
ChIP: a Choreographic Integration Process

Saverio Giallorenzo1, Ivan Lanese2,3, and Daniel Russo3

1 University of Southern Denmark, Denmark
2 Focus Team, INRIA

3 University of Bologna, Italy
saverio@imada.sdu.dk, ivan.lanese@gmail.com, daniel.russo@unibo.it

Abstract. Over the years, organizations acquired disparate software
systems, each answering one specific need. Currently, the desirable out-
comes of integrating these systems (higher degrees of automation and
better system consistency) are often outbalanced by the complexity of
mitigating their discrepancies. These problems are magnified in the decen-
tralized setting (e.g., cross-organizational cases) where the integration is
usually dealt with ad-hoc “glue” connectors, each integrating two or more
systems. Since the overall logic of the integration is spread among many
glue connectors, these solutions are difficult to program correctly (making
them prone to misbehaviors and system blocks), maintain, and evolve.
In response to these problems, we propose ChIP, an integration process
advocating choreographic programs as intermediate artifacts to refine
high-level global specifications (e.g., UML Sequence Diagrams), defined
by the domain experts of each partner, into concrete, distributed imple-
mentations. In ChIP, once the stakeholders agree upon a choreographic
integration design, they can automatically generate the respective local
connectors, which are guaranteed to faithfully implement the described
distributed logic. In the paper, we illustrate ChIP with a pilot from the
EU EIT Digital project SMAll, aimed at integrating pre-existing systems
from government, university, and transport industry.

1 Introduction

Over the years organizations acquired several software systems, each satisfying
one specific need. Traditionally these systems hardly integrate with each other
due to incompatible technology stacks [20,23]. It has been empirically observed
that this leads to system stratification and increasing technical debt [42].

Contrarily, the high level of automation and consistency achievable by the inte-
gration of such systems could satisfy new requirements, maximize business/service
performance, and avoid duplication of resources. This is confirmed by the thriving
economics of Enterprise Resource Planners (ERPs) [26]. ERPs offer a closed,
rigid yet highly structured environment for system integration. However, ERPs
are rarely a solution for cross-organizational integration, where the enforcement
of a unique platform is nearly impossible.

In cross-organizational settings, the only possible approach is given by mediat-
ing applications, usually called “glue” programs [18] or connectors, that mitigate

Global
Specification

Choreographic
Program

(Global Design)

Choreographic Program
+ Local Bindings1

Choreographic Program
+ Local Bindingsn

Local
Connector1

Local
Connectorn

Expected
Global

Behavior

refinement

local
grounding executionselective

compilation

ChIP Approach

Global
Specification

Local
Connector1

Local
Connectorn

Global
Testingexecutioninterpretation

Traditional Approach

evaluation

1

2 3

manual step automatic stepLegend:

Fig. 1. Schemes of the traditional and the ChIP approaches.

discrepancies among disparate technology stacks. The interest in this scenario
has recently increased thanks to a new revenue model, called API Economy [19].
Adopting API Economy, many companies, among which Google, Facebook, eBay,
and Sabre, started to sell to other organizations the access (under subscription,
license, etc.) to their internal services. Although API Economy founds its model
on integration, its practice is left to unstructured glue programming.

Both centralized and distributed glue programs are used [32]. In the centralized
approach a unique glue program interacts with all the integrated systems. This
entails all classical drawbacks of centralized systems in terms of scalability and
reliability. Furthermore, this centralized connector has full access to the integrated
functionalities, yet it resides on the premises of one of the involved organizations
(or on third-party premises), hence issues of trust among organizations arise.

In the distributed approach, each stakeholder provides one or more connectors.
Each connector interacts with both i) other connectors, to realize the intended
logic of integration and ii) a set of local functionalities, which may not be accessi-
ble by the other connectors. In essence, each connector acts as an adapter for other
glue programs. Each connector runs on the premises of one of the collaborating
partners, providing a controlled access towards one or more of its resources. The
traditional approach in developing distributed glue programs [24] is represented
in Figure 1, top half. First, a global specification of the integration is agreed
upon by the stakeholders, using (frequently informal or semi-formal) notations
such as Message Sequence Charts [30] (MSC), UML Sequence Diagrams [12] or
BPMN choreographies [3]. The development team of each partner uses such a
global specification as a reference to build the local implementation of the glue
programs. Finally, the network of glue programs is executed and the emerging
behavior is contrasted against the global specification.

The main drawback of this approach lies in the huge information gap be-
tween a global specification and its distributed implementation. Given a shared
global specification, the development team of each partner independently fills

the missing pieces of information, possibly taking contrasting decisions. These
misalignments lead to incompatibilities among glue programs, which in turn
result in misbehaviors and system blocks [34]. In addition, the resulting network
of glue programs is brittle and difficult to evolve.

Contribution. To address these issues, we propose a structured integration process,
called ChIP (Choreographic Integration Process). The bottom half of Figure 1
outlines the steps prescribed by ChIP, detailed in Section 3. Here, to briefly
introduce the ideas behind ChIP, we comment the two main artifacts built during
the process. The first one to be produced is a global specification of the integrated
system. It is intended for domain experts and gives a very abstract view of
the system, omitting many details of the actual implementation. ChIP does not
impose the use of a particular modeling notation to define the global specification.
Examples of notation for global specification that we consider suitable within ChIP
are MSCs, BPMN choreographies, and UML Sequence Diagrams. The second
artifact is a global design, refinement of the global specification. The global design
is the focal point of ChIP: it must be defined in a choreographic programming
language [14,36,16] that i) supports the compilation of a choreography into a set
of connectors that faithfully implement the designed global interactions—so that
local connectors can be automatically generated from a global design—and ii) it is
able to express at the global level when and how a given local connector invokes
a local functionality, so that the global design describes the whole integration
within a unique artifact.

Structure of the paper. Section 2 discusses the positioning of the ChIP approach
in the literature. Section 3 outlines ChIP, while Section 4 applies it to a real-world
pilot from the EU EIT Digital project SMAll, aimed at integrating functionalities
from the Emilia Romagna (Italy) regional government, University of Bologna,
and a transport company. In this presentation we decided to use UML Sequence
Diagrams to define the global specification and the AIOCJ choreographic pro-
gramming language [2,15] for the global design. Section 5 clarifies how to exploit
tools like AIOCJ within ChIP. Section 6 discusses the impact of ChIP on the
evolution of integration solutions. Section 7 presents final remarks and future
developments.

2 Related Work

Information systems that evolve over pre-existing legacy applications have always
been a concern of system integration [21]. However, no definitive solution exists.

Choreographic programming, that is the use of choreographies to generate
executable code, as advocated in ChIP, is quite recent and the literature on the
topic is extremely limited [17,40,35,9,14,36,16]. Notably, among the approaches
above, only [16], on which ChIP is built, provides a way of describing interac-
tions with systems external to the choreographic program. The present paper
complements the technical results and the tool presented in [16] by proposing

a software development process where such results and tool are exploited. The
other approaches listed above, since they cannot represent interactions with
external systems, can be used to generate distributed systems but not distributed
integrations.

More in general, choreographic programming can be framed in the setting of
choreographic descriptions of communicating systems. Choreographies have been
introduced in the area of business process management to support the description
of business-to-business collaborations [1]. While the idea of the approach is not
far from ours, they consider models such as Petri Nets that are more abstract and
have less emphasis on communication than choreographic programming. Also
they do not specifically target integrations of pre-existing systems.

More recently, approaches sharing our communication-centric view have
appeared. Broadly, ChIP can be classified as a top-down approach: the integration
is specified and designed at the global level, declaring which functionalities it
will integrate and the logic of the integration. Locally, deployment information
is added to link the desired functionalities to actual services providing them.
Finally, local code for the connectors is automatically generated.

Other approaches we are aware of are not top-down, but mixed: they assume
both a choreographic specification and an existing running integration. We divide
them into two categories:

– Type-based approaches rely on multiparty session types [29], cannot be directly
used to implement connectors but are a non-invasive solution to statically
check [27] or dynamically monitor [11] the correctness of the integrations.
Among the various approaches, Compositional Choreographies [38], which
however have never been implemented neither applied to system integration,
would be the closest to ours: thanks to compositionality, Compositional
Choreographies describe both the glue connectors and the systems to be
integrated, as we do.

– Model driven approaches, such as [5,6] concentrate on realizability enforcement.
Namely, they are used to build coordination delegates that limit the possible
interactions between integrated services, avoiding undesired communication
patterns. However, they cannot provide added behavior, hence limiting the
forms of integration that can be specified.

In principle, instead of choreographic programs, one could use other formal
coordination languages able to describe a global system and that support code
generation, such as BIP [7], Reo [4], Dynamic Condition Response Graphs [25] or
Let’s Dance [45]. We choose choreographic programs since they are closer to UML
Sequence Diagrams and BPMN choreographies, which are frequently used as
starting point of the development process. Among those approaches, to the best
of our knowledge, BIP is the only one that has a description of its intended use
in the software development process from a software engineering perspective [7],
as done here for choreographic programs. The two approaches are quite different
in practice since BIP is a declarative model, while choreographic programs are
operational descriptions.

3 A Choreographic Integration Process: Outline

In this section we give a general definition of the three-step process that charac-
terizes ChIP, as outlined in the bottom half of Figure 1. In the next section we
will apply ChIP to a real-world integration project.

The main innovation of ChIP consists in filling the information gap between
global specification and local implementations present in the traditional approach,
using a three-step structured process:

1 a collective refinement process that, from an abstract global specification,
leads to a global design expressed as a choreographic program. The obtained
choreographic program formally defines the expected global behavior and
clarifies which tasks are delegated to which stakeholder. The first step of
ChIP is highly non trivial, nevertheless it provides a well-defined, limited
task to users: defining an agreed global design of the logic of the integrated
system. This contrasts with the unstructured, “open” task of the classical
case, where from a global specification users should come up with their local
implementations. In the ChIP approach, this step considers descriptions of
the system from a global perspective, hence issues related to synchronization
and distribution can still be abstracted away. The design is agreed upon by
the participants and includes the whole logic of integration.

2 a local grounding separately performed by each stakeholder, which links the
functionalities that each participant promised to deliver to actual resources
in its IT system. Hence, this phase is straightforward. The information on
which internal resources are used needs not to be shared with the other
stakeholders: the access to these functionalities is provided via the local glue
programs, which are under the control of the stakeholder and which run in
its own system.

3 the fully automatic generation of the local connectors from the grounded
global design (i.e., the grounded choreographic program). Making this step
automatic is far from trivial, but it is tackled relying on well-known techniques
called choreographic programming [14,36,16], endpoint projection [27] or
choreography realizability [9]. Here, in particular, we exploit for this step the
notion of endpoint projection described in [16], which is implemented in the
AIOCJ tool [2,15]. Notably, the global behavior emerging from the execution
of the glue programs is compliant with the global design by construction:
synchronization and distribution issues are automatically managed. This
avoids misalignments among the local implementations; a renowned problem
of the traditional approach.

Remarkably, the process proposed in ChIP eases also the evolution of integration
solutions. For example, it is relatively simple to take a choreographic program
belonging to a previous ChIP iteration and to modify it by including new stake-
holders and/or changing the logic of interaction. In step 2 , users can possibly

reuse local groundings defined in the previous iteration. In step 3 users either
obtain a connector that replaces an existing one or a completely new one, useful

Tracker by University Bus AgencyRegional Government

Tracked line

Line schedule

loop (until schedule has next stop)
Current bus position

Calculated delay

Fig. 2. Sequence Diagram of the Pilot.

for integrating new functionalities. We further discuss the impact of ChIP on
system evolution in Section 6.

4 A Choreographic Integration Process at Work

Running Example. We illustrate ChIP via a real-world pilot developed within
the recent European EIT Digital project SMAll4 The focus of SMAll is the
creation of the namesake platform5 [13] aimed at marketing functionalities for
transportation owned, managed, and offered by diverse transport operators. The
revenue model underlying the SMAll platform is based on the API Economy,
where players whose core business is not that of information systems (e.g., in
the context of SMAll, bus/train agencies, taxi associations) can publish and sell
their functionalities within a global market. Some pilots have been developed as
part of the SMAll project. Each pilot integrates pre-existing services, owned by
diverse organizations, to provide new applications.

Below we refer to one of these pilots as a real-world example of application of
the ChIP approach. The considered pilot is called BusCheck, it was commissioned
by the Department of Transportation of the government of the Emilia-Romagna
(ER) region (Italy) to the University of Bologna, and it is aimed at recording
and displaying the punctuality of buses in Bologna county.

Global Specification. Both the traditional approach and ChIP start with
an informal or semi-formal description of the intended global behavior, such as
the UML Sequence Diagram in Figure 2. In this phase the intended behavior is
described at the highest level of abstraction by the domain experts of the different
stakeholders. Such a description is agreed among the different stakeholders and
constitutes the starting point of the integration.

4 Project description:
https://forumvirium.fi/en/small-develops-mobility-as-a-service/

5 Deployable platform: https://hub.docker.com/u/smallproject/
Documentation: https://github.com/small-dev/SMAll.Wiki/wiki

https://forumvirium.fi/en/small-develops-mobility-as-a-service/
https://hub.docker.com/u/smallproject/
https://github.com/small-dev/SMAll.Wiki/wiki

The collaborating partners in BusCheck are the ER Government, the Univer-
sity of Bologna, and the local Bus Agency. The flow of integration starts from
the ER Government, which issues the tracking of the next ride of a specific line
to the Bus Agency. Then, the Bus Agency delivers to the University the schedule
of the requested ride. Finally, until the tracked ride reaches the final stop, the
Bus Agency sends the current bus position to the University, which computes
the delay and sends it to the Regional Government.

1 Global Specification Refinement. In this first step the abstract global
specification is refined to obtain a global design. This phase ends when the global
design is complete and agreed upon by the different stakeholders. Given the
technical background necessary at this stage, we assume the collaboration of
personnel from each stakeholder IT department. Following ChIP, IT personnel uses
a full-fledged, high-level programming language, implementing the choreographic
programming paradigm [36,16], to formalize the integration design. Choreographic
programs are the key feature of the ChIP approach, since they provide two benefits:

1. they preserve a global view over the integrated systems, hence they are
conceptually close to the original global specification, and

2. they already contain all the logic of the integration in a formal notation, hence
they can later on be used to automatically generate the local code of each glue
program, without the need for any additional behavioral information. This is
particularly relevant since the addition of further behavioral information at
the local level may create inconsistencies.

At this stage, choreographic programs are artifacts that support the transition
from an informal global specification to a formal global design. The precise
methodology used for this refinement step is not key in ChIP, provided that at
the end of the phase the global design is formalized as a choreographic program.
However, we advocate for this step an iterative approach, where details are added
to the specification and technical decisions are recorded. Notably, at some point
during the refinement, one should move from the specification notation (UML
Sequence Diagram in this example) to the choreographic program notation. While
a complete description of the step goes beyond the scope of the present paper,
we remark that choreographic programs easily capture the information contained
in UML Sequence Diagrams, yet require more information to be added. We will
show this in detail in the case of our pilot. Further refinement steps can be
performed both before, at the level of UML Sequence Diagram, and after, at
the level of choreographic program. In our running example, we first translate
the UML Sequence Diagram into the choreographic specification in Listing 1.1,
where we use question marks as placeholders for missing information.

Notably, the communications represented in the UML Sequence Diagram
are directly mapped into interactions in the choreographic specification. An
interaction represents a full message exchange, where one participant sends a
message and another participant receives it, storing it in one of its local variables.
For instance passPosition: BusAgency(pos) -> Tracker(pos) represents the
interaction between the BusAgency and the Tracker provided by the University
of Bologna to send the information on the position of the bus. We remark here

1 setLine: Government(line) -> BusAgency(line);
2 passSchedule: BusAgency(shd) -> Tracker(shd);
3 while(hasNext)@? {
4 passPosition: BusAgency(pos) -> Tracker(pos);
5 storeDelay: Tracker(delay) -> Government(delay)
6 }

Listing 1.1. Choreographic specification of the BusCheck pilot, first version.

that variables are local, hence the two occurrences of pos in the interaction refer
to distinct variables: the left one is local to the BusAgency connector and the
right one belongs to the Tracker.

Commenting the choreographic specification in Listing 1.1, the question mark
at line 3 is a placeholder for the name of the participant that coordinates the
distributed while loop, i.e., the one that at each iteration evaluates the condition
hasNext and coordinates whether the participants involved in the loop shall
enter another iteration or exit. Beyond missing the information replaced by the
question mark, the choreographic specification also misses all the computational
information regarding which local functionalities are needed and how values are
computed. This is why we still call it a choreographic specification and not a
choreographic design.

However, before adding the missing details, the ER Government decides to
refine the system representation by splitting its behavior between two connectors:
an Administrator, representing the official requesting the tracking of a certain
line, and a DatabaseConnector which stores the data on delays of the tracked
line for later analysis (the latter not in the scope of the pilot). The resulting
choreographic specification is represented in Listing 1.2. Note the new interaction
at line 1, which represents a communication internal to the ER Government,
exposed by the refinement step (the interaction is composed with the one at line
3 using the parallel operator |, which models the fork-and-join pattern). All the
stakeholders need to approve this refined specification, since all the choreographic
specifications are shared documents.

Finally, the stakeholders prepare and agree on a concrete version of the
choreographic description, containing all the behavioral information: only at this
stage we can call it a global design. The main novelty in the global design is that
it describes which functionalities need to be invoked, and when. For instance, with
the invocation shd@BusAgency = getSchedule(line) the BusAgency promises
to deliver a functionality named getSchedule, that, given a line, returns its
schedule. At this stage, the semantics of the functionality is undefined. However,
the invocation already specifies which variables the functionality will use (line)
and where the result will be stored (shd).

Summarizing, the main ingredients of a choreographic program are inter-
actions, describing the expected communications among the glue programs,
and placeholders for invocations of local functionalities. Interactions and local
functionalities can be composed using an arbitrarily complex logic, including

1 { setLine: Admin(line) -> DatabaseConnector(line)
2 |
3 setLine: Admin(line) -> BusAgency(line)
4 };
5 passSchedule: BusAgency(shd) -> Tracker(shd);
6 while(hasNext)@? {
7 passPosition: BusAgency(pos) -> Tracker(pos);
8 storeDelay: Tracker(delay) -> DatabaseConnector(delay);
9 }

Listing 1.2. Choreographic specification of the BusCheck pilot, refined.

conditionals, loops, etc. The resulting global design of our running example is
represented in Listing 1.3, and described in detail below.

A condition for the refinement phase to be finished is that the resulting global
design is realizable [9] (or connected, according to the terminology in [16]), i.e.,
it contains enough information on how the interaction is coordinated. This can
be checked automatically using the approaches in [9,16]. If this is not the case,
refinement should continue by adding the missing information. This aspect of
refinement has been described in [33,8].

Global Design. The global design is a choreographic program [36,16] defining
the expected behavior of the integration. Here, in particular, we use a variant of
the AIOCJ [2,15] choreographic programming language.

At lines 1–5 the partners declare the location where their local connectors
will be reachable. This is the only deployment information that the partners have
to share and, as a consequence, it is inserted in the global design.

Lines 8–11 compose with operator | two interactions in parallel: the Adminis-
trator sends to both the DatabaseConnector and the BusAgency the bus line
that the official wants to track (inserted at line 7) in a specific execution of the
program. Since the composition is within braces, the system proceeds to line 12
only after both messages are stored in their respective local variables line. At
line 12, the BusAgency retrieves the schedule of the tracked bus line, using the
functionality getSchedule, and passes it to the Tracker (line 13).

Finally, lines 15–23 describe a loop among the Tracker, the BusAgency, and
the DatabaseConnector. We recall the description of Listing 1.1, where a question
mark indicates the need to define which participant should evaluate the condition
of the loop and coordinate the other participants in its body. In the refined global
design the coordinator of the loop is the Tracker and the condition it evaluates
depends on the result of the invocation of the hasNextStop functionality. The
hasNextStop functionality is also used to pace the loop: when invoked to check
the presence of another stop, it also waits until it is time to poll again the position
of the tracked line (e.g., when the bus is expected to be approaching a stop).

Inside the loop, at each iteration, the BusAgency retrieves the position of the
current bus on the observed bus line (line 16) and passes it to the Tracker
(line 17). Then, at line 18, the Tracker invokes function calculateDelay. At line

1 locations {
2 Admin: "reg -gov.org :80/ BusCheckAdmin"
3 DatabaseConnector: "reg -gov.org :80/ BusCheckDB"
4 Tracker: "university.edu :80/ Tracker"
5 BusAgency: "bus -agency.com :80/ BusCheck" }
6
7 line@Admin = getInput("Insert line to track");
8 { setLine: Admin(line) -> DatabaseConnector(line)
9 |
10 setLine: Admin(line) -> BusAgency(line)
11 };
12 shd@BusAgency = getSchedule(line);
13 passSchedule: BusAgency(shd) -> Tracker(shd);
14 hasNext@Tracker = hasNextStop(shd);
15 while(hasNext)@Tracker {
16 pos@BusAgency = getPosition(line);
17 passPosition: BusAgency(pos) -> Tracker(pos);
18 delay@Tracker = calculateDelay(shd , pos);
19 storeDelay: Tracker(delay) -> DatabaseConnector(delay);
20 { res@DatabaseConnector = insertDelay(line , delay)
21 |
22 hasNext@Tracker = hasNextStop(shd)
23 } }

Listing 1.3. Global design of the BusCheck pilot.

19, the calculated delay is sent to the DatabaseConnector. Finally, two external
functionalities are invoked in parallel: the DatabaseConnector inserts the delay
for the observed bus line in the database (line 23) and the Tracker invokes
functionality hasNextStop to check if and when a new iteration has to start.

Note that our choreographic program does not detail how to perform dis-
tributed synchronizations. For instance, the loop at lines 15-23 involves different
distributed connectors, but it is unspecified how to ensure that all the connec-
tors follow the prescribed behavior, i.e., looping or exiting when the Tracker
decides so. This level of abstraction can be kept thanks to the selective compi-
lation (described later), which automatically generates correct message-based
synchronization algorithms, as detailed in [16].

2 Local Grounding. The global design is the last document agreed upon
by all the stakeholders. The local grounding is performed by each participant in
isolation. For instance, the Bus Agency IT personnel grounds the global design by
providing the binding for its internal functionalities getSchedule and getPosition.
These functionalities are only invoked by the local connector, which acts as an
intermediary by providing to the other participants access to the local functional-
ities as prescribed by the global design. Concretely, the deployment information
for the Bus Agency is represented in Listing 1.4. The deployment declares the
internal address where each functionality is available, possibly specifying the
communication medium and the data protocol to be used. For instance, at line
2, the prefix "socket://" specifies the usage of TCP/IP as medium while SOAP

1 deployment {
2 getSchedule from "socket :// intranet.schdls :8000" with SOAP
3 getPosition from "socket :// intranet.GPS :8001" with HTTP }

Listing 1.4. Deployment for the Bus Agency.

specifies the used data protocol. This flexibility on communication media and
data protocol is fundamental to enable the integration of disparate preexisting
functionalities.

3 Selective Compilation. Finally, at this stage, the Bus Agency has
specified all the information needed to automatically generate its local connector.
The generation of the connector for the BusAgency takes the global design and the
deployment information for the BusAgency and produces an executable program
implementing the local logic of the connector.

Selective compilation hides most of the complexity of developing distributed
glue connectors that interact with each other, without a central coordinator.
This step is far from trivial, however it is well understood: it corresponds to the
notion of endpoint projection in choreographic programming [14,16]. In particular,
AIOCJ programs can be projected [16] by automatically creating web services in
the Jolie [31,37] language.

As an illustrative example, we report in Figure 3 an excerpt of the pseudo-code
of the compiled connectors of the BusAgency, the DatabaseConnector, and the
Tracker6. The pseudo-code shows the result of the selective compilation of lines
14-23 in Listing 1.3. In the reported code, programs communicate through send
and recv (short for “receive”) instructions. External functionalities are invoked
through the call instruction. In addition to the communications created by
interactions in the global design, we also show the auxiliary communications used
to ensure a coordinated execution of the while loop. Auxiliary communications
are prefixed with an underscore “_”, e.g., _wG1 (standing for while guard) and
_wE1 (standing for while end) indicate the auxiliary communications used by the
Tracker and the BusAgency to coordinate within the distributed loop.

Expected Global Behavior. A main feature of ChIP is that no behavior is
defined by the single stakeholder: all the behavior is described globally and agreed
by all the stakeholders. This avoids the possibility that different stakeholders
take contrasting decisions.

Furthermore, the generation of local connectors from the choreographic pro-
gram has been proved correct in [16], hence no error can be introduced in this
step. Of course, the stakeholders may agree on a wrong integration behavior.
However, in choreographic programs, interactions are represented as atomic
entities, hence it is syntactically impossible to express deadlocks and races on
communications, avoiding by design the presence of such infamous bugs in the

6 The compiled connectors are available at http://www.cs.unibo.it/projects/jolie/
aiocj examples/ChIP example/ChIP example.zip.

http://www.cs.unibo.it/projects/jolie/aiocj_examples/ChIP_example/ChIP_example.zip
http://www.cs.unibo.it/projects/jolie/aiocj_examples/ChIP_example/ChIP_example.zip

1 recv _wG1(hasNext) from Tracker;
2 while(hasNext){

3 pos = call getPosition(line);

4 send passPosition(pos) to Tracker;
5 send _wE1() to Tracker;
6 recv _wG1(hasNext) from Tracker
7 }

BusAgency

1 recv _wG2(hasNext) from Tracker;
2 while(hasNext){

3 recv storeDelay(delay) from Tracker;
4 res = call insertDelay(line ,delay);

5 send _wE2() to Tracker;
6 recv _wG2(hasNext) from Tracker
7 }

DatabaseConnector

1 hasNext = call hasNextStop(shd);

2 send _wG1(hasNext) to BusAgency;
3 send _wG2(hasNext) to DatabaseConnector;
4 while (hasNext){

5 recv passPosition(pos) from BusAgency;
6 delay = call calculateDelay(shd ,pos);

7 send storeDelay(delay) to DatabaseConnector;
8 recv _wE1() from BusAgency;
9 recv _wE2() from DatabaseConnector;

10 hasNext = call hasNextStop(shd);

11 send _wG1(hasNext) to BusAgency;
12 send _wG2(hasNext) to DatabaseConnector
13 }

Tracker

Fig. 3. From top-left to bottom, an excerpt (lines 14–23 of Listing 1.3) of the
compiled connectors of the BusAgency, the DatabaseConnector, and the Tracker.

agreed integration behavior and, as a consequence, in the generated distributed
network of connectors.

5 A Choreographic Integration Process: Tool Support

The ideas described in the previous sections are quite general, relying on key
features of global specification languages and choreographic programs. The
running example instantiated these ideas using UML Sequence Diagrams and
the AIOCJ choreographic programming language. We do not describe support
for UML Sequence Diagrams since there are many tools that support them. On
the contrary, we dedicate this section to describe AIOCJ, which is less known
yet it is fundamental for the approach. Furthermore, it has been adapted to
support ChIP. While referring to [15,16] for a detailed description of AIOCJ,
we clarify here why it is suitable for ChIP, and how it has been updated to
support it. AIOCJ has been created to program adaptive applications [15], but
the main reason why we build on it is that it supports not only choreographic
programming and realizability checking (as done, for instance, by Chor [14]
or Scribble [43]), but also interaction with external services. This last feature
is fundamental to speak about integration, and, as far as we know, AIOCJ is
currently the only choreographic language providing it. AIOCJ generates code
for the local connectors in the Jolie [37,31] programming language. A relevant

feature that AIOCJ inherits from Jolie is the possibility of supporting multiple
communication media (TCP/IP sockets, Bluetooth L2CAP, Java RMI, Unix
local sockets) and data protocols (HTTP, SOAP, . . .) in a uniform way. This is
convenient to integrate heterogeneous functionalities, as done, e.g., in Listing 1.4.

AIOCJ takes a choreographic program and generates code for all connectors
at once, hence it needs full deployment information. This is not suitable for ChIP,
where each stakeholder i) generates its own connectors and ii) can provide only
deployment information on the other connectors and its local functionalities—i.e.,
it ignores the deployment of functionalities owned by the other stakeholders.
Thus, we have extended AIOCJ with support for separate compilation: one can
select which connectors to generate, and only the needed deployment information
is required. Like AIOCJ, its extension with support for separate compilation is
released as an open-source project7.

We currently do not provide tool support for step 1 of ChIP. Step 2 does
not require any tool support: deployment information and choreographic program
can simply be concatenated. Finally, step 3 can be performed using AIOCJ
with separate compilation. To this end, both the choreographic program and the
deployment information need to fit AIOCJ syntax, reported in [2].

Note that the original version of AIOCJ can be used for testing: if full infor-
mation for a local deployment is provided (and stubs for required functionalities
are in place), AIOCJ will provide a fully working local network of connectors,
that can be immediately tested to check whether the behavior is as expected.
Changing the deployment information does not change the behavior (provided
that required functionalities are available), hence this local test is relevant.

6 Evolution of Integrated Systems

Another important aspect of system integration, besides the design of new solu-
tions, is the evolution of existing ones [22]. On the one hand, the rigidity of the
integration imposes constraints on the network topology and the functionalities
of the internal system of each stakeholder; on the other hand, each stakeholder
strives to evolve its internal system independently, adapting it to environmental
changes and newly-adopted business policies. Finally, integration solutions may
also need to adapt to mirror changes in business relationships between the stake-
holders, e.g., when some stakeholders leave or join the partnership. Managing
these elements of software evolution is an essential aspect of software manage-
ment, strongly supported by modern engineering approaches such as continuous
delivery [28] and continuous deployment [41]. ChIP can be easily integrated into
such modern approaches, offering a structured process for system design and
evolution. Concretely, in ChIP, the generation of connectors is already automatic,
hence automation can go directly from the global design to the deployment.
Furthermore, the artifacts developed during the ChIP process, namely the global
specification, the global design, and the local bindings, can be reused and updated

7 https://github.com/thesave/aiocj/tree/SeparateCompilation

https://github.com/thesave/aiocj/tree/SeparateCompilation

during evolution. More in detail, in ChIP, updates to the integration are either
done from the design step and/or locally, at the step of local grounding (e.g.,
starting from a pre-existing global design and reiterating from step 2).

As expected, reiterating ChIP from step 2 concerns only the local resources
of single stakeholders and it is transparent to the other stakeholders. Contrarily,
changes at the design level may influence many participants in the integration.
In this case, partners can decide to update the integration either from the level
of global specification or from that of global design. Such a decision is based
on the visibility of the modifications. If the update regards only some technical
details that are abstracted away in the global specification, partners can just
have their IT personnel agree on a new version of the pre-existing global design,
automatically generating the new connectors that implement the updated design
(to replace the previous ones). On the contrary, if the update is visible at the
level of the global specification, the domain experts of each stakeholder should
reiterate over the whole ChIP process, first agreeing upon an updated version of
the pre-existing global specification and then revising steps 1 , 2 , and 3 to
obtain the updated integration solution.

We contrast this situation with what would be needed in the traditional
integration process: the global specification is updated — provided that the
change is relevant enough to be visible at the specification level — and then
developers of each stakeholder need to update their local connectors accordingly.
There, understanding which local changes are needed to enable a new desired
global behavior is far from trivial, it requires good coordination among the
involved teams, and it is prone to misbehaviors.

Example of System Evolution in ChIP. To illustrate how the ChIP process
simplifies the evolution of existing integration solutions, we consider our running
example and assume that, due to administrative data-provenance regulations, the
Bus Agency must digitally sign each bus position sent to the University, while
the University is asked to discard any unsigned data it receives.

According to the evolution process described in the previous paragraphs, first
the stakeholders should agree upon a revised version of the global specification.
To exemplify this, we report in Figure 4 a possible revision of the UML Sequence
Diagram in Figure 2. In Figure 4 in the loop fragment the Bus Agency sends
a message labeled “signed current bus position” to the University. The data, if
validated, is used to calculate the delay sent to the Regional Government. In the
other case—the empty lane in the alternative fragment in Figure 4—the received
data is not used and therefore discarded.

Once the updated global specification is agreed upon by all the stakeholders,
they can proceed with step 1 by just modifying the second half of the global
design in Listing 1.3. We report in Listing 1.5 the updated code of Listing 1.3. The
most relevant changes are: i) at line 17 the BusAgency invokes a new functionality
to sign the retrieved position of the current bus, ii) at line 19 the Tracker invokes
a new functionality to validate the data sent by the BusAgency, and iii) at lines
20-24 the Traker decides, based on the result of the validation, whether to use
the data for delay calculation or to discard it and proceed with the next iteration.

Tracker by University Bus AgencyRegional Government

Tracked line

alternative (if signed data is valid)

Line schedule

Signed current bus positionloop (until schedule has next stop)

Calculated delay

Fig. 4. Evolved Sequence Diagram of the Pilot.

15 while(hasNext)@Tracker {
16 pos@BusAgency = getPosition(line);
17 signed_pos@BusAgency = sign(pos);
18 passPosition: BusAgency(signed_pos) -> Tracker(pos);
19 valid@Tracker = validate(pos);
20 if(valid)@Tracker{
21 delay@Tracker = calculateDelay(shd , pos);
22 storeDelay: Tracker(delay) -> DatabaseConnector(delay);
23 _@DatabaseConnector = insertDelay(line , delay)
24 };
25 hasNext@Tracker = hasNextStop(shd)
26 }

Listing 1.5. Global design of the updated BusCheck pilot.

After agreeing upon the global design in Listing 1.5, the stakeholders proceed
to the individual local grounding (as of step 2). In the example, only the
BusAgency and the Tracker have to modify their pre-existing groundings, respec-
tively defining the location of functionalities sign and validate. Following step
3 , each partner automatically generates its own updated connectors. Finally, to

start the updated version of the integration, all the partners have to terminate
the previously deployed connectors and deploy their respective replacements.

Dynamic Evolution. As exemplified above (as well as in the traditional
approach), when updating a pre-existing system, the stakeholders have to shut-
down the deployed connectors, replace them, and restart the whole integrated
architecture. In many application contexts these downtimes are acceptable, how-
ever when the integrated systems need to be always online, it is imperative to
avoid or at least minimize these downtimes.

Shutdown can be avoided by resorting to live update techniques, such as the
ones described in [44]. However, as shown in [44], only a few of these techniques
support the live update of distributed systems. Indeed, while the centralized case
entails the update of just one program, in the distributed case a protocol must
be in place to coordinate the update of the distributed components, avoiding
unexpected behaviors that may arise when updated components interact with
components which have not been updated yet.

Notably, AIOCJ provides one of the few techniques for live updates of dis-
tributed systems, that is of the distributed connectors it generates. We refer
to [16] for a full description of the technique, since it is out of the scope of the
present paper. Essentially, selected parts of the choreographic program can be
replaced by new choreographic program fragments at runtime thanks to AIOCJ
runtime support. As proved in [16], AIOCJ guarantees correctness of the behavior
after the update, and avoids unexpected behaviors while the update is applied.

7 Conclusion

We presented ChIP, a novel integration process suited for distributed, cross-
organizational scenarios. The main highlight of ChIP is that it provides a struc-
tured way to refine abstract global specifications (e.g., UML Sequence Diagrams)
into corresponding concrete implementations. The refinement process relies on
choreographic programs to represent a global design agreed upon by all partners
of the integration. The global design is used by each stakeholder to selectively
compile its own set of executable connectors.

In ChIP, choreographies provide the main benefits of i) enabling a simpler
and less error-prone refinement process, since they are closer to the high-level
global specifications with respect to low-level implementations; ii) structuring
how the integrated functionalities of each partner are accessed, without disclosing
relevant information, like the internal topology of partners (which can even change
dynamically, provided it preserves the interface expected by connectors); iii)
supporting a correctness-by-construction approach that guarantees the faithful
implementation of the agreed global design, also avoiding hard-to-debug mis-
behaviors such as deadlocks; iv) simplifying the evolution of the system, thus
matching nicely continuous delivery and continuous deployment approaches.

While ChIP provides an innovative framework for integration, many aspects
need further study. The global refinement phase should be fully specified (taking
into account the different possible notations for the global specification) and
equipped with suitable tool support. Integration should also be type safe, by
declaring types both for variables in the global design and for external function-
alities, relying, e.g., on XML Schema [39] type system. Other relevant issues
include how to deal with exceptional behavior, transactions, large and complex
data structures, security and non-functional properties. While a detailed study
of each of these topics would be long and challenging, we deem ChIP able to help
dealing with them. The broad idea is that desired behaviors, e.g., transactional
or security properties, can be specified at the global level and then advanced

projections ensure that specifications are matched by the running system. An
approach along these lines for security properties is described in [10].

Acknowledgements. This work was partially supported by the Independent
Research Fund Denmark, grant no. DFF-7014-00041.

References

1. van der Aalst, W.M., Weske, M.: The p2p approach to interorganizational workflows.
In: CAiSE. pp. 140–156. Springer (2001)

2. AIOCJ website. http://www.cs.unibo.it/projects/jolie/aiocj.html
3. Allweyer, T.: BPMN 2.0: introduction to the standard for business process modeling.

BoD–Books on Demand (2016)
4. Arbab, F.: Reo: a channel-based coordination model for component composition.

MSCS 14(3), 329–366 (2004)
5. Autili, M., Inverardi, P., Tivoli, M.: Choreos: large scale choreographies for the

future internet. In: CSMR-WCRE. pp. 391–394. IEEE (2014)
6. Autili, M., et al.: A model-based synthesis process for choreography realizability

enforcement. In: FASE. pp. 37–52. LNCS, Springer (2013)
7. Basu, A., et al.: Rigorous component-based system design using the BIP framework.

IEEE Software 28(3), 41–48 (2011)
8. Basu, S., Bultan, T.: Automated choreography repair. In: FASE. LNCS, vol. 9633,

pp. 13–30. Springer (2016)
9. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: POPL.

pp. 191–202. ACM (2012)
10. Bhargavan, K., et al.: Cryptographic protocol synthesis and verification for multi-

party sessions. In: CSF. pp. 124–140. IEEE Computer Society (2009)
11. Bocchi, L., et al.: Monitoring networks through multiparty session types. Theor.

Comput. Sci. 669, 33–58 (2017)
12. Booch, G.: The unified modeling language user guide. Pearson Education India

(2005)
13. Callegati, F., et al.: Smart mobility for all: A global federated market for mobility-

as-a-service operators. In: ITSC. pp. 1–8. IEEE (2017)
14. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous

global programming. In: POPL. pp. 263–274. ACM (2013)
15. Dalla Preda, M., et al.: AIOCJ: A choreographic framework for safe adaptive

distributed applications. In: SLE. pp. 161–170. LNCS, Springer (2014)
16. Dalla Preda, M., et al.: Dynamic choreographies: Theory and implementation.

Logical Methods in Computer Science 13(2) (2017)
17. Decker, G., Zaha, J.M., Dumas, M.: Execution semantics for service choreographies.

In: WS-FM. LNCS, vol. 4184, pp. 163–177. Springer (2006)
18. Endres, A., Rombach, H.D.: A handbook of software and systems engineering:

Empirical observations, laws, and theories. Pearson Education (2003)
19. Evans, P.C., Basole, R.C.: Revealing the API ecosystem and enterprise strategy

via visual analytics. Communications of the ACM 59(2), 26–28 (2016)
20. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch or why it’s hard to

build systems out of existing parts. In: ICSE. pp. 179–185. ACM/IEEE (1995)
21. Hasselbring, W.: Information system integration. Communications of the ACM

43(6), 32–38 (2000)

http://www.cs.unibo.it/projects/jolie/aiocj.html

22. Hasselbring, W.: Information system integration: Introduction. Commun. ACM
43(6), 32–38 (2000)

23. He, W., Da Xu, L.: Integration of distributed enterprise applications: A survey.
IEEE Trans. Ind. Informat. 10(1), 35–42 (2014)

24. He, W., Da Xu, L.: Integration of distributed enterprise applications: A survey.
IEEE Transactions on Industrial Informatics 10(1), 35–42 (2014)

25. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response
graphs. In: FSEN. LNCS, vol. 7141, pp. 343–350. Springer (2011)

26. Hitt, L.M., Wu, D., Zhou, X.: Investment in enterprise resource planning: Business
impact and productivity measures. JMIS 19(1), 71–98 (2002)

27. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016)

28. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Pearson Education (2010)

29. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Computing Surveys 49(1), 3 (2016)

30. International Telecommunication Union: Message Sequence Chart (MSC). Series Z:
Languages and General Software Aspects for Telecommunication Systems (2011)

31. Jolie website. http://www.jolie-lang.org/
32. Jongmans, S., Arbab, F.: Global consensus through local synchronization: A formal

basis for partially-distributed coordination. SCP 115 (2016)
33. Lanese, I., Montesi, F., Zavattaro, G.: Amending choreographies. In: WWV. EPTCS,

vol. 123, pp. 34–48 (2013)
34. Leesatapornwongsa, T., et al.: Taxdc: A taxonomy of non-deterministic concurrency

bugs in datacenter distributed systems. In: ACM SIGPLAN Notices. vol. 51(4), pp.
517–530. ACM (2016)

35. McIlvenna, S., Dumas, M., Wynn, M.T.: Synthesis of orchestrators from service
choreographies. In: APCCM. CRPIT, vol. 96, pp. 129–138. Australian Computer
Society (2009)

36. Montesi, F.: Kickstarting choreographic programming. In: WS–FM. pp. 3–10. LNCS,
Springer (2014)

37. Montesi, F., Guidi, C., Zavattaro, G.: Service-oriented programming with Jolie. In:
Web Services Foundations, pp. 81–107. Springer (2014)

38. Montesi, F., Yoshida, N.: Compositional choreographies. In: CONCUR. LNCS, vol.
8052, pp. 425–439. Springer (2013)

39. Peterson, D., et al.: W3C XML Schema Definition Language (XSD) 1.1 Part 2:
Datatypes. W3C (2012)

40. Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the theoretical foundation of chore-
ography. In: WWW. pp. 973–982. ACM (2007)

41. Rodŕıguez, P., et al.: Continuous deployment of software intensive products and
services: A systematic mapping study. JSS 123, 263–291 (2017)

42. Russo, D., et al.: Software quality concerns in the Italian bank sector: The emergence
of a meta-quality dimension. In: ICSE. pp. 63–72. ACM/IEEE (2017)

43. Scribble website. http://www.jboss.org/scribble
44. Seiifzadeh, H., et al.: A survey of dynamic software updating. Journal of Software:

Evolution and Process 25(5), 535–568 (2013)
45. Zaha, J.M., other: Let’s dance: A language for service behavior modeling. In: OTM

Confederated International Conferences. pp. 145–162. Springer (2006)

http://www.jolie-lang.org/
http://www.jboss.org/scribble

