
JoT: A Jolie Framework for Testing Microservices

Saverio Giallorenzo1 , Fabrizio Montesi2 ,

Marco Peressotti2 , Florian Rademacher3,4 , and Narongrit Unwerawattana2

1 Università di Bologna, Italy and INRIA, France saverio.giallorenzo@gmail.com
2 University of Southern Denmark, Denmark

{fmontesi,peressotti}@imada.sdu.dk, nau@sdu.dk
3 Software Engineering, RWTH Aachen University, Germany

4 IDiAL Institute, University of Applied Sciences and Arts Dortmund, Germany
rademacher@se-rwth.de

Abstract We present JoT, a testing framework for Microservice Archi-
tectures (MSAs) based on technology agnosticism, a core principle of
microservices. The main advantage of JoT is that it reduces the amount of
work for a) testing for MSAs whose services use different technology stacks,
b) writing tests that involve multiple services, and c) reusing tests of the
same MSA under different deployment configurations or after changing
some of its components (e.g., when, for performance, one reimplements a
service with a different technology). In JoT, tests are orchestrators that
can both consume or offer operations from/to the MSA under test. The
language for writing JoT tests is Jolie, which provides constructs that
support technology agnosticism and the definition of terse test behaviours.
We present the methodology we envision for testing MSAs with JoT and we
validate it by implementing non-trivial test scenarios taken from a reference
MSA from the literature (Lakeside Mutual).

Keywords: Microservice Architectures, Testing Frameworks, Service-
Oriented Programming

1 Introduction

The paradigm of microservices is one the modern gold standards for developing
distributed applications. In this setting, a distributed application emerges as the
composition of multiple services (the “microservices”). Each microservice imple-
ments a set of business capabitilies, and is independently executable and deployable.
Microservices interact with each other via message-passing APIs [4].

Two important factors in the diffusion of microservices are the scalability and
flexibility that they support. Scaling is efficient because one can focus scaling actions
precisely on those components impacted by traffic fluctuations. Flexibility is given
by the usage of technology-agnostic APIs, which allows for using different imple-
mentation technologies for different microservices without renouncing integration.

However, the good traits of microservices do not come for free. Here, we focus on
one of the most prominent elements impacted by the microservices style: testing sets

https://orcid.org/0000-0002-3658-6395
https://orcid.org/0000-0003-4666-901X
https://orcid.org/0000-0002-0243-0480
https://orcid.org/0000-0003-0784-9245

2 S. Giallorenzo et al.

of microservices, or Microservice Architectures (MSAs). Indeed, for unit testing, one
can rely on existing frameworks tailored for and idiomatic to the general-purpose
implementation technology used to develop a single microservice (e.g., Java, JavaS-
cript, Rust, C). However, when tests cover more microservices, it can become cum-
bersome to specify the coordination and invocation of services developed with differ-
ent technologies using a framework designed for testing the “internals” of a service.

To make a concrete example, imagine using JUnit [8] (in Java) to specify the
connections to and the coordination and consumption of multiple operations of
several microservices. This would not only entail the specification of (possibly
complex) coordination logic in Java, but it would also mean adding, on top of the
latter, the logic that encodes the data structures that microservices exchange, how
connections are established and handled (including errors)—in terms of transport
and application layers, etc. Besides their complexity, tests written in this way are
difficult to be reused in other tests or under different deployment settings (imagine
repurposing a test that uses HTTP endpoints to verb-based binary protocols).

Motivated by these observations we present JoT (Jolie Testing), a testing frame-
work for MSAs based on technology agnosticism. Responding to its motivating
points, JoT reduces the amount of work for a) testing for MSAs whose services use
different technology stacks, b) writing tests that involve multiple services, and c)
reusing tests of the same MSA under different deployment configurations or after
changing some of its components (e.g., when, for performance, one reimplements
a service with a different technology). In JoT, tests are orchestrators that can
both consume or offer operations from/to the MSA under test. The language for
writing JoT tests is Jolie [17], which provides constructs that support technology
agnosticism [16] and the definition of terse test behaviours. One of the most relevant
features introduced by JoT is the provision of Jolie annotations that users can use
to structure and specify the sequence of actions that the tool needs to follow to
run each test (e.g., test setup, cases, and clean up).

In Section 2, we discuss the methodology we envision for testing MSAs with JoT,
following an example where we use JoT annotations to build a test case. In Section 3,
we provide initial validation to JoT’s approach by presenting implementations
of non-trivial test scenarios taken from a reference MSA from the literature [23]
(Lakeside Mutual). We draw conclusions, compare to related work, and discuss
future steps in Section 4.

2 Methodology and Structure of Tests

To illustrate the structure of tests and the architecture of the testing framework,
we start by describing the methodology we envision for building tests in JoT, i.e.,
the steps users should follow to define a test using the framework.

2.1 Building a Test in JoT

Following general testing practice, the first step for building a test in JoT is defining
the subject under test. Our subject is an architecture of services (one or more)

https://bit.ly/et-al

JoT: A Jolie Framework for Testing Microservices 3

that can interact with each other. Considering that the subject under test are the
services of an architecture, in the remainder, we use interchangeably the terms
“subject under test” and “architecture under test” and use the term “service under
test” to indicate a service that is part of an architecture under test (which includes
the degenerate case of an architecture made of one service). For example, in the first
case in Section 3, the architecture under test is made of two services—CustomerCore
and CustomerManagement–that manage the users of an online platform.

Once we defined the subject of the test, we need to identify the cases we want
to test, i.e., the functionality whose implementation we want to verify. This can
range from a single invocation, e.g., calling one operation of one service, to complex
behaviours that compose several operations of different services. For example,
by having as the subject under test the CustomerCore-CustomerManagement
architecture, we can check that users are coherently created, fetched, and modified
by the two services. For instance, we can interact with CustomerCore to create
a user, then we update the data related to that user via the operations provided by
CustomerManagement, and then verify that the update was successful, by fetching
and checking the user’s information from CustomerCore.

Once we defined the subject under test and the functionality we want to test,
we can proceed with the actual implementation of the JoT test and its cases.

Since a JoT test is a service itself (and an orchestrator, in particular) the in-
formation we need to provide to a JoT test coincides with the three main elements
that define services in general [11]. The first two are the Application Programming
Interfaces, interfaces for short, and the access points which, combined, define
the public contract of the services (under test). The third element is the private,
internal behaviour of the service, which implements the logic of each test case.

Interfaces The interface of a service specifies what operations it offers to clients.
There exist many guidelines and technologies for the description of interfaces [4].
However, we can abstract an interface as the set of labelled operations that a service
promises to support. The description of the set of operations can also carry the
messaging pattern (e.g., one-way, request-reply calls) of each operation and the
structure of the data exchanged through each of them.

For example, one can provide them in the form of an informal list of resources
that one can call, e.g., as URL addresses, and describe the shape of the in-/out-
bound data similarly. Alternatives include the usage of formal languages for the
specification of service interfaces, such as WSDL, and the description of interfaces
using metamodels [11,20] which support the generation of the same service interface
under different formats (formal and informal).

Thanks to the flexibility of Jolie interfaces, JoT adopts a permissive attitude,
where the minimal amount of information users need to provide regarding interfaces
is: a) the list of operation labels that the test is going to use and b) the messaging
pattern that characterises each operation.

4 S. Giallorenzo et al.

For example, a minimal Jolie interface to test the “createCustomer” operation
of the CustomerCore is

interface CustomerCoreInterface {
requestResponse: createCustomer
}

In the code, we specify that the operation createCustomer has a request-
response behaviour (from the user side, this means invoking the service on the
operation and waiting for the server to answer with some response) and that the
operation belongs to the CustomerCoreInterface interface (the latter’s name is
immaterial for the service under test, and it is just a reference to the interface’s
content within the test itself).

Interestingly, JoT provides support for specifying test invariants on the ex-
changed data already at the level of interfaces. Indeed, users can specify the structure
of the data they expect to see in tests via Jolie types. Jolie types have a tree-shaped
form, made of two components: the root of the tree, associated with a basic type (e.g.,
integer, string, etc.), and a set of nodes that defines the internal fields of the data
structure—each node is an array with specified minimal and maximal cardinality.

For example, we can enrich CustomerCoreInterface with types, to both specify
the kind of data we promise to provide within the test (cases)—in the request part
of the createCustomer operation—and the shape of the data we expect the service
under test to send back as the response.

For example, in the code below, we show one such interface where the request
to the createCustomer operation needs to carry the name and surname of the user
(as strings), while the operation responds with the identification number of the
user (as an integer).

type CustomerRequest { name: string, surname: string }
type CustomerResponse { id: int }
interface CustomerCoreInterface {
requestResponse:
createCustomer(CustomerRequest)(CustomerResponse)

}

Access Points The access point completes the public contract of a service’s inter-
face by defining where and how to contact the service, i.e., defining the stack of
technologies that clients can use to interact with the service.

Specifically, the technology stack determines the media and protocols used to
support the communication between a service and its clients and the format of the
data that these exchange. For instance, one can decide to use SOAP and TCP/IP
as a technology stack for communication and use XML to format the data.

By relying on Jolie ports, JoT makes it easy to adapt a test to the access-point
specifications of a given service incarnation. For example, this allows users to write

https://bit.ly/et-al

JoT: A Jolie Framework for Testing Microservices 5

a test case that they initially want to run at the development stage, e.g., using a mes-
sage broker [6] and some binary format, and then change the ports settings to test the
service in production, e.g., switching the port to use TCP/IP, HTTP, and the JSON
format—other examples include SOAP-based web services [17] and REST ones [16].

As we discuss below, JoT provides direct support to this level of flexibility
via configuration parameters that the user can pass to the test, so that one can
run the same test on different deployment settings programmatically. As an ex-
ample, following the simple case made above, we can define the port to contact
the CustomerCore service in a JoT test in the following way:

outputPort CustomerCore {
location: parameters.customerCore.location
protocol: parameters.customerCore.protocol
interfaces: CustomerCoreInterface

}

Above, we define an outputPort called CustomerCore, which represents an
external service that we can invoke. Through the port definition, we declare that
we expect that the CustomerCore service implements the CustomerCoreInterface.
Notice that the location and protocol of the port are (elements of the variable)
parameters. We used this definition of the port to illustrate how the user can change
the medium technology and endpoint definition (location) and the communication
protocol and data format (protocol) by passing this information as parameters
of the test instantiation.

Test Logic The last element of the test is the definition of the actions that the test
needs to enact to implement its logic.

Here, Jolie provides different ways to define the logic of the service, e.g., by
allowing developers to use Java or JavaScript. We deem using these languages a
viable route, e.g., if one needs to use libraries that would be difficult to expose
otherwise or wants to re-use some test logic written in those languages. Notwith-
standing this possibility, we envision users to mainly write JoT tests using the Jolie
behaviour language. Indeed, Jolie provides a concise-yet-expressive language for
behaviour specification that makes it easy to assemble even complex coordination
logic, like speculative parallelism [3] and partial joins [7], which one can use to
reproduce edge cases of highly-concurrent systems.

Ports make it possible to keep the logic of Jolie programs, and JoT tests, loosely
coupled w.r.t. the deployment technology. For instance, let us look at a simple
behaviour snippet for our example

createCustomer@CustomerCore({ name = "John", surname = "Doe" })(resp)
if(resp.id <= 0){
throw (TestFailed, "Users need to have positive id numbers")
}

Above, we define an elementary test for the createCustomer operation, where
we send a legit request (according to the interface we defined) and check that

6 S. Giallorenzo et al.

the response has the expected shape (verified by the Jolie type checker, given the
interface definition of createCustomer) and that the identifier is positive. In case the
test fails, we throw a fault, which interrupts the execution of the tests and reports to
the user the failing case. Later in Section 3 we use the assertion library provided by
JoT, which helps users in verifying the compliance of the results against the expected
values even in the case of complex data structures (multi-level nested trees).

2.2 Writing a Complete Test

Before detailing the architecture of JoT, we illustrate the remaining important
items that make up a JoT test. For this purpose, we show a working JoT test
example by assembling the interface, port, and behaviour shown above with the
remaining elements that characterise a JoT test—for brevity, we elide most of the
constructs discussed above to focus on the new parts.

type CustomerRequest ...
interface CustomerCoreInterface { ... }

interface TestInterface {
requestResponse:
///@Test
testCreateCustomer()() throws TestFailed(string)

}

service Main(parameters: undefined){
outputPort CustomerCore {
location: parameters.customerCore.location
...

}

inputPort Input {
...
interfaces: TestInterface
}

main {
testCreateCustomer()() {
createCustomer@CustomerCore({ name = "John", surname = "Doe" })(resp)
... }

} }

The salient additional parts in the example are four, described below following
their top-to-bottom order of appearance in the code.

First, we have an interface, called TestInterface, which defines the sequence
of operations the JoT framework shall run from the current test. This is done—
similarly to other testing frameworks, e.g., JUnit—using comment annotations
of the form ///@Annotation. JoT currently supports five kinds of annotations:
///@BeforeAll, ///@BeforeEach, ///@AfterEach, ///@AfterAll, and ///@Test.

https://bit.ly/et-al

JoT: A Jolie Framework for Testing Microservices 7

Respectively, these indicate operations in the body of the test that we invoke once be-
fore all test cases, before calling each test case, after we called each test case, and once
after we invoked all test cases. The last annotation is to indicate test-case operations.
JoT does not impose order among the operations in a given annotation category.

Second, we have a service (conventionally called Main), which is the Jolie pro-
gram unit that the JoT framework instantiates to run the tests. When performing
the instantiation, the framework passes the configuration parameters for the test
defined by the user, which the service holds in the parameters variable (here, we
leave its type undefined). In the example, we use the parameters variable to carry
the information to contact the CustomerCore in the related outputPort.

Third, we have an inputPort (complementary inbound access points to
outputPorts) that allows the JoT framework orchestrator to govern the operations
offered by the test (service). Indeed, the inputPort publishes the TestInterface
defined earlier.

Fourth, there is the main execution block, which encloses the behaviour of the
test cases and the surrounding operations (before-all/each and after-all/each) of
the test. In the body of the main, we find the test testCreateCustomer, which,
at invocation, runs the test-case behaviour we previously commented on.

2.3 Executing JoT Tests

By design, JoT does not manage the deployment of the architecture under test.
This is to let developers decide the best way to run the architecture. For example,
the developer of our exemplary test could execute the service locally (using private
network addresses) and later on re-use the same test logic to check the behaviour
of the service in production (using public addresses). JoT achieves this flexibility
via file-based configurations. Concretely, JoT configurations are JSON files that
contain test parameters, such as a tested service’s address or protocol. Listing 1
shows an example of a JoT configuration file. It configures the execution of the JoT
test whose excerpts were shown in previous listings and which is stored in a Jolie
program called “TestCustomerCore.ol” (“.ol” is the extension for Jolie programs).

Listing 1. Example JoT configuration file.

{ "testsPath": ".",
"params": {
"TestCustomerCore.ol": [{
"name": "Main",
"params": {}

}] } }

The testsPath element specifies the file path of the test source, relative to
the configuration file. The params element is where users link tests to parameters.
For this purpose, each member of the element is a key-value pair consisting of (i)
the name of the file that contains the code of the test; (ii) an array of configuration
objects. Namely, the element name is the name of the Jolie service that wraps the
test code (e.g., Main) while the params node contains the parameters for the test.

8 S. Giallorenzo et al.

To execute a test with file-based configuration, the user can save the JSON data
in a “params.json” file and then launch the test with the command jot params.json.

When testing architectures, our suggestion is to pair JoT with widely adopted
microservice deployment technologies, like Kubernetes and Docker-compose, to
further automate the running of test batteries. This is the practice we follow,
e.g., in Section 3, where the services of the architecture under test are containers,
deployed through a single Docker Compose file.

JoT’s source code is available on GitHub5, and a publicly downloadable video
illustrates JoT’s architecture and usage6.

3 Validation

We now show a preliminary validation of JoT by writing a pair of tests (and related
test cases) drawn from the Lakeside Mutual [23] architecture7.

Briefly, Lakeside Mutual is a fictitious insurance company that provides its
employees and customers with a software platform to, e.g., manage personal data
and insurance policies. In total, Lakeside Mutual—in the continuation, we use
the term to indicate the insurance company’s software platform—consists of five
backend microservices, four frontend components enabling users to operate on the
data maintained by the backend microservices, and two infrastructure components
for service discovery and technical administration.

3.1 Tested Interaction Scenarios

We implement two testing scenarios.
Scenario 1 involves the interaction of two microservices, namely CustomerCore

and CustomerManagement. The CustomerCore microservice provides basic capab-
ilities to manage a customer’s data. The CustomerManagement microservice acts
as a façade for CustomerCore and is responsible for providing clients with a stable
interface, thereby facilitating the evolution of CustomerCore. The testing logic for
Scenario 1 covers the update of an existing insurance customer triggered by a client.
Figure 1 shows the specification of the scenario as a UML sequence diagram [18].

In Figure 1, the Client initiates the scenario by retrieving an existing
customer with a given id, using the CustomerManagement operation getCustomer.
CustomerManagement forwards the request to CustomerCore and returns the
response of the latter to the Client. Next, the Client updates the received data
(e.g., it can change the address of the queried customer) and calls updateCustomer
with the updated data on CustomerManagement. Again, CustomerManagement
forwards this call to CustomerCore to perform the actual update of the database.

5 https://github.com/jolie/jot
6 https://drive.google.com/file/d/1VimUbh6stPQoyB_EeLJLllwLs5Vj82wX/view?
usp=sharing

7 As retrieved at version https://github.com/Microservice-API-Patterns/
LakesideMutual/commit/aaebc590832c9ffc064fa3a22eae20db17ab31d9

https://bit.ly/et-al
https://github.com/jolie/jot
https://drive.google.com/file/d/1VimUbh6stPQoyB_EeLJLllwLs5Vj82wX/view?usp=sharing
https://drive.google.com/file/d/1VimUbh6stPQoyB_EeLJLllwLs5Vj82wX/view?usp=sharing
https://github.com/Microservice-API-Patterns/LakesideMutual/commit/aaebc590832c9ffc064fa3a22eae20db17ab31d9
https://github.com/Microservice-API-Patterns/LakesideMutual/commit/aaebc590832c9ffc064fa3a22eae20db17ab31d9

JoT: A Jolie Framework for Testing Microservices 9
Client CustomerManagement Custom erCore

getCustomer(id)

getCustomer(id)

responseGC = getCustom er(-)

responseGC = getCustom er(-)

change(responseGC)

changedC= change(-)

updateCustomer(changedC)

updateCustomer(changedC)

updateCustom er(-)

updateCustom er(-)

Figure 1. Specification of tested interaction Scenario 1 as a UML sequence diagram.

Scenario 2 includes, on top of the services seen in Scenario 1, another
microservice, i.e., CustomerSelfService. In this scenario, CustomerSelfService
provides customers with the functionality to register themselves in the system.
Scenario 2 focuses on this registration process and the correct execution of the
getCustomers operation to find the newly registered customer. Thus, differently
from Scenario 1, Scenario 2 covers a dedicated business process rather than an
activity that is part of several processes. Indeed, Scenario 2 is more complex than
the first one and illustrates JoT’s capability to perform testing of interactions
comprising more than the microservices directly accessed by the test, i.e., the test
entails the correct interaction between CustomerCore and CustomerManagement.
Figure 2 shows the specification of Scenario 2 as a UML sequence diagram.

Client CustomerSelfService Custom erCore CustomerManagement

registerCustomer(newCustomer)

createCustomer(newCustomer)

createCustom er(-)

registerCustomer(-)

getCustomers(filter= newCustomer.firstName)

getCustomers(filter= newCustomer.firstName)

filteredNewCustomer= getCustomers(-)

filteredNewCustomer= getCustomers(-)

Figure 2. Specification of tested interaction Scenario 2 as a UML sequence diagram.

In Figure 2, a Client registers a new customer by calling the registerCustomer
operation of the CustomerSelfService with the new customer’s data. Customer-
SelfService partially acts as a façade to CustomerCore, to which it forwards the
request for customer registration as a call to createCustomer. After the completion
of registerCustomer, the Client continues by executing the getCustomers
operation of CustomerManagement. This operation allows fetching customers via
filters, e.g., via their names. This call is also forwarded to CustomerCore, which
queries its database and performs the actual fetching.

10 S. Giallorenzo et al.

3.2 JoT Test of Scenario 1

We move to implement Scenario 1 (cf. Figure 1) using JoT. In the scenario, the JoT
tests correspond to the Client components (cf. Section 3.1). We start by introducing
the Jolie interfaces and access points for the test, and then we describe its logic.

Interfaces Following the scenario specification (cf. Figure 1), the test program must
invoke the getCustomer and updateCustomer operations on CustomerManagement
to test its correct behaviour, which entails interacting with CustomerCore. Here,
we let the test directly interact with CustomerCore, in the “setup” phase, to create
the customer (via the createCustomer operation) that we want to get and update
in the test case. Listing 2 shows the Jolie interfaces of the test for Scenario 1.

Listing 2. Interfaces of the test for Scenario 1.

1 type CustomerProfileUpdateRequest { firstName:string, lastName:string, ... }
2
3 type CustomerResponse {
4 customerId? :string, firstName? :string, lastName? :string, ...
5 }
6
7 interface CustomerInformationHolder_CustomerCore {
8 RequestResponse:
9 createCustomer(CustomerProfileUpdateRequest)(CustomerResponse)

10 }
11
12 type GetCustomerRequest {
13 ids:string, fields?:string
14 }
15
16 type UpdateCustomerRequest {
17 customerId:CustomerId
18 requestDto:CustomerProfileUpdateRequest
19 }
20
21 interface CustomerInformationHolder_CustomerManagement {
22 RequestResponse:
23 getCustomer(GetCustomerRequest)(CustomerResponse),
24 updateCustomer(UpdateCustomerRequest)(CustomerResponse)
25 }

The CustomerInformationHolder_CustomerCore interface8 in Lines 7–10
specifies the signature of the CustomerCore microservice’s createCustomer
operation used to setup the test database. The operation is a synchronous
request-response operation (cf. Figure 1), and expects an instance of the Customer-
ProfileUpdateRequest type (cf. Line 1) as input and returns a CustomerResponse

8 Note that the prefix CustomerInformationHolder refers to the microservice API pattern
Information Holder Resource conceived by the developers of Lakeside Mutual, and
enabling the provisioning of domain data with integrity and quality preservation [23].

https://bit.ly/et-al

JoT: A Jolie Framework for Testing Microservices 11

(cf. Lines 3–5) as output, whereby the most of the fields of the CustomerResponse
type correspond to those of CustomerProfileUpdateRequest with optional
cardinality (?)—Jolie also provides the * cardinality that means a 0-to-unbound
number of elements of that type. An exception is the customerId field by which
the CustomerCore microservice informs invokers of createCustomer about the
unique identifier of a newly created customer.

The CustomerInformationHolder_CustomerManagement interface in Lines 21–
25 specifies the getCustomer and updateCustomer operations used in the test. The
operation getCustomer expects an instance of the GetCustomerRequest type (cf.
Lines 12–14) to determine the identifiers of the customers to be retrieved and
optionally a list of relevant fields. The operation then returns matching data in a
CustomerResponse instance. Operation updateCustomer requires an instance of the
type UpdateCustomerRequest (cf. Lines 16–19) with the customer identifier to be
updated by the passed CustomerProfileUpdateRequest instance. As for getCus-
tomer, updateCustomer then returns its results in the form of CustomerResponses.

Access Points As mentioned, the JoT test for Scenario 1 has two output ports,
CustomerCore and CustomerManagement. Listing 3 shows the expected bindings.

Listing 3. Access points of the test for Scenario 1.

1 outputPort customerCore {
2 location: parameters.customerCore.location
3 ...
4 interfaces: CustomerInformationHolder_CustomerCore
5 }
6
7 outputPort customerManagement {
8 location: parameters.customerManagement.location
9 ...

10 interfaces: CustomerInformationHolder_CustomerManagement
11 }

We specify at Lines 1–5 the output port for the CustomerCore microservice
while at Lines 7–11 we report the output port for the CustomerManagement
microservice. Notice that the actual binding of the ports (location, protocol) is
parametric (passed through the parameters variable of the test).

Test Logic Listing 4 shows the testing logic of Scenario 1. Notice that we
import the same interface CustomerInformationHolder from different files (i.e.,
customer-core.interfaces and customer-management.interfaces) and we alias
them (with the as keyword) resp. CustomerInformationHolder_CustomerCore
and CustomerInformationHolder_CustomerManagement, so that we obtain a
similar result as the code in Listing 2.

Listing 4. Logic of the test for Scenario 1.

1 // cf. Listing 2
2 from customer-core.interfaces import CustomerInformationHolder

12 S. Giallorenzo et al.

3 as CustomerInformationHolder_CustomerCore
4 from customer-management.interfaces import CustomerInformationHolder
5 as CustomerInformationHolder_CustomerManagement
6
7 interface TestInterface {
8 RequestResponse:
9 /// @BeforeEach

10 setup(void)(void),
11 /// @Test
12 testScenario1(void)(void)
13 }
14
15 service Main {
16 outputPort customerCore { cf. Listing 3 }
17 outputPort customerManagement { cf. Listing 3 }
18 inputPort Input { ... }
19
20 main {
21 /* Setup Test */
22 [setup()() {
23 request << { firstName = "Jane", lastName = "Doe", ... }
24 createCustomer@customerCore(request)(actual)
25 global.user_id = actual.customerId
26 }]
27
28 /* Test Scenario 1 */
29 [testScenario1()() {
30 // Step 1
31 getCustomer@customerManagement({ ids = global.user_id })(resp)
32 equals@assertions

({ actual << resp.customerId, expected << global.user_id })()
33
34 // Step 2
35 undef(resp.customerId)
36 resp.firstName = "John2"
37 updateCustomer@customerManagement

({ customerId = global.user_id, requestDto << resp })(resp2)
38 equals@assertions({ actual = resp2.firstName, expected = "John2" })()
39
40 // Step 3
41 getCustomers@customerManagement({ ids = global.user_id })(resp3)
42 equals@assertions({ actual = #resp3.customers, expected = 1 })()
43 }] } }

Briefly, Lines 2–5 import the types and interfaces for the CustomerCore and
CustomerManagement microservices (cf. Listing 2).

Next, in Lines 7–13 we specify the TestInterface of the test. This has two
operations with JoT-specific annotation. We use @BeforeEach to invoke the

https://bit.ly/et-al

JoT: A Jolie Framework for Testing Microservices 13

setup operation before each test (here, just one). Then, we annotate with @Test
testScenario1, which will execute after all @BeforeEach (here, one) operations.

Starting from Line 15 we find the implementation of the test, as a Jolie service.
There, we find the output ports to access CustomerCore and CustomerManagement
microservices (cf. Lines 16 and 17), the input port Input that offers the test
operations found in the TestInterface to the JoT framework orchestrator. The
main block encloses the implementation of the logic of the test.

Specifically, we find at Lines 22–26 the behaviour of the setup operation,
which creates a request value with test data based on the structure of the
CustomerProfileUpdateRequest type (cf. Listing 2) and it uses the latter in the
invocation of createCustomer of CustomerCore. Since setup is run before all tests
(as per its annotation), the @Tests can assume that the microservice’s database
has the test entry. The resulting identifier of the created customer is then stored
in a global field called user_id, accessible by all test cases.

Lines 29–43 comprise the actual logic for the test operation of Scenario 1, i.e.,
testScenario1. First, the operation retrieves the test customer previously created
by the setup operation. However, this call addresses the CustomerManagement
rather than the CustomerCore microservice and thus verifies whether CustomerMan-
agement actually behaves as a façade for CustomerCore as anticipated by Lakeside
Mutual’s architecture design (cf. Figure 1). In the second step, the test operation
changes the name of the test customer from “Jane” to “John2” and issues a request
to the updateCustomer operation of the CustomerManagement microservice. The
response of the latter operation is then checked to report the new name of the
customer as expected by updateCustomer after a successful update of customer
data. In its final step, testScenario1 verifies that the update is persistent by
issuing a getCustomers request to the CustomerManagement microservice.

3.3 JoT Test of Scenario 2

We describe the JoT test of Scenario 2 (Figure 2) following the same structure
of Section 3.2: interfaces, access points, logic.

Interfaces Listing 5 shows the type definitions and operations of the interfaces of
the CustomerSelfService and CustomerManagement for Scenario 2 (cf. Figure 2).

Listing 5. Interfaces of the Jolie test program for Scenario 2.

1 type CustomerRegistrationRequest { firstName:string, lastName:string, ... }
2
3 interface CustomerInformationHolder_CustomerSelfService {
4 RequestResponse:
5 registerCustomer(CustomerRegistrationRequest)(CustomerResponse)
6 }
7
8 type GetCustomersRequest {
9 filter?:string, fields?:string, limit?:int, offset?:int

10 }
11

14 S. Giallorenzo et al.

12 type PaginatedCustomerResponse {
13 filter?:string, limit?:int, offset?:int, size?:int
14 customers*:CustomerResponse // cf. Lines 3–5 in Listing 2
15 }
16
17 interface CustomerInformationHolder_CustomerManagement {
18 RequestResponse:
19 getCustomers(GetCustomersRequest)(PaginatedCustomerResponse)
20 }

The CustomerInformationHolder_CustomerSelfService interface of Cus-
tomerSelfService specifies the registerCustomer operation for the registration
of new insurance customers with the Lakeside Mutual platform. It requires an
instance of the CustomerRegistrationRequest type (cf. Line 1) as input and
returns an instance of the CustomerResponse type (cf. Lines 3–5 in Listing 2).

The CustomerInformationHolder_CustomerManagement interface of Customer-
Management gathers the getCustomers operation (cf. Lines 17–20 in Listing 5),
which lets users fetch customers based on the GetCustomersRequest type (cf.
Line 10). An instance of the type determines the filter string and fields for cus-
tomer matching. In case one of the fields of the record associated with a registered
customer includes the filter string, the record will be part of the set of customers re-
turned by getCustomers. The size of the set can be controlled by the limit and off-
set fields of GetCustomersRequest—the former prescribes the number of records in
the set and the latter indicates by which offset customer matching shall start. With
this mechanism, getCustomers supports paginated requests of customer records as
modelled by the operation’s return type PaginatedCustomerResponse (cf. Lines 12–
15). An instance of the type informs the caller about the employed filter string,
the prescribed limit and offset, as well as the size of the resulting record set.
The set itself is comprised by the list of CustomerResponses in the customers field.

Access Points In Scenario 2, the Client performs direct interactions with customer-
SelfService and customerManagement and the test has the related ports. Since it
introduces no salient elements, we omit to show the access point code for brevity.

Test Logic Listing 6 shows the test logic for Scenario 2.The imports we have
at the beginning are similar to the ones included for Scenario 1, i.e., we alias
CustomerInformationHolder for either the CustomerManagement and the Cus-
tomerSelfService resp. as CustomerInformationHolder_CustomerManagement
and CustomerInformationHolder_CustomerSelfService, so that we obtain
a similar result as the code in Listing 5. In the code, we use both the Jolie
value-assignment operator = and the deep-copy operator «. The first just copies
the topmost element of the expression on its right. The second copies the whole
structure referred by the expression on the right.

Listing 6. Logic of the Jolie test program for Scenario 2.

1 // cf. Listing 5
2 from customer-management.interfaces import CustomerInformationHolder

https://bit.ly/et-al

JoT: A Jolie Framework for Testing Microservices 15

3 as CustomerInformationHolder_CustomerManagement
4 from customer-self-service.interfaces import CustomerInformationHolder
5 as CustomerInformationHolder_CustomerSelfService
6
7 interface TestInterface {
8 RequestResponse:
9 /// @Test

10 testScenario2(void)(void)
11 }
12
13 service Main {
14 outputPort customerManagement { ... }
15 outputPort customerSelfService { ... }
16 inputPort Input { ... }
17
18 main {
19 [testScenario2()() {
20 // Step 1
21 customer << { firstName = "Homer2", lastName = "Simpson", ... }
22 registerCustomer@customerSelfService(customer)(resp1)
23 equals@assertions({ actual = resp1.firstName, expected = "Homer2" })()
24
25 // Step 2
26 getCustomers@customerManagement({ filter = "Homer2" })(resp2)
27 equals@assertions({ actual = #resp2.customers, expected = 1 })()
28 equals@assertions

({ actual = resp2.customers.firstName, expected = "Homer2" })()
29 }] }
30 }

Similar to Listing 2, we: (i) import the types and interfaces of the microservices
involved in the scenario; (ii) define the TestInterface; (iii) specify the involved
microservices’ output ports; and (iv) define the test logic.

Focusing on the latter, Step 1 creates a test customer by invoking the
registerCustomer operation of the customerSelfService microservice. At Step 2
we use getCustomers of customerManagement to fetch (and filter) the created
customer, checking that there exists exactly one customer with the given name.

4 Related Work, Discussion, and Conclusion

We presented JoT, a testing framework for MSAs based on technology agnosticism.
JoT tests are orchestrators that can consume or offer operations from/to the MSA
under test. Since JoT adopts Jolie as the language for writing tests, it provides con-
structs supporting technology agnosticism and the definition of terse test behaviours.
These elements facilitate the testing of MSAs with microservices based on hetero-
geneous technology stacks and the reuse of tests under different deployment config-
urations. Recent surveys and interviews with practitioners [21,22] substantiate this
need, pointing out that developers urge for microservice-specific testing solutions.

16 S. Giallorenzo et al.

We reference [21,22] for a comprehensive survey of the field, while, here, we com-
pare with the closest proposals to ours. Gremlin [12] is a framework for MSAs that
focuses on testing failure-handling bymanipulating inter-servicemessages at the net-
work layer. Quenum and Aknine [19] conceive an approach for the generation of ex-
ecutable test cases from requirements specifications, thereby focusing on acceptance
tests for validating a software system’s conformance with stakeholder expectations.

Hillah et al. [13] present an approach to automated functional testing based on
formal specifications (of services, relations, etc.). Jayawardana et al. [15] propose
a framework to produce test skeletons from business process models.

All mentioned related works concentrate on different aspects of MSA testing
than JoT. In particular, they do not focus on the specification of advanced MSA
tests tailored to technology agnosticism and expressed using a terse syntax, like the
one provided by JoT thanks to the usage of the Jolie language. We plan to study the
possible interplay between the mentioned work with JoT, e.g., for semi-automatic
test generation geared towards specific traits of the architecture under test.

To improve the reliability of JoT we intend to conduct more comprehensive
validation of our tool. One such validation entails more varied and complex
scenarios, including synchronous and asynchronous interactions, design and
architecture patterns, like Sagas for distributed transactions and Circuit Breaker
for increased reliability.

In particular, looking at the design and architecture patterns, we foresee the
language for test behaviours (inherited from Jolie) would play a fundamental
role in helping users express complex testing logic spanning different services.
Also this aspect deserves dedicated work, i.e., how the JoT behaviour increases
the productivity of testers w.r.t. existing solutions. Both empirical studies with
practitioners and applying relevant software quality metrics, comparing with
both existing tools for general testing (e.g., JUnit) specific to microservices (e.g.,
zerocode9, Microdot10, 11 and MounteBank12).

Other future endeavours regard studying the integration of JoT with MSA
modelling languages like LEMMA [20] and MDSL [23], and with choreographic
testing approaches [9,10,2,1]. Such an integration would allow the generation of
test behaviours and coordinators in contexts where a single orchestrator is not
sufficient, e.g., in decentralized, cross-organizational deployments. Furthermore,
Jolie types and interfaces provide natural support for property-based testing [5],
where generators randomly run tests on valid data and operations to assert relevant
invariants. In this context, one could use session types [14] to specify behavioural
invariants that shall hold in the system and test these in a property-based manner.

Acknowledgements This work was partially supported by the Independent
Research Fund Denmark, grant no. 0135-00219, Villum Fonden, grant no. 29518,
and Innovation Fund Denmark, grant no. 9142-00001B.

9 https://github.com/authorjapps/zerocode.
10 https://github.com/gigya/microdot.
11 https://pact.io/.
12 https://www.mbtest.org/.

https://bit.ly/et-al
https://github.com/authorjapps/zerocode
https://github.com/gigya/microdot
https://pact.io/
https://www.mbtest.org/

JoT: A Jolie Framework for Testing Microservices 17

References

1. Coto, A., Guanciale, R., Tuosto, E.: On testing message-passing components.
In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods,
Verification and Validation: Verification Principles - 9th International Symposium on
Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October
20-30, 2020, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12476,
pp. 22–38. Springer (2020)

2. Coto, A., Guanciale, R., Tuosto, E.: An abstract framework for choreographic testing.
J. Log. Algebraic Methods Program. 123, 100712 (2021)

3. Dalla Preda, M., Gabbrielli, M., Lanese, I., Mauro, J., Zavattaro, G.: Graceful
interruption of request-response service interactions. In: Service-Oriented Computing:
9th International Conference, ICSOC 2011, Paphos, Cyprus, December 5-8, 2011
Proceedings 9. pp. 590–600. Springer (2011)

4. Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A., Mazzara, M., Montesi, F.,
Mustafin, R., Safina, L.: Microservices: Yesterday, today, and tomorrow. In:
Present and Ulterior Software Engineering, pp. 195–216. Springer (2017).
https://doi.org/10.1007/978-3-319-67425-4_12

5. Fink, G., Bishop, M.: Property-based testing: a new approach to testing for assurance.
ACM SIGSOFT Software Engineering Notes 22(4), 74–80 (1997)

6. Gabbrielli, M., Giallorenzo, S., Lanese, I., Zingaro, S.P.: A language-based approach
for interoperability of iot platforms. In: 51st Hawaii International Conference on
System Sciences, HICSS 2018, Hilton Waikoloa Village, Hawaii, USA, January 3-6,
2018. pp. 1–10. ScholarSpace / AIS Electronic Library (AISeL) (2018)

7. Gabbrielli, M., Giallorenzo, S., Montesi, F.: Service-oriented architectures: From
design to production exploiting workflow patterns. In: Distributed Computing and
Artificial Intelligence, 11th International Conference, DCAI 2014, Salamanca, Spain,
June 4-6, 2014. pp. 131–139. Springer (2014). https://doi.org/10.1007/978-3-319-
07593-8_17

8. Gamma, E., Beck, K.: Junit (2006)
9. Giallorenzo, S., Lanese, I., Russo, D.: Chip: A choreographic integration process. In:

On the Move to Meaningful Internet Systems. OTM 2018 Conferences: Confederated
International Conferences: CoopIS, C&TC, and ODBASE 2018, Valletta, Malta,
October 22-26, 2018, Proceedings, Part II. pp. 22–40. Springer (2018)

10. Giallorenzo, S., Montesi, F., Peressotti, M.: Choreographies as objects. CoRR
abs/2005.09520 (2020), https://arxiv.org/abs/2005.09520

11. Giallorenzo, S., Montesi, F., Peressotti, M., Rademacher, F., Sachweh, S.: Jolie
and LEMMA: model-driven engineering and programming languages meet on
microservices. In: Damiani, F., Dardha, O. (eds.) Coordination Models and Languages
- 23rd IFIP WG 6.1 International Conference, COORDINATION 2021, Held as
Part of the 16th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Proceedings.
Lecture Notes in Computer Science, vol. 12717, pp. 276–284. Springer (2021).
https://doi.org/10.1007/978-3-030-78142-2_17

12. Heorhiadi, V., Rajagopalan, S., Jamjoom, H., Reiter, M.K., Sekar, V.: Gremlin:
Systematic resilience testing of microservices. In: 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS). pp. 57–66. IEEE (2016)

13. Hillah, L.M., Maesano, A.P., De Rosa, F., Kordon, F., Wuillemin, P.H., Fontanelli,
R., Bona, S.D., Guerri, D., Maesano, L.: Automation and intelligent scheduling of
distributed system functional testing: Model-based functional testing in practice.
International journal on software tools for technology transfer 19, 281–308 (2017)

https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-07593-8_17
https://doi.org/10.1007/978-3-319-07593-8_17
https://arxiv.org/abs/2005.09520
https://doi.org/10.1007/978-3-030-78142-2_17

18 S. Giallorenzo et al.

14. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.M.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., et al.: Foundations of session types
and behavioural contracts. ACM Computing Surveys (CSUR) 49(1), 1–36 (2016)

15. Jayawardana, Y., Fernando, R., Jayawardena, G., Weerasooriya, D., Perera, I.: A full
stack microservices framework with business modelling. In: 2018 18th International
Conference on Advances in ICT for Emerging Regions (ICTer). pp. 78–85. IEEE (2018)

16. Montesi, F.: Process-aware web programming with Jolie. Sci. Comput. Program.
130, 69–96 (2016)

17. Montesi, F., Guidi, C., Zavattaro, G.: Service-oriented programming with jolie.
In: Bouguettaya, A., Sheng, Q.Z., Daniel, F. (eds.) Web Services Foundations,
pp. 81–107. Springer (2014). https://doi.org/10.1007/978-1-4614-7518-7_4,
https://doi.org/10.1007/978-1-4614-7518-7_4

18. OMG: OMG Unified Modeling Language (OMG UML) version 2.5.1. Standard
formal/17-12-05, Object Management Group (2017)

19. Quenum, J.G., Aknine, S.: Towards executable specifications for microservices. In:
2018 IEEE International Conference on Services Computing (SCC). pp. 41–48. IEEE
(2018)

20. Rademacher, F.: A language ecosystem for modeling microservice ar-
chitecture. Ph.D. thesis, University of Kassel, Germany (2022), https:
//kobra.uni-kassel.de/handle/123456789/14176

21. Waseem, M., Liang, P., Márquez, G., Di Salle, A.: Testing microservices architecture-
based applications: A systematic mapping study. In: 2020 27th Asia-Pacific Software
Engineering Conference (APSEC). pp. 119–128. IEEE (2020)

22. Waseem, M., Liang, P., Shahin, M., Di Salle, A., Márquez, G.: Design, monitoring,
and testing of microservices systems: The practitioners’ perspective. Journal of
Systems and Software 182, 111061 (2021)

23. Zimmermann, O., Stocker, M., Lübke, D., Zdun, U., Pautasso, C.: Patterns for
API Design: Simplifying Integration with Loosely Coupled Message Exchanges.
Addison-Wesley (2023)

https://bit.ly/et-al
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1007/978-1-4614-7518-7_4
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176

	JoT: A Jolie Framework for Testing Microservices

