
Distributed Serverless Function Scheduling in Ad-Hoc
Drone Networks

Giuseppe De Palmaa,b, Saverio Giallorenzoa,b, Alexandre Heidekera, Matteo
Trentina,b,c, Angelo Trottaa, Gianluigi Zavattaroa,b

aAlma Mater Studiorum - Università di Bologna, Italy
bINRIA, Sophia Antipolis, France

cUniversity of Southern Denmark, Sophia Antipolis, Denmark

Abstract

The increasing use of Unmanned Aerial Vehicles (UAVs) in critical applica-
tions, such as disaster response, compels efficient communication and com-
putation frameworks for highly dynamic ad-hoc networks. We present an
interpretation of Function-as-a-Service serverless computing within the dis-
tributed settings of drone swarms to address their peculiar challenges in
functionality deployment, resource allocation, and mission adaptability. We
propose a novel two-layer network overlay architecture, combining a gossip-
based topology management layer with a function scheduling layer to sup-
port distributed function scheduling. Our system introduces a declarative
language of Ad-Hoc Allocation Priority Policies (AHAPP), tailored for ad-
hoc drone networks, enabling flexible function deployment based on resource
constraints and operational needs. The resulting combination addresses the
volatility of UAVs networks by supporting execution semantics for stable- and
dynamic-topology scenarios, function offloading, and resilience to network
disruptions. We present experiments confirming that the features provided
by our proposal support the efficient execution of serverless functions in ad-
hoc drone networks, effectively handling their dynamic and heterogeneous
nature, while achieving strong performance in terms of reliability, scheduling

Email addresses: giuseppe.depalma2@unibo.it (Giuseppe De Palma),
saverio.giallorenzo2@unibo.it (Saverio Giallorenzo), alexandre.heideker@unibo.it
(Alexandre Heideker), matteo.trentin2@unibo.it (Matteo Trentin),
angelo.trotta5@unibo.it (Angelo Trotta), gianluigi.zavattaro@unibo.it (Gianluigi
Zavattaro)

time, and communication overhead.

1. Introduction1

The proliferation of unmanned aerial vehicles (UAVs), or drones, in civil-2

ian and commercial applications has sparked significant interest in developing3

efficient communication and computation frameworks for such decentralised,4

ad-hoc wireless networks, where each node participates in routing by for-5

warding data for others [1]. As these networks become increasingly com-6

plex, traditional computing architectures struggle to meet the demanding7

requirements of real-time data processing, dynamic resource allocation, and8

mission-critical operations [2].9

Case Study and Motivating Example. The case study we present in this sec-10

tion is one of the possible use cases that our proposal can host. While we11

use the case throughout the article to explain our approach, in Section 6, we12

present evaluations regarding generic simulations with different topologies13

and number of elements, besides the ones that simulate the case study.14

We illustrate an example of such highly dynamic systems with a running15

case study, modelling a multiphase Fire Detection and Response scenario.16

We represent the phases in Figure 1, and comment on them below.17

As part of its responsibilities, the agency managing a natural area actively18

monitors various potential threats to the environment. Among these, fire19

detection is a critical component of their surveillance efforts. As show in20

panel a) of Figure 1, the drones fly across a monitored area, using cameras21

and sensors to conduct continuous aerial surveillance.22

To ensure early detection and a swift response, the agency conducts23

hourly fire monitoring routines using drones, performing real-time heat sig-24

nature analysis, detecting and precisely geolocating fire origins. Once a drone25

detects a fire, it transmits comprehensive geospatial data to the command26

centre, providing critical first-response information that enables rapid and27

targeted intervention.28

Following initial fire identification, the agency commands the drones in29

fire locations to execute a survivor detection routine, depicted in panel b)30

of Figure 1. Equipped with multi-spectral imaging sensors and using ma-31

chine learning algorithms, they conduct scans through smoke, debris, and32

challenging terrain [3].33

2

Figure 1: Depiction of the Fire Detection and Response case study main phases: a) Fire
Detection, b) Survivor Location, and c) Real-Time Emergency Response Coordination.

The last phase of the case is that of survivor tracking, shown in panel c)34

of Figure 1. Given the information on the identified groups of survivors, the35

agency instructs the drones in the survivors’ locations to follow a continuous36

tracking and information transmission routine [4]. Precision GPS equipment37

and real-time video streaming enable persistent monitoring of survivor lo-38

cations. The drones can generate comprehensive data reports that include39

exact coordinates, visual tracking information, estimated survivor conditions,40

and recommended access routes for rescue teams.41

Ad-Hoc Networks Serverless Computing. In contexts like the one described in42

the above case study, Function-as-a-Service (FaaS) Serverless Computing [5]43

emerges as a promising paradigm to address the challenges of lightweight,44

scalable, and distributed management of computational workloads in drone45

ad-hoc networks — we provide background information on FaaS for the un-46

familiar reader in Section 2, along with a general introduction to ad-hoc47

networks and issues with workload distribution, drone swarms in particular.48

FaaS is a cloud computing execution model where cloud providers auto-49

matically manage the infrastructure required to run application code. This50

paradigm shifts from traditional server-based architectures to event-driven,51

stateless functions that the platform runs in response to user invocations.52

We argue that scenarios that require rapid deployment, minimal overhead,53

3

and efficient resource usage like the one presented above, hardly fit into the54

existing, “traditional” application deployments practices, where all the drones55

already preload all functionalities that one can trigger.56

Indeed, we see at least two main limitations with the preloading ap-57

proach. First, the drones have limited storage capacity, hence, loading many58

disparate software modules would unlikely be a viable course. Second, and59

more important, it is unrealistic that the designers of the system can fore-60

see and program all the functionalities that one can need deployed on the61

drones. In the preload setting, missing functionalities require the drones to62

waste precious time to go back to base, update their firmware/programming,63

and return to the interested areas.64

To make the above observations more concrete, let us consider our case65

study. While one might preset the drone swarm for detecting fire alerts, this66

specialisation would limit the capabilities of the swarm to only that kind of67

emergency. However, emergency scenarios are unpredictable and may require68

rapid deployment of new capabilities. For instance, if the fire happens near69

in an industrial area, the emergency protocol could require specific chem-70

ical detection algorithms, another example is extreme weather conditions,71

which would require specific flight patterns and sensing protocols. Focusing72

even more specifically on the case study, e.g., the machine learning models73

for heat signature analysis and survivor detection might need frequent up-74

dates to improve accuracy and adapt to new conditions. With preloaded75

functions, updating these models would require taking drones out of service76

for reprogramming, creating dangerous gaps in coverage. Moreover, from77

an efficiency perspective, the multiphase nature of the operation (detection,78

survivor location, tracking) means that most functions are not needed con-79

tinuously. Preloading all functions would waste valuable onboard resources.80

Of course, considering circumstances much different from fires, like floods81

and earthquakes, would require the drones to host even more heterogeneous82

sets of functionalities.83

Hence, preloading all possible functionalities for these events hardly fits84

the exceptionality and time pressure of each situation.85

Similarly, more sophisticated machanisms, like dynamic loading approaches,86

while an improvement over preloading, face important limitations when com-87

pared a distributed serverless architecture. The requirement to pre-allocate88

storage space for potential modules remains a constraint [6], whereas a server-89

less approach enables drones to share computational resources and dynami-90

cally offload functions. The update process is also cumbersome with dynamic91

4

loading, requiring individual updates to each drone, while we propose an in-92

terpretation of serverless that can make functions available across the network93

of valid drones. Furthermore, dynamic loading systems must still anticipate94

which modules might be needed and include their dependencies, limiting true95

flexibility. Serverless architectures overcome these limitations by allowing de-96

ployment of arbitrary functions without pre-planning module dependencies.97

Moreover, most critically, in centralised approaches, when network partitions98

occur drones that cannot communicate with the central orchestrator cannot99

obtain the new functionalities. In contrast, our distributed serverless ar-100

chitecture makes function scheduling available through peer-to-peer sharing101

even when disconnected from a central infrastructure, making it more re-102

silient for ad-hoc drone networks operating in challenging environments —103

indeed, the inherent scalability of the serverless approach facilitates the dy-104

namic addition/removal of network nodes, a common requirement in drone105

swarm operations.106

The idea of marrying ad-hoc drone networks and serverless comes from107

recent advancements in serverless technologies, which allows the efficient ex-108

ecution of both the functions on edge devices and, more importantly for109

the ad-hoc context, the components of the serverless platform itself, like the110

scheduler of the functions. For instance, FunLess [7, 8] is a recent serverless111

platform tailored for private edge cloud systems that leverages WebAssembly1
112

(Wasm) as its runtime environment. This feature offers several advantages,113

among which portability and consistent development and deployment across114

heterogeneous devices (as found in ad-hoc networks) and a reduced memory115

footprint.116

While technologies like FunLess provide support for building a serverless117

platform for ad-hoc drone networks, its implementation presents peculiar118

challenges that we address in this article.119

Specifically, we look at both the architecture of the serverless platform and120

the protocols that support its functionalities in an environment characterised121

by the latency and intermittent connectivity of mobile aerial communication.122

In doing so, we strive to provide reliable function execution and enhance123

resource allocation across heterogeneous drone configurations.124

Supporting Ad-Hoc Serverless Computing. In Section 3, we present our ap-125

proach, hinged on a two-layer network overlay system designed for drone126

1https://webassembly.org/.

5

https://webassembly.org/

networks. The architecture we propose uses a “gossiping” layer, built on127

top of the physical plane of drones and base station, to manage the net-128

work topology and drone status tracking. The gossiping layer plays a crucial129

role in disseminating information about drone status, available resources,130

and network topology. On top of this layer, we find a “function scheduling”131

one, which handles function placement and routing. The system implements132

both hierarchical and progressive scheduling approaches, which capture the133

high volatility of ad-hoc drone networks. Specifically, under the hierarchi-134

cal approach, the base station maintains complete network information and135

directly assigns functions, useful in more static situations, with broadband,136

low-latency communication. In the progressive approach, the base station137

and the drones collaborate in making routing decisions to identify the vi-138

able targets for function execution, based on local information — this sec-139

ond approach fits scenarios with higher latencies and narrower bandwidth,140

which prevent the base station from having an up-to-date and comprehensive141

knowledge of the status of the network.142

Moreover, while traditional serverless settings consider a 1:1 ratio between143

a user invocation and the execution of the related function — logically, the144

invocations existentially quantify the functions — we note that, in ad-hoc145

network settings, the user might require the execution of a function on all146

viable nodes (e.g., the fire detection routine found in our case study). For this147

reason, we introduce a universal quantifier that allows users to indicate the148

execution of the same function on all valid drones. Recognising that the fluid149

nature of ad-hoc drone networks presents challenges in assuring the correct150

execution of functions — invocations could more likely fail than classical151

serverless deployment due to network latencies and loss of connectivity —152

we also introduce two types of execution semantics for functions, a “strong”153

and a “weak ” one, with their related interpretation of the above quantifiers.154

Briefly, the strong semantics requires the exact execution of a function on155

either one specific drone or all viable drones, while the weak semantics offers156

more flexibility by allowing execution on at least one drone (so the function157

can run on a set amount of alternative nodes, while the user receives the158

successful response from the drones) or almost all drones (setting a timeout159

after which the user receives all provided responses). Since drones have160

limited hardware, we also introduce the possibility of offloading the execution161

of functions to external computation nodes, like cloud and edge nodes, when162

necessary and indicated by the user.163

6

Governing Decentralised Function Scheduling. A hallmark of classical server-164

less computing is that all nodes that make up the computation units available165

to the platform are functionally equivalent, which allows the users to ignore166

the underlying topology and leave to the discretion of the platform the task of167

deciding where to allocate function instances. While all computation nodes168

are functionally equivalent, performance-wise, they might differ depending169

on e.g., their geographical position or their status. For instance, effects like170

code locality [9] — due to latencies in loading function code and runtimes171

— or session locality [9] — due to the need to authenticate and open new172

sessions to interact with other services — can substantially increase the run173

time of functions. This observation sparked extensive research into strate-174

gies [10, 11, 12, 13, 14, 15] to enhance function execution efficiency. However,175

using a single, universal scheduling policy is inadequate for addressing diverse176

requirements, which led to the development of Allocation Priority Policies177

(APP) [16], a declarative language that for the definition of custom schedul-178

ing policies, so that the serverless platform can support multiple scheduling179

approaches simultaneously, each tailored for specific function groups.180

In the UAVs context, nodes are not only performance- but also functionally-181

wise different, e.g., if we need to run a video scan of a specific area, only the182

drones equipping a camera and hovering that area are valid execution nodes.183

For this reason, we introduce and integrate in our platform a new lan-184

guage, inspired by APP for Ad-Hoc Networks, called AHAPP (Ad-Hoc APP),185

which we present in Section 4. We deem AHAPP a new language because it186

mainly takes inspiration from APP regarding the definition of policies. How-187

ever, in APP, the serverless scheduler holds a copy of a script that describes188

the scheduling of all functions; on the contrary, since in our platform all189

nodes can act as a scheduler, we pair a function execution invocation with190

its AHAPP script that describes its scheduling logic — i.e., the function191

“travels” with its scheduling script.192

At its core, AHAPP allows users to specify whether functions should193

run on all drones or just one — with variations for the weak semantics.194

The language specifies resource-based targeting through its “attributes” sys-195

tem, which handles both physical properties, like geographical positions, and196

hardware requirements, such as available energy, memory, and storage but197

also access to rotors, cameras, or GPUs. AHAPP supports workflow man-198

agement through the expression of affinity among functions (inspired by a199

recent dialect of APP [17]), allowing functions to specify dependencies on200

other functions that must (have) run on the same drone. Since more than201

7

one drone can qualify for executing the function, AHAPP adopts, from APP,202

the concept of selection strategy, where the user can specify the priorities203

for choosing among alternative nodes. This feature allows users to refine204

scheduling based on factors like geographical proximity, load balancing, and205

energy reserves.206

In Section 5, we delve into the details of the network protocol underlying207

our system. This protocol is essential for maintaining an accurate and up-to-208

date view of both the network topology and the status of individual drones209

within the distributed system and support the scheduling of functions. Rely-210

ing on periodic message exchanges, the protocol addresses key challenges in211

mobile ad-hoc networks, particularly within drone swarms, where dynamic212

topologies, intermittent connectivity, and diverse hardware capabilities re-213

quire robust distributed communication mechanisms.214

Following the above design, we devise experiments to validate our ap-215

proach, presenting them in Section 6. To assess the performance of dis-216

tributed function deployment algorithms, we conduct extensive simulations217

across various application scenarios. Our evaluation highlights how the pro-218

posed decentralised scheme improves upon centralised scheduling models,219

maintaining a high service deployment ratio close to the optimal value while220

reducing reliance on global network state knowledge. Moreover, the interac-221

tion between knowledge dissemination, scheduling decisions, and deployment222

success will be carefully analysed, as stale or incomplete network information223

can significantly impact function placement and execution efficiency. The ex-224

periments confirm that the functionalities provided by our proposal support225

the efficient execution of serverless functions in ad-hoc drone networks, effec-226

tively adapting to their dynamic and heterogeneous nature. Our approach227

demonstrates strong performance in terms of reliability, scheduling time, and228

communication overhead, showing that decentralised function scheduling is229

both scalable and resilient under varying network conditions.230

We conclude, in Section 8, by drawing final remarks and discussing future231

development.232

2. Background233

Before presenting our approach, in Section 3, we provide context for the234

key technologies and concepts underlying this research: serverless computing235

and ad-hoc (drone) networks.236

8

2.1. Background on Serverless237

Serverless computing has emerged as a response to the growing complexity238

and management challenges in modern cloud applications [5]. The core of the239

Serverless model is a Function-as-a-Service (FaaS) platform, which enables240

developers to build applications as compositions of stateless, event-driven241

functions that automatically scale according to demand. This model proves242

particularly cost-effective for applications with variable traffic patterns, as243

developers pay only for actual function execution time rather than maintain-244

ing constantly running servers. The key characteristic of these platforms is245

their infrastructure transparency. The underlying resources that power func-246

tion execution (concretely, e.g., the cluster of nodes) are abstracted away,247

and developers need to only upload functions in any (supported) program-248

ming language and connect them to a triggering event, e.g., HTTP requests.249

When triggered by such events, the platform executes the relative function by250

selecting one of the available resources designed for execution and transmit-251

ting the invocation request to it. The function is then executed in ephemeral252

environments that can be instantiated and removed on demand. These en-253

vironments, which may be implemented using virtual machines, containers,254

or specialised runtimes, handle all aspects of resource allocation and exe-255

cution. Our research leverages this infrastructure transparency property of256

FaaS platforms in a novel context: ad-hoc networks.257

2.2. Background on Ad-Hoc Networks258

Ad-hoc networks enable decentralised communication without fixed in-259

frastructure, making them suitable for dynamic environments, such as dis-260

aster response, military operations, and remote sensing [18]. Unlike conven-261

tional networks, these systems continuously adapt to changing conditions,262

requiring robust mechanisms for routing, resource allocation, and fault toler-263

ance. Aerial ad-hoc networks, composed of drones, introduce additional com-264

plexities due to their three-dimensional mobility, limited energy resources,265

and highly dynamic topology [1]. Unlike ground-based networks, drone-based266

systems must continuously adapt to environmental conditions, network dis-267

ruptions, and intermittent connectivity.268

Traditional ad-hoc drone networks rely on pre-programmed behaviours269

and functions loaded at a base station, requiring drones to return for re-270

programming when new functionality is needed [19]. This approach proves271

especially problematic in emergency scenarios like disaster response, where272

returning to base interrupts critical operations and wastes valuable response273

9

time. Each round trip consumes significant battery power that could oth-274

erwise support mission-critical tasks, while the travel time reduces effective275

coverage and delays deploying new capabilities [20].276

A more efficient approach would enable remote reprogramming by sending277

new functions directly to drones in the field, maintaining continuous opera-278

tion, preserving battery life, and allowing rapid adaptation to changing mis-279

sion requirements without physical recall. This remote function deployment,280

which aligns with our interpretation of serverless for ad-hoc networks, also281

enables dynamic load balancing and task redistribution across the network,282

critical for maintaining service when drones may fail or become unreachable283

in emergency situations.284

However, bringing serverless computing to ad-hoc networks presents pe-285

culiar challenges. Traditional cloud serverless platforms rely on centralised286

schedulers found in complete topologies, i.e., the centralised scheduler can287

directly reach all nodes, and with complete system visibility, enabling pre-288

cise, globally-controlled function allocation and resource management. In289

contrast, it is difficult to efficiently impose global coordination on ad-hoc net-290

works, which frequently take (e.g., routing) decisions relying on (bandwidth-291

efficient but partial) local, aggregated knowledge.292

Hence, implementing an ad-hoc network version of serverless requires293

scheduling to be lightweight, adaptive, and resilient to outdated or partial in-294

formation. In particular, when dealing with drones, the resource constraints295

impose strict limits on function execution, demanding efficient scheduling296

routines that optimise energy and computational costs. Knowledge dissem-297

ination further complicates function deployment. In a cloud environment,298

function scheduling benefits from stable, high-bandwidth communication. In299

an ad-hoc network, global state propagation is impractical due to bandwidth300

and energy constraints, requiring decentralised approaches such as gossip-301

based information exchange. Function execution also faces unpredictability,302

as network disruptions can lead to execution failures, necessitating adaptive303

mechanisms.304

Despite these challenges, serverless computing aligns well with the event-305

driven nature of drone networks. Modern, lightweight serverless execution306

environments, e.g., based on Wasm [8, 7], offer the possibility to both run307

functions and the serverless platform services across heterogeneous devices.308

By integrating decentralised scheduling, adaptive knowledge dissemination,309

and fault-tolerant execution, serverless computing can enhance the flexibility310

and efficiency of aerial ad-hoc networks. This work introduces a decentralised311

10

function scheduling framework tailored to these constraints.312

3. An Approach for Ad-hoc Serverless Computing313

The approach that we propose consists of a two-layer network overlay314

among the drones and the Base Station, built on top of the physical plane,315

where the connections among the nodes in the network depend on the range316

and strength of the wireless signal and position of the drones w.r.t. each other317

and the Base Station.318

In this section, we present the design and principles behind our approach.319

We concretely evaluate our proposal, e.g., the application of the different320

scheduling modalities, in Section 6.321

We draw a schema of the overlay network we propose in Figure 2. In322

the figure, we depict, at the top, the physical plane, i.e., that of the physical323

drones and Base Station, under which we find the “gossiping” layer, dedicated324

to keeping track of the topology of the ad-hoc network, as well as the sta-325

tus of each drone. Specifically, this kind of information includes knowledge326

about the neighbours of each element (i.e., immediately reachable nodes) for327

each drone, as well as status information such as its available memory and328

storage. The drones spread information about their and their neighbours’329

status, e.g., whether their camera or GPU are available for use, and their330

current workload. In the figure, we denote these exchanges as g(D1, · · · , Dn)331

to represent a gossip g about the drones with identifiers D1, · · · , Dn — to il-332

lustrate the key mechanics of our approach protocol without too much detail,333

in the figure, we sketch a simplified sequence of gossiping exchanges among334

the drones and describe the protocol in full detail in Section 5. Gossip-335

based protocols are widely used in mobile ad-hoc networks thanks to their336

ability to minimise network congestion and provide robust, scalable commu-337

nication. Unlike explicit point-to-point communications, which often require338

extensive control messages to maintain routing and scheduling state, gossip-339

ing relies on periodic, neighbour-only exchanges of compact status updates.340

Each node transmits its local state to immediate neighbours, who in turn dis-341

seminate this information further, enabling the network to converge toward342

a consistent, global view over time. This decentralised mechanism eliminates343

the need for coordinated broadcasts or central controllers, making it highly344

suitable for dynamic and infrastructure-less environments. As demonstrated345

by Shah [21], gossiping effectively reduces redundant message transmissions,346

lowering the likelihood of network congestion. More recent work by Fang347

11

Base
Station

()

(
)(

)
Function Scheduling Layer

Gossiping Layer

Physical Layer

Figure 2: An example of the proposed overlay network.

et al. [22] reinforced this observation, showing that asynchronous gossip-348

based algorithms enable scalable, low-overhead coordination in distributed349

optimisation problems. Thus, in the context of ad-hoc networks serverless350

computing, gossiping can provide a lightweight and fault-tolerant substrate351

for disseminating state information, enabling each node to make informed352

scheduling decisions without relying on global knowledge or infrastructure.353

In Figure 2, we find, at the bottom, the “function scheduling” layer, dedi-354

cated to the placement of functions and concerning the messages on the rout-355

ing and allocation of functions, along with complementary messages such as356

the response to the user after the execution of a function. In the Figure,357

we represent these exchanges with the message (f, a,D1), which we read as358

“deliver function f on drone D1 following the scheduling policy a”. As an359

example, we depict in the figure an illustrative flow that, starting from the360

Base Station, goes to drone D4, which decides to forward the message to361

drone D3, which finally relays the message to the addressee, D1, that will362

execute the function. To inform these placement and routing decisions, the363

components at this layer use the information gathered from the gossiping one.364

12

Closing the example, when the target drone (D1) terminates the execution365

of the function, it sends back to the Base Station the result of the execution366

as a response. Similarly to the routing of the execution request message, the367

response message from the drone to the Base Station uses information from368

the gossiping layer to determine the path of the delivery. Since the response-369

relay part is standard for ad-hoc networks, we omit its description in the rest370

of our specification and focus on the traits distinctive of our approach.371

As noticeable by the pairing of function execution requests with their372

scheduling policy, the function scheduling layer supports the definition of373

user-defined, per-function scheduling information expressed in the AHAPP374

language, discussed in Section 4. On the contrary, the gossiping layer runs a375

predefined behaviour on all nodes to disseminate status information within376

the network.377

The schema in Figure 2 also illustrates another distinctive feature of our378

proposal. The functions that execute on the drones are not already present379

on the drones themselves. On the contrary, the functions “travel” with the380

request to run them. From a programming perspective, the creator and381

maintainer of the functionalities implemented by the functions is any user382

who has access to the platform and can issue the request to execute them383

at the Base Station. More practically, the user directly interacts only with384

the Base Station, by sending application-level messages, e.g., using REST385

or other protocols (the user-Base Station communication is an orthogonal386

detail to our proposal) and they do not directly interact with the function387

scheduling layer.388

The gossiping and function-scheduling layers run in parallel and without389

coordination. At the gossiping level, the drones regularly exchange unso-390

licited messages about their status and that of their neighbourhood. At the391

function-scheduling level, users trigger the execution of functions on drones392

by sending requests to the Base Stations. The function-scheduling layer uses393

the information gathered from the gossiping layer available at the moment394

of scheduling to determine the allocation of functions on drones. Hence, the395

gossiping layer just informs the scheduling at each node (Base Station and396

drones), but it does not interact directly with the function-scheduling layer397

to take decision.398

3.1. Rationale behind our two-layer approach399

The reasoning behind our two-layer approach comes from the fact that400

we want to separate the scheduling concerns from the operations for network401

13

connectivity, which are automatic and invisible to the users.402

The gossiping layer builds directly on the physical plane, to construct403

a view of all the drones, performing distributed monitoring of their status.404

Given the low level of abstraction of this protocol and its relative indepen-405

dence w.r.t. the task of scheduling functions, we avoid embedding scheduling406

requests information into the messages exchanged at this level.407

In the design of the scheduling layer, we capture the fact that different408

functions can require different amounts and kinds of resources, depending on409

the nature of the task they need to accomplish. This characteristic is a strong410

departing point between classical serverless computing and our proposal.411

Indeed, most serverless platforms define an arbitrary, hard-coded logic for412

the scheduling of functions. This approach assumes that all the nodes that413

make up the cluster of available targets for the execution of functions are414

functionally equal. We argue that, in ad-hoc networks, this assumption is415

unrealistic, since elements such as the position of the drone and the hardware416

it carries (e.g., some functions might require a GPU while others might need417

camera access, etc.) can determine the successful execution of a function.418

Therefore, we associate each function with a specific policy that informs the419

Base Station and the intervening drones on the requirements of the function420

under scheduling.421

3.2. Hierarchical vs Progressive Scheduling422

While associating a function with its scheduling policy helps users target423

the correct drones for executing the functions, lowering errors and increasing424

efficiency, we notice that, depending on the state of the network, the sys-425

tem can decide on which drone(s) to place a function in two main ways: a426

hierarchical and a progressive one.427

In this section, we discuss the main trade-offs between these two schedul-428

ing modalities. We empirically explore the conjectures presented in this429

section in Section 6, through simulations.430

In the first case, hierarchical, one can assume that the network topol-431

ogy is relatively stable — e.g., drones move slowly w.r.t. the propagation of432

messages — so that the Base Station has up-to-date information about the433

status of the drones to specify which drone(s) shall run the function under434

scheduling, leaving to the other nodes that connect the target drone to the435

Base Station (if any) the task of (efficiently) delivering this request. We rep-436

resent this case in Figure 3. In the figure, we use the notation (f, a,D) to437

indicate a message for scheduling function f on drone D, following the policy438

14

Base
Station

interprets to find the
deployment target(s) for ,
e.g.,

()
()

()

() ()

()

forwards to

executes and forwards
 to , which

can reach forwards to executes

executes

Figure 3: Example of hierarchical scheduling, scheduling layer.

a. Notice that the request sent by the platform’s user — marked, in this and439

the subsequent figures in this section, using a dashed line to indicate the440

usage of a different communication protocol stack than the one among the441

Base Station and the Drones — that reaches the Base Station (from the left,442

in Figure 3) does not indicate a target. Indeed, while the user is unaware443

of the underlying composition and configuration of the drone network, it de-444

fines properties in the companion policy useful to identify valid executors of445

the function. As part of the hierarchical scheduling, it is the Base Station446

that decides on which drone to schedule the function. More precisely, while447

the typical use case for function execution is individual (one function, one448

execution node), in ad-hoc networks the users can require the execution of449

the same function on multiple drones, like, as presented in our case study450

from Section 1, when scheduling a function that needs to check for fires on all451

the areas covered by the drones of the network. As discussed in Section 3.3,452

the language for policies that we provide to users allows them to express the453

possibility of targeting multiple drones.454

For simplicity, above and in the reminder of the section, we preserve the455

same notation f for functions in messages. However, we assume that the456

messages between the Base Station and the drones not only carry the code457

of the function as sent by the user but also a function instance identifier fid458

defined by the Base Station to keep track of the function’s lifecycle.459

In the second case, progressive, one can assume that the network is highly460

dynamic, so that the Base Station cannot construct a reliable representation461

15

Base
Station

interprets to find the
directions for forwarding
the execution of

()
()

()

()

forwards

executes and forwards forwards executes

executes

()

Figure 4: Example of progressive scheduling, scheduling layer.

of the status of the network based on the gossiping information. Since the462

Base Station cannot reliably identify the targets to execute the function, it463

uses the information it has to “push” the request in a direction that likely464

includes a target able to run the function. Hence, the Base Station does not465

indicate which drone shall run the function and rather forwards the request466

to the drones it can directly contact that lay in the target direction. In turn,467

the drones that receive the progressive scheduling consider whether they can468

execute the function or forward it to other drones in their neighbourhood469

that might satisfy the scheduling requirements. We illustrate the logic of470

progressive scheduling in Figure 4, reproducing the same function scheduling471

result of Figure 3. In particular, notice that, differently from Figure 3, the472

message transmitted by the Base Station and the other nodes has the same473

structure of the one sent by the user, i.e., it does not include an indication474

of a specific target drone, but rather uses the generic (f, a) form.475

3.3. Execution Targets: Strong vs Weak Semantics476

As mentioned, in traditional serverless platforms, users invoke the piece-477

meal execution of functions and ignore which target runs it2. However, in478

our context, users might need to run the same function on multiple targets,479

e.g., to gather information about the different areas they are in.480

2This abstraction over the topology of execution nodes constitutes one of the hallmark
traits of classical serverless computing, i.e., since nodes are all functionally equivalent,
users can safely ignore which node executes their function.

16

Strong Semantics: “one” and “all”. When our users specify a scheduling pol-481

icy, they can indicate whether to run the function on “one” valid target —482

which captures the binding with an existential quantifier, i.e., we select one483

drone among those that can execute the function — or on “all” valid targets484

— which captures the binding with a universal quantifier, i.e., we select all485

drones among those that can execute the function.486

Notably, the two invocation modalities do not only imply different tar-487

geting behaviours of the Base Station (and the intervening drones, in the488

progressive case), but also different timings for forwarding the response back489

to the user. Indeed, under the “one” scheduling request modality, the Base490

Station directly forwards back to the user the response it receives from the491

target executor (possibly dispatched through the other drones that connect492

them). On the contrary, under the “all” scheduling request modality, the493

Base Station implements a scatter-gather pattern, where it responds to the494

user only after it received all responses to the requests it sent to the target495

drones.496

Of course, failures can happen. For instance, in the “one” case, the Base497

Station might not receive a response from the target drone, e.g., because498

the target correctly received the request but could not send back a response499

(e.g., because it became disconnected or due to malfunction). To prevent500

the Base Station from indefinitely waiting for a response, we pair a timeout501

to each scheduling request and, if the Base Station received no response af-502

ter the given timeout, it reports the failed execution back to the user. By503

extension, under the “all” execution modality, we consider failed the exe-504

cution of a function invocation when at least one of the requests did not505

return its response within the timeout. These issues include events such506

as communication problems (e.g., lost messages during both the scheduling507

and the response message deliveries) and node failures (e.g., drones that be-508

come irresponsive due to hardware malfunction). In all these cases, the only509

component that tracks the status of function executions is the Base Station,510

which follows the above failure-handling logic to make sure that user requests511

eventually terminate and report back to the user a response.512

Since, in the above scheduling semantics, we impose strict requirements on513

the scheduling of functions, we call it strong, i.e., where the “one” scheduling514

modality entails the execution on exactly one target and the “all” modality515

requires all targets to return a response. Practically, a system can support516

this strong semantics if the underlying gossiping network can provide all the517

information about the drones, i.e., if the network enjoys a broad bandwidth518

17

so that the drones exchange all the necessary information with the Base519

Station and the network can support the efficient and timely delivery of the520

coordination messages.521

Weak Semantics: “at least one” and “almost all”. When the connections522

among the drones are weaker, the network experiences narrow-bandwidth523

communications, which challenge the timely delivery of coordination mes-524

sages and the effective propagation of the full amount of information about525

the status of the drones. In these cases, imposing the strong semantics pre-526

sented above could be counterproductive, since its strict requirements would527

likely fail many invocations, due to network latencies. For this reason, we528

introduce a second type of semantics, called weak, that modifies the interpre-529

tation of the “one” and “all” scheduling modalities. Under the weak semantics,530

we soften the exactly “one” requirement to an “at least one”, where the Base531

Station (and intervening drones) sends a set number of concurrent requests532

(defined by the user, in the policy) to possible targets and responds with a533

positive answer as soon as it receives the first response from one of the tar-534

gets. Similarly, we weaken the “all” universality requirement to an “almost535

all” interpretation that specifies a timeout for the gathering of the responses.536

If all responses reach the Base Station within the set timeout (by the user, in537

the policy), it behaves as in the “all” modality; otherwise, the Base Station538

sends back to the user as many responses as it received at the triggering of539

the timeout (and discards all possible successive ones).540

The above logic defines how our proposal handles fault tolerance in the541

highly dynamic context of drone networks. Essentially, fault tolerance is542

implicitly and effectively managed at the software-component level through543

the continuous operation of the gossiping knowledge dissemination protocol.544

Specifically, nodes dynamically react based on the latest disseminated infor-545

mation. If a node fails to send periodic updates or responses (due to compo-546

nent failures or intermittent connectivity), other nodes inherently detect this547

occurrence by the absence of fresh data and consequently ignore or remove548

this node from their local views. Additionally, nodes actively monitor their549

software components and, upon detecting local component failures, imme-550

diately stop advertising their resource availability through the gossip-based551

heartbeat messages. This rapid dissemination of status changes ensures that552

the entire network quickly adapts to node-level failures and maintains robust553

scheduling decisions. While all elements maintain a view of the status of the554

network, the system does not need these views to be consistent since each555

18

drone determines whether it can execute a function for which it receives an556

allocation request. Regarding the handling of failures in function schedul-557

ing, the Base Station is the only component that maintains the status of the558

ongoing executions and registers an execution failure when a given function559

allocation fails to respond within a set timeout. The system does not imple-560

ment any recovery/reallocation policies to handle faults and rather leaves to561

the user the decision on what to do in response to a failed function execution562

attempt.563

Strong ang Weak Semantics, Exemplified. To better illustrate how each ex-564

ecution target presented in this section works in practice, let us consider a565

situation where we have several drones around an arbitrary point in space p,566

and we want to schedule a function f on them.567

In the strong semantics case, using the “all” target, we would send the568

function to each suitable drone in the area (whether the delivery of the ex-569

ecution message happens in a single hop or through multiple hops depends570

on the topology of the network), and wait for all of their responses. If just571

one of these executions happens to fail, or the response does not reach the572

Base Station within a given timeout, the entire invocation is considered un-573

successful. The user receives no result, except for a notification of the failed574

execution attempt.575

Still in the strong semantics, using the “one” target, we would send the576

function to the “most suitable” (as determined by the selection policy, dis-577

cussed in Section 4) drone available, e.g., the one with the most available578

resources, and wait for its response. Similarly to “all”, if the drone fails to579

respond, the invocation is considered unsuccessful, except the failure is only580

imputable to the single targeted drone.581

Under the weak semantics, the “all” target defaults to its “almost all”582

counterpart. We would still send the functions to all the suitable drones583

in the area. However, failure handling changes significantly: after a set584

timeout, the Base Station sends back to the user all the responses it received585

for this execution request, even if some target drones have not responded yet.586

In other words, unlike with the ‘all’ target, we tolerate partial results and587

consider it a successful invocation.588

The weak counterpart of the “one” target is “at least one”, which would589

send invocation requests to a set number of suitable drones in the area. In this590

case, we consider the invocation successful unless all targeted drones fail to591

respond within a given timeout. The first response the Base Station receives592

19

is the one sent back to the user and all others are discarded. Compared to593

the “one” target, we lose the guarantee that the function is only run once;594

however, the use of redundant requests increases the invocation’s tolerance595

to failure.596

3.4. Mixing Scheduling Modalities and Network Semantics597

The attentive reader might have already spotter the fact that the hi-598

erarchical and progressive scheduling modalities and the weak and strong599

semantics are orthogonal ingredients that one can mix to obtain different600

scheduling logics.601

While this observation is sound, we notice that, e.g., pairing the hier-602

archical scheduling with the weak semantics, could produce an inefficient603

configuration, i.e., one where the Base Station does not have enough infor-604

mation to choose a target node for executing the function or the network does605

not have enough capacity to support the effective completion of the flow of606

function execution.607

Hence, the interplay between the scheduling modalities and the network608

semantics generates a design/combination space that deserves dedicated work609

to explore.610

Since this proposal regards the general presentation of our approach, in611

the reminder, we fix a combination of these dimensions and delegate their612

proper exploration to future work (e.g., with specific case studies and exper-613

iments).614

Concretely, we fix the combination of the strong semantics with the hi-615

erarchical scheduling modality and the weak semantics with the progressive616

modality, which, we conjecture, are the most reasonable pairings of this space617

w.r.t. the QoS of ad-hoc networks. Our rationale for this choice is that618

the strong semantics requires broad network bandwidth and timely updates,619

which is also an important requirement of the hierarchical modality. Sim-620

ilarly, pairing the weak semantics with the progressive scheduling modality621

mediates the limitations of narrow-bandwidth, lagging networks.622

Given that the decision on whether to follow the strong or weak semantics623

is a system-level choice — specifically, taken by the Base Station depending624

on the information it receives from the drones — when the users define the625

policy for their functions, we ask them to indicate which strong semantics626

scheduling configuration they want for their function (“one” or “all”), followed627

by the parameter of the corresponding weak interpretation (the number of628

repetitions for the “at least one” and the timeout for the “almost all”). In629

20

Base
Station

cannot execute , allows
offload on , with value
on the 's cache

forwards the offload
request to
the system partition Edge-Cloud

Figure 5: Example of function execution offloading, scheduling layer.

this way, depending on the current configuration of the network, the Base630

Station follows the corresponding interpretation and can enact the related631

scheduling modality.632

Function Execution Offloading. Another important trait of our proposal is633

that users can indicate whether a drone can offload the execution of a function634

to some computation node outside the drone network. When a user specifies635

that the target drone can offload function execution, they can define a piece636

of data that might be on the drone and that the function requires for its637

execution — this behaviour is typical of workflows where chains of functions638

manipulate the data found in some repository, which, in this context, is the639

local cache of drones. Thus, if the drone decides to offload the execution640

of a function, e.g., due to limited execution capacity, it retrieves the data641

indicated by the user (e.g., querying its local key-value data storage) and642

sends an “offload” message to the Base Station that carries both the code of643

the function and the data it needs to run on.644

As an example, depicted in Figure 5, consider function f , which needs645

to run within a certain location to gather some sensory data, like humidity646

and light irradiation. In the figure, using hierarchical scheduling, the Base647

Station determines that D is the target drone, issuing the placement of that648

function with the message (f, a,D). However, when the message reaches649

D, the drone realises it cannot run the function, e.g., because its current650

workload level does not afford it. Since the scheduling policy a specifies that651

D can offload the execution of this function, D sends back to the Base Station652

21

a message (f, a, δ)3, where δ carries the possible data found on D useful to653

run f , as indicated by the offload parameter in a — of course, one can also654

introduce refinements of the offloading logic, e.g., having the Base Station655

preserve a copy of f and a so that the drone can just send back a message656

(fid, δ) carrying the function identifier and the data.657

Notice that, in Figure 5, we do not indicate which device runs f outside658

the ad-hoc network (and belonging to the Edge-Cloud domain). Since the659

execution of the offloaded functions is an external ingredient to our proposal660

— i.e., the ad-hoc drone serverless network works irrespective of how the Base661

Station decides to handle the execution of these functions — we abstract away662

the specification of the execution of offloaded functions, and we focus only663

on the specification of the offload functionality.664

3.5. Software Components: the Base Station and the Drones665

We close this section by presenting the software components that sup-666

port function scheduling, routing, execution, offloading, and response in the667

elements that make up the ad-hoc network: the Base Station and the drones.668

Starting from the Base Station, depicted in Figure 6, we find three main669

software components: the function scheduler, the state sentinel, and the670

function execution tracker. The first two modules deal respectively with the671

function scheduling and the gossiping layers.672

The function scheduler is the component that handles the request for673

function execution from users (represented in the figure with the inbound674

message (f, a) on the left of the component), their allocation on the proper675

drones (exemplified with the outbound message (f, a,D) on the right of the676

component), and the relay of responses (e.g., (fid, r)) and offloading (e.g.,677

(f, a, δ)).678

The state sentinel module deals with the status information of the drones679

disseminated through gossiping. In the Base Station, this component acts as680

a “sink” of information, used by the function scheduler to gather information681

on the status of the drones present in the system.682

The last component, the function execution tracker, records the status of683

the execution of functions, including their cardinalities (e.g., a function can684

3From brevity, we assume that drones identifiers D1, ..., Dn and data, as contained
in δ, belong to distinct domains, so that the drones and Base Station can distinguish
the nature of the message they receive. In implementations, there is no need for such
assumption because messages usually carry a label to categorise them.

22

function scheduler

state sentinel

function execution
tracker

message exchange
on network drones

message request on
function scheduling,
response on function
execution, and offload

store function execution
decisions (and set timeouts)

lookup status of nodes

Edge/Cloud

Figure 6: Software components found within the Base Station in our approach.

have a cardinality equal to the number of nodes if the scheduler issued its685

execution on “all” nodes) and their timeouts.686

While slightly more complex, note how the architecture of the drones,687

depicted in Figure 7, recalls that of the Base Station. Indeed, while the drones688

are execution nodes for the functions, they also work as routers/schedulers of689

the requests, which requires the inclusion of a dedicated function scheduler690

and a state sentinel.691

The main difference between the function scheduler found in the Base692

Station and the one found in the drones is in their behaviour w.r.t. the693

two scheduling modalities, hierarchical and progressive. When dealing with694

a hierarchical request, the drone’s function scheduler merely works as an695

executor, if the receiver of the message is the target drone, or forwarder,696

in charge of choosing the next hop of the message. Under the progressive697

scheduling, the function scheduler assumes a much more “active” role, by698

evaluating both whether its host can run the function and/or if it needs to699

select which other drones to forward the execution message to.700

To inform these decisions, the function scheduler uses the information701

about the other nodes in the network gathered by the state sentinel (sim-702

ilarly to its Base Station counterpart) along with the status of the drone’s703

hardware and the current function execution workload (provided by the func-704

23

function scheduler state sentinel

runtime APIs
(KV cache) HW APIs

function execution runtime

rotors

GPS

camera
temp.

message exchange on
internal state and on
neighbouring drones

message exchange on
function scheduling,
function execution

response, and offload

lookup
status of

HW

lookup
function
workload

lookup local function
workload, route requests,

decide to run functions

lookup status of neighbours

Figure 7: Software components found within a drone in our approach.

tion execution runtime).705

As mentioned, the state sentinel exchanges messages with the nodes in706

direct connection with the host drone to advertise its status information707

(gathered from the hardware and function execution runtime modules) and708

assemble an overall picture of the configuration of the network.709

The function execution runtime is the component that, embedding a We-710

bAssembly engine, can run the functions. Note that, through the execution711

runtime, the functions can both access the hardware of the drone (e.g., cam-712

era, rotors, etc.) and its local runtime APIs, among which its key-value stor-713

age, useful when running function workflows where some function “leaves”714

some data on the drone and a successive one retrieves it for computation.715

These APIs are particularly useful when implementing the offloading feature716

— where the policy that accompanies the function can specify some value717

that the function uses and the offloading command pairs with the request of718

running the function on some external component.719

Regarding failures, which mainly concentrate on the drones components,720

24

we note that, since the network topology is highly dynamic, the software com-721

ponents react w.r.t. the information that reaches each node, so, if a node fails722

to send updates or responses, the other nodes just ignore that node. In par-723

ticular, the Base Station, following its failure-handling logic (cf. Section 3.3)724

handles the absence of responses from targeted drones through timeouts. If725

a drone node realises that some of its components fail (e.g., a malfunction-726

ing camera), it stops advertising the availability of those components in the727

gossiping phase, which updates all nodes about its changed state.728

4. Ad-Hoc Allocation Priority Policies729

We now present the language, called Ad-Hoc Allocation Priority Policies730

(AHAPP), that we provide to users for expressing the scheduling policies of731

their functions. As seen in Section 3, these policies inhabit the term a in732

message exchanges, like (f, a) and (f, a,D), for the scheduling of functions,733

and they are interpreted by the function scheduling modules of the Base734

Station and the drones to implement the scheduling logic of each function.735

We start by introducing the constructs and parameters of the language736

and then apply them for capturing the functionalities of our case study737

(cf. Section 1).738

4.1. The AHAPP language739

The AHAPP language takes inspiration from the APP language and its740

dialects [17, 23, 24, 25, 26, 27, 28, 16]. As such, AHAPP is a subset of741

YAML [29], a widespread configuration language used in popular software742

for Cloud Computing like Docker and Kubernetes.743

Unlike APP and its variants, AHAPP introduces a fundamental architec-744

tural shift. In previous approaches, a single script governed the scheduling745

of all functions, using tags to specify different policies for functions (i.e., one746

tag can specify the scheduling of many functions, each carrying that tag)747

with their scheduling logic. An important novelty introduced by AHAPP is748

that function scheduling requests see the function under scheduling paired749

with its policy — essentially the policy “travels” with the function within the750

system. This design innovation stems directly from the peculiar character-751

istics of our drone network, where individual drones are capable of taking752

scheduling decisions. Consequently, the messages transmitted must not only753

carry the function but also embed the logic determining the scheduling of754

that function. While, in AHAPP, we do not use tags to associate functions755

25

targets:
all: { almost_all: n } | one: { at_least_one: n }

offload: id | b
affinity: { id1, ..., idj }
attributes:
position: { lat: d, lon: d, alt: d, range: n }
loadavg: { max: n }
energy: { min: n }
memory: { min: n }
storage: { min: n }
device: { h1, . . . , hl }
where hi,...,l ∈ {

rotors: { lock: b },
camera: { lock: b, quality: id },
gpu: { lock: b }

}
strategy: [r1, ..., rk] where r1,...,k ∈ {position, energy, . . . }

Figure 8: The AHAPP language grammar.

to policies, we retain the functionality of tagging functions, useful to express756

affinity constraints (detailed below).757

In Figure 8, we show the structure of AHAPP policies and the values758

that each option can assume, using | to indicate alternatives, id for identi-759

fiers (tags), b for Booleans, n for natural numbers, and d for decimals. We760

comment on the constructs from top to bottom. In Figure 8, we slightly761

stylise the code for readability, in particular, we represent YAML inline sets762

as {. . . } rather than using the !!set-prefix notation.763

Targets. The targets key encodes the execution modality of the function,764

i.e., either on “all”/“almost all” drones or on “one”/“at least one” of them, as765

introduced in Section 3.3. Recalling that section, we pair the configurations766

of the strong and weak semantics so that selecting the all option requires767

the user to also indicate the timeout of the almost_all clause; similarly,768

selecting the one option requires the specification of the number of requests769

the system is allowed to replicate under the at_least_one modality.770

26

In case a policy selects the all-almost_all option, the Base Station inter-771

prets the instruction by sending to all drones the request to run its companion772

function. The difference between the two modalities is that, under the strong773

semantics, the Base Station considers as failed the scheduling of a function774

when at least one of the requests to the drones did not return its response775

within a set timeout (defined by the platform). Under the weak semantics,776

the Base Station returns all responses received within the timeout indicated777

by the user as parameter of the almost_all option — i.e., receiving at least778

one response within the timeout configures as a successful execution of the779

function. On the drones’ scheduler, this option entails the execution of the780

function (if the drone can run it) and/or the forwarding of the request.781

When the policy selects the one-at_least_one option, the Base Station782

interprets one by selecting a specific drone that shall run the function, while,783

under at_least_one, the Base Station sends multiple requests and returns784

to the user the first response it receives. To send these requests, the Base785

Station splits the number of available requests n among the nodes that it786

can contact directly (in particular, those in the direction where some nodes787

can run the function). Practically, the Base Station achieves this “splitting”788

by sending out requests that carry the same policy it received but where789

the at_least_one parameter indicates a partition of the function instances790

granted by the initial request. As an example, consider a Base Station that791

receives a policy with at_least_one equal to 5, and it decides to send out two792

requests. These requests would carry the same policy the Base Station re-793

ceived but would differ in the value of the at_least_one option, which could794

be resp. e.g., 2 and 3 (or any non-zero 2-partition that sums is 5). In turn,795

the drones that forward this request reduce the value of the at_least_one796

by one if they run the function and split that value according to the number797

of messages it forwards for function execution.798

When targets is omitted, we consider one and at_least_one: 2 as de-799

faults.800

Offload. The offload key defines whether a drone supposed to run a function801

(e.g., when directly selected by the Base Station) and unable to do it, e.g.,802

due to a lack of energy or memory capacity (cf. Section 3.3) can redirect the803

execution of that function to the “edge-cloud” part of the platform. Notice804

that users can specify two values for this option, either an identifier or a805

Boolean value. The boolean values simply indicate whether the offload806

option is enabled or not. When providing an identifier, the user indicates807

27

that the offload option is enabled and the offload request shall carry the808

piece of data (if any) pointed by that identifier as a key in the drone’s local809

key-value cache. When omitted, the offload option is disabled.810

Affinity. The affinity clause specifies a list of tags of functions that are811

required to be in execution or have run (within a fixed timeout) on the drone812

to run the function under scheduling. This option is particularly useful when813

implementing workflows of functions, e.g., where function f runs on a certain814

drone and then g has to run on the same drone because f left some data that815

g needs for its execution. The default value of this option is the empty816

list. Note that our interpretation of affinity does not imply synchronous817

execution of functions, e.g., a function can express affinity to indicate that818

it needs to run on a drone where some function ran and left some data819

for the former to work on. To implement this mechanism, we assume that820

the platform sets an “execution window” where the nodes keep track of the821

function tags they have executed. In this window, nodes maintain a list of822

tags of completed functions, and after a timeout period, they remove these823

“stale” tags. This timeout mechanism works in tandem with the drone’s824

cache memory eviction policy, ensuring proper garbage collection of data left825

behind on the drone.826

Attributes. The attributes key encodes properties and physical resources827

required by the functions to run on a target drone.828

Properties include position and loadavg. The position, with the in-829

dication of the latitude, longitude, altitude, expressed as decimals, and a830

range that specifies a sphere of “tolerance” from the coordinates with radius831

n metres. The loadavg specifies the maximal percentage of capacity occupa-832

tion (e.g., CPU) within a given period (set by the platform, e.g., 1 minute).833

When omitted, the default value of the position sets all coordinates to 0834

and the radius to its maximum definable value; the default value of loadavg835

is 50.836

We divide the overview of the resources into two groups. The first group,837

that of energy, memory, and storage specifies the minimal amount of re-838

sources necessary for effectively hosting the computation of the function.839

Specifically, the percentage of energy (default to 50), the amount of memory840

and storage capacity, in MB (resp. default to 8 and 32). The second group,841

that of devices, indicate a set of hardware resources found on the drone that842

the function requires accessing for its execution. The default value for this843

28

option is the empty set. The possible elements in the set are (self-descriptive)844

rotors, camera, and gpu. When indicating these requirements, the user can845

express whether the function has to lock — Boolean and default to false846

— that hardware exclusively during its execution, e.g., to move the drone847

or to run compute-intensive parallel algorithms. During scheduling, if some848

other function is “locking” the specified hardware, the drone cannot run that849

function. The camera option can also specify a quality literal, like FHD and850

4K; the default value is HD.851

Strategies. The last option, that of the strategy, specifies an ordering among852

the level of the attributes of the drones — except for the devices, which853

are binary — that the scheduler can use to choose a target when it identifies854

multiple valid ones. In practice, the strategy option allows the users to855

refine the deployment of their functions by specifying the prioritisation logic856

the scheduler should follow when choosing among equally valid targets. In857

this way, users can orient the deployment of their functions according to cus-858

tom rules, e.g., by prioritising low-load or high-energy devices or minimising859

latency through geographically-aware scheduling.860

The values for this option are position (closer), loadavg (lower) and861

available (higher) energy, memory, and storage. When defining the strategy,862

the user provides an exclusion order for ranking the possible candidates. The863

option also has as its trailing, default value the parameter random. Hence, if864

the user omits the definition of the strategy option, the scheduler randomly865

chooses among the possible candidates, otherwise it first filters out the can-866

didates considering the options in the list in order of appearance and then867

chooses randomly among the remaining candidates, if any.868

4.2. Modelling the Case Study with AHAPP869

To illustrate the usage of AHAPP, we model the case study presented870

in Section 1 as a serverless architecture of four functions and their related871

AHAPP policies. For clarity, in the description below, we call the functions872

by their associated tag. In the policies, we omit to specify the at_least_one873

and almost_all options, which would require us to further characterise the874

usage and topological context of the ad-hoc network. Thus, for brevity, we875

omit their definition, which makes the policies use their respective default876

values.877

We call the first function ScanFireAlert. This function runs on all drones878

and processes real-time sensor data for fire aerial surveillance. To this aim,879

29

Listing 1: ScanFireAlert policy.

targets: all
attributes:
device: { camera, gpu }

Listing 2: AnalysePeopleScan policy.

targets: all
affinity: { ScanPeople }
offload: ScanPeopleData

Listing 3: ScanPeople policy.

targets: all
attributes:
position: { range: 100,
lat: X, lon: Y, alt: Z }

device: {
camera
gpu
rotors: { lock: true }

}

the function analyses heat signatures and geospatial information to detect880

potential fire outbreaks. When a fire is identified, the function runs an AI881

model for fire recognition and categorisation, working on heat intensity and882

smoke patterns. The response it produces is a fire alert, containing the883

geolocation data, fire characteristics, and severity assessment. We show in884

Listing 1 the code of the AHAPP policy for this function. In the policy, we885

target all drones and impose the execution of the function on only those886

nodes that equip a camera to acquire visual data on the territory hovered by887

the drone and a gpu for the efficient execution of the fire-detection AI model.888

After the response from the ScanFireAlert function(s), we invoke the889

execution of the second function, called ScanPeople. The function runs on890

drones in areas where ScanFireAlert detected fires. ScanPeople processes891

data from the drone’s camera to detect human heat signatures and movement892

patterns. This analysis requires the repeated acquisition of visual data from893

the same area, which implies that the function must have (exclusive) access894

to the drone’s rotors to move it according to its detection routine. Like895

ScanFireAlert, also this function uses an AI model for categorisation. This896

function does not provide a contextual response to the user — it just confirms897

its successful execution — but it rather streams a continuous feed of data898

which other functions can use to refine the detection of potential survivors.899

We provide, in Listing 3, the policy for this function. In the policy, we900

specify that the function shall run on all drones within a range of 100m901

from the X, Y, Z position (we use these symbols as placeholders for the actual902

coordinates) where ScanFireAlert found fire. Besides requiring drones with903

a camera and gpu, the function needs to acquire a lock on the drone’s rotors904

30

to implement its detection routine.905

Launched in close succession after ScanPeople, AnalysePeopleScan per-906

forms advanced analysis on the data produced and stored on the drones by907

ScanPeople, to confirm the presence of survivors. The function employs908

machine learning algorithms to distinguish human signatures from other909

heat sources and movement patterns. The function evaluates the confidence910

level of each detection and generates, as a response, detailed information911

about potential survivor locations, including their estimated condition. The912

AnalysePeopleScan allows us to illustrate two other features of the AHAPP913

language: affinity and offloading. Indeed, rather than giving a location914

of the drones that should run the AnalysePeopleScan function, we indicate915

that they shall run on (all) drones where the ScanPeople function is running916

(or has run). The reason for this indication is that AnalysePeopleScan runs917

analyses on the data produced by ScanPeople, stored in the local cache of918

the drone. Since this piece of data is fundamental for its execution, but the919

function can otherwise run on the Edge-Cloud, we set the policy to allow the920

offload of the function using the data stored, by ScanPeople, under the key921

ScanPeopleData in the local cache of the drone. This configuration allows us922

to handle the case where the target drone appears available to the Base Sta-923

tion, but it is unable to host the function because of lack of resources, which924

might happen if, e.g., the Base Station is relying on stale status data and the925

drone is hosting more functions than what the Base Station knows about.926

With the offload option, the drone can react to this situation by sending927

the request back to the Base Station — along with the data the function is928

supposted to work on, found in the local cache of the drone, indicated as the929

value of the offload clause. Once the Base Station receives an offloading930

message, it forwards a request, carrying the data the function has to work931

on, to a companion edge-cloud platform that acts as a “computational fall-932

back”. When offloading the execution to the companion cloud-edge platform,933

the Base Station takes care of interacting with the latter to also receive the934

response after the execution of the function and notify the user. Since the935

function runs in a domain not directly controller by ours, it is the companion936

one that determines the execution of the function, including the handling of937

possible errors that arise during its execution.938

The last function, called TrackSurvivor, maintains continuous monitor-939

ing of confirmed survivors. It processes real-time GPS coordinates and video940

feeds to track survivor movements and status. The function generates a941

stream of data that include precise location updates, visual confirmation942

31

Listing 4: TrackSurvivor policy.

targets: one
attributes:
position: { range: 25,
lat: X, lon: Y, alt: Z }

device: {
camera: { lock: true }
gpu: { lock: true }
rotors: { lock: true }

}
strategy: [energy, position]

data, and dynamic access route calculations for rescue teams [30]. Since,943

now, we have precise information about the survivors, we issue the individ-944

ual (one) execution of a TrackSurvivor function instance for each group of945

survivors in a given location. The tracking routine requires the exclusive946

access to the drone’s rotors and camera to follow the survivors and of the947

drone’s gpu for the efficient processing of data for streaming. Since more948

than one drone can be valid for the execution of the function, we specify949

the strategy for choosing among multiple alternatives, i.e., first, we favour950

the drones with the highest energy level (since the function needs to con-951

tinuously track the survivors for as long as possible), second, we favour the952

drones closer to the required position (within the 25m range, imposed by953

the policy) — as per definition (cf. Section 4.1) if these two selection steps954

fail to weed down the options to one drone, we default to randomly select one955

of the alternatives.956

On the Complexity of AHAPP Scheduling. Computationally, the complexity957

of scheduling functions interpreting APP scripts is generally linear in the size958

of the nodes that execute the functions [17]. AHAPP is not an exception.959

We break down the above statement considering the weak and strong960

semantics, which we pair respectively with the hierarchical and progressive961

scheduling — hence, when referring to the scheduling approach we also im-962

plicitly refer to the related semantics.963

Under the hierarchical scheduling, the Base Station has precise knowledge964

of all the drones in the network. Irrespective of the targets value, the Base965

32

Station considers the application of the policy against all drones. Indeed,966

under the all option, the Base Station needs to evaluate the policy against967

the complete set of available nodes to select the ones that can execute the968

function. Similarly, under the one option, the Base Station has to evaluate969

the policy against all nodes to find the highest-scoring one which can execute970

the function (or randomly choose among the tied highest-scoring ones, if any).971

In the case of multi-hop function request messages, the intervening drones972

act as forwarders of the message. This task is computable in constant time,973

assuming the drones maintain routing tables computed when they receive974

information from the gossiping protocol.975

When running under the progressive scheduling, the Base Station does976

not have a complete view of the elements in the network, but rather a local977

view limited to the one-hop drones it can directly reach. Similarly to the978

hierarchical scheduling (and, as argued above, irrespective of the target op-979

tion), the Base Station has to compare the policy against all drones, although980

limited to the one-hop ones in its neighbourhood, making the complexity of981

the task linear in the number of drones in the network, in the worst-case982

scenario — a degenerate case where all drones are in the neighbourhood of983

the Base Station, which can directly reach them. In the general case, the984

Base Station considers the applicability of the policy against a fraction of985

the drones in the network, to decide to which one-hop drones to forward the986

request to. Once a drone in the network receives a progressive function exe-987

cution request, it essentially follows the same (linear) algorithm of the Base988

Station, considering whether it can execute the function itself and whether989

it shall forward the execution to other one-hop nodes in its neighbourhood.990

5. Scheduling and Gossiping Layer Network Protocol991

After having described the specification of the programming and be-992

haviour of the function scheduling layer, we present the details of the un-993

derlying network protocol, useful to maintain an accurate and up-to-date994

view of both the network topology and individual drone status across the dis-995

tributed system and support function scheduling. The protocol addresses key996

challenges in mobile ad-hoc networks, particularly drone swarms, where dy-997

namic topologies, intermittent connectivity, and varied hardware capabilities998

require robust distributed communication mechanisms. Since this protocol999

both provides information to the upper layer of function scheduling and sup-1000

ports the efficient relay of function allocation messages, we discuss the main1001

33

technical details that characterise how the scheduler chooses its allocation1002

targets (the nodes where functions shall run) and how the network deliv-1003

ers the related messages to destination. In addition to supporting efficient1004

function scheduling, the proposed gossip-based knowledge dissemination in-1005

herently provides robust fault tolerance. Due to the highly dynamic nature1006

of drone swarm topologies, the protocol is designed to react immediately1007

to changes in network conditions. Nodes detect failures implicitly through1008

the absence of periodic updates, promptly removing unreachable nodes from1009

their local views. Additionally, if a failure occurs, each neighbour node in-1010

stantly ceases advertising its availability through the gossiping mechanism,1011

ensuring rapid propagation of updated state information. Consequently, the1012

function allocation module can dynamically adapt to network disruptions,1013

maintaining robust and resilient scheduling decisions.1014

Elements of the Network Protocol. We model the system as a set of nU mo-1015

bile or static nodes forming a multihop mobile ad-hoc network. To enable1016

serverless function scheduling in such environments, we propose a function-1017

allocation-aware protocol that abstracts the complexity of the underlying1018

network from the scheduling layer. This protocol ensures that function allo-1019

cation requests are handled efficiently by disseminating network knowledge1020

and facilitating function scheduling decisions. The protocol consists of two1021

main modules: Knowledge Dissemination, which spreads network informa-1022

tion, including topology, hardware capabilities, and node positions (cf. Sec-1023

tion 5.1); and Function Allocation Module, which determines how to allocate1024

function execution requests based on scheduling (AHAPP) instructions and1025

the available knowledge (cf. Section 5.2). These two modules allow a clear1026

separation between knowledge dissemination and function allocation. Knowl-1027

edge dissemination operates as a background process, proactively updating1028

all nodes with real-time system status information like network topology and1029

node hardware availability. In contrast, function allocation is triggered on1030

demand when a function request arises. This dual-phase approach ensures1031

that the system remains continuously updated and capable of immediate1032

function allocation, boosting both responsiveness and resource efficiency.1033

5.1. Knowledge Dissemination1034

Efficient function scheduling in mobile ad-hoc networks depends on the1035

ability of nodes to exchange real-time information regarding network topol-1036

ogy, resource availability, and mobility patterns. To address this challenge,1037

34

we propose a gossip-based knowledge dissemination protocol that propagates1038

relevant information through periodic heartbeat messages. The primary ob-1039

jective of this protocol is to maintain an up-to-date network view while mini-1040

mizing communication overhead, which is essential in dynamic environments1041

where excessive message exchange can degrade performance. The proto-1042

col supports three levels of knowledge dissemination, each representing a1043

trade-off between information completeness and communication efficiency:1044

full dissemination, full dissemination with change detection, and aggregated1045

dissemination.1046

Each node periodically transmits a Heartbeat message to its one-hop1047

neighbours at fixed intervals of tH seconds. This message consists of two1048

components: local information and global information. The local informa-1049

tion includes all parameters necessary for function scheduling, as detailed in1050

Section 4. Specifically, let sH byte be the size of the local information packet1051

where each node reports data like its position, CPU load, residual energy,1052

available memory and storage, camera quality, and device locks.1053

The global information component varies depending on the selected knowl-1054

edge dissemination method, which determines how network-wide data is1055

shared. This aspect, along with specific periodicities of the Heartbeat mes-1056

sage, differentiates the three dissemination strategies discussed below.1057

Full Dissemination. In the full dissemination model, each node periodically1058

transmits its own status along with the status of all its known neighbours.1059

Over time, this approach ensures that every node acquires a complete global1060

view of the network. The primary advantage of this method is its ability1061

to support global decision-making for hierarchical scheduling, allowing nodes1062

to make globally-informed placement and routing decisions. Indeed, sim-1063

ilarly to the BATMAN protocol [31], this technique enables each node to1064

discover and store the best next-hop toward a given destination based on1065

received broadcast messages. The protocol leverages hop-count metrics to1066

determine the optimal next-hop, ensuring efficient packet forwarding. Since1067

only local next-hop information is maintained rather than full routing tables,1068

the approach remains highly adaptive to mobility and topology changes. If a1069

next-hop node becomes unreachable, the system dynamically selects an alter-1070

native best next-hop based on newly received Heartbeat message, allowing1071

for rapid adaptation to network disruptions. In a static network, repeated1072

iterations eventually disseminate each node’s information to all others, en-1073

suring network-wide synchronization. However, in a dynamic environment,1074

35

frequent topology changes can result in the propagation of stale informa-1075

tion, rendering it obsolete before reaching all nodes. Consequently, nodes1076

may base scheduling decisions on outdated network views, leading to sub-1077

optimal or incorrect function placements, which ultimately degrades system1078

performance.1079

Furthermore, as each Heartbeat message eventually reaches a size of1080

nU ·sH bytes, this approach introduces significant scalability challenges. The1081

global information contained in the message includes data from nU−1 nodes,1082

increasing the transmission burden. As a result, the overhead scales propor-1083

tionally with the number of nodes, leading to excessive communication costs.1084

In large and highly dynamic networks, continuously propagating exhaustive1085

state information can cause network congestion, increase latency, and de-1086

grade overall system efficiency.1087

Full Dissemination with Change Detection. To reduce unnecessary transmis-1088

sions while preserving a global network view, we introduce an optimised1089

variant of full dissemination in which nodes transmit updated information1090

only when a state change occurs. Even though this technique uses the same1091

periodic Heartbeat message in each interval of tH seconds, the message will1092

only be sent if there are changes to be reported. Moreover, only the changed1093

attribute is sent, reducing unnecessary transmissions while preserving essen-1094

tial network-wide synchronization.1095

This approach retains the benefits of complete dissemination while mini-1096

mizing redundant transmissions, thereby reducing communication overhead.1097

The effectiveness of this method depends on the rate of topology and system1098

changes: in highly dynamic scenarios, frequent updates may still result in sig-1099

nificant overhead, whereas in more stable conditions, the protocol achieves1100

a near-optimal balance between completeness and efficiency. To refine up-1101

date propagation, we introduce threshold-based triggers for non-binary node1102

attributes such as position, CPU load, residual energy, available memory,1103

and storage. Specifically, an offset threshold is defined for each parameter,1104

specifying the minimum value change required to report it. These thresholds1105

are denoted as follows: thp for the position, thc for the CPU load, the for the1106

residual energy, thm for available memory and ths for the available storage.1107

Another improvement is an alternative Heartbeat comprising a set of1108

change blocks. Each block contains the essential node identification, a se-1109

quence number, an attribute identifier, and its new value. Despite these op-1110

timizations, similar to the full dissemination model, the Heartbeat message1111

36

will eventually reach a size of nU · sH bytes, introducing scalability concerns1112

in large networks.1113

Aggregated Knowledge Dissemination. In contrast to the previous methods,1114

the aggregated knowledge model restricts information exchange to local node1115

states and summarised network metrics. Each node transmits every tH sec-1116

onds its own status, reduced to only position information, along with an ag-1117

gregated representation of its neighbourhood, such as minimum, maximum,1118

or average resource availability. This approach significantly reduces com-1119

munication overhead by preventing the propagation of detailed node-level1120

data across the network. Specifically, the network overhead is drastically1121

minimised, as each Heartbeat message does not exceed sH bytes. However,1122

this method introduces a trade-off between efficiency and decision-making1123

accuracy, as nodes make scheduling choices based on partial and abstracted1124

network knowledge rather than complete global awareness. Consequently,1125

the aggregated knowledge model is most suitable for progressive allocation1126

strategies, where function scheduling relies on localised rather than global1127

decision-making.1128

More in detail, the global information component of the Heartbeat mes-1129

sage starts from the own status information; the approach chooses the best1130

metrics of each neighbour to compose the Heartbeat message, intending to1131

represent its potential. Less CPU load from the neighbour nodes is used1132

instead of its own, as well as greater residual energy, available memory, and1133

storage to compose the Heartbeat. Regarding non-binary node attributes,1134

like camera and GPU availability, the aggregated information considers the1135

node’s and its neighbours’ availability.1136

Note that position information is not included in the global informa-1137

tion. This omission is intentional, as only one-hop location data is used to1138

forward function allocation requests based on positional constraints (more1139

detail in Section 5.2). This approach is analogous to geographic routing, as1140

employed in GPSR (Greedy Perimeter Stateless Routing) [32], where GPS1141

coordinates are leveraged to forward packets toward a specific destination.1142

Table 1 outlines the advantages and limitations of the different dissemi-1143

nation strategies, highlighting their impact on communication overhead and1144

their suitability for various network dynamics, i.e., the expected rate of1145

topological changes over time. The effectiveness of each method is context-1146

dependent, influenced by network size, stability, and the computational re-1147

quirements of the deployed functions. In our evaluation (cf. Section 6), we1148

37

Dissemination
Method Knowledge Scope

Communication
Overhead Application Context

Full Global (all nodes) High Stable topologies

Full w/ Change Global (updated states) Medium
Stable and Moderate

dynamics
Aggregated Local + aggregated metrics Low Dynamic topologies

Table 1: Comparison of Knowledge Dissemination Strategies.

analyse the performance trade-offs among these approaches.1149

5.2. Function Allocation Module1150

Assuming the dissemination of network knowledge, when the system re-1151

ceives the request to execute a function, it must determine the most suitable1152

node where to allocate the function, taking into account network constraints,1153

resource availability, and scheduling efficiency. The function allocation mod-1154

ule governs this process, ensuring that function allocation works based on1155

scheduling (AHAPP) instructors and the available knowledge at each node.1156

As described in Section 3, the system supports two scheduling strategies:1157

hierarchical scheduling, which relies on a global network view, and progressive1158

scheduling, which operates under localised knowledge. We remind that, in1159

this work, we make these two approaches respectively correspond to strong1160

and weak execution semantics (cf. Section 3.4). The hierarchical schedul-1161

ing assumes complete network knowledge, enabling it to achieve efficiency1162

under the strong semantics, where function allocation is directly decided by1163

the Base Station and the intervening nodes work are routers. Conversely,1164

progressive scheduling is paired with the weak semantics, where a best-effort1165

approach governs scheduling decisions based on neighbourhood-level informa-1166

tion — due to incomplete network knowledge. In the following, we assume1167

the hierarchical and progressive scheduling modalities paired with their re-1168

spective strong and weak semantics.1169

Hierarchical Scheduling. The hierarchical scheduling strategy assumes that1170

nodes have access to global knowledge obtained through either the Full or1171

Full with Change dissemination methods. When a function allocation request1172

for function f with scheduling policy a is initiated, the scheduling node (i.e.,1173

the Base Station) has a complete view of the network and can determine1174

the optimal execution target. The request is then transmitted directly to1175

the selected node using multi-hop forwarding. This approach ensures precise1176

38

function placement and avoids allocation overhead — w.r.t. the time/redun-1177

dancy thresholds of the weak semantics. However, its efficiency depends on1178

the accuracy and timeliness of the global knowledge, making it more suit-1179

able for stable topologies with low-latency communication (and broadband1180

connectivity).1181

The scheduling procedure depends on the target value, which, in the1182

hierarchical methodology, can be set to either all or one.1183

• if all is selected, the system identifies all nodes that satisfy the schedul-1184

ing constraints and allocates the function execution on each of them;1185

• if one is selected, a selection process determines a single “suitable” node1186

for execution.1187

To facilitate the selection process, driven by the strategy clause, we1188

introduce ranking classes for requested resources, categorising them into three1189

discrete levels: high, medium, and low. This categorisation simplifies the1190

selection process, as a ranking based on continuous numerical values may be1191

impractical when distinguishing between groups of nodes with comparable1192

capabilities. To achieve this categorisation, we define two threshold values1193

for each parameter: l1, which differentiates between low and medium, and l2,1194

which separates medium from high. The thresholds are defined as follows:1195

l1c and l2c for CPU load, l1e and l2e for residual energy, l1m and l2m for1196

available memory, and l1s and l2s for storage.1197

Unlike these real-valued parameters, the binary constraints, such as locks1198

and position, do not require threshold-based categorisation. Locks are ei-1199

ther present or absent, directly determining whether a node is eligible for1200

execution. Similarly, position-based constraints are treated as boolean con-1201

ditions, where a node is considered inside or outside the requested deployment1202

area.1203

Progressive Scheduling. The progressive scheduling modality is designed for1204

dynamic networks, where the nodes have only localised and aggregated knowl-1205

edge. Instead of making a global decision, the scheduling process follows a1206

best-effort heuristic, progressively forwarding the request toward regions with1207

successful execution capability. Each node receiving the request, evaluates1208

its own resources and those of its direct neighbours, determining whether to1209

execute the function locally or forward the request further — except the Base1210

Station, which can choose only the second option. This method introduces1211

39

greater adaptability and reduces overhead, as nodes do not need to maintain1212

an exhaustive global state. However, suboptimal placements may occur due1213

to the incomplete network view available to each node. Unlike the hierar-1214

chical scheduling, the progressive approach relies solely on local information,1215

meaning that each node knows only its direct one-hop neighbours and aggre-1216

gated global information. Consequently, the scheduling cannot be globally1217

assigned (like in the hierarchical scheduling, by the Base Station); instead,1218

the scheduling follows a best-effort approach, dynamically deciding the next1219

best hop (if needed) at each step.1220

To implement the progressive scheduling logic, we employ a combination1221

of ranking and probabilistic selection. Let N = {n, n1, n2, . . . } be the set1222

of potential allocation destinations, that includes node n and its one-hop1223

neighbours. For each n̂ ∈ N , we define a score function v(n̂) as follows:1224

v(n̂) = α · d(n̂)β + (1− α) · h(n̂) (1)

where α ∈ [0..1] is a pre-defined weight factor, d(n̂)β represents the direc-1225

tion factor, which depends on the parameter β that defines the maximum1226

angular displacement, and the relative angular direction of n̂ (having po-1227

sition (xn̂, yn̂)) with respect to the allocation destination position\X and1228

position\Y, if specified in the AHAPP request. This value is computed as1229

follows:1230

n⃗d = (position\X− xn, position\Y− yn), n⃗n̂ = (xn̂ − xn, yn̂ − yn)
1231

θ = arccos
(n⃗d · n⃗n̂
∥n⃗d∥ ∥n⃗n̂∥

)
1232

d(n̂)β =


1, θ ≤ 0◦,

1− θ

β
, 0◦ < θ < β,

0, θ ≥ β.

(2)

In turn, h(n̂) captures attribute constraints and is defined as:1233

h(n̂) =
lock+

∑
a∈ATT min(1, (n̂a

a
)2)

|ATT|+ 1
(3)

where ATT = {loadavg, energy, memory, storage} is the set of attributes,1234

n̂a represents the aggregated value of attribute a received via the Heartbeat1235

40

message from node n̂, and lock is 1 if the aggregated device constraints in1236

n̂ fulfil the request, and 0 otherwise.1237

After computing v(n̂) for each node in N , node n forwards the function1238

request to node n̂ with probability:1239

pγ(v(n̂)) = min

(
1,

(
v(n̂)

γ

)2
)

(4)

where γ is determined based on the targets value, with specific parameters1240

γalmost_all and γat_least_one — we remind that in the progressive scheduling,1241

due to its best-effort nature, the all and one targets of the hierarchical1242

scheduling are respectively mapped to their almost_all and at_least_one1243

counterparts, reflecting the system’s inability to guarantee a strong-semantics1244

scheduling. If n̂ ≡ n, the function is executed locally at node n.1245

Scheduling
Strategy Knowledge Scheduling Semantic Best Suited For

Hierarchical
Global

(Full / Full w/ Change)
Direct selection

optimal placement Strong
Stable topologies

low-latency networks

Progressive
Local

(Aggregated)
Forwarding-based
adaptive heuristic Weak

Highly dynamic networks
bandwidth-constrained systems

Table 2: Comparison of Function Allocation Strategies.

Semantics/Scheduling Selection. The selection of an appropriate function al-1246

location semantics depends on multiple factors, including network stabil-1247

ity, resource constraints, and application requirements. Table 1 provides an1248

overview of the advantages and drawbacks of the two function allocation1249

semantics. The observations align with those in the previous table on knowl-1250

edge dissemination, as the effectiveness of scheduling methods is inherently1251

tied to the availability and accuracy of network state information.1252

In Section 6, we conduct quantitative analyses that compare the above1253

selection w.r.t. different network conditions.1254

In the future, we plan to explore more sophisticated approaches on a hy-1255

brid model that dynamically transitions between hierarchical and progressive1256

strategies based on network conditions and resource availability. One such1257

hybrid, adaptive mechanisms would autonomously switch among different1258

dissemination and allocation methods to optimise allocation efficiency while1259

minimizing communication overhead.1260

41

6. System Evaluation1261

We present an evaluation of the proposed serverless function scheduling1262

framework for ad-hoc drone networks through extensive simulations. Note1263

that, although we use the case study introduced in Section 1 throughout the1264

article to illustrate the potential and practical applicability of our approach,1265

our evaluation is more general and comprehensive. In addition to simula-1266

tions based on scenarios from the case study, we conduct extensive generic1267

simulations varying topologies, mobility patterns, and numbers of nodes, to1268

thoroughly assess the performance and robustness of our proposed system1269

under diverse network conditions.1270

6.1. Simulation Setup1271

To ensure a comprehensive evaluation, we conduct simulations in a con-1272

trolled environment using predefined network configurations. For the sim-1273

ulation we use OMNeT++4 coupled with the INET library5. We run the1274

simulations with the default parameters defined in Table 3, which remain1275

constant unless otherwise specified. In the following, we use dissemination1276

method names and scheduling modalities interchangeably due to their tight1277

coupling.1278

Table 3: Default Simulation Parameters
Parameter Value

Number of Nodes nU 12
Function request generation period nU 20s

Node Speed (dynamic scenario) 15mps
Message Transmission Interval (tH) 5s

Local Information Size (sH) 176B
Ranking Weights (α, β) α = 0.7, β = 90◦

Probability Factors Heartbeat (pH) 0.1
Almost all probability (γalmost_all) 0.7

At least one probability (γat_least_one) 0.9

The simulation considers both static and mobile scenarios as well as a re-1279

alistic case study based on the fire detection and survivor tracking scenario1280

4https://omnetpp.org/
5https://inet.omnetpp.org/

42

presented in Section 1. We generate random function requests, associated1281

with scheduling policies compliant with the AHAPP language (cf. Figure 8).1282

Additionally, we randomly assign the parameter values within each function1283

request, ensuring a diverse set of test cases for evaluating system perfor-1284

mance.1285

6.2. Performance Metrics1286

We evaluate our framework based on the following key performance indi-1287

cators (KPI):1288

• Average Function Deployment Delay: The average time taken for1289

a function to be successfully deployed.1290

• Average Function Deployment Number: The number of success-1291

fully deployed functions for each request generated in the system.1292

• Network Overhead: The size/amount of control messages exchanged1293

in the network to achieve service deployment.1294

These metrics provide insights into the efficiency, reliability, and scalability1295

of the proposed approach under different conditions.1296

6.3. Simulation Scenarios1297

We consider three simulation scenarios to evaluate the system under di-1298

verse network conditions:1299

• Static Grid-Based Deployment: in this scenario, nodes are statically1300

placed in a grid topology. This setup allows us to assess performance1301

in a well-structured network, where topology remains constant.1302

• Dynamic Mobile Nodes: where nodes move dynamically following a1303

predefined mobility model. This scenario simulates a realistic UAV1304

network, where nodes frequently change positions, impacting connec-1305

tivity and deployment decisions. In this scenario, the nodes move at a1306

fixed speed of 15mps.1307

• Case Study: Fire Detection and Rescue: this scenario follows the real-1308

world use case described in Section 1, where a drone swarm is deployed1309

for fire detection, survivor localization, and tracking. The goal is to1310

evaluate system performance in a multi-phase, real-world environment.1311

43

Hierarchical Progressive Hierarchical w/ Changes
Dissemination Method

0

2

4

6

8

10

12

14

16

De
pl

oy
m

en
ts

 N
um

be
r

Strategy Type
depoyable
all
one

Figure 9: Number of deployed functions in
the static scenario.

Hierarchical Progressive Hierarchical w/ Changes
Dissemination Method

0

2

4

6

8

10

12

14

16

De
pl

oy
m

en
ts

 N
um

be
r

Strategy Type
depoyable
all
one

Figure 10: Number of deployed functions in
the dynamic scenario.

Hierarchical Progressive Hierarchical w/ Changes
Dissemination Method

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fu
nc

tio
n

De
pl

oy
m

en
t T

im
e

(s
ec

) Strategy Type
all
one

Figure 11: Deployment delay in the static
scenario.

Hierarchical Progressive Hierarchical w/ Changes
Dissemination Method

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Fu

nc
tio

n
De

pl
oy

m
en

t T
im

e
(s

ec
) Strategy Type

all
one

Figure 12: Deployment delay in the dynamic
scenario.

6.4. Evaluation Results1312

We analyse the system behaviour under different deployment modalities1313

and network configurations, focusing on the defined KPIs. The experiments1314

are structured to evaluate the impact of scheduling policies, knowledge dis-1315

semination strategies, and network scalability.1316

Deployment Delay and Number of Deployments. To assess the efficiency of1317

function execution, we compare the number of successfully deployed func-1318

tions across different configurations. The results in Figure 9 and Figure 101319

highlight the differences between the two main scheduling modalities, all and1320

one, under various knowledge dissemination methods. In these figures, the1321

blue bar represents the number of deployable nodes at function generation1322

44

time, providing a reference to evaluate the appropriateness of each modality1323

w.r.t. the different scenarios.1324

In the static scenario, the all target modality achieves near-optimal re-1325

sults across all knowledge dissemination methods. This outcome is expected,1326

as the static nature of the system ensures that all dissemination approaches1327

effectively spread network information. The one modality also performs well,1328

except in the progressive approach, where its distributed and probabilistic1329

nature leads to function allocations on more than one node, increasing re-1330

source usage. Conversely, in the dynamic scenario, the hierarchical modality1331

exhibits significantly lower performance. Both the Hierarchical and Hierar-1332

chical w/ Changes methods deploy less than half of the possible functions.1333

This performance drop is primarily due to outdated network information at1334

the Base Station, which prevents accurate function placement. Additionally,1335

during function deployment, nodes move rapidly, meaning that some initially-1336

selected nodes may no longer be in the correct area, while others, suitable1337

ones are not considered. This limitation is effectively mitigated by the pro-1338

gressive method, which achieves near-optimal deployment. Its hop-by-hop,1339

locally adaptive decision-making allows the system to dynamically respond1340

to network topology changes, significantly improving function placement.1341

Figure 11 and Figure 12 illustrate the deployment delay, which follows1342

the same trend observed in the function deployment analysis. The delay is1343

inherently tied to the number of deployed functions—as more functions are1344

successfully deployed, the average delay increases. Consequently, while the1345

progressive method exhibits higher delay values, this is a direct result of its1346

greater number of successful deployments, rather than an inefficiency in the1347

scheduling mechanism.1348

Network Overhead Analysis. We evaluate the impact of the scheduling and1349

knowledge dissemination modalities on network overhead by measuring the1350

total number of control messages exchanged. The primary contributor to1351

network load is knowledge dissemination, while function deployment incurs1352

minimal overhead. We report the results in Figure 13 and Figure 14.1353

Full knowledge dissemination generates significant communication over-1354

head, as each node periodically shares its entire network state with its neigh-1355

bours. While this approach ensures high decision accuracy in static scenar-1356

ios, it results in substantial bandwidth consumption. The Full with Change1357

method improves performance by transmitting updates only when a node’s1358

state changes, providing a better trade-off between accuracy and efficiency.1359

45

Hierarchical Progressive Hierarchical w/ Changes
Dissemination Method

0

50

100

150

200

250

300

350

400

Ov
er

he
ad

 (B
/s

ec
)

Strategy Type
all
one

Figure 13: Network overhead delay in the
static scenario.

Hierarchical Progressive Hierarchical w/ Changes
Dissemination Method

0

50

100

150

200

250

300

350

400

Ov
er

he
ad

 (B
/s

ec
)

Strategy Type
all
one

Figure 14: Network overhead delay in the
dynamic scenario.

4 9 16 25 36
Number of Nodes

0

2

4

6

8

10

12

14

De
pl

oy
m

en
ts

 N
um

be
r

Dissemination Method
Hierarchical
Progressive
Hierarchical w/ Changes

Figure 15: Number of deployed functions in
the static scenario varying the number of
nodes.

4 9 16 25 36
Number of Nodes

0

5

10

15

20

25
De

pl
oy

m
en

ts
 N

um
be

r
Dissemination Method

Hierarchical
Progressive
Hierarchical w/ Changes

Figure 16: Number of deployed functions in
the dynamic scenario varying the number of
mobile nodes.

The Aggregated method, which shares only summary metrics, achieves the1360

lowest overhead but at the cost of reduced scheduling precision. When com-1361

paring deployment modalities, the all and one approaches exhibit similar1362

overhead levels due to the fixed periodic nature of knowledge dissemination.1363

However, in the Full with Change method, the all targetting results in higher1364

overhead. This increase is likely caused by network congestion, leading to1365

packet losses and retransmissions, which ultimately inflate the total number1366

of control messages exchanged.1367

Scalability: Impact of Network Size on Deployment Efficiency. To evaluate1368

the scalability of the system, we analyse how the number of deployed func-1369

46

4 9 16 25 36
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Ba
tt

er
y

Ca
pa

ci
ty

Scheduling and Prioritisation Strategy
Hierarchical - energy
Progressive - energy
Hierarchical - position
Progressive - position

Figure 17: Battery Capacity for energy and
position prioritisation strategy as the num-
ber of nodes increases. Higher values indi-
cate better energy-aware deployments.

4 9 16 25 36
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

D
ep

lo
ym

en
t

D
is

ta
nc

e
Ra

ti
o

Scheduling and Prioritisation Strategy
Hierarchical - position
Progressive - position
Hierarchical - energy
Progressive - energy

Figure 18: Deployment Distance Ratio for
energy and position prioritisation strategy
as the number of nodes increases. Lower val-
ues indicate better distance-aware deploy-
ments.

tions evolves as the number of nodes increases. The results are shown in1370

Figure 15 and Figure 16, where we present data exclusively for the all tar-1371

getting.1372

In the static scenario, all methods achieve optimal results, successfully de-1373

ploying functions to all eligible nodes. However, in the dynamic scenario, the1374

increasing number of nodes leads to a continuously changing network topol-1375

ogy, introducing challenges for hierarchical approaches. In this case, both Hi-1376

erarchical and Hierarchical with Changes exhibit limitations. The Hierarchi-1377

cal method struggles with outdated information and larger Heartbeat mes-1378

sages, increasing scheduling errors. The Hierarchical with Changes method,1379

which benefits from selective updates in static scenarios, loses its advantage1380

in dynamic networks due to the continuous need for updates, leading to fre-1381

quent state inconsistencies.1382

In contrast, the Progressive approach scales effectively with the number1383

of nodes. Its local and distributed decision-making allows it to adapt to1384

mobility, ensuring a steady increase in the number of successfully deployed1385

functions as more nodes become available. The results indicate that the1386

Progressive method remains largely unaffected by network size and mobility,1387

maintaining deployment efficiency across different scales.1388

Prioritisation Strategy Analysis. To assess how effectively the hierarchical1389

and progressive scheduling strategies follow the user-defined prioritisation1390

47

strategy, we analyse two metrics: the Battery Capacity (Figure 17) and1391

the Deployment Distance Ratio (Figure 18). The Battery Capacity measures1392

how closely the selected nodes align with the goal of maximising residual1393

energy, whereas the Deployment Distance Ratio evaluates position optimisa-1394

tion, indicating whether the selected nodes minimise the distance to a given1395

target. Results show that both scheduling methods effectively adhere to the1396

specified prioritisation strategies.1397

Specifically, in Figure 17, we report the Battery Capacity for both the en-1398

ergy and position prioritisation cases, using both hierarchical and progressive1399

scheduling methods. When energy is prioritised, both strategies are able to1400

select nodes with higher residual energy, achieving higher Battery Capacity1401

values. However, the hierarchical scheduler shows some limitations as the1402

number of nodes increases, mainly due to the difficulties in maintaining al-1403

ways up-to-date information in a dynamic scenario. Additionally, the Figure1404

shows that when position is prioritised, the Battery Capacity tends to stabi-1405

lize around 0.5 — confirming that energy is not a selection criterion in this1406

configuration and is therefore not significantly affected.1407

Conversely, when distance is prioritised through the position strategy,1408

both scheduling methods effectively select nodes closer to the target location.1409

As shown in Figure 18, the Deployment Distance Ratio decreases with the1410

increasing number of nodes, as more nodes become available near the target1411

point. This feature allows the schedulers to better optimise the deployment1412

with respect to distance, clearly improving that metric compared to the other1413

strategy where position is not prioritised.1414

Case Study: a realistic serverless workflow. This section presents the results1415

for the fire detection and rescue scenario, the realistic running case study we1416

introduced in Section 1 and detailed in Section 4. The experiment simulates a1417

3×3 km2 area where a swarm of drones is deployed. The simulation proceeds1418

as follows:1419

1. At intervals of 1 minute, the Base Station (BS) issues the execution of1420

the ScanFireAlert function, which is deployed to all drones equipped1421

with a camera.1422

2. 5 minutes from the beginning of the simulation, we simulate a fire1423

outbreak at specific spots in the area, triggering the alert by the pre-1424

vious functions and the request, by the Base Station, to execute the1425

ScanPeople function on all drones near the fires.1426

48

5 10 20 30 40 50
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
sf

ul
 D

ep
lo

ym
en

ts
 R

at
io

Dissemination Method
Hierarchical
Progressive

Figure 19: Successful deployment ratio in the fire detection and rescue scenario.

3. Similarly, we simulate the presence of survivors, some near the fire1427

areas, which triggers the request to execute individual (one) Track-1428

Survivor function instances to track the survivors.1429

For this experiment, all drones are assumed to be equipped with cameras1430

and GPUs. As a performance metric, we calculate the successful deployment1431

ratio across the three consecutive functions, i.e., the cases when all the three1432

functions are successfully deployed.1433

Figure 19 presents the performance results as the number of drones varies.1434

When the number of drones is low, only a small percentage of cases achieves1435

successful deployment of the full function sequence, primarily due to limited1436

area coverage. In this scenario, the Hierarchical method outperforms the1437

Progressive method because the data exchange overhead is small in small-1438

scale networks. However, as the number of drones increases, the Progressive1439

method surpasses the Hierarchical approach, reaching a near-optimal suc-1440

cess rate. Conversely, the Hierarchical method struggles with high network1441

dynamism and an increasing number of nodes, causing its performance to1442

stabilise around 0.25.1443

Overall, the experiments confirm that hierarchical scheduling is better for1444

small or static networks, whereas progressive scheduling scales better in large1445

and dynamic environments.1446

49

7. Related Work1447

Recent advancements in serverless computing have extended its capabil-1448

ities to handle other environments than the cloud one, where the paradigm1449

originated. The integration of serverless computing in mobile ad-hoc net-1450

works (MANETs) is a relatively new research direction, with most prior work1451

focusing on edge, fog, and cloud computing methods for improving task of-1452

floading and resource allocation. In this section, we discuss related work from1453

the literature.1454

One work close to ours is by Singh and Adhikari [33], who propose a hi-1455

erarchical federated learning framework designed for edge-fog-cloud environ-1456

ments. Their solution introduces a pop-up ad-hoc network for dynamic com-1457

munication between edge devices and fog servers, integrated with a serverless1458

data pipeline to improve processing efficiency. To enhance participation and1459

resource usage at the edge, the platform incorporates a game model that1460

rewards edge devices based on their contributions. Patterson et al. [34] also1461

present work close to ours, introducing a platform for swarm coordination1462

using a centralised controller able to deploy serverless functions on both the1463

cloud and edge devices, showing improved performance predictability, lower1464

network traffic, and battery efficiency compared to existing alternatives.1465

Improving function execution in serverless platforms remains a focal point1466

of research for serverless for edge computing. Jindal et al. [35] introduce the1467

Function Delivery Network (FDN), an innovative extension of FaaS that1468

enables function execution across heterogeneous clusters. Their Function-1469

Delivery-as-a-Service model selects the most suitable execution platform based1470

on platform characteristics, potential collaboration with other platforms,1471

and data localisation. Jindal et al.’s evaluation shows that scheduling func-1472

tions on edge platforms can substantially reduce energy consumption while1473

maintaining adherence to Service Level Objective requirements. Garbugli et1474

al. [36] tackle Quality of Service (QoS) management in IoT applications lever-1475

aging edge cloud FaaS through TEMPOS, a middleware that ensures per-1476

formance reliability in environments with high stochastic variability. Their1477

approach coordinates QoS monitoring, control, and management across the1478

Cloud-to-Things continuum, tackling challenges such as bandwidth fluctua-1479

tions and shared virtualised resources to provide a more stable and efficient1480

execution environment.1481

Several studies have explored how edge, fog, and cloud computing can1482

improve computation offloading in ad-hoc networks, particularly in UAV-1483

50

enabled systems. For instance, Grasso et al. [37] propose a reinforcement1484

learning-based job offloading mechanism in a flying ad-hoc network (FANET),1485

where UAVs with mobile edge computing (MEC) capabilities collaborate to1486

balance computational loads and reduce delay. Similarly, You et al. [38]1487

present a joint optimisation strategy for task scheduling, resource alloca-1488

tion, and UAV trajectory planning to enhance computing performance in1489

FANETs. Other approaches leverage multi-tier architectures to enhance1490

computation efficiency. For example, Luo et al. [39] introduce an adaptive1491

scheduling model that dynamically distributes workloads across UAV-based1492

edge servers, optimising energy consumption and execution latency. In the1493

same direction, Niu et al. [40] focus on task scheduling in emergency scenar-1494

ios, where UAVs act as mobile computing nodes to process data and maintain1495

network connectivity in disaster-affected regions, while Khan et al. [41] inte-1496

grate MEC with secure identity-based signcryption to ensure confidentiality1497

and authentication in FANETs.1498

The integration of serverless computing in mobile ad-hoc networks is still1499

in its early stages, with most efforts focusing on making serverless frameworks1500

adaptable to edge computing environments. One of the key challenges in this1501

domain is function scheduling, as traditional serverless models rely on cen-1502

tralised cloud infrastructure, whereas ad-hoc networks require decentralised,1503

self-organising strategies. Several studies have examined orchestration mech-1504

anisms for UAV-based ad-hoc networks. For example, Grigoropoulos and1505

Lalis [42] propose a hierarchical orchestration model that spans edge, fog,1506

and cloud layers to improve function deployment in UAV-based networks.1507

Similarly, Keshavamurthy et al. [43] introduce a distributed control frame-1508

work for UAV relay networks, addressing key challenges in network topology1509

management and function execution. Beyond terrestrial and aerial MEC sys-1510

tems, space-assisted computing has gained attention. Lin et al. [44] explore1511

a game-theoretic framework for task offloading in tactical ad-hoc networks1512

that integrate low-Earth orbit (LEO) satellites and UAV-based MEC nodes.1513

Lin et al.’s work highlights the challenges of resource allocation and pricing1514

strategies in heterogeneous environments where UAVs and satellites provide1515

computation offloading capabilities. In terms of task scheduling, several stud-1516

ies propose methods based on heuristic and machine learning to improve exe-1517

cution efficiency. Qin et al. [45] introduce a time-sensitive task scheduling al-1518

gorithm for UAV-based MEC systems, prioritising reconnaissance operations1519

based on dynamic environmental conditions. Similarly, Secinti et al. [46] ex-1520

plores fog computing techniques for UAV-based software-defined networks,1521

51

enabling adaptive task allocation and network-aware function placement.1522

In ad-hoc serverless computing, where network topology is highly dynamic1523

and nodes frequently join or leave the network, service discovery is essential1524

to ensure that function invocations can reliably locate and communicate with1525

appropriate execution nodes. Ververidis Polyzos [47] provide a comprehensive1526

survey of service discovery mechanisms for MANETs, categorising different1527

strategies based on centralised, decentralised, and hybrid architectures. Be-1528

yond individual studies, Ferrer et al. [48] provide a comprehensive survey of1529

mobile cloud, edge computing, and mobile ad-hoc computing, identifying op-1530

portunities and challenges in moving from centralised cloud models to fully1531

distributed cloud paradigms. The study highlights ad-hoc cloud computing1532

as a critical evolution in distributed computing, emphasizing the need for1533

self-organising, fault-tolerant resource allocation mechanisms.1534

Comparison with Our Work. Besides the works by Singh and Adhikari and1535

Patterson et al., which are the closest to ours but concentrate on a centralised1536

interpretation of serverless function distribution, the aforementioned studies1537

focus primarily on computation offloading, task scheduling, and orchestration1538

in MANET and FANET networks. Hence, none specifically address the de-1539

sign of a fully decentralised, topology-aware serverless execution model that1540

integrates function scheduling with the constraints of a mobile ad-hoc envi-1541

ronment. Our approach introduces a serverless deployment-aware protocol1542

that abstracts the complexity of MANETs while ensuring efficient function1543

placement and execution through a combination of gossip-based knowledge1544

dissemination and adaptive function allocation.1545

Furthermore, our work introduces scheduling mechanisms that support1546

both hierarchical and progressive deployment models, enabling flexible adap-1547

tation to different network conditions. By integrating these techniques, we1548

present a first-of-its-kind solution for serverless computing in ad-hoc net-1549

works, addressing key challenges in network topology awareness, function1550

invocation reliability, and execution efficiency. Unlike previous approaches,1551

our work is the first to apply serverless computing to an ad-hoc context where1552

nodes function both as execution hosts and as schedulers, enabling a fully1553

decentralised and self-organising computing paradigm.1554

To provide a broader overview of the positioning of our work, we present a1555

comparative analysis with the main related studies discussed in the literature.1556

We organise the comparison into two complementary tables.1557

The first table, reported in Table 4, focuses on the serverless comput-1558

52

Works Decentralised
Scheduling

Multi-node
Execution

Execution
Offloading

Custom
Policies

Grasso et al. [37]
Grigoropoulos and Lalis [42]

Khan et al. [41]
Luo et al. [39]
Niu et al. [40]

Patterson et al. [34]
You et al. [38]

This Work

Table 4: Comparison of our work (last row) with related one from the literature on server-
less.

ing perspective, summarising the key contributions and limitations of the1559

works targeting function scheduling and orchestration in distributed envi-1560

ronments. The comparison highlights the lack of solutions that specifically1561

address the ad-hoc and decentralised execution context that characterises our1562

proposal. Specifically, starting from the left-most column, we find “Decen-1563

tralised Scheduling”, which is the main characteristic of our system, i.e., the1564

fact that scheduling happens in a decentralised way, following the multi-hop1565

protocol described in Section 3.4. Among these works, only one adopts a1566

decentralised scheduling model, which is the solution presented by Grasso et1567

al. [37]. Another attribute that distinguishes our work is “Multi-node Execu-1568

tion”, which corresponds to a single user request triggering the execution of a1569

function across multiple nodes. Ours is the only alternative that supports one1570

such feature. However, Khan et al. [41] partially cover this feature by allow-1571

ing a task to be split into multiple subtasks processed in parallel by different1572

nodes. “Execution Offloading” regards the possibility for the execution nodes1573

(the drones) to delegate function executions to other systems. The propos-1574

als by You et al. [38] and Grasso et al. [37] also support this feature, while1575

Khan et al. [41] implement a restricted version of it, limited to offloading to1576

the edge. Finally, “Custom Policy” is the support for user-defined, custom1577

scheduling policies (which our system offers through AHAPP). Patterson et1578

al. [34] support this feature via HiveMind and Grigoropoulos and Lalis [42]1579

enable users to specify custom policies through their Kubernetes-based setup1580

and the custom Fractus scheduler (both centralised). In summary, our sys-1581

tem is the only one to support all five capabilities in a cohesive, decentralised1582

architecture.1583

53

Works
Ad-Hoc
Network
Support

Worker-Agnostic
Deployment

Support for
Dynamic
Topology

Generic
Resource
Awareness

Grasso et al. [37]
Grigoropoulos and Lalis [42]
Keshavamurthy et al. [43]

Khan et al. [41]
Lin et al. [44]
Luo et al. [39]
Niu et al. [40]
Qin et al. [45]

Secinti et al. [46]
You et al. [38]

This Work

Table 5: Comparison of our work (last row) with related one from the literature on network
and ad-hoc systems.

The second table, reported in Table 5, provides a comparative analysis1584

from the network and ad-hoc system perspective. We consider key char-1585

acteristics that are crucial in the context of mobile ad-hoc networks and1586

UAV-based systems: “Ad-hoc Network Support” indicates whether the sys-1587

tem is designed to operate over a decentralised, infrastructure-less network;1588

“Worker-Agnostic Deployment” refers to the ability of the scheduling strategy1589

to operate without requiring prior knowledge of the specific execution nodes1590

at scheduling time — an essential property for progressive, fully decentralised1591

deployments; “Support for Dynamic Topology” denotes the capability of the1592

system to adapt to topology changes, node mobility, and unpredictable net-1593

work dynamics; finally, “Generic Resource Awareness” evaluates whether the1594

system can take into account generic node characteristics like energy, po-1595

sition, and hardware capabilities during scheduling decisions, besides the1596

traditional ones like load and memory occupancy. We deem all the consid-1597

ered related work only partially supporting ad-hoc networks (first column)1598

because none of them supports multi-hop deployments (this aspect is comple-1599

mentary to the decentralised scheduling approach found in Table 4) — from1600

the intersection between the first columns of the two tables, we note that,1601

while Grasso et al. [37] support decentralised scheduling, they rely on 5G1602

connectivity and they do not (need to) support multi-hop communications.1603

Regarding “Worker-Agnostic Deployment”, the only proposal that partially1604

addresses this concern is by Grigoropoulos and Lalis [42], who, by parti-1605

54

tioning workers into homogeneous pools can abstract away from an exact1606

knowledge of the workers, following a hierarchical scheduling logic that first1607

selects the pool and then selects one member in that pool based on a compan-1608

ion worker-selection policy. None of the considered proposals have “Support1609

for Dynamic Topology” because they take scheduling decisions based on a1610

centralised view of the topology, which might substantially differ from the1611

actual one — the topology might change drastically during a scheduling ses-1612

sion in highly dynamic scenarios. Lastly, only Qin et al. [45] give adequate1613

support for “Generic Resource Awareness” since they handle task scheduling1614

also considering energy and application-specific sensor values.1615

8. Conclusion1616

We present a novel proposal for serverless computing tailored for ad-1617

hoc drone networks, specifically designed to address the peculiar challenges1618

posed by such dynamic and resource-constrained environments. Our ap-1619

proach leverages a two-layer network overlay architecture, combining a gos-1620

siping layer for efficient network management with a function scheduling layer1621

that adapts to the varying conditions of drone swarm operations. Through1622

the integration of hierarchical and progressive scheduling approaches, we en-1623

sure robust and flexible function execution, even in the face of intermittent1624

connectivity and high latencies.1625

Our experimental results demonstrate the effectiveness of our proposal,1626

highlighting its ability to efficiently manage the execution of serverless func-1627

tions while reducing communication overhead and maintain high reliability.1628

Specifically, our simulations show that progressive scheduling achieves nearly1629

optimal deployment success (close to 100%) in highly dynamic scenarios with1630

up to 50 drones, compared to approximately 25% for hierarchical schedul-1631

ing under similar conditions. Moreover, progressive scheduling significantly1632

reduces network overhead, approximately halving the communication cost1633

observed with hierarchical methods. These findings validate the potential1634

of serverless computing to enhance the performance and adaptability of drone1635

swarms, offering a promising avenue for future development in both civilian1636

and commercial applications.1637

Looking ahead, there are several exciting opportunities for further im-1638

proving the system. For instance, we envision working on refining the AHAPP1639

language to capture function-specific traits, e.g., linked to the performance of1640

function execution on the disparate hardware of a given drone swarm. This1641

55

idea comes from a dialect of APP, called cAPP [27, 23], which uses static1642

analysis to derive cost equations from the function’s code and select the best1643

(cloud) node for executing that function given, e.g., recorded latencies to call1644

external services. In our settings, one can incorporate these cost estimations1645

w.r.t. the (recorded performance of the) different hardware found among the1646

components of the network and provide refined rankings for selecting the1647

most suitable allocation targets.1648

Beyond the refinement of the scheduling language, further research in1649

ad-hoc networks can enhance function deployment. One avenue is adaptive1650

knowledge dissemination, where the system dynamically selects the most1651

suitable method—Full, Full with Changes, or Aggregated—based on topol-1652

ogy stability and network congestion. The current deployment-aware proto-1653

col considers only node capabilities, neglecting network conditions and link1654

quality. These aspects are important in multi-hop networks, especially for1655

functions that need to frequently push data outside the drone network (e.g.,1656

to report continuous updates to the user). Ignoring link reliability can lead1657

to high-latency interactions and execution failures, highlighting the need for1658

network-aware function placement. Another avenue is improving aggrega-1659

tion methods for Progressive deployment. The existing approach uses sum-1660

mary metrics, but further optimisation could involve probabilistic modelling,1661

weighted aggregation based on node stability, or adaptive techniques that1662

adjust dynamically to network variations. These refinements would enhance1663

scheduling accuracy and efficiency in highly dynamic environments. Finally,1664

improving resilience in dynamic topologies remains essential. While Progres-1665

sive scheduling adapts to mobility, predictive models leveraging reinforcement1666

learning or distributed heuristics could anticipate topology changes, enabling1667

pre-emptive function placement and reducing failures caused by connectivity1668

disruptions.1669

Acknowledgements1670

The work has been partially supported by the PRIN 2022 project RAIN4C:1671

“Reliable Aerial and satellIte Networks: joint Communication, Computation,1672

Caching for Critical scenarios” (Id: 20227N3SPN, CUP: J53D23007020001),1673

the research project FREEDA (CUP: I53D23003550006) funded by the frame-1674

work PRIN 2022 (MUR, Italy), the French ANR project SmartCloud ANR-1675

23-CE25-0012, and PNRR CN HPC - SPOKE 9 - Innovation Grant LEONARDO1676

56

- TASI - RTMER funded by the NextGenerationEU European initiative1677

through the MUR, Italy (CUP: J33C22001170001).1678

References1679

[1] L. Gupta, R. Jain, G. Vaszkun, Survey of important issues in UAV1680

communication networks, IEEE Commun. Surv. Tutorials 18 (2) (2016)1681

1123–1152. doi:10.1109/COMST.2015.2495297.1682

URL https://doi.org/10.1109/COMST.2015.24952971683

[2] Y. Zeng, R. Zhang, T. J. Lim, Wireless communications with unmanned1684

aerial vehicles: opportunities and challenges, IEEE Commun. Mag.1685

54 (5) (2016) 36–42. doi:10.1109/MCOM.2016.7470933.1686

URL https://doi.org/10.1109/MCOM.2016.74709331687

[3] P. Doherty, P. Rudol, A UAV search and rescue scenario with human1688

body detection and geolocalization, in: M. A. Orgun, J. Thornton1689

(Eds.), AI 2007: Advances in Artificial Intelligence, 20th Australian1690

Joint Conference on Artificial Intelligence, Gold Coast, Australia, De-1691

cember 2-6, 2007, Proceedings, Vol. 4830 of Lecture Notes in Computer1692

Science, Springer, 2007, pp. 1–13. doi:10.1007/978-3-540-76928-6\1693

_1.1694

URL https://doi.org/10.1007/978-3-540-76928-6_11695

[4] S. A. F. Manssor, S. Sun, M. A. G. Al-Sadoon, S. Ali, Real-time human1696

detection in thermal infrared imaging at night using enhanced tiny-1697

yolov3 network, J. Real Time Image Process. 19 (2) (2022) 261–274.1698

doi:10.1007/S11554-021-01182-Z.1699

URL https://doi.org/10.1007/s11554-021-01182-z1700

[5] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,1701

Q. Pu, V. Shankar, J. Menezes Carreira, K. Krauth, N. Yadwadkar,1702

J. Gonzalez, R. A. Popa, I. Stoica, D. A. Patterson, Cloud program-1703

ming simplified: A berkeley view on serverless computing, Tech. Rep.1704

UCB/EECS-2019-3, EECS Department, University of California, Berke-1705

ley (02 2019).1706

[6] A. E. Yaacoub, L. Mottola, T. Voigt, P. Rümmer, Nerta: Enabling1707

dynamic software updates in mobile robotics, in: A. Ferscha, M. C.1708

Chan, S. S. Kanhere, R. R. V. Prasad (Eds.), Proceedings of the 20221709

57

https://doi.org/10.1109/COMST.2015.2495297
https://doi.org/10.1109/COMST.2015.2495297
https://doi.org/10.1109/COMST.2015.2495297
https://doi.org/10.1109/COMST.2015.2495297
https://doi.org/10.1109/COMST.2015.2495297
https://doi.org/10.1109/MCOM.2016.7470933
https://doi.org/10.1109/MCOM.2016.7470933
https://doi.org/10.1109/MCOM.2016.7470933
https://doi.org/10.1109/MCOM.2016.7470933
https://doi.org/10.1109/MCOM.2016.7470933
https://doi.org/10.1007/978-3-540-76928-6_1
https://doi.org/10.1007/978-3-540-76928-6_1
https://doi.org/10.1007/978-3-540-76928-6_1
https://doi.org/10.1007/978-3-540-76928-6_1
https://doi.org/10.1007/978-3-540-76928-6_1
https://doi.org/10.1007/978-3-540-76928-6_1
https://doi.org/10.1007/978-3-540-76928-6_1
https://doi.org/10.1007/s11554-021-01182-z
https://doi.org/10.1007/s11554-021-01182-z
https://doi.org/10.1007/s11554-021-01182-z
https://doi.org/10.1007/s11554-021-01182-z
https://doi.org/10.1007/s11554-021-01182-z
https://doi.org/10.1007/S11554-021-01182-Z
https://doi.org/10.1007/s11554-021-01182-z
https://dl.acm.org/doi/10.5555/3578948.3578959
https://dl.acm.org/doi/10.5555/3578948.3578959
https://dl.acm.org/doi/10.5555/3578948.3578959

International Conference on Embedded Wireless Systems and Networks,1710

EWSN 2022, Linz, Austria, October 3-5, 2022, Junction Publishing /1711

ACM, 2022, pp. 120–125. doi:10.5555/3578948.3578959.1712

URL https://dl.acm.org/doi/10.5555/3578948.35789591713

[7] G. De Palma, S. Giallorenzo, J. Mauro, M. Trentin, G. Zavattaro, We-1714

bassembly at the edge: Benchmarking a serverless platform for pri-1715

vate edge cloud systems, IEEE Internet Computing (01) (2024) 1–8.1716

doi:10.1109/MIC.2024.3513035.1717

[8] G. De Palma, S. Giallorenzo, J. Mauro, M. Trentin, G. Zavattaro, Fun-1718

less: Functions-as-a-service for private edge cloud systems, in: IEEE In-1719

ternational Conference on Web Services, ICWS 2024, Shenzhen, China,1720

July 7-13, 2024, IEEE, 2024, pp. 961–967. doi:10.1109/ICWS62655.1721

2024.00114.1722

[9] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.1723

Arpaci-Dusseau, R. H. Arpaci-Dusseau, Serverless computation with1724

openlambda, in: 8th {USENIX} Workshop on Hot Topics in Cloud1725

Computing (HotCloud 16), 2016.1726

[10] J. Sampé, M. Sánchez-Artigas, P. García-López, G. París, Data-driven1727

serverless functions for object storage, in: Middleware, Middleware ’17,1728

ACM, 2017, pp. 121–133. doi:10.1145/3135974.3135980.1729

URL https://doi.org/10.1145/3135974.31359801730

[11] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau,1731

R. Arpaci-Dusseau, {SOCK}: Rapid task provisioning with {Serverless-1732

Optimized} containers, in: 2018 USENIX Annual Technical Conference1733

(USENIX ATC 18), 2018, pp. 57–70.1734

[12] M. Shahrad, J. Balkind, D. Wentzlaff, Architectural implications of1735

function-as-a-service computing, in: Proc. of MICRO, 2019, pp. 1063–1736

1075.1737

[13] K. Solaiman, M. A. Adnan, Wlec: A not so cold architecture to mitigate1738

cold start problem in serverless computing, in: 2020 IEEE International1739

Conference on Cloud Engineering (IC2E), 2020, pp. 144–153. doi:10.1740

1109/IC2E48712.2020.00022.1741

58

https://doi.org/10.5555/3578948.3578959
https://dl.acm.org/doi/10.5555/3578948.3578959
https://doi.org/10.1109/MIC.2024.3513035
https://doi.org/10.1109/ICWS62655.2024.00114
https://doi.org/10.1109/ICWS62655.2024.00114
https://doi.org/10.1109/ICWS62655.2024.00114
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1145/3135974.3135980
https://doi.org/10.1109/IC2E48712.2020.00022
https://doi.org/10.1109/IC2E48712.2020.00022
https://doi.org/10.1109/IC2E48712.2020.00022

[14] A. Banaei, M. Sharifi, Etas: predictive scheduling of functions on worker1742

nodes of apache openwhisk platform, The Journal of Supercomputing (91743

2021). doi:10.1007/s11227-021-04057-z.1744

[15] C. P. Smith, A. Jindal, M. Chadha, M. Gerndt, S. Benedict, Fado:1745

Faas functions and data orchestrator for multiple serverless edge-cloud1746

clusters, in: 2022 IEEE 6th International Conference on Fog and Edge1747

Computing (ICFEC), IEEE, 2022, pp. 17–25.1748

[16] G. D. Palma, S. Giallorenzo, J. Mauro, G. Zavattaro, Allocation pri-1749

ority policies for serverless function-execution scheduling optimisation,1750

in: E. Kafeza, B. Benatallah, F. Martinelli, H. Hacid, A. Bouguettaya,1751

H. Motahari (Eds.), Service-Oriented Computing - 18th International1752

Conference, ICSOC 2020, Dubai, United Arab Emirates, December 14-1753

17, 2020, Proceedings, Vol. 12571 of Lecture Notes in Computer Science,1754

Springer, 2020, pp. 416–430. doi:10.1007/978-3-030-65310-1_29.1755

[17] G. De Palma, S. Giallorenzo, J. Mauro, M. Trentin, G. Zavattaro,1756

Affinity-aware serverless function scheduling, in: 22nd IEEE Interna-1757

tional Conference on Software Architecture, ICSA 2025, Odense, Den-1758

mark, March 31-April 4, 2025, IEEE, 2025.1759

[18] C. E. Perkins, Ad hoc networking, Pearson Education India, 2008.1760

[19] F. Al-Turjman, M. Abujubbeh, A. Malekloo, L. Mostarda, Uavs assess-1761

ment in software-defined iot networks: An overview, Comput. Commun.1762

150 (2020) 519–536. doi:10.1016/J.COMCOM.2019.12.004.1763

URL https://doi.org/10.1016/j.comcom.2019.12.0041764

[20] M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Mobile unmanned aerial1765

vehicles (uavs) for energy-efficient internet of things communications,1766

IEEE Trans. Wirel. Commun. 16 (11) (2017) 7574–7589. doi:10.1109/1767

TWC.2017.2751045.1768

URL https://doi.org/10.1109/TWC.2017.27510451769

[21] D. Shah, Network gossip algorithms, in: 2009 IEEE International Con-1770

ference on Acoustics, Speech and Signal Processing, IEEE, 2009, pp.1771

3673–3676.1772

[22] X. Fang, B. Zhang, D. Yuan, Gossip-based asynchronous algorithms for1773

distributed composite optimization, Neurocomputing 616 (2025) 128952.1774

59

https://doi.org/10.1007/s11227-021-04057-z
https://doi.org/10.1007/978-3-030-65310-1_29
https://doi.org/10.1016/j.comcom.2019.12.004
https://doi.org/10.1016/j.comcom.2019.12.004
https://doi.org/10.1016/j.comcom.2019.12.004
https://doi.org/10.1016/J.COMCOM.2019.12.004
https://doi.org/10.1016/j.comcom.2019.12.004
https://doi.org/10.1109/TWC.2017.2751045
https://doi.org/10.1109/TWC.2017.2751045
https://doi.org/10.1109/TWC.2017.2751045
https://doi.org/10.1109/TWC.2017.2751045
https://doi.org/10.1109/TWC.2017.2751045
https://doi.org/10.1109/TWC.2017.2751045
https://doi.org/10.1109/TWC.2017.2751045

[23] G. De Palma, S. Giallorenzo, J. Mauro, M. Trentin, G. Zavattaro,1775

Function-as-a-service allocation policies made formal, in: T. Margaria,1776

B. Steffen (Eds.), Leveraging Applications of Formal Methods, Veri-1777

fication and Validation. REoCAS Colloquium in Honor of Rocco De1778

Nicola - 12th International Symposium, ISoLA 2024, Crete, Greece, Oc-1779

tober 27-31, 2024, Proceedings, Part I, Vol. 15219 of Lecture Notes1780

in Computer Science, Springer, 2024, pp. 306–321. doi:10.1007/1781

978-3-031-73709-1_19.1782

[24] G. De Palma, S. Giallorenzo, J. Mauro, M. Trentin, G. Zavattaro,1783

An openwhisk extension for topology-aware allocation priority poli-1784

cies, in: I. Castellani, F. Tiezzi (Eds.), Coordination Models and Lan-1785

guages - 26th IFIP WG 6.1 International Conference, COORDINA-1786

TION 2024, Held as Part of the 19th International Federated Confer-1787

ence on Distributed Computing Techniques, DisCoTec 2024, Gronin-1788

gen, The Netherlands, June 17-21, 2024, Proceedings, Vol. 14676 of1789

Lecture Notes in Computer Science, Springer, 2024, pp. 201–218. doi:1790

10.1007/978-3-031-62697-5_11.1791

[25] G. De Palma, S. Giallorenzo, J. Mauro, M. Trentin, G. Zavattaro, For-1792

mally verifying function scheduling properties in serverless applications,1793

IT Prof. 25 (6) (2023) 94–99. doi:10.1109/MITP.2023.3333071.1794

[26] G. De Palma, S. Giallorenzo, J. Mauro, M. Trentin, G. Zavattaro,1795

Custom serverless function scheduling policies: An APP tutorial, in:1796

G. Dorai, M. Gabbrielli, G. Manzonetto, A. Osmani, M. Prandini,1797

G. Zavattaro, O. Zimmermann (Eds.), Joint Post-proceedings of the1798

Third and Fourth International Conference on Microservices, Microser-1799

vices 2020/2022, May 10-12, 2022, Paris, France, Vol. 111 of OASIcs,1800

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 5:1–5:16.1801

doi:10.4230/OASICS.MICROSERVICES.2020-2022.5.1802

[27] G. De Palma, S. Giallorenzo, C. Laneve, J. Mauro, M. Trentin, G. Za-1803

vattaro, Serverless scheduling policies based on cost analysis, in: M. H.1804

ter Beek, C. Dubslaff (Eds.), Proceedings of the First Workshop on1805

Trends in Configurable Systems Analysis, TiCSA@ETAPS 2023, Paris,1806

France, 23rd April 2023, Vol. 392 of EPTCS, 2023, pp. 40–52. doi:1807

10.4204/EPTCS.392.3.1808

60

https://doi.org/10.1007/978-3-031-73709-1_19
https://doi.org/10.1007/978-3-031-73709-1_19
https://doi.org/10.1007/978-3-031-73709-1_19
https://doi.org/10.1007/978-3-031-62697-5_11
https://doi.org/10.1007/978-3-031-62697-5_11
https://doi.org/10.1007/978-3-031-62697-5_11
https://doi.org/10.1109/MITP.2023.3333071
https://doi.org/10.4230/OASICS.MICROSERVICES.2020-2022.5
https://doi.org/10.4204/EPTCS.392.3
https://doi.org/10.4204/EPTCS.392.3
https://doi.org/10.4204/EPTCS.392.3

[28] G. De Palma, S. Giallorenzo, J. Mauro, M. Trentin, G. Zavattaro,1809

A declarative approach to topology-aware serverless function-execution1810

scheduling, in: C. A. Ardagna, N. L. Atukorala, B. Benatallah,1811

A. Bouguettaya, F. Casati, C. K. Chang, R. N. Chang, E. Damiani, C. G.1812

Guegan, R. Ward, F. Xhafa, X. Xu, J. Zhang (Eds.), IEEE International1813

Conference on Web Services, ICWS 2022, Barcelona, Spain, July 10-16,1814

2022, IEEE, 2022, pp. 337–342. doi:10.1109/ICWS55610.2022.00056.1815

[29] YAML, YAML specification, https://yaml.org/spec/ (11 2022).1816

[30] N. Kumar, S. Misra, M. S. Obaidat, Collaborative learning automata-1817

based routing for rescue operations in dense urban regions using ve-1818

hicular sensor networks, IEEE Syst. J. 9 (3) (2015) 1081–1090. doi:1819

10.1109/JSYST.2014.2335451.1820

URL https://doi.org/10.1109/JSYST.2014.23354511821

[31] S. Liu, C. Dong, X. Zhu, L. Zhang, et al., Performance evaluation of1822

batman-adv protocol on convergecast communication in uav networks,1823

in: GLOBECOM 2022-2022 IEEE Global Communications Conference,1824

IEEE, 2022, pp. 5105–5110.1825

[32] B. Karp, H.-T. Kung, Gpsr: Greedy perimeter stateless routing for wire-1826

less networks, in: Proceedings of the 6th annual international conference1827

on Mobile computing and networking, 2000, pp. 243–254.1828

[33] N. Singh, M. Adhikari, Popfl: A scalable federated learning model in1829

serverless edge computing integrating with dynamic pop-up network,1830

Ad Hoc Networks 169 (2025) 103728.1831

[34] L. Patterson, D. Pigorovsky, B. Dempsey, N. Lazarev, A. Shah, C. Stein-1832

hoff, A. Bruno, J. Hu, C. Delimitrou, Hivemind: a hardware-software1833

system stack for serverless edge swarms, in: V. Salapura, M. Zahran,1834

F. Chong, L. Tang (Eds.), ISCA ’22: The 49th Annual International1835

Symposium on Computer Architecture, New York, New York, USA,1836

June 18 - 22, 2022, ACM, 2022, pp. 800–816. doi:10.1145/3470496.1837

3527407.1838

URL https://doi.org/10.1145/3470496.35274071839

[35] A. Jindal, M. Gerndt, M. Chadha, V. Podolskiy, P. Chen, Function de-1840

livery network: Extending serverless computing for heterogeneous plat-1841

forms, Software: Practice and Experience 51 (9) (2021) 1936–1963.1842

61

https://doi.org/10.1109/ICWS55610.2022.00056
https://yaml.org/spec/
https://doi.org/10.1109/JSYST.2014.2335451
https://doi.org/10.1109/JSYST.2014.2335451
https://doi.org/10.1109/JSYST.2014.2335451
https://doi.org/10.1109/JSYST.2014.2335451
https://doi.org/10.1109/JSYST.2014.2335451
https://doi.org/10.1109/JSYST.2014.2335451
https://doi.org/10.1109/JSYST.2014.2335451
https://doi.org/10.1109/JSYST.2014.2335451
https://doi.org/10.1109/JSYST.2014.2335451
https://doi.org/10.1145/3470496.3527407
https://doi.org/10.1145/3470496.3527407
https://doi.org/10.1145/3470496.3527407
https://doi.org/10.1145/3470496.3527407
https://doi.org/10.1145/3470496.3527407
https://doi.org/10.1145/3470496.3527407
https://doi.org/10.1145/3470496.3527407

[36] A. Garbugli, A. Sabbioni, A. Corradi, P. Bellavista, Tempos: Qos man-1843

agement middleware for edge cloud computing faas in the internet of1844

things, IEEE Access 10 (2022) 49114–49127. doi:10.1109/ACCESS.1845

2022.3173434.1846

[37] C. Grasso, R. Raftopoulos, G. Schembra, Deep q-learning for job offload-1847

ing orchestration in a fleet of mec uavs in 5g environments, in: 20211848

IEEE 7th International Conference on Network Softwarization (Net-1849

Soft), IEEE, 2021, pp. 186–190.1850

[38] W. You, C. Dong, Q. Wu, Y. Qu, Y. Wu, R. He, Joint task scheduling,1851

resource allocation, and uav trajectory under clustering for fanets, China1852

Communications 19 (1) (2022) 104–118.1853

[39] Y. Luo, W. Ding, B. Zhang, Optimization of task scheduling and dy-1854

namic service strategy for multi-uav-enabled mobile-edge computing sys-1855

tem, IEEE Transactions on Cognitive Communications and Networking1856

7 (3) (2021) 970–984.1857

[40] Z. Niu, H. Liu, X. Lin, J. Du, Task scheduling with uav-assisted dis-1858

persed computing for disaster scenario, IEEE Systems Journal 16 (4)1859

(2022) 6429–6440.1860

[41] M. A. Khan, I. Ullah, S. Nisar, F. Noor, I. M. Qureshi, F. Khanzada,1861

H. Khattak, M. A. Aziz, Multiaccess edge computing empowered flying1862

ad hoc networks with secure deployment using identity-based generalized1863

signcryption, Mobile Information Systems 2020 (1) (2020) 8861947.1864

[42] N. Grigoropoulos, S. Lalis, Fractus: Orchestration of distributed ap-1865

plications in the drone-edge-cloud continuum, in: 2022 IEEE 46th An-1866

nual Computers, Software, and Applications Conference (COMPSAC),1867

IEEE, 2022, pp. 838–848.1868

[43] B. Keshavamurthy, M. A. Bliss, N. Michelusi, Maestro-x: Distributed1869

orchestration of rotary-wing uav-relay swarms, IEEE Transactions on1870

Cognitive Communications and Networking 9 (3) (2023) 794–810.1871

[44] X. Lin, A. Liu, C. Han, X. Liang, K. Pan, Z. Gao, Leo satellite and uavs1872

assisted mobile edge computing for tactical ad-hoc network: A game1873

theory approach, IEEE Internet of Things Journal (2023).1874

62

https://doi.org/10.1109/ACCESS.2022.3173434
https://doi.org/10.1109/ACCESS.2022.3173434
https://doi.org/10.1109/ACCESS.2022.3173434

[45] Z. Qin, H. Wang, Z. Wei, Y. Qu, F. Xiong, H. Dai, T. Wu, Task selection1875

and scheduling in uav-enabled mec for reconnaissance with time-varying1876

priorities, IEEE Internet of Things Journal 8 (24) (2021) 17290–17307.1877

[46] G. Secinti, A. Trotta, S. Mohanti, M. Di Felice, K. R. Chowdhury, Focus:1878

Fog computing in uas software-defined mesh networks, IEEE Transac-1879

tions on Intelligent Transportation Systems 21 (6) (2019) 2664–2674.1880

[47] C. N. Ververidis, G. C. Polyzos, Service discovery for mobile ad hoc1881

networks: a survey of issues and techniques, IEEE Communications1882

Surveys & Tutorials 10 (3) (2008) 30–45.1883

[48] A. J. Ferrer, J. M. Marquès, J. Jorba, Towards the decentralised cloud:1884

Survey on approaches and challenges for mobile, ad hoc, and edge com-1885

puting, ACM Computing Surveys (CSUR) 51 (6) (2019) 1–36.1886

63

	Introduction
	Background
	Background on Serverless
	Background on Ad-Hoc Networks

	An Approach for Ad-hoc Serverless Computing
	Rationale behind our two-layer approach
	Hierarchical vs Progressive Scheduling
	Execution Targets: Strong vs Weak Semantics
	Mixing Scheduling Modalities and Network Semantics
	Software Components: the Base Station and the Drones

	Ad-Hoc Allocation Priority Policies
	The AHAPP language
	Modelling the Case Study with AHAPP

	Scheduling and Gossiping Layer Network Protocol
	Knowledge Dissemination
	Function Allocation Module

	System Evaluation
	Simulation Setup
	Performance Metrics
	Simulation Scenarios
	Evaluation Results

	Related Work
	Conclusion

