giving users control over critical aspects of function placement. For instance,
developers can ensure compute-intensive functions run on nodes with specific
hardware accelerators, co-locate functions that frequently communicate to reduce
latency, or implement compliance requirements by restricting certain functions
to specific geographical regions.

Being a platform-agnostic solution, APP-based scheduling can be imple-
mented on multiple serverless platforms, like it has been done for Apache Open-
Whisk [23,16] and FunLess [12,7]. Similarly to other open-source alternatives, like
OpenFaaS [22], and KNative [1], these platforms typically assume a centralised
controller that handles the scheduling of functions. Indeed, serverless platform
architectures typically consist of two main components: controllers and workers.
Workers constitute the majority of FaaS platform deployment, as these nodes are
responsible for executing the functions. The prevalent deployment model features
a single central controller that manages the scheduling and execution of functions
across the available workers. This controller acts as the brain of the system: it
receives invocation requests, keeps track of system state, and assigns work (i.e.,
the execution of functions) to the available worker nodes.

Problem The centrality of the controller in APP-based implementations is
paramount: it is the component that realises the semantics of APP-governed
scheduling, working as the single entry point of a serverless architecture and
having complete control over the functions executing on the workers — it main-
tains their status and constantly knows which functions run on which workers at
any time. While this design simplifies coordination and is efficient at small and
moderate scales, it poses limitations as deployments grow. The central controller
can become a performance bottleneck and a single point of failure, especially
under heavy load or in geographically distributed environments.

The need for multiple controllers arises primarily from scalability, locality,
and fault-tolerance concerns. As serverless deployments increase in size — both
in terms of number of functions and the geographic spread of infrastructure —
a single controller can hardly satisfy the number and quality of service of user
requests. The controller must handle a growing volume of requests, maintaining
a global view of a large and dynamic system and managing communication with



all nodes. This scalability issue can lead to degraded performance and increased
latency, particularly when the controller becomes overwhelmed or is physically
distant from parts of the system it manages. Moreover, the larger the geographical
distribution of users that access the system, the more relevant the problem of
having a controller at a single location becomes — e.g., the farther the users
are from the controller, the higher is their experienced interaction latency with
the system. Regarding faults, having a single coordinator for a given deployment
means that all user interactions can fail due to a controller’s failure.

Distributing the control logic across multiple controllers addresses these
challenges, enhancing scalability, reducing latency, and increasing the overall
robustness of the platform. Decentralisation enhances scalability by providing
multiple access points to the platform and improves fault-tolerance by eliminat-
ing a single point of failure — if one controller fails, only the function requests
managed by that controller fail, while users of other, healthy controllers remain
unaffected and can continue their operations. In geographically-distributed sce-
narios, users have the option of interacting with the controller closest to them,
reducing latency and improving responsiveness. These aspects are especially
critical in IoT and edge computing environments, where constraints such as
geographic locality, limited resources, and intermittent connectivity are common.

Contribution In this paper, we propose an extension of APP’s architectural
implementation to allow for multiple control points, thereby addressing both
scaling, locality, and resilience issues of existing implementations. By enabling
decentralised, APP-based scheduling, each controller shall operate autonomously
while still respecting the application-level constraints expressed via APP. Indeed,
although having multiple controllers solves the mentioned issues, introducing
decentralised control in APP-based platforms brings in a new set of challenges,
particularly in maintaining distributed state consistency. When scheduling, each
controller must maintain an accurate and coherent view of the system’s state
while respecting APP policies. We explore the architectural and protocol-level
modifications needed to make decentralised control possible, and we discuss the
key trade-offs between maintaining consistency and achieving responsiveness.

To substantiate our proposal, we present an implementation based on Fun-
Less — a serverless platform tailored for private edge-cloud and multi-cloud
environments. Through our implementation and experiments, we demonstrate
performance improvements in setups where both the platform and function
invocations are spread across multiple locations. Our results indicate that decen-
tralising APP control points improves overall system performance, particularly
in geographically distributed deployments.

2 Background

Before presenting our proposal, we briefly overview the FaaS paradigm, the
typical architecture of FaaS platforms, APP, and the design of FunLess.



Gateway

Databases

ioT Devices

Web

Trigger Event
Scheduler Storage

API

Controller

Metrics

Worker

Function
Invoker

Function
Instance

Request Invocation

Save Result

Forward Event Store Event

Fig. 1. A typical serverless platform architecture.

2.1 Serverless and Functions-as-a-Service

A serverless application emerges from the combination of software units called
functions, which run in short-lived environments, triggered by events — such as
HTTP requests, database updates, file uploads, and scheduled intervals. When
an event triggers a function execution, the FaaS platform runs the code after
initialising an execution environment — a secure, isolated context that provides
the resources for the function lifecycle. FaaS platforms mainly use virtual machines
and containers to implement portable, isolated function execution environments.

Serverless platforms generally follow the (simplified) architecture design re-
ported in Fig. 1. As visible in the figure, the main components of a FaaS platform’s
architecture are the controllers and the workers. The controller receives requests
from external sources, such as users or other systems, and it orchestrates the
allocation of functions on the available worker nodes. In particular, the scheduler
controller’s component determines which worker should execute a function, based
on factors such as the worker’s current load, the function requirements, and
resource availability. Upon receiving a function-execution request, the targeted
worker executes the function, handling the function’s execution environment
lifecycle, including provisioning, scaling, and teardown.

Serverless platforms usually adopt a communication layer that facilitates
communication between the controller node and worker nodes, handling mes-
sages and data transfer between components — omitted, in Fig. 1, for clarity.
In particular, message queues or event brokers (e.g., RabbitMQ [5], Kafka [2])



support asynchronous communication between components, allowing decoupling
and scalability. Internal APIs support synchronous communication for tasks such
as function deployment, status updates, and resource allocation. Monitoring tools
also appear in these architectures to collect metrics on resource usage, function ex-
ecution times, and error rates. Metrics provide visibility into system performance,
function execution, and overall health and enable debugging, troubleshooting,
and performance optimisation.

Among the leading providers of serverless computing platforms, Amazon
Web Services (AWS) Lambda [24] stands out as a pioneer in the field. AWS
Lambda was the first publicly available serverless platform, allowing developers
to pay only for the compute time consumed by their functions. Briefly thereafter,
other platforms followed suit, such as Microsoft Azure Cloud Functions [3] and
Google Cloud Platform (GCP) Cloud Functions [6]. A number of open-source
serverless platforms have also emerged, such as OpenWhisk [23], Knative [1], and
OpenFaaS [22]. One can deploy these platforms on-premises or on the cloud, as
a more flexible and customisable solution compared to the proprietary ones.

2.2 Allocation Priority Policies (APP)

The scheduling of functions, i.e., which worker, among the available ones, executes
a given function, can substantially influence their performance. Indeed, effects like
code locality [18] — due to latencies in loading function code and runtimes — or
session locality [18] — due to the need to authenticate and open new sessions to
interact with other services — can substantially increase the run time of functions.
Usually, serverless platforms implement opinionated policies that favour some
performance principle tailored for one or more of these locality principles. This
shortcoming motivated De Palma et al. [17] to introduce a YAML-like declarative
language used to specify scheduling policies to govern the allocation of serverless
functions on the nodes that make up a cluster, called APP. Thanks to APP, the
same platform can support different scheduling policies, each tailored to meet
the specific needs of a set of related functions.

To define function-specific policies, APP assumes the association of each
function with a tag. In our examples, we directly use the function’s reference
name as the tag, but the relation can be one-to-many, to specify a policy shared
among a set of functions. Then, APP associates a tag to a policy, so that, at
runtime, the scheduler of the platform can pair each function with its APP policy
and follow the latter’s scheduling logic.

We show an example APP script, illustrating one policy in Listing 1.1. In an
APP script, users can specify a sequence of blocks — each identified by YAML’s
list unit - — associated with a tag. In the example, the policy tag is f, at line 1.
Each block indicates on which workers the scheduler can allocate the function.
At function invocation, the scheduler tries to allocate the function following the
logic in the first block, passing to the next only if none of the workers specified
in that block can host the function, and so on. Exhausting all blocks causes
the invocation’s failure. In APP, workers is the keyword used in the scripts
to specify the label of the worker nodes available to that block; in Listing 1.1,



1 f:
2 - workers: [ w1, w2, w3 ]
3 strategy: best_first
4 invalidate: max_concurrent_invocations: 10
5 - workers: *
6 strategy: random
7 invalidate: capacity_used: 80

Listing 1.1. APP script used for the tests.

the workers labelled w1, w2, and w3 are the ones specified in the first block, at
line 2; the universal * at line 5 indicates the selection of all available workers
in a given deployment. Besides workers, APP lets users specify the strategy
the scheduler shall follow to select among the indicated workers and when to
invalidate a worker, which would not be able to execute the function under
scheduling. Examples of strategies are random, to chose uniformly at random
among the workers in a block, e.g., for load-balancing (line 6) and best_first,
to follow a top-to-bottom ordering (line 3), e.g., to indicate the workers from the
most to the least powerful. The invalidation constraints can, for example, set a
maximal threshold of concurrent functions running on a worker (line 4) or define
a maximum number of resources (cpu, memory) occupied by other functions on
the worker (line 7).

2.3 The FunLess Serverless Platform

FunLess [12,14] is a serverless platform for private edge-cloud and multi-cloud
environments that consists of mainly two components: the Core and the Worker.
The Core corresponds to the controller and acts as a user-facing API to i) create,
fetch, update, and delete functions and ii) schedule functions on workers. The
Worker is the component deployed on every node tasked to run the functions. Be-
sides Core and Workers, FunLess includes a Postgres database, to store functions
and metadata, and Prometheus, to manage the metrics of the platform.4 Both
main components are written in Elixir [19], and take advantage of the BEAM [25]
message passing model to communicate with each other.

The Core controls the platform, exposing an HTTP REST API for user
interaction, handling authentication and authorisation, and managing functions’
lifecycle and invocations. The Core can automatically discover Workers within
the same network employing the Multicast UDP Gossip algorithm for bare-metal
deployments and Kubernetes’ service discovery for containerised environments.
Functionality-wise, users create functions by compiling source code to WebAssem-
bly and uploading the binary to the Core, which stores it in the database with a
name. Users can group functions in modules and specify memory requirements
for function execution. When an invocation request is received, the Core selects a

4 Resp. at https://www.postgresql.org/ and https://prometheus.io.
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suitable Worker to run the function, to which it then sends the request parameters.
In case the Worker does not have a function’s binary, it returns an error to the
Core, which send said binary alongside the request.

The Worker runs functions via Wasmtime, a security-oriented runtime for
WebAssembly. Workers have a local cache with a configurable size limit, where
they store recently run binaries, to minimise network traffic during function
invocations. Upon reception of an invocation request, the Worker checks its
cache for the function’s binary, returning an error as mentioned above. After an
invocation, the Worker returns its result (successful or not) to the Core.

3 From Centralised to Decentralised APP Scheduling

Usually, open-source serverless platforms employ centralised function scheduling,
where a single controller manages the scheduling of functions across worker nodes.
In this model, the controller maintains comprehensive knowledge of all workers’
states — the only divergence between the status of a worker and the knowledge
the controller has is that the worker can become unreachable — and workers
are primarily passive components that execute assigned functions and report
results or timeouts. APP-based platform implementations particularly rely on
the centrality of the controller to ensure the satisfaction of the specified function
scheduling constraints found in APP scripts.

While effective at smaller scales, this centralised approach faces significant
challenges when scaling to larger, geographically distributed deployments. This
section explores the transition from centralised to decentralised function schedul-
ing, examining different decentralisation strategies, their underlying challenges,
and their respective trade-offs.

3.1 Challenges in Decentralised Scheduling

Moving from a centralised to a decentralised scheduling architecture introduces
several fundamental challenges. First, maintaining state consistency becomes
complex as multiple controllers must hold a coherent view of the system state,
including worker availability, resource utilisation, and function execution sta-
tus. Second, coordination overhead emerges when controllers must synchronise
scheduling decisions to avoid conflicts, introducing additional communication
and potential latency. Third, network limitations, particularly in edge computing
scenarios, mean the bandwidth and latency costs of coordination messages can
significantly impact performance.

We identify two primary approaches to decentralising serverless scheduling
architectures: transaction-based decentralisation and optimistic decentralisation.
Each approach offers distinct advantages and limitations.

Transaction-based Decentralisation In transaction-based centralisation, each
controller maintains a local view of the global system state, and distributed
transactions are used to ensure consistency across controllers. Every scheduling



decision involves a coordinated update to these local views, guaranteeing that all
controllers operate on a consistent snapshot of the system. While this method
provides strong consistency guarantees, it is also communication-intensive, as each
scheduling operation incurs the overhead of a distributed coordination protocol.

Within this context, two main coordination strategies emerge: distributed
transactions and leader election. In both cases, the systems in place ensure
that controllers maintain a consistent view of worker states and avoid race
conditions between controllers during function scheduling, which could generate
a misalignment between the knowledge of the controllers and the state of the
workers. Thus, before proceeding with the actual scheduling, controllers must
reach consensus on the scheduling decisions. In this case, workers maintain their
passive role as in centralised architectures, as transactions entail global state
management.

Distributed transactions provide a mechanism to ensure consistent state
across controllers. When applied to function scheduling, these transactions enable
multiple controllers to coordinate their view of worker availability and resource
allocation. One foundational protocol in this domain is two-phase commit [4],
which operates in phases: first, a controller sends a “proposal” request to the
other controllers; each controller validates the proposed scheduling action against
its local state and votes to commit or abort; finally, the initial controller collects
all votes and issues either a global commit or abort instruction. This approach
guarantees that all controllers either collectively apply or collectively reject a
scheduling decision.

As an alternative, leader-election protocols, such as PAXOS [20] and RAFT [21],
can reduce the number of messages needed to issue a scheduling instruction by
having an elected leader among the controllers govern the global state and reg-
ulate scheduling requests from the other controllers, usually called “followers”.
In practice, followers inform the leader when they receive a request from a user
(since the leader maintains the state of the system, requests to the leader can
proceed directly, informing the followers of the scheduling decision it takes) to
schedule a function, and the leader directs the follower on how to proceed (where
to schedule the function or whether the scheduling fails, e.g., because no worker
has enough capacity to run that function).

Both approaches become problematic with large-distance topologies, where
transaction-based scheduling, leader election and coordination may incur high la-
tency — imagine that a controller with high communication latency becomes the
leader, with which all other controllers have to coordinate to schedule their func-
tions. This aspect is particularly relevant in constrained network environments,
such as edge computing, where the costs of these messages can be significant — in
terms of energy (edge devices may rely on batteries to power them), bandwidth,
latency and, ultimately, scheduling time.

Another limitation of this approach arises when a controller is already a
bottleneck for incoming scheduling requests. In such cases, enforcing coordination
through distributed transactions or relying on a single leader to govern scheduling
decisions may exacerbate the problem. The overhead introduced by coordination



protocols can further delay responses, compounding the controller’s inability to
handle requests in a timely manner. This aspect is especially critical in high-load
scenarios, where even minor delays can lead to significant degradation in system
responsiveness or throughput. Practically, the additional communication and
synchronisation steps required by this approach can undermine scalability and
reactivity.

Optimistic Decentralisation To avoid the overhead of distributed transactions,
one can pursue an “optimistic” approach, where controllers attempt to schedule
functions on workers and delegate to the workers themselves the task of verifying
whether they can effectively execute the scheduled functions.

Thus, controllers can maintain partial knowledge of worker states because
the workers themselves perform the verification whether their current status is
compatible with the constraints to run a function. This approach is safe from a
scheduling point of view, because despite the fact that controllers have an under-
approximated view of the load on the workers (the one they issued and not the
one issued by the other controllers), workers deny the execution functions targeted
at them if their state does not satisfy the function’s scheduling constraints (e.g.,
minimal amount of resources, too many concurrent invocations).

Hence, under the optimistic decentralisation approach, workers become active
components. To ensure the satisfaction of the scheduling constraints (the invali-
dation properties) of a policy, controllers must send in their scheduling request
both the (reference to the) function to execute (as done in the centralised case)
and the invalidation constraints.

Generally, at scheduling time, this modality saves messages compared to the
transaction-based version. In the best case, we have at most two messages: one
between the controller and worker for function scheduling and, depending on
the architecture, possibly a response message to the controller (alternatively, the
worker could store the response in a database). In the worst case, for each block
of the policy and for each worker in the block, two messages are exchanged: one
for scheduling and one to signal the failure of scheduling from the worker.

Since controllers ignore the current status of the worker, it can happen that
multiple requests to execute a family of functions related to the same scheduling
policy could target the same workers in a small timeframe, leading to many failures
and the relative messages. In these contexts, one can introduce an exponential
back-off system whereby, after the failure of scheduling with respect to a certain
policy, the controller waits for an exponentially increasing time before forwarding
scheduling requests, allowing the interested workers to regain some capacity to
run new functions by waiting for the termination of the ones they are running.

We conclude our discussion about the optimistic decentralisation approach
by observing that, given that controllers have no need to store the current status
of the workers, we can consider controllers almost as stateless services — the
only stateful element is the management of the response back to the user, which
one can delegate to a dedicated, lightweight service that users can receive their
responses from. Having stateless controllers allows one to implement standard
scale-in and scale-out techniques to dynamically increase/decrease the number of



instances of controllers. In this way, the system can elastically adapt to possible
modifications of the traffic of incoming function execution requests.

4 Implementation

We proceed to present an APP-based FunLess implementation that uses decen-
tralised function scheduling and supports the execution of multiple controllers.

We remark that since FunLess’ main focus is the edge-cloud continuum and
multi-cloud scenarios, we have a context in which the communication delays
between system’s nodes is not negligible. Using a transaction- or leader-based
coordination policy among several cores possibly deployed on edge and cloud
nodes in different geographical zones can significantly slow down the system due to
coordination messages — even in the “lighter” case of leader-based coordination,
the leader and followers can experience latencies that would slow down scheduling.
For instance, imagine a configuration where the leader is in the cloud and requests
for the edge must coordinate with the cloud for scheduling on the edge itself.
This configuration represents a clear antipattern, because executing the functions
at the edge entails bringing computation closer to the consumer/producer of the
response/computation and going through the cloud for coordinating the execution
of these functions would diminish the benefits of the cloud-edge approach. The
opposite configuration is even more inconvenient: the leader is on the edge and
the traffic from the cloud has to reach out to the edge, leaving the Cloud data
centre, making the communication substantially slower. For these reasons, we
chose to implement the distributed version of FunLess following the optimistic
approach.

4.1 A Decentralised Variant of FunLess’s Architecture

We draw our proposal for a FunLess’ decentralised architecture variant in Fig. 2,
including the flow of function creation and execution therein. The architecture in-
cludes several Workers and, differently from previous Funless architectures [12,14],
several Cores and a distributed database, which allows for multi-instance de-
ployments. First, we discuss the workflow followed by Cores and Workers in the
FunLess standard implementation. Then, we comment on the modifications to
these workflows necessary to implement the optimistic decentralisation approach.

Core Upon receiving a function creation request (as shown in Fig. 2, step
1. Upload), a Core stores the binary in the database by accessing the closest
instance (2. Store) and notifies the Workers (3. Broadcast) to cache a local copy
(4. Cache), to reduce cold-start overheads. The components communicate via
BEAM’s distributed inter-process messaging system. When a function invocation
reaches a Core (5. Invoke), it retrieves it (if any) from the database (6. Retrieve).
Using the latest collected metrics, the Core selects a Worker with enough memory
to execute the function (7. Request) if no APP policy is specified, otherwise it
follows the policy instruction. Once it selects the Worker, the Core issues the
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Fig. 2. FunLess decentralised architecture variant, with multiple controllers.

execution of the function therein, waiting to receive the result back, which it
relays to the user (10a/13b. reply).

Worker The Worker runs functions via Wasmtime, a runtime for WebAssembly.
When a Worker receives the request to run a function (7. Request), it checks
its cache for the function’s binary (8. Retrieve). If it finds the binary, it runs
the function and returns the result to the Core (9a. Result) that contacted it.
Otherwise, the Worker informs the Core (9b. No Code Message), which re-sends
the request with the code (10b. Request with Code) for caching (11b. Cache)
and execution (12b. Result). Alternatively, if the Worker is unable to execute
the function, it notifies the Core (9c. Not Possible). The above logic supports
efficient function fetching and execution w.r.t. containers, thanks to the small size
of Wasm binaries compared to the larger/heavier container images. For caching
and eviction, Workers have a configurable cache memory threshold.

Modifications From a practical standpoint, extending the implementation
to support the optimistic approach involved modifying the Worker’s control
flow to recognise the violation of APP invalidation constraints. In particular,
when a Worker receives a function allocation request, it checks its current state,
namely the number of functions currently scheduled and its actually used capacity
(unknown to the Core that sent the request). In case, the current state invalidates
the constraints contained in the APP script, the Worker sends a dedicated
notification back to the Core, as a new response type from the Worker. On the
Core side, the new implementation adds logic to interpret this message. In case
such failure message is received, the Core proceeds with the scheduling of the



function by selecting an alternative Worker (if any) following the APP policy of
that function, starting a new message exchange with the selected Worker.

5 Experiments

In this section, we show how our FunLess decentralised architectural variant can
improve system performance in multi-controllers deployments. We conduct our
evaluation with a series of tests involving function invocations from different
locations, specifically from EU and US regions, considering two scenarios where
the platform has: i) one Core in the US region and two Workers, one in the
EU and one in the US region, and ii) two Cores, one in the EU and one in the
US, each with one Worker (as in scenario i). In both scenarios, we send 1000
consecutive invocations from the EU and US regions to the (nearest) Core, first
without applying any APP script, in order to have “vanilla” invocations, then,
repeating the same tests with an APP script that specifies an ad-hoc policy for
Worker assignment.

We designed these experiments to evaluate the impact of geographical distribu-
tion and scheduling policies on serverless function execution performance. To this
aim, we consider a cross-regional deployment with nodes in both the US and EU
regions so that we can draw observations from a realistic multi-region deployment
scenario, common in production environments to support global user bases and
implement resilient service strategies. By placing nodes in geographically distant
regions (US and EU), we can clearly measure the effects of network latency on
function execution times, particularly the effect of round-trips that occur when
requests cross regional boundaries multiple times. The scenarios are particu-
larly suited to measure the impact of scheduling decisions, supporting the direct
comparison between local scheduling, remote scheduling, and default (vanilla)
scheduling behaviours and quantify the benefits of decentralised vs centralised
scheduling decisions in geographically distributed serverless applications.

5.1 Setup

The platform is deployed over 4 nodes in Google Cloud Platform (GCP) in 2
different regions. Each node being a type e2-medium virtual machine with 2
vCPUs and 2 GB of RAM. Two nodes are located in the EU region (europe-west1)
and two in the US region (us-central1). In each zone, 1 node is used as a FunLess
Worker and the other as a FunLess Core. Both nodes acting as Cores also deploy
a PostgreSQL database with a bidirectional replication in order to provide the
Cores a consistent view of the system state. In addition, the EU Core hosts the
Prometheus instance. Finally, two Locust5 instances are also hosted in the Core
nodes to generate the localized traffic.

The function invoked is a simple Rust function that returns a sample string
compiled to WebAssembly. Listing 1.2 shows the APP script used for the tests.

5 https://locust.io



1 - default:
2 - workers: '*'
2
3 - eu:
4 - workers:
5 - 'euworker '
6 followup: default
6
7 - us:
8 - workers:
9 - 'usworker '

10 followup: default

Listing 1.2. APP script used for the tests.

Scenario Avg Median Std

APP Local Scheduling - requests from EU 230.68 230.57 14.35

APP Local Scheduling - requests from US 15.46 15.17 1.49

APP Only US Scheduling - requests from EU 120.58 119.62 5.01

APP Only US Scheduling - requests from US 15.62 15.07 2.22

Vanilla - requests from EU 201.15 231.22 64.00

Vanilla - requests from US 80.64 127.77 61.82

Table 1. Statistics of function invocation requests for 1 Core US Only (in milliseconds).

5.2 Results

Single Core Test For the single Core scenario, where the Core was deployed in
the US region, three different test runs were performed:

– APP for both Workers (Local Scheduling): the requests from the EU
node were tagged with eu and assigned to the EU Worker, while the requests
from the US node were tagged with us and therefore assigned to the US
Worker.

– APP for US Worker (Only US Scheduling): all requests were tagged
with us and assigned to the US Worker, regardless of their origin.

– Vanilla: no function was tagged, corresponding of the situation in which no
APP script is used.

Table 1 shows the measurements of the three test runs, including the average,
median, and standard deviation of the response times for each requests’ origin.
There is a notable difference in the response times between the usage for a
near-Core Worker and a far-Core Worker. With APP using both Workers, the
latencies for requests from the EU region is significantly higher than the requests



from the US region, while it is halved when using just the US Worker. It shows the
significant impact of the double round-trip effect when the requests are assigned
to the EU Worker. First the request is sent from the EU Locust instance to the
US Core, then the Core sends the request back to the EU region for the Worker
to execute the function. The result is then sent back to the US region for the
Core to process it and send the final response back to the EU Locust instance.

With vanilla invocations, both Cores can use any Worker, and the scheduling
is done based on CPU load and memory usage via the scraped metrics from
Prometheus updated on a 5-second interval. In our run we observed that both
Cores sent the invocation requests mainly to the EU Worker, performing similarly
to the APP script with both Workers with requests from the EU region. The
requests from the US region also generally performed worse due to the round-trip
to the EU Worker. Fig. 3 shows a distribution of the response times for the
vanilla invocations. It clearly shows the bimodal distribution when the Cores
switch from one Worker to the other.

The most stable conditions are observed when the requests reach the nearest
Core and the functions are allocated to the nearest Worker.
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Fig. 3. Distribution of function response time without the APP script. The bimodal
distribution is due to the Cores switching from one Worker to the other.

Multi-Core Test For the multi-core scenario, where each region has its own
Core, two test runs were performed by sending 1000 requests from the EU and
US regions to their respective Cores, at the same time. First using the APP script
from Listing 1.2 to assign the requests to the nearest Worker, and once without
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Fig. 4. Distribution of response time
for invocations with the APP script.
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Fig. 5. Distribution of response time
for invocations without the APP script.

Scenario Avg Median Std

APP Local Scheduling - requests from EU 17.31 17.03 1.80

APP Local Scheduling - requests from US 15.67 15.30 1.57

Vanilla - requests from EU 32.45 16.38 60.73

Vanilla - requests from US 62.52 15.51 87.36

Table 2. Statistics of function invocation requests with 2 Cores (in milliseconds).

tagging any function and therefore simulating the vanilla scenario in which an
APP script is not available.

The results of the test runs are shown in Table 2. The optimal performance
is achieved when the invocations are requested from Workers co-located with the
Core, which is the case for all requests when using APP. With vanilla invocations,
as seen in the experiment with only one Core, both Cores primarily used the
EU Worker due to the low impact of the function execution and the delay of
the scraping interval, leading to the response times from the US region being
significantly higher.

It is interesting to note that the APP script used for these multi-core ex-
periments is the same as the one used in the experiments with the single Core
experiments named “APP Local Scheduling” in Table 1. Hence, a comparison
between these two scenarios is a fair way to evaluate the advantages of a de-
centralised architecture for APP-based function scheduling. We have that in
the decentralised architecture both the groups of function invocations from EU
have a fast average response time (US: 17.31 ms, EU: 15.67 ms) while in the
centralised case one of the two groups — the functions requests from the region
without the Core — shows the worst performance (US: 15.46 ms, EU: 230.68
ms). This experimental evidence confirms that the decentralised approach can



positively impact the performance of serverless applications, especially when they
are geographically distributed and use locality-based scheduling policies.

Figs. 4 and 5 present the cumulative distribution functions (CDFs) of response
times in log scale for the two test scenarios—with and without the APP script,
respectively. When using APP, the response times are stable and distributed
between 13 and 24 milliseconds. When using vanilla invocations, more than 80%
of the requests from the EU region used the EU Worker, therefore, keeping
response times similar to those with the APP script. With the remaining 20% of
the requests, the EU Core switched to the US Worker, significantly increasing
latency up to more than 140 milliseconds. This behaviour is also visible from
the US region, where, in this case, half of the requests were assigned to the US
Worker, and the other half to the EU Worker.

6 Related Work and Conclusion

In this work, we introduce and evaluate a decentralised variant of the APP
scheduling architecture, implemented in the FunLess serverless platform. The
extension enables multiple controllers to cooperate in scheduling functions, im-
proving scalability, responsiveness, and fault tolerance, especially in edge and
multi-cloud deployments. Our implementation follows an optimistic decentralisa-
tion strategy where workers locally validate scheduling constraints. This approach
removes the need for global coordination and enables controllers to be almost
stateless, improving elasticity and system adaptability controller-wise, meaning
that controllers can dynamically (dis)appear depending on, e.g., load conditions.

The problem of supporting multiple controllers in APP has also been tackled
in previous work [9], through the introduction of a variant of the language, called
TAPP (Topology-Aware APP) that enables targeted function scheduling within
specific topological zones, implemented on Apache OpenWhisk [23]. Compared
to our work, in TAPP, each controller has privileged access to local workers and
limited access to remote ones. In our approach, all controllers have full access to
all workers. Furthermore, TAPP maintains a single platform entry point, while
our implementation enables direct access to individual controllers, significantly
reducing latency in geographically distributed scenarios.

We note that OpenWhisk itself supports multiple controllers. However, it
does not inherently offer coordination or consistency guarantees for scheduling
decisions across them. This aspect limits its usage in scenarios requiring policy-
aware scheduling across distributed control points, as controllers may race or
generate conflicting decisions due to lack of coordination. Our approach addresses
these aspects by embedding constraint checks within the workers themselves.

Similarly, other serverless platforms such as Knative and OpenFaaS support
multiple ingress points or decentralized deployments (e.g., via Kubernetes au-
toscaling, multiple gateways, etc.). However, these systems primarily rely on
platform-level load balancing and do not offer declarative, fine-grained scheduling
guarantees like those expressible in APP. In both cases, scheduling is either
opaque or relies on infrastructure-specific heuristics (e.g., pod autoscaling, metric-



based routing), with no mechanism to express or enforce function-level policies,
such as prioritisation, locality, or resource constraints.

We see different open directions to pursue in the future. Notably, while
the decentralised variant of FunLess ensures that a function can be executed
on a worker only if it satisfies the scheduling constraints in APP — because
the constraints are checked by the worker before execution — it can introduce
behaviours that are not allowed by the centralised scheduling architecture —
globally, the behaviours of the centralised and decentralised variants of the
platform can differ. This divorce can happen because in the centralised version
each scheduling instance happens atomically, while in the decentralised variant
multiple scheduling instances can interleave, reaching configurations that the
centralised case would not. We plan to study the consequences of this discrepancy,
and, in case they determine significant limitations, we foresee the investigation of
modifications to the scheduling protocols or consistency models that can reconcile
these anomalies, while retaining scalability and decentralisation. We also envision
applying techniques similar to the ones presented in this paper to other serverless
platforms and evaluating whether one can extend the latter to offer policy-aware
scheduling guarantees in the likes of APP-based FunLess.
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