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Abstract. We discuss an integrated approach for the design, specifi-
cation, automatic deployment and simulation of microservice-based ap-
plications based on the ABS language. In particular, the integration of
architectural modeling inspired by TOSCA (component types/port de-
pendencies/architectural invariants) into the ABS language (static and
dynamic aspects of ABS, including component properties, e.g., speed,
and their use in timed/probabilistic simulations) via dedicated annota-
tions. This is realized by the integration of the ABS toolchain with a
dedicated tool, called Timed SmartDepl. Such a tool, at ABS code com-
pile time, solves (starting from the provided architectural specification)
the optimal deployment problem and produces ABS deployment orches-
trations to be used in the context of timed simulations. Moreover, the
potentialities and the expressive power of this approach are confirmed
by further integration with external tools, e.g.: the Zephyrus tool, used
by Timed SmartDepl to solve the optimal deployment problem via con-
straint solving, and a machine learning-based predictive module, that
generates in advance data to be used in a timed ABS simulation exploit-
ing such predicted data (e.g., simulating the usage, during the day, of
predicted data generated during the preceding night).

1 Introduction

Inspired by service-oriented computing, microservices structure software system
as highly modular and scalable compositions of fine-grained and loosely-coupled
services [23]. These features support modern software engineering practices, like
continuous delivery/deployment [27] and autoscaling [8]. A significant problem
in these practices is the automation of the deployment process of non-trivial
microservice systems: cost-optimal distribution of components over the available
Virtual Machines (VMs) and dynamic reconfiguration. Indeed, the ability to
modify the system architecture during execution is a fundamental property to
cope with adaptation needs, e.g., fluctuating peaks of user requests.

Although these practices are already beneficial, they can be further im-
proved by exploiting the interdependencies within an architecture (interface



Fig. 1. Integrated timed architectural modeling/execution language toolchain.

functional dependences), instead of focusing on the single microservice. For in-
stance, in the case of time-varying workload peaks w.r.t. traditional local scaling
techniques [26], architecture-level dynamic deployment orchestration can avoid
“domino” effects of unstructured scaling, i.e., single services scaling one after the
other (cascading slowdowns) due to local workload monitoring.

In this paper, we thoroughly present the integrated timed architectural mod-
eling/execution language introduced in [10]. The combination of modeling and
execution capabilities makes it possible, in the context of a single language, to
both (i) declaratively describe the architecture, its invariants, and the allowed
reconfigurations and (ii) simulate system execution. Such an integrated language
relies on an extension of the actor-based timed object-oriented Abstract Behav-
ioral Specification (ABS) language [3]. In particular, it crucially exploits the
twofold nature of ABS, which is both a process algebra (with probabilistic/-
timed formal semantics) and a programming language (compiled and executed,
e.g., with the Erlang backend), allowing for timed simulations. As can be seen
in Fig. 1, we extend the ABS language with Timed SmartDeployer tool [10] anno-
tations, which make it possible to express: architectural properties of the modeled
distributed system (global architectural invariants and allowed reconfigurations),
of its VMs (their characteristics and the resource they provide) and of its software
components/services (their resource/functional requirements). Timed SmartDe-
ployer, at compile-time, checks the satisfiability of such annotations accounting
for the desired target configuration requirements, modeled using the Declara-
tive Requirement Language (DRL) [20], and architectural invariants. Once the
annotations have been validated, it synthesizes the deployment orchestrations
that build the system architecture and each of its specified reconfigurations (via



DRL). Simmetrically, it also generates the undeployment orchestrations to undo
such reconfigurations. More precisely, Timed SmartDeployer uses ABS itself as
an orchestration language and makes (un)deployment ABS code available via
methods with conventional names. In this way, such methods can be invoked
by the ABS code of services, thus simulating run-time adaptation. Technically,
such (un)deployment orchestrations are timed (un)deployment orchestrations,
which also manage time aspects of the simulation, e.g., dynamically adjusting
VM speeds, based on actually used cpu cores, and setting VM startup times.
Therefore, Timed SmartDeployer integrates architectural annotations and timed
ABS, used as an execution language.

The fact that, besides combining them in a single language, we also inte-
grate (via orchestration generation) modeling and execution capabilities, makes
it possible to anticipate at design level performance-related issues. This fosters
an approach where the analysis of the consequences of deployment decisions are
available early on. Timed SmartDeployer checks (at compile-time) the synthe-
sizability of deployment orchestrations that, at run-time, will ensure the system
to be always capable of reaching the desired reconfiguration (specified via DRL).
For example, in the case of time-varying workload such desired reconfigurations
would aim at globally incrementing the computational power via service replica-
tion. In this way, we would have the guarantee that the system is always capable
of adapting to positive/negative peaks of user requests, respecting the imposed
Quality of Service. On the contrary, run-time deployment decisions, if left to
loosely-coupled reactive scaling policies, could lead to a chaotic behavior.

Timed SmartDeployer has to solve the problem of synthesizing timed de-
ployment orchestrations starting from a declarative description of desired re-
configuration requirements. Such a problem, called optimal deployment problem,
has been proved to be algorithmically treatable for microservices only [16,17].
Timed SmartDeployer provides an interface with ABS, reading ABS annota-
tions with DRL declarations and injecting code of synthesized (un)deployment
orchestrations into the initial annotated ABS program. To do this, it relies on
a pluggable external solver which outputs the synthesized architectural configu-
ration (cost-optimal distribution of components over the available VMs), which
is, then, translated by Timed SmartDeployer into (un)deployment orchestrations
expressed as timed ABS code. Notice that, being the solver pluggable, Zephyrus2
can be replaced with any other (not necessarily constraint-based) solver, which
takes as input a DRL declaration and produces an architectural configuration.

Concerning the simulation of a modeled microservice system, executable ABS
code is based on a set of hard-coded data (ABS array), which is divided into
two parts: the actual and predicted workload for the simulated time period.
Concerning the predicted workload, such data is generated at compile-time using
a pluggable predictive module. Specifically, we make use of a machine learning
predictive-based module implementing a neural network, which generates the
workload data performing inference on a previously trained network. The idea
is that the simulation represents system execution during the daytime and the
neural network is trained during the preceding night. Notice that, being the



predictive module pluggable, such a machine learning-based one can be replaced
with any other module which produces predicted workload data.

Finally, we show our modeling execution language to be capable of express-
ing architecture-level adaptable systems. In particular, we consider, as a running
example, a realistic microservice application, i.e., the Email Message Analysis
Pipeline taken from Iron.io [24]. In such an application scenario, we use, as a
reconfiguration requirement, some given increment or decrement of the system
Maximum Computational Load (MCL), i.e., the maximum supported frequency
for inbound requests (workload). Such global reconfigurations are used, in the
context of an algorithm for architecture-level run-time adaptation [10] (also re-
ferred to as global scaling algorithm) to reach any target MCL (target workload),
which overcomes the shortcomings of the traditional local scaling approach [26].

As we show in [10], the idea is that by monitoring at run-time the inbound
workload, our algorithm causes the system to be always in the reachable con-
figuration that better fits such workload (and that has the minimum number of
deployed microservice instances). As a matter of fact, it is advantageous (see [9])
to consider as a target workload for the algorithm not merely the monitored one,
but also the predicted workload (generated by the predictive module). Thus, we
devised a run-time technique, based on past observed differences (where the
most recent ones are given the highest weight) between monitored and predicted
workload, to combine them into a single target workload.

Concerning the Email Message Analysis Pipeline itself, its model is built
by considering static aspects of the architecture (annotations) and ABS code
modeling the behavior of services. We simulate system execution using inbound
traffic inspired to the real Enron dataset in [28], representing the frequency of
emails entering the system. In order to show the effectiveness of our global scaling
algorithm and show the advantages of using a predictive module and a technique
to mix forecasted data with monitored ones, we run comparison experiments to
show its advantages w.r.t. other approaches. The obtained code fully exploits the
expressive power of ABS, e.g., using both its timed and probabilistic features. 4

The paper is structured as follows. In Section 2, we briefly introduce our
approach to the automatated deployment of microservice applications and we
present the Email Pipeline Processing system that we use as a running exam-
ple. In Section 3, we describe the Architectural Modeling/Execution Language,
including Timed SmartDeployer and how we model service MCL. In Section 4,
we present how external tools, i.e., Zephyrus2 and our machine learning based
predictive module, can be integrated with this language. In Section 5, we test the
expressive power of the Architectural Modeling/Execution Language, showing
the implementation of the global scaling. Finally, in Section 6, we conclude the
paper and discuss related work.

4 Complexity of our ABS process algebraic models is also witnessed by the fact that
they led us to discover an error in the Erlang backend: it caused interferences in
time evolution between unrelated VMs (it was solved thanks to our code).



2 Microservices Deployment and Running Example

We now introduce our approach to the automatated deployment of microser-
vice applications and illustrate it with our running example, the Email Message
Analysis Pipeline.

2.1 Automated Deployment of Microservices

In [16,17], Bravetti et al. formalize component-based software systems and the
problem of their automated deployment as the synthesis of deployment orches-
trations (which allocate instances of software components on VMs) to reach a
given target system configuration. In particular, the deployment life-cycle of each
component type is formalized as a finite-state automaton, whose states denote
a deployment stage. Each state corresponds to a set of provided ports (oper-
ations exposed by a component that other components can use) and a set of
required ports (operations of other components needed by a component to work
at that deployment stage). More specifically, Bravetti et al. [16,17] consider the
case of microservices, components whose deployment life cycle consists of two
phases: (i) creation, which entails the mandatory establishment of initial con-
nections, via so-called strongly required ports, with other available microservices,
and (ii) binding/unbinding, which corresponds to the establishment of optional
connections, specified as so-called weakly required ports, to other available mi-
croservices. The two phases make it possible to manage circular dependencies
among microservices.

The notions of strongly and weakly required ports are present also in state-
of-the-art deployment technologies like Docker Compose [22], which is a lan-
guage for the definition of multi-container deployments. In Docker Compose
users specify different relationships among containers using, e.g., the depends on
(resp. external links) relations. Then, these relations impose (resp. do not impose)
a specific startup order among the containers, similar to how the combination
of strong (resp. weak) dependencies induce an ordering in the orchestration of
microservices deployment.

In addition, Bravetti et al. [16,17] consider resource/cost-aware deployments
by modeling also memory and computational resources—i.e., the number of vir-
tual CPU cores (vCores in Azure), sometimes simply called virtual CPUs as in
Amazon EC2 and Kubernetes [26]. In particular, the authors enrich both mi-
croservice specifications and VM descriptions with the number of resources they,
respectively, need and supply.

A microservice deployment orchestration is a program in an orchestration
language that includes primitives for (i) creating/removing a certain microser-
vice together with its strongly required bindings and (ii) adding/removing weak-
required bindings between some created microservices. Given an initial microser-
vice system, a set of available VMs, and a new target system configuration (cor-
responding to the set of microservices to be deployed), the optimal deployment
problem is the problem of finding the deployment orchestration that (a) satisfies
core and memory requirements, (b) leads to a new system configuration where
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Fig. 2. Microservice Architecture of the Email Message Analysis Pipeline.

the target microservices are deployed, and (c) chooses the solution that optimizes
resource usage, if more than one is available. As a typical example of an objec-
tive function to optimize, the reader can consider cost minimization, i.e., select
among all possible deployment orchestrations the one which minimizes the sum
of the cost-per-hour of the virtual machines used for microservice deployment.

While Di Cosmo et al. [18] proved that allowing components to have arbi-
trary deployment life-cycles makes the optimal deployment problem undecidable,
Bravetti et al. showed that the latter becomes decidable when considering the
simplified life-cycle of microservices described above, consisting of the two cre-
ation and binding/unbinding phases [16,17]. In particular, the authors presented
a constraint-solving algorithm whose result is the new system configuration, i.e.,
the microservices to be deployed, their distribution over the VMs, and the bind-
ings to be established among their strong/weak required and provided ports.

2.2 The Email Message Analysis Pipeline

In Fig. 2 (similar to that in [16,17]) we show a representation of the Email Mes-
sage Analysis Pipeline [24]. The architecture includes 12 types of microservices,
each equipped with its dedicated load balancer. Each load balancer distributes
inbound requests among the set of microservice instances, whose number can
change at runtime. We can logically partition our exemplary microservice appli-
cation into four pipelines, each dedicated to the analysis or different parts of an
email, namely its headers, links, text, and attachments (we detail each pipeline in
Section 2.3). Messages enter the system through the MessageReceiver, which for-
wards them to the MessageParser. This microservice, in turn, extracts data from
the email and routes them to the proper pipeline. Once each email component
has been processed asynchronously (each taking its specific processing time), the
MessageAnalyzer aggregates the outputs of each pipeline corresponding to the
same email, and it produces a single analysis report for that email.



Before illustrating, in the next section, how one can apply to this example our
approach for the automated deployment and scaling of microservice applications
(cf. Section 2.1), we briefly present our representation of cloud resources.

We consider virtual CPU cores both for machines (providing them) and for
microservices (requiring them). In particular, here, we assume microservices to
be deployed on Amazon EC2 VMs of type large, xlarge, 2xlarge, and 4xlarge,
each respectively providing 2, 4, 8, and 16 virtual CPU cores (following the
Azure vCore terminology), simply called vCPUs in Amazon EC2. Notice that we
model computational resources supplied by VMs (and required by microservices)
using virtual cores with some speed fixed by the Cloud provider. Providers com-
monly use this kind of abstraction to uncouple the underlying hardware from the
specifics exposed to users. Moreover, this level of indirection lets providers max-
imise the use of physical processors by delegating to the runtime (the VM/OS)
the mapping of virtual cores and the scheduling of instructions. Each microser-
vice type has a number of required virtual cores. Assigning the required virtual
cores to a given microservice so that it achieves some expected performance (e.g.,
an estimated throughput) is a problem orthogonal to the one we investigate in
this paper. While in practice programmers/operators perform this assignment as
guesswork informed by their experience (as we do in this example), techniques
like instruction counting [13] and profiling [14] can help in providing principled
estimations.

2.3 Scaling Microservices

One of the pre-requisites to configure the deployment of microservice architec-
ture is that each microservice should be defined by having a strongly required
port towards the microservices which follow it in the pipeline. For instance, the
MessageParser strongly requires connections with the HeaderAnalyzer, LinkAn-
alyzer, TextAnalyzer, and VirusScanner microservices since these services follow
it in the pipeline (cf. Figure 2).

More precisely, the ports should not be directly connected to instances of
such microservices, but to their corresponding load balancers. In turn, each load
balancer has a weakly required port that must be connected to all the avail-
able instances of the corresponding microservice, so that the load balancer can
forward requests among them. The reasons behind this choice is that by es-
tablishing strongly requires connections to a microservice proxy it is possible
to deploy first for example the load balancer of the HeaderAnalyzer and then
deploy the instances of MessageParser, which are installable since they can be
immediately connected to the load balancer they strongly require. Finally, it
is possible to establish the connection of the load balancers to their instances
through the weakly required port.

An advantage of using strongly and weakly required ports is that it is pos-
sible to easily capture dynamic adaptation of the pipeline deployment. A new
microservice instance can be easily added to react to an increase workload by
creating it and immediately connecting it to the (strongly required) load bal-
ancer of the microservice following in the pipeline. Then, the load balancer of



the instance added binds to the new instance via the weakly required port. The
removal of microservice instances instead follows the opposite order. First, we
remove the binding between the load balancer of the microservice instances that
we want to remove and, second, we safely de-allocate the interested instances.

Another advantage following from the knowledge of the microservice depen-
dencies is that we can automatically adapt the whole architecture to provide the
needed resources. Imagine for example the scenario in which an increase work-
load will require three new instances of MessageParser and two new instances of
HeaderAnalyzer to proper handle all the traffic. If autoscaling [8] is used, scaling
out and in decisions are taken locally by every service. As a consequence, the two
services will be scaled out in sequence: first the MessageParser that comes first
in the pipeline (and therefore witness for first the effects of the increase of the
traffic) and then the HeaderAnalyzer that will start to be invoked more often by
the MessageParser. Luckily, as shown in Section 5, having a global knowledge of
the microservice dependencies allows to exploit the information that more than
one service can be scale out at once and therefore perform a global adaptation. In
our scenario, both the MessageParser and the HeaderAnalyzer would be scaled
out at the same time, thus allowing the avoidance of the domino effects typical
of autoscaling strategies.

2.4 Microservice Maximum Computational Load

We now introduce an important property of microservices, which characterizes
their throughput: Maximum Computational Load (MCL), i.e., the maximum
number of requests that a microservice instance of that type can handle within
a second. As we will see, it is important to consider such a property to assess
the correctness w.r.t. time behaviour of our integrated timed architectural mod-
eling/execution language.

More precisely, the MCL of a microservice is computed as follows:

MCL = 1/(
sizerequest
data rate + pf)

where sizerequest is the average request size of the microservice in MB. Moreover,
data rate is the microservice rate in MB/sec for managing request data. We
determine such a value, based on the number of microservice requested cores,
from Nginx server data in [31] (considering Nginx servers with that number of
vCPUs). Finally, pf is a penalty factor that expresses an additional amount of
time that a microservice needs to manage its requests, e.g., the ImageRecognizer,
which needs Machine Learning techniques to fulfill its tasks.

3 Architectural Modeling/Execution Language

3.1 Abstract Behavioral Specification Language

Abstract Behavioral Specification (ABS) [3] is an actor-based object-oriented
specification language (a process algebra) offering algebraic user-defined data
types, side effect-free functions and immutable data. Since ABS is not directly



executable, its toolchain [4] contains several backends that compile algebraic
models into an executable programming language, e.g., Erlang in the case of
the Erlang backend, and execute it. ABS objects are organized into Concurrent
Object Groups (COGs) representing software components or services. Objects
belonging to different COGs communicate with each other using asynchronous
method calls [15], expressed as object!method(. . . ) instructions. Asynchronicity
is realized by means of the future mechanism: asynchronous method calls return
a future that can be used to wait for the result using the await statement [5].
Timed ABS [7] is an extension to the ABS core language that introduces a notion
of abstract time. In particular, evolution of time in ABS is modeled by means of
discrete time: during execution system time is expressed as the number of time
units that have passed since system start. The modeler decides what a time unit
represents for a specific application. Such a feature makes it possible to perform
simulations analysing the time-related behavior of systems. Timed ABS has also
probabilistic features that allow modelers to create uniform distributions, e.g.,
the average number of attachments per email in our case study.

To represent VMs (and simulate them, e.g., inside the Erlang backend) ABS
introduces the notion of Deployment Component (DC) [6] as a location where a
COG can be deployed. As VMs, ABS DCs are associated with several kinds of
resources, expressed via a dedicated annotations. In particular virtual cpu speed
is represented in ABS by the DC speed : it models the amount of computational
resource per time unit a DC can supply to the hosted COGs. This resource is
consumed by ABS instructions that are marked with the Cost tag, e.g., [Cost:
30] instruction. COG instructions tagged with a cost consume the hosting DC
computational resource still available for the current time unit (the instruction
above consumes 30 from the DC speed resource): if not enough computational
resource is left in the current time unit, then the instruction terminates its
execution in the next one.

Concerning our approach to automated microservice deployment, based on
strong and weak dependencies, in ABS we represent microservice types as classes
and microservice instances as objects, each executed in an independent COG.
Moreover, we represent strong dependencies as mandatory parameters required
by class constructors: such parameters contain the references to the objects cor-
responding to the microservices providing the strongly required ports. Weak
required ports are expressed by means of specific methods that allow an existing
object to receive the references to the objects providing them.

3.2 Timed SmartDeployer

Timed SmartDeployer is executed at ABS compile time: it statically solves the
optimal deployment problem described at the end of Section 2.1, i.e., synthesis
of deployment orchestrations that reach a given target system configuration.
Timed SmartDeployer takes its input from dedicated ABS annotations, which
are present in the compiled ABS program, and produces its output as ABS code
— synthesized timed (un)deployment orchestration — which is added to the
initial annotated ABS program.



Timed SmartDeployer ABS Annotations The JSON based ABS annota-
tions from which Timed SmartDeployer extracts its input are:

– [ SmartDeployCost : JSONstring ] class annotation. This annotation is bound
to an ABS class representing a given microservice type. It describes the func-
tional dependencies (provided and weak/strong required ports) and the re-
sources (e.g., number of cores and amount of memory) a microservice needs.

– [ SmartDeployCloudProvider : JSONstring ] global annotation. It defines
the properties (e.g., Cores, Bandwidth, Memory, Speed, StartupTime) and
cost-per-hour of the DCs created in the synthesized orchestration execution.

– [ SmartDeploy : JSONstring ] global annotation. It describes the desired
properties and constraints of the deployment orchestration, e.g.:
• The id property, which sets the name for the class that is going to include
the ABS code of the synthesized orchestration.

• The cloud provider DC availability property, which fixes the maxi-
mum number of VMs the orchestration can allocate.

Some of these properties can have, as JSON value, a string whose content
is a declarative specification (a formula of a logic language that is based on
first-order logic), e.g.:
• The specification property, which contains the declarative specifica-
tion of the desired configuration in DRL. A value for this property, taken
from our running example (orchestration with id Scale2 in [1], see Sec-
tion 5 for its description), can be:

SentimentAnalyser = 3 and VirusScanner = 2 and
AttachmentsManager = 1 and ImageAnalyser = 1 and

NSFWDetector = 2 and ImageRecognizer = 2 and
MessageAnalyser = 2

meaning that 3 instances of the SentimentAnalyser must be (addition-
ally) deployed, etc.

• The bind preferences property, which is used to specify preferences
about weak bindings among service instances (using the declarative lan-
guage of [20]). A value for this property, taken from our running example
(orchestration with id BaseScale in [1], see “B” configuration in Sec-
tion 5), can be:

forall ?x of type MessageReceiver in ’.*’ :
forall ?y of type MessageReceiver_LoadBalancer in ’.*’

: ?x used by ?y

meaning that each instance (variable ?x) of the Message Receiver ser-
vice has to be bound to each MessageReceiver LoadBalancer service
instance (variable ?y). Given that there exists only 1 instance of the
MessageReceiver LoadBalancer service in the system, this just means
that each instance of the MessageReceiver service has to be bound to its
load balancer. More precisely, the in keyword is used to set the scope
for the indicated service: services considerd are only those located inside
the DCs whose names are declared after in. Such a declaration can be
made with a regular expression like ′.∗′ (meaning any string), i.e., the
service can be located in any running DC.



Synthesized Timed (Un)deployment Orchestration Timed SmartDeployer
produces as output the desired timed (un)deployment orchestration: a timed ABS
program, injected in the initial annotated one, containing the set of orchestration
language instructions (expressed as timed ABS code). The execution of the newly
synthesized orchestration causes the system to reach a deployment configuration
with the desired properties.

Internal Details As detailed above, Timed SmartDeployer provides an inter-
face with ABS, reading ABS annotations with DRL declarations and injecting
the synthesized (un)deployment orchestrations code into the initial annotated
program. To do this, it relies on a pluggable external solver, e.g., the Zephyrus2
constraint solver [2].

The external solver outputs the synthesized architectural configuration (cost-
optimal distribution of components over the available VMs), which is, then,
translated by Timed SmartDeployer into (un)deployment orchestrations expressed
as timed ABS code. Such timed deployment orchestrations additionally encom-
pass (w.r.t. untimed ones, see Section 2.1) dynamic management of overall DC
startup time and speed (computational resources per time unit, see Section 3.1),
based on the number of DC virtual cores that are actually used by some microser-
vice after enacting the synthesized deployment sequence. As we will show, this
allows us to correctly model time (microservice MCL). Timed SmartDeployer
dynamically assigns a speed and a startup time to each DC that is created during
a deployment orchestration. Such timed properties of created DCs are evaluated,
starting from the speed and startup time annotations (see Section 3.2) in the orig-
inal ABS code, as follows. The speed property is dynamically evaluated, during
orchestration execution, taking into account the number of DC cores that are
actually used: speed - speed per core · unused cores. Concerning startup time, we
dynamically set an overall startup time such that it is the maximum among those
of the DCs created during a deployment orchestration. The above is realized by
automatically synthesizing timed orchestrations, whose language additionally
includes (w.r.t. untimed ones) two primitives explicitly managing time aspects

– One to decrement the speed of a DC: decrementResources(. . . ) in ABS.
– One to set overall the startup time of created DCs: duration(. . . ) in ABS.

3.3 Modeling Service MCL

We now show how Time SmartDeployer allows us to correctly simulate the ser-
vice MCL we want to model (see Section 2.4), independently of the VM (DC)
in which it is deployed. An example is considering, as we do in our case study,
the ABS time unit to be 1/30 sec and setting VMs to supply 5 speed per core.
According to the calculation we presented in 2.4, it turns out that the MCL of an
actual implementation of the ImageRecognizer service is 91 requests per second.
In the ABS code, to model service MCL, we make use of the Cost instruction
tag (see Section 3.1). E.g., in the case of the ImageRecognizer, which requires 6
cores to be deployed, we obtain the MCL of 91 req/s as follows:



1 class ImageRecognizer () implements ImageRecognizerInterface {
2 Int mcl = 91;
3 String recognizeImage(ImageRecognizer_LoadBalancerInterface

balancer){
4 [Cost: 5 * 6 * 30 / mcl] balancer!removeMessage ();
5 Int category = random (9);
6 return "Category Recognized: " + toString(category);
7 }
8 }

where the method recognizeImage(...) is executed at each request.
Due to our SmartDeployer timed extension, the amount of VM speed used by

ImageRecognizer is always 5 · 6 (speed per core · cores required), independently of
the VM in which it is deployed, i.e., ImageRecognizer can use up to 5 · 6 compu-
tational resources per time unit. The Cost tag above causes each request to con-
sume speed per core · cores required · 30/MCL computational resources. There-
fore, since MCL/30 is the ImageRecognizer MCL expressed in requests per time
unit, this realizes the desired (deployment independent) service MCL.

4 Integration with External Tools

In this section, we discuss external tools (w.r.t. ABS) that we have used in
our work. First, we need a tool to solve the problem of synthesizing timed de-
ployment orchestrations, starting from the deployment information contained
in the ABS annotations. Second, given that we plan to use the executable se-
mantics of ABS to simulate deployment and scaling policies for microservice
systems that include also predictions of the incoming workload fluctuations, we
also need a tool for workload prediction. Concerning the first tool, we have used
the Zephyrus2 [2] solver based on constraint-solving technology, while for the
latter we have adopted a well-established Machine Learning (ML) techniques. It
is interesting to observe that, being such tools pluggable, Zephyrus2 and the ML
predictive module could be replaced with any other (not necessarily constraint-
or ML-based) tools.

4.1 The Zephyrus deployment engine

As described in Section 3.2, Timed SmartDeployer extracts, from ABS code,
deployment information of different kinds: (i) class annotations that describe
the requirements of objects which represent the resources and dependencies of
the microservice instances modeled by such objects and (ii) global annotations
that describes the available computing resources and the desired properties that
the deployment should satisfy. Such annotations are processed by the deployment
engine that automatically synthesizes a microservice architecture allocating the
various microservices on available computing resources. This is done taking into
account both local (e.g., single microservice dependencies) and the global (e.g.,
minimize the total number of allocated resources) constraints.

The deployment engine which is currently used in our Timed SmartDeployer
prototype is Zephyrus2 [2]. Zephyrus2 is a tool for optimal deployment of soft-
ware components over virtual machines that exploits SMT (Satisfiability Mod-



ulo Theories) and CP (Constraint Programming) technologies. More precisely,
Zephyrus2 expects in input three different kinds of deployment information:

– a description of the components that can be deployed (which includes the
consumed computing/memory resources as well as the functionalities re-
quired/provided from/to other components),

– a description of the virtual machines where the components can run (which
includes the resources offered by the virtual machines as well as other infor-
mation, like their cost), and

– the specific requirements on the component-based software architecture to
be computed and deployed over the available virtual machines.

Notably, the last item could include also objective functions to be optimized, e.g.,
the request to minimize the total cost of the used virtual machines. Zephyrus2
then produces as output a description of the components to deploy, the allocation
of such components over the available virtual machine, and the bindings among
the components that reciprocally require/offer functionalities. The computed
deployment satisfies the constraints and requirements specified in input.

Zephyrus2 computes its output as a solution to an optimization problem en-
coded in MiniZinc [29], a solver independent language for modeling constraint
satisfaction and optimization problems. The interested reader can find in [2]
details about how Zephyrus2 produces the MiniZinc specification of the deploy-
ment problem and how it exploits state-of-the-art tools to solve such problem.
Here, we simply give an idea of how to translate deployment requirements into
constraints on a couple of simple examples.

As a first example, we consider the allocation of memory to the components.
Consider the constraint∧

v∈VM

∑
C∈CompTypes

inst(C, v) · C.mem ≤ v.mem

where VM denotes the set of all the available virtual machines, CompTypes the
possibile component types, inst(C, v) the number of instances of components
of type C allocated on the virtual machine v, C.mem the memory consumed
by a component of type C, and v.mem the memory available on the virtual
machine v. This constraint enforces the requirement that it is not possible, on
every virtual machine, to allocate to components strictly more than the available
memory.

As an additional example, we consider how it is possible to require the de-
ployment which minimizes the total cost. For all the virtual machines v, a new
boolean variable used(v) is introduced and bound to be true if at least a com-
ponent is deployed on the v by the following constraints:∧

v∈VM

( ∑
C∈CompTypes

inst(C, v) > 0
)
⇔ used(v)

Then to minimize the total cost is is possible to minimize the following objective
function:

min
∑

v∈VM, used(v)

v.cost



where v.cost is the cost of the virtual machine v.

4.2 ML-based Predictive Module

When simulating a modeled microservice system using executable ABS code,
we use a set of hard-coded data points in the form of an ABS array. While the
most straightforward option is to run the simulation on actual traffic workload,
our modular approach allows us to also integrate other components, such as
predictive modules, which forecast traffic fluctuations, and actuation modules,
which regulate how the logic for the architectural adaptation weights the different
sources of information (e.g., the simulated traffic and its prediction).

Focusing on the role of prediction modules, we can distinguish between two
types of information: the actual workload and the predicted workload. The lat-
ter is generated at compile-time using some pluggable predictive modules. For
instance, one can implement the predictive module through neural networks,
where the predictive module generates workload data by performing inference
on the previously trained network. While this approach is apt for a simulation
environment, it does not depart sensibly from real-world applications, e.g., where
one can collect daytime information on the traffic and feed it to the neural model
and obtain the forecast for the next day during the night.

Predicting the traffic of the Email Message Analysis Pipeline As an ex-
ample, we describe how one can use data analytics to predict traffic fluctuations
in our running example (cf. Section 2.2).

Dataset The prediction module requires a datasat for training. Since the execu-
tion context of the Email Pipeline architecture is that of email correspondence,
we draw our data from Enron corpus dataset [28]. This dataset has been made
public by the Federal Energy Regulatory Commission during investigations con-
cerning the Enron corporation (version of May 7th, 2015). The dataset contains
517,431 emails from 151 users, without attachments, distributed over a time
window of about 10 years (1995-2005).
We processed the dataset to extract the attributes for predicting the number
of incoming emails for a given time. We assume that time is discretized in one-
hour intervals. For every email we extracted the datetime attribute, and then
we summed the number of emails in the desired monitored time. Every email
was associated with five new attributes: month, day, weekday, hour, and counter
giving us a representation of the email flow in the system at a given hour.

Predictions There are many techniques that one can apply to predict the traffic
load. For our use case, as detailed in [9], the off-the-shelf Multi-Layer Perceptron
is used. For the training, the dataset has been partitioned into a training set,
a validation set, and a testing set—the latter, to estimate the error rate of the
model. Specifically, a neural network with three fully-connected layers have been
used, applying the Rectified Linear Unit (ReLU) nonlinear activation function



to the output of each layer. Each level of the neural network compressed the
input into a smaller representation. The first level reduced the input from 70 to
64 attributes, while the second level reduced it from 64 to 32 attributes. Finally,
they linearly projected the 32 attributes into a single value that corresponds to
the regression target. To compute the error rate, the Mean Squared Error (MSE)
loss function is used while to optimize the network parameters the Adaptive
Moment Estimation (Adam) has been used. The training process had a learning
rate of 0.1 and an exponential decay scheduler with γ = 0.9.

5 Simulation of Architecture-Level Adaptable Systems
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Fig. 3. Simulating proactive-reactive architecture-level system adaptation.

To test the expressive power of our modeling execution language, we simulate
the platform depicted in Fig. 3. Such platform is made of two kinds of elements:
the microservice system to be adapted (labelled G, M1,M2, M3) and the ele-
ment of the platform itself (depicted with orange boxes). Since the platform sees
microservices as instance parameters, we abstract from their actual behaviour.
We now describe each element of the platform. Before doing so, we highlight the
three kinds of flows in Fig. 3: → showing the inbound workload reaching the
microservice architecture; dashed-line arrows 99K regarding the runtime execu-
tion of an architecture-level adaptation process; the thick arrow ⇐ indicating
the compilation time of deployment orchestrations.

Deployment Orchestration Engine This component receives a deployment or-
chestration and enacts all the operations it contains, e.g., (de)allocating VMs, mi-
croservice replications. It is a loosely-coupled component of the platform, taken
from existing solutions (the only requirement is that it provides a programming
interface for the application of deployment plans), such as Kubernetes. In our



simulated environment, the deployment orchestration engine is represented by
the Erlang backend, which is in charge of executing the whole simulation.

Adaptation Algorithm The Adaptation Algorithm implements an architecture-
level adaptation algorithm that computes the deployment orchestrations to be
applied in order to cope with inbound workload peaks. To do that, such mod-
ule takes into account two inputs. The first one, represented by ⇐, regards the
deployment orchestrations statically computed by Timed SmartDeployer (see
Section 3.2) by means of a constraint solver, e.g., Zephyrus2. These orchestra-
tions are computed such that they satisfy the specifications given by the user
(DevOps in Fig. 3), i.e., Resources, Dependencies and Deployment Constraints
in Fig. 3, respectively included in the SmartDeployCloudProvider, SmartDe-
ployCost and SmartDeploy annotations, see Section 3.2 . The second input, rep-
resented by 99K , regards the workload the system has to support, after the
adaptation process. In this case, the Adaptation Algorithm acts as a service that
other components call. Upon activation, the Adaptation Algorithm interacts with
the Deployment Orchestration Engine to perform the scaling.

Monitor The monitor tracks the traffic flowing on the architecture within a
prefixed time window and checks the possible occurrence of a workload deviation,
e.g., the difference between the monitored workload and the globally supported
one, as we will see in the following sections. When such a condition occurs, the
Monitor sends to the Actuation Module the amount of measured workload.

Predicted Workload The Predicted Workload is computed by means of a pre-
dictive module external to the simulation. In our case, we perform predictions
using the ML-based predictive module described in Section 4.2. Such workload
is statically injected in the simulation exploiting a standard ABS data structure,
i.e., arrays, and it is forwarded to the Actuation Module.

Actuation Module The Actuation Module computes the amount of workload given
as input, i.e., the target workload, to the Adaptation Algorithm. Depending on
how such workload is computed, we distinguish 3 modalities: (i) reactive mode,
if the target workload is the one measured by the monitor (this modality has no
predicted workload); (ii) proactive mode, if the target workload is represented
by the predictions in the Predicted Workload (this modality has no monitor); and
(iii) proactive-reactivemode, if the target workload is computed as a combination
of the signals coming from the Monitor and Predicted Workload, according to the
mixing technique implemented in this module.

Concretely, we model the architecture platform and the scaling approaches
via ABS, compiling it into a system of Erlang programs that run the simulation.
Then, the simulation receives three kinds of inputs, which are statically defined
within a simulation run: deployment orchestrations (generated by Timed Smart-
Deployer at compile-time, see Section 3.2), an actual and a predicted workload
(generated by the Predictive Module, see Section 4.2) both hard-coded in the
simulation in the form of arrays. We model a real-world request flow sent to the



simulated microservice architecture via an ad-hoc generating service, which dis-
tributes requests as specified in the actual workload array. The simulation uses
these inputs to evaluate the performance of a target microservices architecture.

5.1 Application to Global Scaling

In the following sections, we use the above presented architecture (see Fig. 3)
to simulate the algorithm for global run-time adaptation that we introduced
in [10]. Such an algorithm, which we could conceive and simulate thanks to our
integrated timed architectural modeling/execution language, finds application in
the context of cloud-computing platforms endowed with orchestration engines.
The algorithm reaches, by performing global reconfigurations, a target system
Maximum Computational Load (MCL), i.e., the maximum supported frequency
for inbound requests. The idea is that, by monitoring at run-time the inbound
workload, our algorithm causes the system to be always in the reachable config-
uration that better fits such a workload (and that has the minimum number of
deployed microservice instances). This is achieved by enacting global reconfigu-
rations, which are targeted at guaranteeing a given increment/decrement of the
system MCL.

In particular, in the next section, we introduce the concept of microservice
Multiplicative Factor (MF), which is needed by the algorithm. We already ob-
served that each microservice type is characterized by a MCL (see Section 2.4),
i.e., the maximum number of requests that a microservice instance of that type
can handle in a second. We additionally observe that each microservice type
is also characterized by a MF, i.e., the mean number of requests that a single
request (i.e., an email) entering the system generates for that microservice type.

In the remaining sections, we introduce all the building blocks needed to re-
alize our global scaling approach. We start from the mathematical calculation of
the global scaling reconfigurations incrementing/decrementing the system MCL.
This is done by showing how system MCL can be computed by the MCL of sin-
gle service instances, which, in turn, are mathematically calculated based on
the microservice data rate (we use, e.g., real data in [31] for Nginx servers) and
the role it plays in the application architecture (which determines its MF and
the size of its requests for each incoming message). Such global reconfigurations
are synthesized into deployment orchestrations by Timed SmartDeployer. We
then show a technique to combine the monitored and predicted workload into a
unique target workload, used in our proactive-reactive global scaling approach.
We finally introduce the scaling algorithm showing its implementation via ABS
code excerpts. We then simulate the introduced global scaling approach by ap-
plying it to our example (cf. Section 2.2) and present simulation results: a set
of comparisons that, not only shows that our global scaling approach overcomes
the limitations of the traditional local one, but also the extent of improvements
brought by our predictive module (see in Section 4.2) and our technique for
computing the target workload to a purely reactive global scaling approach.



5.2 Microservice Multiplicative Factor

The Multiplicative Factor (MF) of a microservice type is determined from the
role it plays in the whole architecture, e.g., in the running example, by the email
part it receives. As a consequence it is strictly related to the (average) struc-
ture of emails entering the system. In particular, we estimate an email to have:
(i) a single header; (ii) a set of links (treated collectively as a single informa-
tion, received by the LinkAnalyser); (iii) a single text body (received by the
TextAnalyser), which is split, on average, into Nblocks = 2.5 text blocks (indi-
vidually analysed by SentimentAnalyser); and (iv) on average Nattachments = 2
attachments (individually sent to the attachment sub-pipeline starting with the
VirusScanner), each having average size of sizeattachment = 7MB and containing
a virus with probability PV = 0.25 (which determines whether a virus scan re-
port is sent to the MessageAnalyser or, in case of no virus, the attachment is
forwarded to the AttachmentManager).

The average numbers above are estimated ones: the MF of microservices can
be easily recomputed in case different numbers are considered. In particular, MFs
are calculated as follows. Since emails have a single header, a set of links that
are sent together and a single text body, the microservices that analyze these
elements, i.e., HeaderAnalyser, LinkAnalyser and TextAnalyser, have MF = 1.
As text blocks and attachments are individually sent, each of them generates
a request to the SentimentAnalyser and the VirusScanner, therefore they have
MF = Nblocks and MF = Nattachments respectively. The microservices that follow
the VirusScanner in the architecture, i.e., AttachmentManager, ImageAnalyzer,
ImageRecognizer and NSFWDetector have a MF equal to the number of virus-
free attachments, which can be computed asMF = Nattachments · (1− PV). Finally,
the MF of the MessageAnalyser is the sum of the email parts (1 header, 1 set of
links, 1 text body and Nattachments attachments).

From a timing viewpoint, considering microservice type Maximum Compu-
tational Load (MCL) and MF is important because it allows us to calculate the
minimum number of instances of that type needed to guarantee a given overall
system MCL sys MCL, i.e.5

Ninstances =
⌈
sys MCL·MF

MCL

⌉
Notice that, a microservice MF is also important in order to determine its

request size sizerequest, which, in turn, as we showed in Section 2.4, is needed to
calculate its MCL. More precisely, we compute microservice sizerequest as follows.
In our running example, for all microservices receiving attachments but the Mes-
sageAnalyser we have:

sizerequest = Nattach per req · sizeattachment

where Nattach per req = Nattachments for microservices receiving entire emails and
Nattach per req = 1 for the others. For HeaderAnalyser, LinkAnalyser and Text-
Analyser we consider sizerequest to be neglectable, thus (since their pf is also 0)

5 ⌈x⌉ is the ceil function that takes as input a real number and gives as output the
least integer greater than or equal to x.



their MCL is infinite. Concerning MessageAnalyser request size, we need instead
to also consider its MF. In particular, we compute the average size of the MF
requests that en email entering the system generates (since we consider only
attachments to have a non-negligible size), i.e.

sizerequest MA = Nattachments·(1−PV)·sizeattachment

MF .

5.3 Calculation of Scaling Configurations

We consider a base B system configuration, see Table 1, which guarantees a sys-
temMCL of 60 emails/sec. In the corresponding column of Table 1 we present the
number of instances for each microservice type, calculated according to the for-
mula in Section 2.4. Moreover, we consider four incremental configurations ∆1,
∆2, ∆3 and ∆4, synthesized via Timed SmartDeployer, each adding a number
of instances to each microservice type, see Table 1. Those incremental configura-
tions are used as target configurations for deployment/undeployment orchestra-
tion synthesis in order to perform run-time architecture-level reconfiguration. As
shown in Table 2, ∆1, ∆2, ∆3 and ∆4 are used, in turn, to build (summing them
up element-wise as arrays) the incremental configurations Scale1,Scale2,Scale3
and Scale4 that guarantee an additional system MCL of +60, +150, +240 and
+330 emails/sec, respectively.

The reason for not considering our Scales as monolithic blocks and defining
them as combinations of the ∆ incremental configurations is the following. Let
us suppose the system to be, e.g., in a B+Scale1 configuration and the increase
in incoming workload to require the deployment of Scale2 and the undeployment
of Scale1. If we had not introduced ∆ configurations and we had synthesized or-
chestrations directly for Scale configurations, we would have needed to perform
an undeployment of Scale1 followed by a deployment of Scale2. With ∆ config-
urations, instead, we can simply additionally deploy ∆2. Moreover, notice that
dealing with such an incoming workload increase by naively deploying another
Scale1 additional configuration, besides the already deployed one, would not
lead the system MCL to be increased of another +60 emails/sec. This is because
the maximum number of email per seconds that can be handled by individual
microservices composing the obtained B+2·Scale1 configuration would be un-
balanced. Such an effect worsens if the system incoming workload keeps slowly
increasing and further additional Scale1 configurations are deployed. Since Scale1
for some microservices (AttachmentManager, ImageAnalyser) does not provide
additional instances, such microservices would eventually become the bottleneck
of the system and the system MCL would no longer increase. Moreover, ∆ con-
figurations yield, w.r.t. monolithic Scale ones, a finer granularity that makes
Timed SmartDeployer orchestration synthesis faster.

For each microservice type, the number of additional instances considered in
Tables 1 and 2 for the Scale configurations has been calculated as follows. Given
the additional system MCL to be guaranteed, the number Ndeployed of instances
of that microservice already deployed and its MF and MCL, we have:

Ninstances =
⌈ (base sys MCL+additional sys MCL)·MF

MCL − Ndeployed

⌉



Microservice B ∆1 ∆2 ∆3 ∆4 Microservice B ∆1 ∆2 ∆3 ∆4

Message Receiver 1 +1 +0 +1 +1 Virus Scanner 1 +1 +2 +1 +2

Message Parser 1 +1 +0 +1 +1 Attachment Manager 1 +0 +1 +0 +1

Header Analyser 1 +0 +0 +0 +0 Image Analyser 1 +0 +1 +0 +1

Link Analyser 1 +0 +0 +0 +0 NSFW Detector 1 +1 +2 +1 +2

Text Analyser 1 +0 +0 +0 +0 Image Recognizer 1 +1 +2 +1 +2

Sentiment Analyser 2 +1 +3 +2 +2 Message Analyser 1 +1 +2 +1 +2

Table 1. Base B (60 emails
sec ) and incremental ∆ configurations.

Scale 1 (+60 emails
sec

) Scale 2 (+150 emails
sec

) Scale 3 (+240 emails
sec

) Scale 4 (+330 emails
sec

)

∆1 ∆1 +∆2 ∆1 +∆2 +∆3 ∆1 +∆2 +∆3 +∆4

Table 2. Incremental Scale configurations.

In the following section we will present the algorithm for global adapta-
tion. The algorithm is based on the principles described here, i.e., it has the
following invariant property: if N Scale configurations are considered (N = 4
in our case study) and are indexed in increasing order of additional system
MCL they guarantee, the system configuration reached after adapting to the
monitored inbound workload is either B or B+ (n · ScaleN) + scale, or some
scale ∈ {Scale1,Scale2, . . . ,ScaleN} and n ≥ 0. The invariant property indeed
shows, as we explained above, that the deployment of sequences of the same
Scale configuration is not allowed, except for sequences of ScaleN. This is be-
cause, the biggest configuration ScaleN should be devised, for the system being
monitored, in such a way that the inbound workload rarely yields to additional
scaling needs. Moreover, even if a sequence of ScaleN occurs, the system would
be sufficiently balanced. This is because, differently from smaller Scale config-
urations, ScaleN is assumed to add, at least, an instance for each microservice
having non-infinite MCL (as for Scale4 in our case study).

5.4 Calculation of the Mixed Monitored and Predicted Workload

The fact that predictors are weak against exceptional events is well-known and
affects approaches that just rely on predictions: in the case of global scaling, it
would result in the execution of inappropriate deployment orchestrations (either
wasting resources or degrading the QoS). In this section, we propose a solution
mixing proactive and reactive global scaling (reactive and proactive mode of the
Actuation Module, see above): we program the Actuation Module to calculate a
target workload by combining the monitored and predicted ones.

Our algorithm does not rely on comparing the estimated and actual number
of inbound requests in a given time window. The reason is that the dynamic in-
teraction between message queues and scaling times makes it difficult to reliably
estimate the accuracy of the predicted scaling configuration w.r.t. traffic fluc-
tuations. Thus, we introduce a new, stable estimation, rooted in the workload
measure defined below.



Our idea is to use the system MCL of the current configuration (reached by
applying some incremental ∆ configurations to the base B one) and to consider
the difference (in terms of number of incremental ∆ configurations added) be-
tween the system MCL induced by the monitored and predicted traffic. In this
way, we can estimate both over- and under-scaling of proactive global scaling.

More precisely, our estimation considers a statically-defined score s for each
type∆ configuration, based on the amount of system MCL increment it provides.
Following Section 5.3, we have i ∈ [1, 4] different ∆i applied sequentially (in the
exceptional case ∆4 is not enough, we restart from ∆1). For each ∆i we have a
differential system MCL increment of: ∆MCL1 = 60 for ∆1 and ∆MCLi = 90
for ∆i with 2 ≤ i ≤ 4. Given ∆MCLi, we compute si =

∆MCLi∑4
j=1 ∆MCLj

. Notice

that this yields
∑4

i=1 si = 1.
Then, for each time window tw, we compute our estimation following these

3 steps. In step 1, we calculate, for each index i, the absolute value |diff i|
of the difference between the applications number of ∆i induced by the pre-
dicted and monitored workload at time window tw. Then, we compute a weight
w ∈ [0, 1] that we later use to combine both workloads. Since |diff i| > 1
only happens in exceptional cases (when ∆4 is not enough), we compute w =

min
(∑4

i=1 si · |diff i|, 1
)
.

We keep track of the values w computed in the last 3 time windows using
function h = {(1, wtw−2), (2, wtw−1), (3, wtw)}, where wtw is the weight com-
puted for the current time window and wtw−2, wtw−1 are the preceding ones.
The pairs (1, wtw−2), (2, wtw−1) are included in h only if the system was already
running at those times.

In step 2, we compute the overall weight wov =
∑

(i,w)∈h w·i∑
(i, )∈h i of tw. In particu-

lar, w ·i means that the most recent w is the most influential one in the sum. The
overall weight indicates the distance between the monitored and predicted one.
Specifically, the closer the overall weight is to 1 the more distant the prediction
is from the monitored workload.

In step 3, we use wov to linearly combine the predicted and monitored work-
load to estimate the target workload passed as input to the Adaptation Algorithm
target workload = (wov ·monitored workload)+((1−wov)·predicted workload).

5.5 Scaling Algorithm

We now present the algorithm for global adaptation. As a matter of fact, for
comparison purposes, we also realized an algorithm for local adaptation simu-
lating the mainstream approach, e.g., Kubernetes [26]. In both of them we use a
scaling condition on monitored inbound workload involving two constants called
K and k. K is used to leave a margin under the guaranteed MCL, so to make
sure that the system can handle the inbound workload. k is used to prevent
fluctuations, i.e., sequences of scale up and down.

The condition for scaling up is (target workload+ K)− total MCL > k and
the one for scaling down is total MCL− (target workload+ K) > k. The interpre-
tation of such conditions changes, depending on whether they are used for the



local or global adaptation algorithm. In the case of local adaptation the condi-
tions would be applied by monitoring a single microservice type: target workload
would be the number of requests per second received by the microservice load
balancer and total MCL would be theMCL of a microservice instance of that type
(calculated as explained in Section 2.4) multiplied by the number of deployed
instances. In the global adaptation case that we detail in the following, the con-
ditions are, instead, applied by monitoring the whole system: target workload is
the number of requests (emails in our case study) per second entering the system
and total MCL is the system MCL. Notice that the target workload is computed
according to the mode in which the system is used, i.e., reactive (the monitored
workload is the target one), proactive (the predicted workload is the target one)
and proactive-reactive (mixing the monitored and predicted workload according
to the technique presented in Section 5.4).

Concerning global adaptation, we have a single monitor that periodically ex-
ecutes the global scaling algorithm presented in code excerpt below. Notice that
kbig() and k() are respectively the K and k constants described above, imple-
mented as constant functions mimicking global variables in the code; scaler is a
previously instantianted object that implements the methods computeConfigu-
ration and scale, presented afterwards.

1 if(target_workload - (mcl - kbig()) > k() || (mcl - kbig()) -
target_workload > k()) {

2 List <Int > target_config = scaler.computeConfiguration(
target_workload);

3 scaler.scale(target_config);
4 }

The computeConfiguration method, whose code is presented below, aims at
computing the system configuration needed to cope with the target workload
passed as input. Such configuration is expressed in the form of a List where index
i represents ∆i and the i-th element is the number of ∆i applications.

1 List <Int > computeConfiguration(Rat target_workload) {
2 List <Int > configDeltas = this.createEmpty(numScales);
3 printableconfig = configDeltas;
4 List <Int > config = baseConfig;
5 mcl = this.mcl(config);
6 Bool configFound = (mcl - kbig()) - target_workload >= 0;
7 while(! configFound) {
8 List <Int > candidateConfig = baseConfig;
9 Int i = -1;

10 while(i < numScales - 1 && !configFound) {
11 i = i + 1;
12 candidateConfig = this.vSum(config , nth(scaleComponents ,i));
13 mcl = this.mcl(candidateConfig);
14 configFound = (mcl - kbig()) - target_workload >= 0;
15 }
16 config = candidateConfig;
17 printableconfig = this.incrementValue(i,printableconfig);
18 configDeltas = this.addDeltas(i,configDeltas);
19 }
20 return configDeltas;
21 }



The code above uses constants numScales, representing the number of Scale
configurations (4 in our case study), and scaleComponents: an array6 of numScales
elements (corresponding to Table 2) that stores in each position an array repre-
senting a Scale configuration (i.e., specifying, for each microservice, the number
of additional instances to be deployed). Moreover, the code uses the variable
mcl, containing the current system MCL (assumed to be initially set to the
B configuration MCL, see Table 1). At first, the code applies the above de-
scribed scale up/down conditions. Then it loops, starting from the B configura-
tion in variable config (an array that stores, for each microservice, the number
of instances we currently consider), and selecting Scale configurations to add
to config, until a configuration c is found such that its system MCL satisfies
mcl− K− target workload ≥ 0. The system MCL of a configuration c is calcu-
lated with method mcl, which yields

min1≤i≤length(config) nth(config, i−1) ·MCLi/MFi

with MCLi/MFi denoting the MCL/MF of the i-th microservice. More precisely
the algorithm uses an external loop updating variables config and configDeltas
according to the incremental Scale selected by the internal loop: configDeltas is
an array of numScales elements that keeps track of the number of currently de-
ployed ∆ incremental configurations (assumed to be initially empty, i.e., with all
0 values). Every time a Scale configuration is selected, configDeltas is updated by
incrementing the amount of the corresponding ∆ configurations (as described in
Table 2). The internal loop selects a Scale configuration by looking for the first
one that, added to config, yields a candidate configuration whose system MCL
satisfies the condition above. If such Scale configuration is not found then it just
selects the last (the biggest) Scale configuration (Scale4 in our case study), thus
implementing the invariant presented in Section 5.3.

The scale method presented below enacts the scaling operations required to
reach the system configuration passed as input.

1 Unit scale(List <Int > configDeltas) {
2 Int i = 0;
3 while(i < numScales) {
4 Int diff = nth(configDeltas ,i) - nth(deployedDeltas ,i);
5 Rat num = abs(diff);
6 while(num > 0) {
7 if (diff > 0) {nth(orchestrationDeltas ,i)!deploy ();}
8 else {nth(orchestrationDeltas ,i)!undeploy ();}
9 num = num - 1;

10 }
11 i = i + 1;
12 }
13 deployedDeltas = configDeltas;
14 scalingAct = this.recordAction(scalingTrace , printableconfig);
15 scalingTrace = printableconfig;
16 }

Given the target ∆ configurations configDeltas to be reached and the current
deployedDeltas (an array with the same structure of configDeltas) ones, the scale
method performs the difference between them so to find the ∆ orchestrations

6 The ABS instructions nth(a, i) and length(a) retrieve the i-th element and the length
of the a array, respectively.



that have to be (un)deployed. We use methods deploy/undeploy of the object in
the position i−1 of the array orchestrationDeltas to execute the orchestration of
the i-th∆ configuration. In our model such an orchestration is the ABS code gen-
erated by Timed SmartDeployer at compile-time: it makes use of ABS primitives
duration(. . . ) and decrementResources(. . . ) to dynamically set, respectively, the
overall startup time to the maximum of those of deployed DCs and the speed
of such DCs accounting for the virtual cores actually being used (by decrement-
ing the DC static speed, see Section 3.2). In this way we are guaranteed that
each microservice always preserves the desired fixed MCL we want to model (see
Section 2.4). Moreover, we remind that, besides speed, also constraints related
to other resources (memory) are considered in the Timed SmartDeployer syn-
thesis process. Notice that the variables scalingAct, scalingTrace as well as the
recordAction method are only used for debug purpose.

5.6 Benchmarking the Performance of Global Scaling Approaches

In this section we present simulation results obtained with our ABS programs [1]
modeling reactive local scaling and the three variants of the global one, i.e., reac-
tive, proactive and proactive-reactive. In particular, at first, we show the impact
of reactive global scaling on system performance w.r.t. the reactive local one;
then we show how the reactive global scaling can be further improved endowing
it with proactive capabailities, e.g., making use of a workload predictor. Finally,
we show the risks of just relying on workload predictions to enact scaling actions
and the need of mixing reactiveness and proactiveness. We make use of (part of)
the Enron dataset [28] as the inbound workload inputed to the simulations, to
test the performance of reactive and proactive global scaling and the local one.
All benchmark tests shown in this section are performed on email traffic on a
weekday in May 2001. To prove the effectivenss of our proactive-reactive global
scaling, we selectively picked outliers from the Enron dataset to produce a traffic
flow that our predictor would struggle to forecast, thus the workload inputed to
this simulation differs from the one inputed to the others. In our simulations
we consider the following metrics: (i) latency (considered as the average time
for completely processing an email that enters the system), (ii) message loss,
(iii) number of deployed microervices and (iv) monetary costs. Notice that in
the comparison between reactive local scaling and the reactive global one, we
do not consider monetary costs, since Timed SmartDeployer orchestrations are
such that costs are minimized.

Reactive Local vs Reactive Global Scaling Considering the flow of incoming emails
in the workload inputed to the simulation, it is clear the extent of the improve-
ment introduced by our approach: our global adaptation [10] makes the system
adapting much faster than the local approach. This is caused by the ability
of the global adaptation strategy of detecting in advance the scaling needs of
all system microservices. This is shown in Figs. 4a and 4b, where our reactive
global scaling approach outperforms the local one: latency and message loss are
restored in much shorter time w.r.t. the reactive local scaling.
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Fig. 4. Comparison between reactive local scaling and the reactive global one.

Comparing the number of deployed microservices helps to have a deeper
understanding of the reasons why the global adaptation performs better. As
shown in Fig. 4c, our approach reaches the target configuation, needed to handle
the monitored workload, faster than the local scaling approach. As expected,
this makes the adaptation process slower and worsens the performance. The
local adaptation slowness in reaching such a target configuration is caused by a
scaling chain effect: local monitors periodically check the workload, thus single
services scale one after the other. Hence, w.r.t. global adaptation, where the
architecture is replicated as a single block, the number of instances grows slower.
For example, considering the attachment pipeline in Fig. 2, the first microservice
to become a bottleneck is the Virus Scanner: it starts losing requests, which will
never arrive to the Attachment Manager. Therefore, this component will not
perceive the increment in the inbound requests until the Virus Scanner will be
replicated, thus causing a scaling chain effect that delays adaptation. This is the
main cause for the large deterioration in performances observed.

Proactive vs Reactive Global Scaling To give an intuition of the effectiveness of
our proactive global scaling approach [9], we test its performance against reactive
global scaling [10]. This comparison mainly aims at showing the improvement
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Fig. 5. Comparison between reactive and proactive global scaling approaches.

brought in the global scaling technique thanks to the use of a workload predictor,
i.e., endowing it with proactive capabilities.

Considering latency, as shown in Figs. 5a and 5b, the proactive scaling is
barely visible given that it performs in advance the scaling operations needed to
manage workload peaks, with negligible latency. The small visible spikes are im-
putable to inaccuracies in the workload predictions. On the other hand, the
reactive approach suffers the most at sudden peaks of workload because of
the time needed to complete the adaptation process, e.g., VMs startup time.
As seen in Figs. 5c and 5d, despite the signifante difference in performance,
the costs/number of deployed instances are the same, although shifted by a
time-unit backwards. The reason is that, since the traffic is the same, resource
(de)allocations are the same across all the approaches, although these happen
one time-unit in advance in the proactive case.

Proactive-Reactive vs Proactive Global Scaling The presented proactive approach
proved to be quite effective. However, predictors are not infallible: if the traffic
greatly deviates from the historical data, due to some unprecedented occurrence,
the predictor can fail to provide an accurate estimation of the traffic. This fact,
considered in the context of proactive global scaling (like the one implemented
above) where scaling decisions neglect actual traffic fluctuations, can result in
over- (wasted resources) or under-scaling (latency, request loss) of the system.
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Fig. 6. Comparison between proactive-reactive and proactive global scaling, on
the outliers test set.

To illustrate how much this phenomenon can affect performance, we selectively
picked outliers from the test set described in Section 4.2 and used these to pro-
duce a traffic flow that our predictor struggles to forecast. From Figs. 6a and 6b,
the proactive-reactive global scaling rapidly recovers from wrong predictions,
while the proactive one neglects unexpected traffic fluctuations. This is visible,
e.g., in the interval 11–13, where the proactive approach expects fewer requests
and endures high latency. Also the proactive-reactive global scaling initially un-
dergoes high latency, but, detecting the diverge with the predictions, it assumes
a reactive stance and quickly adapts. Note that the latency of the proactive-
reactive approach in the timespan 18–19 is “good”. Indeed, while the workload
drops between 15–17, the proactive approach allocates a high number of mi-
croservices (cf. Figs. 6c and 6d), wasting resources. Contrarily, the other one
(reacting to unforeseen changes) trades some minor latency off resource savings.

6 Related Work and Conclusion

We have presented an integrated approach for the design, specification, auto-
matic deployment, and simulation of microservice architectures, based on the
ABS language. The basic ingredients of this approach are:

– the ABS language, used to specify the behaviour of microservices;



– deployment annotations added to the ABS code, carrying information like
the available computing resources and their costs, the resources consumed
by each microservice instance, and constraints about the minimum number
of instances for each microservice;

– the use of a compile-time deployment engine able to synthesize optimal de-
ployments starting from deployment annotations extracted from ABS code;

– compilation of timed ABS code into executable Erlang program, to simulate
the specified system.

To the best of our knowledge, our approach is the only one mixing a) formal
specification of microservice behaviour, b) the usage of a language equipped with
executable semantics for simulation and performance analysis, and c) the mod-
eling and automatic synthesis of deployment orchestrations. Specifically, related
work addressed the above aspects separately. Concerning executable semantics
for simulation, [12] instead of compiling ABS into Erlang, makes use of a real-
time Haskell backend: this makes it possible for the simulation to communicate
with real services, thus mixing external execution and simulation at run-time.
In our case, the communication between the simulated system and external sys-
tems (during simulation) is not needed, thus we avoid the complexities of the
approach in [12] related to synchronizing real and simulated time. Another line
of work encompasses the usage of timed/stochastic process algebras by inte-
grating them in the software development process, with the aim of analysing
the performances of the modeled system (see, e.g., the surveys [11,25]). Finally,
other proposals adopt specific models for cloud deployment specification, e.g.,
TOSCA (Topology and Orchestration Specification for Cloud Applications) [30]
or AEOLUS [21], to describe the components of a cloud service system and their
deployment/orchestration process. The interested reader can find a recent survey
of the model-based methodologies used to ensure the correctness of reconfigura-
tions in component-based systems at [19].

In this presentation, we applied our integrated approach to the analysis of
different techniques to deal with the problem of dynamic scaling of microservices
applications. In particular, we have considered a rather sophisticated technique
based on a mixture of predicted and monitored inbound workload, with subse-
quent global adaptations of the entire system (i.e., all the microservices that will
be influenced by the modified workload will coordinate their scaling). A simi-
lar technique has been already investigated by Urgaonkar et al. [32]. Differently
from our approach, [32] only focuses on adjusting under-estimations of the ac-
tual workload, to guarantee a given QoS. In the case of over-estimation, their
approach simply considers the predicted workload as the target one, ending up
wasting resources (and money), see [9] for a detailed comparison.
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