
0

Applied Choreographies

Saverio Giallorenzo, University of Southern Denmark
Fabrizio Montesi, University of Southern Denmark
Maurizio Gabbrielli, Università of Bologna/INRIA

Choreographic Programming is a correct-by-construction paradigm for distributed programming, where
global declarative descriptions of communications (choreographies) are used to synthesise deadlock-free
processes. Choreographies are global descriptions of communications in concurrent systems, which have
been used in different methodologies for the verification or synthesis of programs. However, there is no for-
malisation that provides a chain of correctness from choreographies to their implementations. This problem
originates from the gap between previous theoretical models, which abstract communications using chan-
nel names (à la CCS/π-calculus), and their implementations, which use low-level mechanisms for message
routing.

As a solution, we propose the framework of Applied Choreographies (AC). In AC, programmers write
choreographies in a language that follows the standard syntax and semantics of previous works. Then, chore-
ographies are compiled to a real-world execution model for Service-Oriented Computing (SOC). To manage
the complexity of this task, our compilation happens in three steps, respectively dealing with: implementing
name-based communications using the concrete mechanism found in SOC, projecting a choreography to a
set of processes, and translating processes to a distributed implementation in terms of services. For each
step a suitable correspondence result guarantees that the behaviour is preserved, thus ensuring the correct-
ness of the global compilation process. This is the first correctness result of an end-to-end translation from
standard choreographies to programs based on a "real-world" communication mechanism.

CCS Concepts: •Theory of computation → Distributed computing models; Type theory; Oper-
ational semantics; Process calculi; •Software and its engineering → Distributed programming
languages; Concurrent programming languages;

Additional Key Words and Phrases: Correctness-by-construction, Endpoint Projection, Session Types,
Global Types

ACM Reference Format:
Maurizio Gabbrielli, Saverio Giallorenzo, and Fabrizio Montesi, 2018. Applied Choreographies. ACM DATE:
12/4/2018, 0, Article 0 (April 2018), 97 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Background. Distributed software applications have become a crucial asset of our soci-

ety: messaging, governance, healthcare, and transportation are just some of the contexts
recently revolutionised by distributed applications. A hallmark characteristic of distributed
applications is that their global behaviour, usually referred to as protocol, emerges from the
interaction of several programs, also called endpoints, that run in parallel and rely on mes-
sage passing to communicate and coordinate their actions [1]. Developers strive to correctly
implement separate endpoints that, when put together, will enact the expected protocols.
If endpoints fail to follow their protocols, the distributed system can block or misbehave
— e.g., due to deadlocks [2] or race conditions [3]. Ensuring that all endpoints play their
respective parts correctly — i.e., that they follow their intended protocols — is very difficult
due to the inherent non-determinism of several distributed programs running in parallel.

This work is supported by ...
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© 2018 Copyright held by the owner/author(s). 0000-0000/2018/04-ART0 $15.00
DOI: 0000001.0000001

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:2 Giallorenzo et al.

Since the early days of distributed computing, designers and developers introduced and
used several tools to describe the order of interactions among the endpoints of a system,
like security protocol notation [4], Message Sequence Charts [5] and UML Sequence Dia-
grams [6]. The common denominator of these tools is to present a global description of the
sequence of messages in the system, an information difficult to infer (due to the complex-
ity of interleaved communications) from the specified behaviours of the endpoints. Even
for very simple systems with a fixed number of participants, algorithms for extracting this
information have exponential complexity [7].

Recognising the usefulness of these approaches, in the early 2000s the W3C assembled a
Working Group tasked with the definition of a standard for describing interactions among
Web Services. This resulted in the Web Services Choreography Description Language (WS-
CDL) [8]. A program in WS-CDL is a “choreography”, which specifies the observable be-
haviours of all the endpoints involved in the system of interest, formalising from a global
viewpoint the ordering conditions and constraints that regulate the exchange of messages.

Example 1.1. We illustrate the choreographic approach with a representative example
in our syntax, which describes a simple business scenario among a client process c, a seller
service located at lS and a bank service located at lB. Locations (l) are abstractions of
network addresses, or URIs — they identify where services can be contacted to interact
with them.

1 start k : c[C] <=> lS.s[S], lB.b[B];

2 k : c[C].product—> s[S].buy(x);

3 k : s[S].mk_order(x) —> b[B].reqPay(order);

4 k : c[C].cc—> b[B].sendCC (cc);

5 if b.confirm_pay(cc, order){

6 k : b[B] —> c[C].ok(); k : b[B] —> s[S].ok()

7 } else {

8 k : b[B] —> c[C].ko(); k : b[B] —> s[S].ko()

9 }

In Line 1, the client c asks the seller and the bank services to create two new processes,
respectively s and b. The three processes c, s, and b can now communicate over a pri-
vate multiparty session k, intended as in Multiparty Session Types [9]: each process owns
a statically-defined role in the session, which identifies a message queue that the process
uses to receive messages asynchronously. For simplicity, in Line 1, we assign role C to pro-
cess c, S to s, and B to b. As usual, processes have local states and run concurrently. All
communications in the rest of the choreography now take place over session k, as indicated
by the prefix “k :” in the other lines. In Line 2, the client c invokes operation buy of the
seller s with the name of a product it wishes to buy, which the seller stores in its local
variable x. In Line 3, the seller uses its internal function mk_order to prepare an order
(e.g., compute the price of the product) and sends it to the bank on operation openTx , for
opening a payment transaction. In Line 4, the client sends its credit card information cc to
the bank on operation pay . Then, in Line 5, the bank makes an internal choice on whether
the payment can be performed (with the internal function close_tx, which takes the local
variables cc and order as parameters). The bank then notifies the client and the seller of
the final outcome, by invoking them both either on operation ok or ko.

The advantage of choreographies is their clarity: they specify the intended behaviour of
a communicating system unambiguously. For this reason, since the inception of WS-CDL,
choreographies have been adopted also in other practical applications, like the Business
Process Model and Notation by the Object Management Group [10] and Testable Architec-
ture [11]. In general, choreographies come with the promise of enhancing the correctness of
systems, since they equip programmers with precise specifications of the communications
that a system should enact. This promise motivated a fruitful line of research in the areas of

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:3

process calculi and programming languages, which rotates around the question: “Can we use
choreographies to prove that a concurrent program will execute the right communications?”

Inspired by this question, two development methodologies have emerged based on chore-
ographies. In the first, called Choreographic Programming [12], programs are choreographies
as that in our Example 1.1. The idea is that the choreography defines both the inter-
nal computation performed by processes and the communications among them. Then, a
correct-by-construction implementation (typically given in terms of a process calculus) can
be automatically synthesised [13; 14]. In the second methodology, choreographies are used
to describe protocols, which abstract away from internal computation. The aim is then to
verify that each process, which in this case is written manually as usual (in contrast to being
automatically synthesised, as in choreographic programming), implements correctly its role
in the protocols that it participates in. Multiparty Session Types [15] is representative of
this methodology.

Both methodologies are based on the same general idea: for each endpoint described
in a choreography, we can project a definition of its local behaviour using a procedure
known as EndPoint Projection (EPP). In choreographic programming, this yields the local
implementation of each endpoint. For multiparty session types, this yields a type that
we can use to check that a process implements its role in a protocol correctly. The key
technical result that one needs to prove then is that projection yields a set of endpoint terms
(programs or types) that, when executed in parallel, implement exactly the communications
described in the original choreography. This is typically called the EndPoint Projection
Theorem (or EPP Theorem, for short).

The model of Compositional Choreographies [16] unifies the two methodologies in order
to combine their advantages. In this model, programmers can model parts of a system as
in choreographic programming, and then other parts as independent process terms. Then,
multiparty session types are used to check that the composition of the independent process
terms with the projections of choreographic programs will behave correctly. This unification
is made possible by the strong operational correspondence guaranteed by EPP.

Motivation. The main application area for choreographies so far is that of Service-
Oriented Computing (SOC), as in web services [8] or microservices [17]. Implementing
communications in this setting is nontrivial, since services must be loosely coupled and
thus we cannot assume the presence of any particular common middleware. However, in
all previous definitions of EPP, both the choreography language and the target language
abstract from how real-world frameworks support communications [18; 19; 13; 14; 20], by
modelling message exchange through synchronisations on names (as in CCS and the π-
calculus [21; 22]).

As a consequence, the implementations of choreographic frameworks [23; 24; 25] sig-
nificantly depart from their respective formalisations [14; 26; 15] (a common aspect of
implementing process calculi, cf. [27; 28]). In particular, implementations realise the cre-
ation of new channels and message routing with additional data structures and message
exchanges [12; 29] that are absent in their formalisations. The specific communication mech-
anism used in these implementations is message correlation; correlation is the reference
communication support in SOC, and is supported by mainstream technologies (e.g., WS-
BPEL [30], Java/JMS, C#/.NET). The gap between formalisations and implementations
can compromise the correctness guarantee of choreographies. Thus we ask:

How can we formalise the implementation of communications in choreographies?

A satisfactory answer should preserve the correctness guarantees down to the level of
how communications are concretely implemented. Defining such a model is challenging: we
wish to retain the typical clarity of choreography languages, yet we need enough details
to (formally) reason on how communications are realised at the lower level. Ideally, the

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:4 Giallorenzo et al.

complexity of implementing communications should not leak into the choreographic pro-
gramming model exposed to programmers, and should just be a “detail” that we can forget
about with confidence. Building this confidence is the main aim of this article.

Contributions and Outline. We tackle our question by developing the framework of Ap-
plied Choreographies. Our framework consists of three calculi, which enjoy a tight series of
correspondences.

The first calculus, called Frontend Calculus (FC), is meant to be the programming model
exposed to programmers and is presented in § 2. FC is a straightforward reformulation of
the standard calculus of Compositional Choreographies [16], which we adopt to show that
our approach applies to both the methodology of choreographic programming and that of
multiparty session types. In particular, communications are based on name synchronisation,
as in standard process calculi.

The second calculus, called Backend Calculus (BC), has the same syntax of FC but a dif-
ferent semantics. Specifically, instead of using name synchronisation, BC models and keeps
track of the data structures that would be needed in a realistic implementation based on
message correlation (§ 4). However, BC abstracts from how these data structures should be
concretely distributed at participants and, thus, whether it is possible to obtain a distributed
implementation of the described system.

The third calculus, called Dynamic Correlation Calculus (DCC), is a process calculus of
distributed executable code based on a standard formal model for Service-Oriented Com-
puting [31], introduced in § 5. DCC considers both distribution and how concrete commu-
nications are implemented, but it is very low-level when compared to FC and BC: all the
abstraction given by using choreographies is lost at this level.

Our main contribution is the definition of a behaviour-preserving compiler from choreogra-
phies in FC to distributed services in DCC, which uses BC as intermediate representation.
This is the first correctness result of an end-to-end translation from standard choreogra-
phies to programs based on a real-world communication mechanism; using DCC as target
model gives our results immediate practical significance in Service-Oriented Computing.
Our compiler proceeds in three steps:

(1) an algorithm generates the data structures needed to support the execution of the original
FC choreography using message correlation (§ 4.1). Essentially, we obtain a Backend
Choreography which is operationally correspondent to the source FC;

(2) a source-to-source projection (EPP), illustrated in § 6.1, transforms the source FC chore-
ography, which describes the behaviours of many participants, into a composition of
modules, called endpoint choreographies, each describing the behaviour of a single par-
ticipant;

(3) finally, in § 6.3, we pair the BC data structures obtained at step (1) and the endpoint
choreographies obtained at step (2) and we synthesise a correct distributed implementa-
tion of the source FC program into a system of DCC independent services.

Starting from FC proves that our development is adequate, since programmers are pre-
sented with abstract programming primitives and semantics as found in previous works on
choreographies; FC is also expressive, as it supports both asynchronous communications [14]
and modular development [16]. We conclude this work with discussion on related and future
work in § 7.

We report in the Appendix the presentation of auxiliary technical material and the proofs
of our results.

2. FRONTEND CALCULUS
We present the Frontend Calculus (FC), the language model intended for programmers.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:5

Before giving the formal syntax of FC, we first describe the intuition behind its key
components. The following table displays the symbols that we are going to use, along with
their names and domains.

Name Symbols Domain

Choreographies C1,C2 −
Processes p, q P
Operations o1 , o2 O
Variables x,y Var
Sessions k1,k2 K
Roles A, B R
Locations l1, l2 L

FC programs are choreographies, as in Example 1.1, denoted by C. A choreography
describes the behaviour of some processes. Processes, denoted p, q ∈ P, are intended as
usual: they are independent execution units running concurrently and equipped with local
variables, denoted x ∈ Var .

Processes communicate by exchanging messages. A message consists of two elements: i)
a payload, representing the data exchanged between two processes; and ii) an operation,
which is a label used by the receiver to determine what it should do with the message—in
object-oriented programming, these labels are called method names [32]; in service-oriented
computing, labels are typically called operations as in here. Operations are denoted o ∈ O.

Message exchanges happen through a session, denoted k ∈ K, which acts as a commu-
nication channel. Sessions in FC are behaviourally typed [33]. Intuitively, a session is an
instantiation of a protocol, where each process is responsible for implementing the actions
of a role defined in the protocol. We denote roles with A, B ∈ R.

A process can create new processes and sessions at runtime by invoking service processes
(services for short). Services are always available at fixed locations, denoted l ∈ L, meaning
that they can be used multiple times (in process calculus terms, they act as replicated
processes [34]).

FC supports modular development by allowing choreographies, say C and C ′, to be com-
posed in parallel, written C | C ′. A parallel composition of choreographies is also a choreogra-
phy, which can thus be used in further parallel compositions. Composing two choreographies
in parallel allows the processes in the two choreographies to interact over shared location
and session names.

We distinguish between two kinds of statements inside of a choreography: complete and
partial actions. A complete action is internal to the system defined by the choreography,
and thus does not have any external dependency. By contrast, a partial action defines the
behaviour of some processes that need to interact with another choreography in order to be
executed. Therefore, a choreography containing partial actions needs to be composed with
other choreographies that provide compatible partial actions.

To exemplify the distinction between complete and partial actions, we consider the case
of a single communication between two processes.

Complete interaction Composed partial actions

k : c[C].product—> s[S].buy(x)
k : c[C].product—> S.buy
|
k : C —> s[S].buy(x)

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:6 Giallorenzo et al.

C ::= η;C (seq) | if p.e {C1} else {C2} (cond)

| C1 | C2 (par) | k : A —> q[B].{oi(xi);Ci}i∈I (recv)

| 0 (inact) | def X = C′ in C (rec)

| X (call) | acc k :
︷ ︸
l.q[B];C (accept)

η ::= k : p[A].e—> B.o (send) | start k : p[A] <=>
︷ ︸
l.q[B] (start)

| k : p[A].e—> q[B].o(x) (com) | req k : p[A] <=>
︷ ︸
l.B (req)

Fig. 1. Frontend Choreographies, syntax.

Above, on the left we have the communication statement as seen in Line 2 of Exam-
ple 1.1. This is a complete action: it defines exactly all the processes that should interact
(c and s). On the right, we implement the same action as the parallel composition of two
choreographies with partial actions: a send action by process c to role S over session k (left
of the parallel) and a reception by process s from a role C (right of the parallel) over the
same session k. More specifically, we read the send action (top of the parallel) as “process c
sends a message as role C with payload product for operation buy to the process playing
role S on session k”. Dually, we read the receive action (bottom of the parallel) as “process
s receives a message for role S and operation buy over session k and stores the payload
in variable x”. The compatible roles, session, and operation used in the two partial actions
make them compliant. Thus, the choreography on the left is operationally equivalent to the
one on the right. Observe that partial actions do not mention the name of the process on
the other end—for example, the send action by process c does not specify that it wishes to
communicate with process s precisely. This allows some information hiding: a partial action
in a choreography can interact with partial actions in other choreographies independently
of the process names used in the latter. Expressions and variables used by senders and
receivers are also kept local to statements that define local actions.

2.1. Syntax of Frontend Calculus
We now move to presenting the formal syntax of FC, which is displayed in Fig. 1. In the
remainder, we use the symbol ∼ over an element to indicate an ordered set of elements of
its kind, e.g., p̃ indicates an ordered set of processes p1, . . . , pn.

Complete Actions. In term (start), process p creates a new session k together with pro-
cesses q̃ (q̃ is assumed non-empty). Process p, called active process, is already running,
whereas each process q in

︷ ︸
l.q, called service process, is dynamically created at the respec-

tive service location l. Each process is annotated with the role it plays in the new session
k. Term (com) reads: on session k, process p sends to process q a message for its operation
o; the message carries the evaluation of expression e on the local state of p, whilst x is the
variable where q will store the content of the message. We leave the guest language for writ-
ing local expressions (e) unspecified, and assume that it consists of terms for accessing local
variables (x) and implementing standard computations based on those (e.g., arithmetics).

Partial Actions. A choreography can use partial actions to interact with other choreogra-
phies composed in parallel. Therefore, partial actions describe the behaviour of processes
that wish to synchronise with “external” participants. Concretely, these external partici-
pants will be processes and/or services whose behaviours are defined in other choreographies
composed in parallel. In term (req), process p requests some external services, respectively
located at l̃, to create a new session k and some new external processes. The role annota-

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:7

1 start k : c[C] <=> lS.s[S], lB.b[B];

2 k : c[C].buyReq—> s[S].buy(x);

3 req k ′ : s[S] <=> lD.D;

4 k ′ : s[S].mk_shipping(x) —> D.quoteShipping ;

5 k ′ : D —> s[S].shippingCosts(y);

6 k : s[S].mk_order(x, y) —> b[B].reqPay(order);

7 k : c[C].cc—> b[B].sendPay(cc);

8 if b.confirm_pay(cc, order){

9 k : b[B] —> c[C].ok(); k : b[B] —> q[S].ok();

10 k ′ : s[S] —> D.sendShipping

11 } else {

12 k : b[B] —> c[C].ko(); k : b[B] —> q[S].ko();

13 k ′ : s[S] —> D.abortShipping

14 }

Fig. 2. Choreography C1, extension of Example 1.1.

1 acc k ′ : lD.d[D];

2 k ′ : S —> d[D].quoteShipping(pkg);

3 k ′ : d[D].quote(pkg) —> S.shippingCosts;

4 k ′ : S —> d[D].{

5 sendShipping(),

6 abortShipping() }

Fig. 3. Choreography C2, compliant choreography to Fig. 2.

tions follow have the same intuition as in term (start): in the new session k, p will play A
and each new external process qi will play the respective role Bi.

Term (acc) is the dual of (req) and defines a choreography module that provides the
implementation of some service processes. We assume that (acc) terms are always at the
top level, to capture that choreography modules are always available. By top level, we mean
that the term is not preceded by another term in a sequential composition (seq).

In term (send), process p sends a message to an external process that plays B in session
k. Dually, in term (recv), process q receives a message for one of the operations oi from
an external process playing role A in session k, and then proceeds with the corresponding
continuation. In the remainder, we omit curly brackets in (recv) terms when they have only
one operation, i.e., k : A —> q[B].o(x);C is an abbreviation of k : A —> q[B].{o(x);C}.

Other Terms. Term (seq) is sequential composition. In a conditional (cond), process p
evaluates a condition e in its local state to choose between the continuations C1 and C2.
Term (par) is standard parallel composition, which allows partial actions in two chore-
ographies C1 and C2 to interact. Respectively, terms (def), (call), and (inact) model the
definition of recursive procedures, procedure calls, and inaction.

Some terms bind identifiers in continuations—the choreography that follows them in a
sequential composition. In terms (start) and (acc), the session identifier k and the process
identifiers q̃ are bound (as they are freshly created). In terms (com) and (recv), the variables
used by the receiver to store the message are bound (x and all the xi, respectively). In term
(req), the session identifier k is bound. Finally, in term (def), the procedure identifier X is
bound. In the remainder, we omit 0 or irrelevant variables (e.g., in communications with
empty messages). Terms (com), (send), and (recv) include role annotations only for clarity
reasons; roles in such terms can be inferred, as shown in [12].

Example 2.1. In Fig. 2, we extend (in blue) the behaviour of the seller of Example 1.1
to use an external module. In the updated code, the seller contacts an external service for
the delivery of the product: the seller receives from the buyer a request buyReq, which
contains the wanted product and the delivery address (Line 2). Next, the seller creates a
new session k ′ with an external delivery process (Line 3) and sends to the latter the shipping
information of the product, e.g., the origin and destination addresses (Line 4). In Line 5, the

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:8 Giallorenzo et al.

seller receives the shipping costs, which it adds to the costs of the order at the bank (Line
6). In Lines 11 and 14, the seller notifies the delivery process if it shall ship the product
or not. Let us call C1 the code above. We report in Fig. 3 the module C2 of a compliant
delivery service for C1. We obtain a working system by composing the two choreographies
in parallel: C1 | C2.

2.2. Semantics
We give an operational semantics for FC in terms of reductions of the form D,C→ D ′,C ′,
where D is a deployment. Deployments keep track of: the local states of processes (the
values of their local variables); and the messages in transit in sessions, which we use to model
asynchronous communications. In the following, we first formalise our notion of deployment,
and then move to presenting our reduction semantics.

2.2.1. Deployments. Each pair of roles in a session has two dedicated asynchronous message
queues that they can use to exchange messages, one for each direction. Formally, let Q =
K×R×R be the set of all queue identifiers; we write k[A〉B] ∈ Q to identify the queue from
role A to role B in session k.

A deployment D is an overloaded partial function defined by cases as the sum of two
partial functions, fs : P ⇀ Var ⇀ Val and fq : Q ⇀ Seq(O × Val) (notice that their
domains and co-domains are disjoint):

D(z) =

{
fs(z) if z ∈ P

fq(z) if z ∈ Q

Function fs maps a process p to its state. A state is a partial function from variables
x,y ∈ Var to values v ∈ Val . Function fq stores the queues used in sessions. Each queue is
a sequence of messages m̃ = m1 :: . . . :: mn | ε (ε is the empty queue), where each message
m = (o, v) ∈ O × Val contains the operation o for which the message is intended and the
payload v.

Deployments are a runtime concept: programmers do not need to define them, just as
they normally do not explicitly give an initial state for their programs in other language
models. Formally, we assume that choreographies without free session names start execution
with a default deployment that contains empty process states. Let fp(C) return the set of
free process names in C. Then, we formally define a default deployment as follows.

Definition 2.2 (Default Deployment). Let C be a choreography without free session
names. Then, the default deployment D for C is defined as the function that maps all free
process names in C to empty states (we write ∅ for the empty partial function from Var to
Val):

D =
[
p 7→ ∅ | p ∈ fp(C)

]
Intuitively, D is a default deployment for a choreography without free session names C if

i) the D is defined for all and only the processes that appear free in C and ii) the state of
these processes is empty.

2.2.2. Deployment transitions. In our semantics, choreographic actions have effects on the
state of a system—deployments change during execution. At the same time, a deployment
also determines which choreographic actions can be performed. For example, a communica-
tion from role A to role B over session k requires a queue k[A〉B] to exist in the deployment
of the system.

We formalise the notion of which choreographic actions are allowed by a deployment and
their effects using transitions of the form D, δ I D ′, read “the deployment D allows for
the execution of δ and becomes D ′ as the result”. Actions δ are defined by the following

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:9

D ′ = D
[
q 7→ ∅ | q ∈ q̃

][
k[C〉E] 7→ ε | {C, E} ⊆ {A, B̃}

]
D, start k : p[A] <=>

︷ ︸
l.q[B] I D ′

bD|Starte

v = eval(e,D(p)) D(k[A〉B]) = m̃
D,k : p[A].e—> B.o I D

[
k[A〉B] 7→ m̃ :: (o, v)

] bD|Sende

D(k[A〉B]) = (o, v) :: m̃

D,k : A —> q[B].o(x) I D
[
k[A〉B] 7→ m̃

][
q 7→ D(q)[x 7→ v]

] bD|Recve

Fig. 4. Frontend Choreographies — Deployment transitions.

grammar.

δ ::= start k : p[A] <=>
︷ ︸
l.q[B] (session start)

| k : p[A].e—> B.o (send in session)
| k : A —> q[B].o(x) (receive in session)

The rules defining D, δ I D ′ are given in Fig. 4.
Rule bD|Starte states that the creation of a new session k between an existing process p and
new processes q̃ results in updating the deployment with: a new (empty) state for each of
the new processes q in q̃ (

[
q 7→ ∅ | q ∈ q̃

]
); and a new (empty) queue between each pair of

distinct roles in the session (
[
k[C〉E] 7→ ε | {C, E} ⊆ {A, B̃}

]
).

Rule bD|Sende models the effect of a send action. In the first premise, we use the auxiliary
function eval to evaluate the local expression e in the state of process p, obtaining the
value v to use as message payload. Then, in the conclusion, we append a message with
this payload—(o, v)—to the end of the queue from the sender’s role to the receiver’s role
(k[A〉B]). We assume that function eval always terminates—in practice, this can be obtained
by using timeouts.
Rule bD|Recve models the effect of a reception. First, in the premise, we look up the head
of the message queue between sender and receiver, i.e., (o, v). Then, in the conclusion, we
remove the message from the queue (

[
k[A〉B] 7→ m̃

]
) and update the state of the receiver at

the variable used to store the message (
[
q 7→ D(q)[x 7→ v]

]
).

2.2.3. Reductions. Using deployment transitions, we can now define the rules for reductions
D,C→ D ′,C ′. We call a configuration D,C a running choreography. The reduction relation
→ for FC is the smallest relation closed under the rules given in Fig. 5.
Rule bC|Starte creates a new session, by ensuring that both the new session name k ′ and new
processes r̃ are fresh wrt D (D#k ′, r̃). We use the fresh names in the continuation C, by
using a standard substitution C[k ′/k][̃r/q̃].
Rule bC|Sende reduces a send action, if it is allowed by the deployment—D,k :p[A].e—> B.o I
D ′.
Rule bC|Recve reduces a message reception, if the deployment allows for receiving a message on
one of the branches in the receive term (j ∈ I). Recalling the corresponding rule bD|Recve, this
can happen only if the deployment D has a message for operation oj in the queue k[A〉B].
Rule bC|Eqe closes → under the congruences ≡C and 'C. Structural congruence ≡C, reported
in Fig. 6, is the smallest congruence supporting α-conversion, recursion unfolding, and
commutativity and associativity of parallel composition. The swap relation 'C, reported in
Fig. 7, is the smallest congruence able to exchange the order of non-interfering concurrent

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:10 Giallorenzo et al.

D#k ′, r̃ δ = start k ′ : p[A] <=>
︷ ︸
l.q[B] D, δ I D ′

D, start k : p[A] <=>
︷ ︸
l.q[B];C → D ′, C[k ′/k][̃r/q̃]

bC|Starte

η = k : p[A].e—> B.o D,η I D ′

D, η;C → D ′, C
bC|Sende

j ∈ I D,k : A —> q[B].oj(xj) I D ′

D, k : A —> q[B].{oi(xi);Ci}i∈I → D ′, Cj
bC|Recve

i = 1 if eval(e,D(p)) = true, i = 2 otherwise
D, if p.e {C1} else {C2} → D, Ci

bC|Conde

D,C1 → D′,C′1
D, def X = C2 in C1 → D′, def X = C2 in C′1

bC|Ctxe

R ∈ {≡ , 'C } CRC1 D,C1 → D ′,C ′1 C ′1 RC
′

D,C → D ′,C ′
bC|Eqe

D,C1 → D ′,C ′1
D,C1 | C2 → D ′,C ′1 | C2

bC|Pare

i ∈ {1, . . . ,n} D#k ′, r̃ {
︷ ︸
l.B} =

⊎
i{
︷ ︸
li.Bi}i {̃r} =

⋃
i {̃ri}

δ = start k ′ : p[A] <=>
︷ ︸
l1.r1[B1], . . . ,

︷ ︸
ln.rn[Bn] D, δ I D ′

D, req k : p[A] <=>
︷ ︸
l.B;C |

∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

)
→

D ′, C[k ′/k] |
∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

) bC|PStarte

Fig. 5. Frontend Choreographies — semantics.

def X = C′ in 0 ≡C 0 C | C′ ≡C C
′ | C (C1 | C2) | C3 ≡C C1 | (C2 | C3)

def X = C′ in C[X] ≡C def X = C′ in C[C′]

k : p[A].e—> q[B].o(x);C ≡C k : p[A].e—> B.o;k : A —> q[B].{o(x);C}

Fig. 6. Choreography Calculus, structural congruence ≡C

actions. For example, provided pn returns the set of process names, Rule bCS|EtaEtae swaps two
communications respectively enacted by completely disjoint processes.

Rule bC|Eqe also enables the reduction of complete communications on (com) terms—see
the last equivalence in Fig. 6, which unfolds a complete communication term into the two
corresponding send and receive terms.

Rule bC|PStarte starts a new session by synchronising a partial choreography that requests
to start a session with other choreographies that can accept the request. The premise of
the rule {

︷ ︸
l.B} =

⊎
i{
︷ ︸
li.Bi}i, where

⊎
indicates the disjoint union of the list of located roles,

requires that in the accepting choreographies the list of locations and their supported roles
match the corresponding list of the request. The rest of the rule is similar to bC|Starte. Here it
is convenient that deployment transitions are specified by a separate set of rules, since the

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:11

pn(η) ∩ pn(η′) = ∅
η;η′ 'C η′;η

bCS|EtaEtae

p 6∈ pn(η)

if p.e {η;C1} else {η;C2}
'C η; if p.e {C1} else {C2}

bCS|EtaCnde

q 6∈ pn(η)

k : A —> q[B].{oi(xi);η;Ci}i∈I 'C η;k : A —> q[B].{oi(xi);Ci}i∈I
bCS|EtaRcve

p 6= q

k : A —> p[B].{oi(xi);k
′ : C —> q[D].{o′ij(x

′
ij);Cij}j∈J}i∈I

'C k′ : C —> q[D].{o′j(x
′
j);k : A —> p[B].{oij(xij);Cij}i∈I}j∈J

bCS|RcvRcve

p 6= q

if p.e {if q.e′ {C1} else {C2}} else {if q.e′ {C′1} else {C′2}}
'C if q.e′ {if p.e {C1} else {C′1}} else {if p.e {C2} else {C′2}}

bCS|CndCnde

p 6= q

k : A —> p[B].{oi(xi); if q.e {Ci1} else {Ci2}}i∈I
'C if q.e {k : A —> p[B].{oi(xi);Ci1}i∈I} else {k : A —> p[B].{oi(xi);Ci2}i∈I}

bCS|RcvCnde

Fig. 7. Frontend Choreography — swap relation 'C.

effect that starting a session using partial actions is equivalent to that of using a complete
start term. The choreographies accepting the request remain available for subsequent reuses.

Finally, rules bC|Conde,bC|Ctxe, and bC|Pare are standard and respectively model guarded condi-
tionals, recursion, and parallel composition.

Example 2.3. The interplay between 'C and rule bC|Sende yields an elegant formalisation of
asynchronous behaviour for choreographies that, differently from previous work [14], does
not require a labelled transition system and ad-hoc reduction rules. Consider Line 10 in
Example 2.1, reported below.

C
def
= k : b[B] —> c[C].ok(); k : b[B] —> q[S].ok()

We can reduce C as follows (for brevity, we omit deployments):

C→ k : B —> c[C].ok(); k : b[B] —> s[S].ok() by bC|Eqe with R = ≡C and bC|Sende

→ k : B —> s[S].ok(); k : B —> c[C].ok() by bC|Eqe with R = 'C and bC|Sende

In this case, process s may receive its message before process c, due to asynchronous
message passing (the sending actions for process b are non-blocking).

3. TYPING
In this section, we define our typing discipline for the Frontend Calculus. Our typing checks
the behaviour of sessions against protocols, given as Multiparty Session Types [35; 9]. Inter-
estingly, we retain the same syntax of traditional Multiparty Session Types yet we ensure
that correct initial deployments do not corrupt at runtime due to inconsistencies on states
and message queues.

In § 3.1 we present the types that abstract choreographies, called global types. We define
the syntax of global types and we introduce local types. The latter are abstract descriptions
of the behaviour of single processes, used for type checking. We also formalise how from a
global type we obtain a set of related local types by means of a projection procedure. In
§ 3.2 we formalise the environment and the rules of our type discipline. In § 3.3, we consider

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:12 Giallorenzo et al.

Global Types G ::= A —> B.{oi(Ui);Gi}i (communication)

| rec t.G | t (recursion)

| end (end)

Local Types T ::= ⊕A.{oi(Ui); Ti}i (send)

| &A.{oi(Ui); Ti}i (receive)

| rec t.T | t (recursion)

| end (end)

Sort Types U ::= int | bool | str | . . .

Fig. 8. Global and Local Types.

the typing of running choreographies. We illustrate why and how a choreography and its
companion deployment can become inconsistent and we present a runtime typing extension
to avoid inconsistencies. Finally, in § 3.4, we present two comprehensive examples to clarify
the relationship between types and running choreographies, and in § 3.5 we formalise the
properties guaranteed by our typing system.

3.1. Types and type projection
Global and Local types. As in standard Multiparty Session Types, we use global types to

represent protocols from a global viewpoint and local types to describe the behaviour of
each participant. Our type system checks that a set of local types, each abstracting the
behaviour of a process in a choreography, coherently follows a global type. We report in
Fig. 8 the syntax of global types G and local types T .

A global type A —> B.{oi(Ui);Gi}i abstracts a communication, where A can send to B
a message on any of the operations oi and continue with the respective continuation Gi.
A carried type U types the value exchanged in the message. In local types, !A.{oi(Ui); Ti}i
abstracts the sending of a message of type Ui to role A on one of the operations oi, with
continuation Ti. Dually, ?A.{oi(Ui); Ti}i abstracts the offering of an input choice among the
operations oi, with continuation Ti. The other terms for recursion and end of types are
standard. As done for FC, also in types we omit curly brackets when outputs and inputs
comprise only one operation.

As an example, we report below two global types, G1 and G2, that abstract the chore-
ographies presented in Figs. 2 and 3. In particular, G1 types session k, created at locations
(lS, lB) — Line 1 of Fig. 2 — and G2 types session k ′, created at location (lD) — request
at Line 3 of Fig. 2, accept at Line 1 of Fig. 3. We also write operations followed by empty
parentheses when the type of their message U is unit.

G1 = C —> S.buy(str);

S —> C.reqPay(int);

C —> B.sendPay(str);

B —> C.{

ok(); B —> S.ok(),

ko(); B —> S.ko()

}; end

G2 = S —> D.quoteShipping(str);

D —> S.shippingCost(int);

S —> D.{

sendShipping(),

abortShipping();

}; end

Type Projection. To relate global types to the behaviour of processes in choreographies,
we project a global type G onto a set of local types, each corresponding to the behaviour
of a single role. We report in Fig. 9 the projection of global types, defined following [16].

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:13

JB —> C.{oi(Ui);Gi}iKA =

⊕C.{oi(Ui); JGiKC}i if A = B

&B.{oi(Ui); JGiKC}i if A = C⊔
i JGiKA otherwise

Jrec t.GKA =

{
rec t. JGKA if A ∈ G
end otherwise

JtKA = t

JendKA = end

Fig. 9. Choreography Calculus - Global Type projection.

Γ ::= ∅ (empty environment)

| Γ , p.x : U (variable)

| Γ ,X : Γ (definition)

| Γ ,k[A] : T (local session)

| Γ , p : k[A] (ownership)

| Γ , l̃ : G〈A|B̃|C̃〉 (service)

Fig. 10. Choreography Calculus — typing environments.

JGKA denotes the projection of G onto the role A. Intuitively, JGKA gives an encoding of the
local actions expected by role A in the global type G. When projecting a communication
we require the local behaviour of all roles not involved in it to be merged with the merging
operator t. Like in [16], T tT ′ is isomorphic to T and T ′ up to branching, where all branches
of T or T ′ with distinct operations are also included, formally

T t T ′ =

T if T = T ′

&A.

{ oh(Uh); Th }h∈I\J ∪
{ oh(Uh); T

′
h }h∈J\I ∪

{ oh(Uh); Th t T ′h }h∈J∩I

 if T = &A.{oi(Ui); Ti}i∈I
and T ′ = &A.{oj(Uj); T

′
j }j∈J

3.2. Type checking
Now that we defined the relation between global and local types, we can proceed to present
our system that guarantees that sessions in choreographies follow their types.

3.2.1. Environments. We define our typing environments Γ , Γ ′, . . . as reported in Fig. 10.
The typing of variables denote that a process p has in its state a variable x of type U. We

assume that we can write Γ , p.x : U only if either x has not been typed yet in Γ or it is already
associated with the same type U (formally if U = U ′ then Γ , p.x : U, p.x : U ′ = Γ , p.x : U). We
assume a similar convention for all the identifiers in Γ except for service typings, whose rule
for set inclusion is detailed at the end of this section. The typing of definition of recursive
procedures associates a procedure identifier X to a typing environment Γ . A local session
typing k[A] : T states that role A in session k follows the local type T . An ownership typing
p : k[A] states that process p owns the role A in session k. Hence, each process can participate
in multiple sessions, but can play only one role in each session. A service typing l̃ : G〈A|B̃|C̃〉

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:14 Giallorenzo et al.

types with a global type G all sessions created by contacting the services at the locations l̃.
In the typing,

— A is the role that the active process (the starter) should play;
— B̃ are the roles respectively played by each l in l̃. We assume that each l plays one role,

so the lengths of B̃ and l̃ are the same;
— C̃ are the roles implemented by the choreography that we are typing. We assume C̃ ⊆ B̃,

namely that C̃ contain a subset of the roles in B̃, ordered following the order in B̃ (as of
Definition A.1).

Regarding set inclusion of service typings, when we write Γ = Γ ′, l̃ : G〈A|B̃|C̃〉 we assume
that:

— {A, B̃} = roles(G), where function roles returns the set of roles in G;
— the locations l̃ are ordered lexicographically;
— the locations in l do not appear in any other service typing in Γ ;
— that either:

— l̃ does not appear in Γ ′ and the resulting Γ includes it, formally l̃ 6∈ dom(Γ ′) and
Γ = Γ ′ ∪ {̃l : G〈A|B̃|C̃〉};

— l̃ appears in Γ ′, such that Γ ′ = Γ ′′, l̃ : G〈A|B̃|D̃〉, and {C̃} ∩ {D̃} = ∅, i.e., the roles in C̃

do not appear in D̃. The resulting Γ includes in the service typing of l̃ the merged
list of roles in C̃ and D̃, following the lexicographic order in B̃. We write the merge as
Ã ./B̃ C̃ (see Definition A.2) and Γ = Γ ′′, l̃ : G〈A|B̃|D̃ ./B̃ C̃〉.

We underline that the annotation C̃ in service typings play two important parts: it enables
composition of choreographies and it ensures that only one choreography implements a
specific role. This is mirrored in the composition Γ = Γ ′, l̃ : G〈A|B̃|C̃〉 where, if Γ ′ already
contains the typing for some roles D̃ in l̃, Γ will contain the additional roles defined in C̃
(provided D̃ and C̃ contain distinct roles).

3.2.2. Typing Judgements and Rules. A judgement Γ ` C states that the choreography C
follows the specifications given in Γ . We comment the typing rules reported in Fig. 11.

Rule bT|Starte types a session start. In the first premise, the service typing l̃ : G〈A|B̃|B̃〉 checks
that the continuation implements all the roles in protocol G. The function init assembles
the typing environment that correctly types — with the appropriate ownerships and local
typings — the freshly-started session k, given the global type G and the processes p̃, each
playing its corresponding role in B̃. Formally,

init(
︷ ︸
p[A],k,G) =

{
q : k[B], k[B] : JGKB | q[B] ∈

{︷ ︸
p[A]
} }

.

where the type of each process p ∈ p̃ playing role B ∈ B̃ is the local type projection JGKB of
the global type G. In bT|Starte, we abuse the notation q̃ 6∈ Γ to check that all freshly created
processes in q̃ do not appear in Γ (i.e., there is no variable or ownership typings in Γ
associated with any process in q̃).

Rule bT|Reqe types (req) terms and is similar to bT|Starte, although it only performs the checks
for the process p, playing role A, that requests the creation of the new session k. Dually,
bT|Acce mirrors Rule bT|Starte and l̃ ′ ⊆ l̃ checks that (following definition Definition A.1) the list
of locations of the service typing in Γ comprises the locations in the (acc) term.

Rule bT|Come types a complete communication. From left to right the premises check that:

(1) the sender p and the receiver q own their respective roles in the session;
(2) since j ∈ I:

— operation oj can be effectively selected by the sender, according to its local type;

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:15

Γ , l̃ : G〈A|B̃|B̃〉, init(
︷ ︸
r[C],k,G) ` C

︷ ︸
r[C] = p[A],

︷ ︸
q[B] q̃ 6∈ Γ

Γ , l̃ : G〈A|B̃|B̃〉 ` start k : p[A] <=>
︷ ︸
l.q[B];C

bT|Starte

Γ , p : k[A],k[A] : JGKA ` C Γ ` l̃ : G〈A|B̃|∅〉
Γ ` req k : p[A] <=>

︷ ︸
l.B;C

bT|Reqe

l̃ ⊆ l̃ ′ Γ , l̃ ′ : G〈A|B̃|∅〉, init(
︷ ︸
q[C],k,G) ` C q̃ 6∈ Γ

Γ , l̃ ′ : G〈A|B̃|C̃〉 ` acc k :
︷ ︸
l.q[C];C

bT|Acce

Γ ` p : k[A], q : k[B] j ∈ I Γ ` p.e : Uj Γ , q.x : Uj,k[A] : Tj,k[B] : T
′
j ` C

Γ ,k[A] : ⊕ B.{oi(Ui); Ti}i∈I,k[B] : &A.{oi(Ui); T
′
i }i∈I ` k : p[A].e—> q[B].oj(x);C

bT|Come

j ∈ I Γ ` p : k[A] Γ ` p.e : Uj Γ ,k[A] : Tj ` C
Γ ,k[A] : ⊕ B.{oi(Ui); Ti}i∈I ` k : p[A].e—> B.oj;C

bT|Sende

Γ ` q : k[B] ∀j ∈ I. Γ , q.xj : Uj,k[B] : Tj ` Cj
Γ ,k[B] : &A.{oi(Ui); Ti}i∈I ` k : A —> q[B].{oj(xj);Cj}j∈I∪J

bT|Recve

Γ ` p.e : bool Γ ` C1 Γ ` C2

Γ ` if p.e {C1} else {C2}
bT|Conde

Γ ,X : Γ ′ ` C Γ ′,X : Γ ′ ` C ′ Γ ′|locs ⊆ Γ
Γ ` def X = C ′ in C

bT|Defe

Γ1 ` C1 Γ2 ` C2

Γ1, Γ2 ` C1 | C2

bT|Pare
end(Γ)
Γ ` 0

bT|Ende
Γ ′′ ⊆ Γ ′ end(Γ)
Γ , Γ ′,X : Γ ′′ ` X

bT|Calle

Fig. 11. Choreography Calculus — Typing rules.

— similarly, oj is among the operations offered by the receiver, according to its local
type;

(3) the expression of the sender (e) has the type1 Uj, expected by the protocol;
(4) the resulting environment Γ , q.x : Uj,k[A] : Tj,k[B] : T ′j correctly types the continuation C,

in particular that:
— the receiver q correctly uses the reception variable x in C;
— processes p and q proceed according to their local types, respectively Tj and T ′j .

Rules bT|Sende and bT|Recve share part of the checks commented for bT|Come and judge the respec-
tive partial terms (send) and (recv). Note that, as in standard multiparty session types, the
local typing of the branching process q is contravariant wrt the branches in the choreogra-
phy, i.e., the Rule bT|Recve checks that the operations supported by the typing oi ∈ I are at
least a subset of the actual operations oj ∈ I ∪ J provided in the (recv) term.

Rule bT|Conde checks that the expression of a conditional has a compatible type (bool) and
that both branches C1 and C2 are correctly typed by Γ .

Rule bT|Defe checks procedure definitions. Here, function |locs applied to an environment Γ
returns all service typings in it. In the Rule we write Γ ′|locs ⊆ Γ to check that the body of

1The judgement ` v :U reads as “value v has type U”.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:16 Giallorenzo et al.

the recursive procedure does not introduce unexpected services, i.e., services that are not
present at top level.

In Rule bT|Pare we extend the set inclusion for Γ1, Γ2 point-wise to the identifiers in Γ to
merge typings and to check that choreographies executing in parallel do not implement
overlapping roles at locations.

In Rule bT|Ende, the predicate end(Γ) holds if the protocols for all sessions in Γ have termi-
nated (i.e., all local typings have type end).
bT|Calle checks a procedure call. The premise Γ ′′ ⊆ Γ checks that procedure X does not intro-

duce unexpected typings (and, by extension, behaviours) wrt the active sessions contained
in Γ ′. The premise end(Γ) makes sure that the remaining sessions in the typing environment
have all terminated.

3.3. Runtime Typing
To prove that well-typed FC programs never go wrong, we need to pay attention to how their
deployments evolve at runtime. For example, in Rule bC|Sende, the deployment D must contain
the proper queue where the sender can deliver its message: a remarkable difference wrt
previous works on choreographies, where such conditions do not exist and choreographies
can always continue execution (see, e.g., [18; 36; 13; 14]).

To guarantee that well-typed FC programs never go wrong, we must guarantee that their
companion deployments evolve in a consistent way. We address this issue by extending our
typing discipline to check runtime states.

Wrong Deployments. We want to rule out “wrong” deployments. Intuitively, we say that a
deployment is wrong wrt a choreography if e.g., processes have undefined variables that are
used in the choreography or a message queue does not contain messages as expected by the
protocol of the session in which it is used.

Wrong deployments may cause unpredictable executions or faulty behaviours, e.g., dead-
locks. We illustrate the consequences of having wrong deployments with this simple running
choreography:

D,k : p[A].y—> q[B].o(x); 0

— (uninitialised variables) assume that D is such that the state of process p in D, D(p),
does not contain a value for variable y; then the condition eval(y,D(p)) given in Rule
bD|Sende is undefined and Rule bC|Come cannot be applied, causing the choreography to get
stuck.

— (protocol violations) assume that D(k[A〉B]) = (o ′, v) where o 6= o ′. Namely, that i) in
session k process q (playing role B) has a message in its receiving queue from process p
(playing role A) and ii) the operation of the message is o ′, different from operation o
expected in the choreography. If we let the choreography reduce following the previous
point, it ends up deadlocked. After the reduction, the queue used by p contains in its
head the message (o ′, v) and Rule bC|Recve cannot apply as it expects to find a message for
o at that position.

To avoid these outcomes, we extend our type system to prove that, given a well-typed
choreography and a non-wrong companion deployment, our semantics never produces wrong
deployments. Note that this development is transparent to programmers since default de-
ployments are never wrong.

Runtime Global Types. To capture asynchrony and partial runtime states, we extend the
syntax of global types with:

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:17

G ::= . . .

| ⊕AB.{oi(Ui)};G (global choice)

| &AB.{oi(Ui);Gi}i∈I (global branch)

| A〉B.o(U);G (global buffer)

Global choice and branch are the equivalent of a complete communication A —> B.o(U);G
where: ⊕AB.{oi(Ui)};Gmeans that role A can choose to send a message to role B on operation
oi with type Ui, proceeding with continuation G; while &AB.{oi(Ui);Gi}i∈I means that B can
receive a message from A on any operation oi, i ∈ I, proceeding with the related continuation
Gi.

When the choice performed by A is applied to the branch controlled by B, we obtain term
A〉B.o(U), which marks that A has sent the message but the B still has to consume it.

Semantics of Global Types. To express the (abstract) execution of protocols, we give a
semantics for global types. Formally, G → G ′ is the smallest relation on the recursion-
unfolding of global types satisfying the rules in Fig. 12.

Rule bG|Sende allows the sending of a message from a (global choice). The continuation G ′
is obtained from the application of the sending to the corresponding (global branch), with
function A〉B

oi
↓G that transforms the related branch in G into a (global buffer) on the selected

operation oi , followed by the respective continuation Gi.
The actual reception of the message is executed in Rule bG|Recve. In bG|Eqe. We model the

splitting of complete communications and recursion unfolding with the structural equiva-
lence ≡G, the smallest congruence defined by the rules in Fig. 12. To capture the semantics
of asynchronous message delivery, we define the swap relation 'G as the smallest congruence
defined by the rules in Fig. 12. Both congruences are similar to what presented for chore-
ographies in § 2.2. Note rules bGS|ChoBrce and bGS|ChoBufe that enable the swapping of choice terms
with receptions, as long as the swap preserves the causal consistency between operations
(i.e., we do not swap a sending that is causally dependent from a reception on the same
role).

Runtime Type checking and Typing Rules. We extend the typing rules given in the pre-
vious section to check runtime terms. The extension consists in i) new terms for Γ , and ii)
the introduction of Rule bT|DCe to type runtime choreographies. We extend the grammar of
typing environments with

Γ ::= . . .

| Γ , p@l (location)

| Γ ,k[A〉B] : T (buffer)

where Γ , p@l states that process p runs at location l. A buffer typing k[A〉B] : T types the
messages in the queue where the process implementing role B in session k receives messages
from role A. We extend to buffer typings the assumption for set inclusion stated for standard
elements in Γ . For location typings we assume that we can write Γ , p@l only if p@l 6∈ Γ .
This formalises the requirement that a process can appear only in one choreography (e.g.,
given the choreography C = C1 | C2 process p ∈ pn(C) appears either in C1 or in C2) and
that it is associated only to one location.

To relate the typings of queues to the buffer types expected by the protocol of sessions,
we define the buffer type projection JGKAB, which follows the rules in Fig. 13 and returns the
expected buffer type of role B from A in G. JGKAB extracts from G the partial receptions of
the form A〉B.o(U), translating it to a local type &A.o(U). Below, we report the rule that

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:18 Giallorenzo et al.

o ∈ ⋃i{oi} G ′ = A〉B
o↓G

⊕AB.{oi(Ui)};G → G ′
bG|Sende

A〉B.o(U);G → G
bG|Recve

R ∈ {≡G,'G} G R G1 G1 → G ′1 G ′1 R G ′

G → G ′
bG|Eqe

Reduction Rules.

A —> B.{oi(Ui);Gi} ≡G ⊕AB.{oi(Ui)}; &AB.{oi(Ui);Gi}

G[rec t.G ′] ≡G G [G ′[rec t.G ′/t]]

Structural Congruence.

A 6= C∨ B 6= D

⊕AB.{oi(Ui)};⊕CD.{oj(Uj)} 'G ⊕CD.{oj(Uj)};⊕AB.{oi(Ui)}
bGS|ChoChoe

A 6= C∨ B 6= D

&AB.{oi(Ui); &CD.{oj(Uj);Gij}} 'G &CD.{oj(Uj); &AB.{oi(Ui);Gij}}
bGS|BrcBrce

A 6= D

⊕AB.{oi(Ui)}; &CD.{oj(Uj);Gj} 'G &CD.{oj(Uj);⊕AB.{oi(Ui)};Gj}
bGS|ChoBrce

A 6= C∨ B 6= D

A〉B.o(U); &CD.{oj(Uj);Gj} 'G &CD.{oj(Uj); A〉B.o(U);Gj}
bGS|BufBrce

A 6= C∨ B 6= D

A〉B.o(U); C〉D.o ′(U ′) 'G C〉D.o ′(U ′); A〉B.o(U)
bGS|BufBufe

A 6= D

⊕AB.{oi(Ui)}; C〉D.o(U) 'G C〉D.o(U);⊕AB.{oi(Ui)}
bGS|ChoBufe

Swap Relation.

A〉B
oj
↓&AB.{oi(Ui);Gi}i∈I = A〉B.oj(Uj);Gj if j ∈ I

A〉B
oj
↓&CD.{oi(Ui);Gi}i∈I = &CD.{oi(Ui);

A〉B
oj
↓Gi} if A 6= C∨ B 6= D

A〉B
o↓C〉D.o(U);G = C〉D.o(U); A〉Bo↓G A〉B

o↓ ⊕ CD.{oi(Ui)};G = ⊕CD.{oi(Ui)}; A〉Bo↓G
A〉B
o↓rec t.G = rec t.G A〉B

o↓t = t A〉B
o↓end = end

Application Function.

Fig. 12. Global types — Semantics.

extends global type projection for global buffers.

JA〉B.o(U);GKC =
{
&A.o(U); JGKC if C = B

JGKC otherwise

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:19

JC —> D.{oi(Ui);Gi}K
A
B =

{
end if C = A ∧ D = B⊔
i JGiK

A
B otherwise

JC〉D.o(U);GKAB =

{
&A.o(U); JGKAB if C = A∧ D = B

JGKAB otherwise

JtKAB = JendKAB = Jrec t.GKAB = end

Fig. 13. Choreography Calculus — Buffer Type Projection.

Note that we do not need to extend the projection to (global choice) and (global branch).
Indeed, in our setting we consider only running global types that are evolution of a global
type, hence global choices and branches are always balanced. Given a running global type
G, we can always obtain an equivalent ('G, ≡G) global type G ′ which is absent from
(global choice) and (global branch) terms. We call a running global type canonic if it con-
tains no (global choice) and (global branch) terms. When writing projections of global types
we assume G to be in canonic form.

Finally, we extend our typing discipline with a new Rule bT|DCe that checks for coherence
among types, choreographies, and deployments. To define bT|DCe, we formalise a predicate,
called partial coherence2 and denoted pco(Γ), that holds if and only if, for all sessions k,
the local and buffer typings of k follow (are projection of) the same global type G.

Definition 3.1 (Partial Coherence). We write pco(Γ) when, for all sessions k in
Γ , there exists a global type G such that

∀ k[B] : T ∈ Γ , T = JGKB ∧ ∀ A ∈ roles(G) \ {B}, Γ ` k[A〉B] : JGKAB

Rule bT|DCe is defined as:

pco(Γ) Γ ` D Γ ` C
Γ ` D,C

bT|DCe

where a judgement Γ ` D,C states that C and D are coherent according to Γ and all
sessions in Γ are coherent. Γ is an abstraction between D and C and guarantees D to not
go wrong. Formally

Definition 3.2 (Deployment Judgements).

Γ ` D ⇐⇒
{
(1) ∀ p.x : U ∈ Γ , D(p).x : U

(2) ∀ k[A〉B] : T ∈ Γ ∧D(k[A〉B]) = m̃, bte(A, m̃) = T

We comment the checks performed by Γ ` D: (1) checks that, for each typing p.x : U in Γ ,
D associates x, in the state of process p, to a value of type U; (2) uses buffer types to check
that the typing of a message queue in Γ is correct wrt to the actual sequence of messages
stored by that queue in D. We extract the type of a queue m̃, i.e., the sequence of message
receptions from a role A, with function bte(A, m̃). Formally,

Definition 3.3 (Buffer Type Extraction). Let ` vi : Ui, i ∈ [1,n] and m̃ =
(o1, v1) :: · · · :: (on, vn) then bte(A, m̃) = &A.o1(U1); · · · ; &A.on(Un).

2Partial because it accounts for missing typings of roles implemented by external partial choreographies.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:20 Giallorenzo et al.

Typing Environment Choreography Deployment

1©

G = A —> B.pass(str);
B —> C.fwd(str);
end

k[A] = ⊕B.pass(str); end
k[B] = &A.pass(str);

⊕C.fwd(str); end
k[C] = &B.fwd(str); end

C ′ = k : a[A]."ok" —> b[B].first(x);
k : b[B].x—> c[C].second(x)

D ′

G→ G ′ by bG|Eqe, bG|Sende C ′ → C ′′ by bC|Eqe, bC|Sende
δ = k : a[A]."ok" —> B.pass
D ′, δ I D ′′ by bD|Sende

2©

G ′ = A〉B.pass(str) ;
B —> C.fwd(str);
end

k[A] = end
k[B] = &A.pass(str);

⊕C.fwd(str); end
k[C] = &B.fwd(str); end
k[A〉B] = &A.pass(str)

C ′′ = k : A —> b[B].pass(x) ;
k : b[B].x—> c[C].fwd(x)

D ′′(k[A〉B]) = (pass, "ok")

G ′ → G ′′ by bG|Recve C ′′ → C ′′′ by bC|Recve
δ ′ = k : A —> b[B].pass(x)
D ′′, δ ′ I D ′′′ by bD|Recve

3©

G ′′ = B —> C.fwd(str) ;
end

k[A] = end
k[B] = ⊕C.fwd(str); end
k[C] = &B.fwd(str); end

C ′′′ = k : b[B].x—> c[C].fwd(x) D ′′′(b).x = "ok"

Table I. Example of message delivery on elements of interest of choreography C ′ (second column), its companion
deployment D ′ (third column), and their typing environment (first column).

3.4. Runtime Examples
In this section, we present two running examples that illustrate the relationship between
global types and choreographies. First we report a basic case where a session starts and
two processes exchange a message. Then we consider a started session and comment the
asynchronous delivery of messages.

Example 3.4 (Start and Message Delivery). We consider a running choreography C,D
and a global type G such that D is a default deployment (cf. Definition 2.2) and

C = start k : a[A] <=> lB.b[B], lC.c[C];
k : a[A]."ok" —> b[B].pass(x);
k : b[B].x—> c[C].fwd(x)

G = A —> B.pass(str);
B —> C.fwd(str);
end

The global type G is used in the typing environment Γ to check C,D, formally the service
typing lB, lC : G〈 A | B, C | B, C 〉 belongs to Γ and Γ ` C,D.

Now, we let D,C reduce to D ′,C ′ following rules bC|Starte and bD|Starte so that D contains the
data and queues needed to support interactions on session k. Finally, we report in Table I:

— left column, the main elements in the typing environment Γ , i.e., the evolution of the
type G. To show how partial coherence (Definition 3.1) holds, we report also the local

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:21

and buffer types of A, B, and C projected from G following global type projection JGKA
for local types (see Fig. 9) and buffer type projection JGKBA (see Fig. 13) for buffer types.
For brevity, we omit to report empty buffer types such as k[A〉B] = end;

— middle column, the reduction of choreography C;
— right column, the main changes in D.

To ease the reading of the example, we highlight in grey the elements that have been
changed by the reduction. To keep our example brief, we only report the reduction (sending
and reception) of the first interaction in C, namely k : a[A]."ok" —> b[B].pass(x).

In Table I, row 1© shows on the left column the original type G and the global type
projection onto the local types of roles A, B, and C; in the next two columns we reported
for completeness the reductions C ′ and D ′. Next, we let the running choreography reduce,
applying Rules bC|Eqe, bC|Sende, and bD|Sende to let process a deliver its message in the queue k[A〉B]
of process b. We also let G reduce to G ′ with Rule bG|Sende. In row 2© we report the result of
the reductions. In the left column, G ′ indicates that role A has sent a message to B, which
should consume it in the next step. This is also mirrored by the buffer projection, where the
buffer typing k[A〉B] is &A.pass. The deployment D ′′ contains the actual message sent by a
in the queue owned by b. The reduced choreography is still well-typed as, applying function
bte(A,D ′′(k[A〉B])) on the interested queue, we obtain the same local type of the buffer
typing k[A〉B]. Finally, we let the running choreography and the global type reduce again,
allowing process b to consume the message. We show the result of the reductions in row 3©,
where in deployment D ′′′ we can find that the value of the message has been assigned to
the receiving variable x of b.

Example 3.5 (Asynchronous Message Delivery). In this example, we consider a well-
typed running choreography Γ ` D,C where C and its correspondent reduced global type
G are:

C = k : a[A] —> b[B].first();
k : a[A] —> b[B].second()

G = A —> B.first(unit);
A —> B.second(unit);
end

We keep the same conventions on notation defined in the previous example with the addition
of omitting round parenthesis for void values. We report in Table II a possible sequence of
reduction. Following the previous example, we use row 1© to summarise the status of (from
left to right) the typing environment Γ , the choreography C and its companion deployment
D.

In row A© we report the main elements involved in the reduction. In the left-most cell
of the raw, the global type G1 which is structurally equivalent (≡G) to G and that ap-
pears in Rule bG|Eqe to split the complete communication A —> B.first() into its equivalent
⊕AB.first(); &AB.first(). Then G1 reduces to G ′1 with Rule bG|Sende and, as of Rule bG|Eqe, we take
G ′ as structurally equivalent to G ′1, as shown in row 2©, G ′ splits the complete communi-
cation A —> B.second() into its equivalent ⊕AB.second(); &AB.second(). The reduction of C
mirrors that of G: it splits the complete communication on operation first , consumes the
sending, and finally splits the other complete communication on operation second , resulting
in C ′ (row 2©). The sending is applied on D which contains the related message in queue
k[A〉B] in its reductum D ′.

Then, in row B© we allow the delivery of operation second . This illustrates how asynchrony
works in both the context of global types and choreographies. As before, we start from the
left-most cell in the row. First we consider G2, which is swap-equivalent to G ′, after applying
to it Rule bGS|ChoBufe. This brings on top the (global choice) on operation second . Then G2

reduces to G ′2 with Rule bG|Sende and, as of Rule bG|Eqe, we take G ′′ = G ′1. The reduction on
C ′,D ′ is similar to that of G ′.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:22 Giallorenzo et al.

Typing Environment Choreography Deployment

1©

G = A —> B.first ;
A —> B.second ;
end

k[A] = ⊕B.first ;
⊕B.second ; end

k[B] = &A.first ;
&A.second ; end

C = k : a[A] —> b[B].first ;
k : a[A] —> b[B].second

D

A©

G→ G ′ by bG|Eqe, bG|Sendei.e.,
G ≡G G1 = ⊕AB.first ;

&AB.first ;
A —> B.second ;
end

G1 → G ′1 and G ′1 ≡G G
′

C→ C ′ by bC|Eqe, bC|Sende
δ = k : a[A] —> B.first
D, δ I D ′ by bD|Sende

2©

G ′ = A〉B.first ;
⊕AB.second ;
&AB.second ;
end

k[A] = ⊕B.second ; end
k[B] = &A.first ;

&A.second ; end
k[A〉B] = &A.first() ; end

C ′ = k : A —> b[B].first ;
k : a[A] —> B.second ;
k : A —> b[B].second

D ′(k[A〉B]) = (first ,_)

B©

G ′ → G ′′ by bG|Eqe, bG|Sendei.e.,
G ′ 'G G2 = ⊕AB.second ;

A〉B.first ;
&AB.second ;
end

G2 → G ′2 and G ′2 'G G
′′

C ′ → C ′′ by bC|Eqe, bC|Sende
δ ′ = k : A —> b[B].second
D ′, δ ′ I D ′′ by bD|Sende

3©

G ′′ = A〉B.first ;
A〉B.second ;
end

k[A] = end
k[B] = &A.first ;

&A.second ;
end

k[A〉B] = &A.first
&A.second
end

C ′′ = k : A —> b[B].first ;
k : A —> b[B].second

D ′′(k[A〉B]) = (first ,_) ::
(second ,_)

Table II. Example of asynchrony and effects on elements of interest of choreography C (second column), its
companion deployment D (third column), and their typing environment (first column).

3.5. Properties
We close this section with the main guarantees of our type system.

First, our semantics preserves well-typedness:

Theorem 3.6 (Subject Reduction).
Γ ` D,C and D,C→ D ′,C ′ imply Γ ′ ` D ′,C ′ for some Γ ′.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:23

We report in § B.1 the proof of Theorem 3.6.
We now relate Γ and Γ ′ to prove that the behaviours of sessions in a well-typed choreog-

raphy follow their respective types. We denote JGKk the projection of a global type G for a
session k and let JGKk be the set of local and buffer typings as obtained by the projection
of G on each of its roles:

Definition 3.7 (Global Type Projection).
JGKk = { k[A] : JGKA | A ∈ roles(G) }, { k[A〉B] : JGKAB | A ∈ roles(G), B ∈ roles(G) \ {A} }

We say that a reduction is “at session k” if it is obtained by consuming a communication
term for session k (as in [35]), and we write k 6∈ Γ when k does not appear in any local
typing in Γ . Then we have:

Theorem 3.8 (Session Fidelity).
Let Γ , Γk ` D,C, k 6∈ Γ . Then, D,C→ D ′,C ′ with a redex at session k implies that, for some
G and Γ ′, k 6∈ Γ ′, (i) Γk ⊆ JGKk, (ii) G→ G ′, (iii) Γ ′k ⊆ JG ′Kk, and (iv) Γ ′, Γ ′k ` D ′,C ′.
Theorem 3.8 states that all communications on sessions follow the expected protocols (Γ ′
may differ from Γ for the instantiation of a new variable). The proof of Theorem 3.8 is
reported in § B.1.

Finally, we present the definition of the coherence predicate co:

Definition 3.9 (Coherence). co(Γ) holds iff ∀ k ∈ Γ , ∃ G s.t.

— l̃ : G〈A|B̃|C̃〉 ∈ Γ ∧ C̃ = B̃ and
— ∀ A ∈ roles(G), k[A] : T ∈ Γ ∧ T = JGKA ∧ ∀ B ∈ roles(G) \ {A}, Γ ` k[B〉A] : JGKBA
Coherence extends partial coherence to check that i) all needed services to start new sessions
are present and ii) all the roles in every open session are correctly implemented by some
processes.

Coherent and well-typed systems are deadlock-free, as stated by Theorem 3.10.

Theorem 3.10 (Deadlock-freedom).
Γ ` D,C and co(Γ) imply that either (i) C ≡C 0 or (ii) there exist D ′ and C ′ such that
D,C→ D ′,C ′.

We report the proof of Theorem 3.10 in § B.2.

4. BACKEND CALCULUS
We now present the Backend Calculus (BC). Formally, the syntax of programs in BC is
the same as that of FC. The only difference between BC and FC is in the semantics: we
replace the notions of deployment and deployment effects with new versions that formalise
message exchanges based on message correlation, as found in Service-Oriented Computing
(SOC) [30]. Indeed, the structure and semantics of the Backend deployments D is one of our
major contributions: it formalises, at the level of choreographies, how to implement sessions
using the communication mechanism of message correlation typical of SOC systems.

In the following, we first informally introduce correlation-based message exchange, then
we formalise data and queues in the (deployment of the) Backend Calculus, and finally we
formalise correlation-based message exchange in the semantics of deployment effects in BC.

Message Correlation. Processes in SOC run within services and communicate asyn-
chronously: each process can retrieve messages from an unbound number of FIFO input
queues, managed by its enclosing service. A service identifies each queue with some data,
called correlation key. This is represented in Fig. 14 by process r1, that wants to consume a
message received on queue Q1, corresponding to the correlation key k1. The request is sat-
isfied by the service, which delivers message m1 to r1, also removing the interested message

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:24 Giallorenzo et al.

Sender
Receiver

 Service1

Receive message with correlation key k1

Process
Space

Queue
Space

Send message with
correlation key k1

p1

Key
Space

pn r1 rm

k1

mn m1

Retrieve payload

Message

payload

key: k1

Enqueue payload

 Service2

k2 k4 k6 k3

Q2 Q4 Q6 Q1 Q3

Fig. 14. Depiction of correlation-based message exchange in SOC.

from the head of queue Q1. When a service receives a message from the network, it inspects
its content, looking for a valid correlation key, i.e., one that points a queue of the service.
If a queue can be found, the message is enqueued in its tail. In Fig. 14, this is represented
by data k1 marked by the attribute key in the message sent by process pn (of Service1) to
Service2. At reception, Service2:

(1) checks for the presence of the attribute key;
(2) extracts the corresponding key k1;
(3) finds the queue Q1, pointed by k1;
(4) enqueues the received payload in Q1 as message mn.

As noted in the example, messages in SOC contain correlation keys as either part their
payload or in some separate header. Here we abstract from such details as in [31]. To sum-
marise, two processes can communicate over correlation-based messaging if: i) the sender
knows the (location of the) service where the addressee is running and ii) the sender and
the addressee know the key corresponding to a queue in the addressee service. After having
presented the mechanism of correlation for message exchange, we can proceed to explain
how we model SOC systems in BC.
Data and Process state. Data in SOC is structured following a tree-like format, e.g.,
XML [37] or JSON [38]. In BC, we use trees to represent both the payload of messages
and the state of running processes (as in, e.g., BPEL [30] and Jolie [39]).

Formally, we consider rooted trees t ∈ T, where T = Val ∪ L ∪ Set(Lab× T) and

t ::= v | l | { x1 : t1, . . . , xn : tn }

i.e., a tree (node) is either a value v, a location l, or a set of ordered pairs of edge labels
x,y ∈ Lab and tree nodes. We assume tree nodes to be values or locations only in leaves.
Now we can define BC variables as paths on trees (the latter, we remind, represents state of
processes) as sequences of labels x,y ∈ Seq(Lab) such that x ::= x.x | ε, ε being the empty
sequence, which we often omit for brevity. When writing paths in their extended form, e.g.,
x.y.z.ε, we often use the abbreviation x.y.z.

In addition, we define two operators to handle trees: path application and deep copy. The
path-application operator x(t) is used to access the sub-nodes pointed by path x in tree t.
Intuitively, x(t) returns either the value, the location or the sub-tree pointed by path x in
t; returning an empty set of ordered pairs label-tree if x is not present in t. Formally,

x.x(t) =

x(x.ε(t)) if x 6= ε
t ′ if x = ε and t = { x : t ′, . . . , xn : tn }

∅ otherwise

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:25

The deep-copy operator t / (x, t ′) is a (total) replacement operator that returns the tree
obtained by replacing in t the sub-tree rooted in x(t) with t ′. If x is not present in t,
t / (x, t ′) adds the smallest chain of empty nodes to t such that it stores t ′ under path x.
Formally,

t / (x.x, t ′) =

∅ / (x.x, t ′) if t ∈ Val ∪ L

(t \ { x : x(t) }) ∪ { x : t ′ } if t 6∈ Val ∪ L and x = ε
(t \ { x : x(t) }) ∪ { x : x(t) / (x, t ′) } otherwise

Backend Deployment. We can now define the notion of deployment for BC, denoted D,
which includes:

— the locality of processes;
— queues, pointed by a combination of a location and a correlation key;
— the state of processes.

Formally, D is an overloaded partial function defined by cases as the sum of three partial
functions gl : L ⇀ Set(P), gm : (L× T) ⇀ Seq(O× T), and gs : P ⇀ T. The domains and
co-domains of the functions are disjoint, hence:

D(z) =

gl(z) if z ∈ L,

gm(z) if z ∈ (L× T),

gs(z) otherwise

Function gl maps a location to the set of processes running in the service at that location.
Given a location l, we read D(l) = {p1, . . . , pn} as “the processes p1, . . . , pn are running at
the location l” (we assume each process p to run at most at one location). Function gm maps
a couple location-tree to a message queue. This reflects message correlation as informally
described above, where a queue resides in a service, i.e., at its location, and is pointed by
a correlation key. Given a couple l : t, we read D(l : t) = m̃ as “the queue m̃ resides in
a service at location l and is pointed by correlation key t”. The queue m̃ is a sequence of
messages m̃ ::= m1 :: · · · :: mn | ε and a message of the queue is m ::= (o, t), where t is the
payload of the message and o is the operation on which the message was received. Function
gs maps a process to its local state. Given a process p, the notation D(p) = t means that p
has local state t.

Deployment Effects in BC. In BC, we replace the deployment effects of FC with the rules
defining D, δ I D ′, reported in Fig. 15. We comment them in the following.

Rule bD|Starte simply retrieves the location of process p (the one that requested the creation
of session k) and uses Rule bD|Supe to obtain the new deployment D ′ that supports interactions
over session k. Namely, D ′ is an updated version of D with: i) the newly created processes
for session k and ii) the queues used by the new processes and p to communicate over
session k. In addition, in D ′, iii) the new processes and p contain in their states a structure,
rooted in k and called session descriptor, that includes all the information (correlation keys
and the locations of all involved processes) to support correlation-based communication in
session k. Formally, this is done by Rule bD|Supe where we 1© retrieve the starter process, here
called q1, which is the only process already present in D. Then, given a tree t, we ensure it
is a proper session descriptor for session k, i.e., that:

2© t contains the location li of each process, represented by its role in the session Bi, under
path Bi.l;

3© t contains a correlation key tij for each ordered couple of roles Bi, Bj under path Bi.Bj,
such that 4© there is no queue in D at location lj pointed by correlation key tij;

Finally, we assemble the update of D in four steps:

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:26 Giallorenzo et al.

p ∈ D(l) D, sup({ l.p[A],
︷ ︸
l.q.[B] }) I D ′

D, start k : p[A] <=>
︷ ︸
l.q[B] I D ′

bD|Starte

q1 ∈ D 1© j ∈ I \ {i} Bi.l(t) = li 2© Bi.Bj(t) = tij 3© lj : tij 6∈ D 4©
D ′ = D

[
li 7→ D(li) ∪ {qi}

]
5© D ′′ = D ′

[
li : tij 7→ ε

]
6© D ′′′ = D ′′

[
q1 7→ D ′′(q1) / (k, t)

]
7©

D, sup({ li.qi[Bi] }i∈I) I D ′′′
[
qh 7→ {k : t}

]
h∈{2,...,n} 8©

bD|Supe

l = k.B.l(D(p)) tc = k.A.B(D(p)) tm = eval(e,D(p))
D, k : p[A].e—> B.o I D [l : tc 7→ D(l : tc) :: (o, tm)]

bD|Sende

tc = k.A.B(D(q)) q ∈ D(l) D(l : tc) = (o, tm) :: m̃ D ′ = D[l : tc 7→ m̃]

D,k : A —> q[B].o(x) I D ′ [q 7→ D ′(q) / (x, tm)]
bD|Recve

Fig. 15. Deployment effects for Backend Choreographies.

5© first, we obtain D ′ by adding in D the processes q2, . . . , qn at their respective locations;
6© second, we obtain D ′′ by adding to D ′ an empty queue ε for each couple lj : tij;
7© third, we obtain D ′′′ from D ′′ by storing in the state of (the starter) process q1 the session

support t under path k;
8© finally, we update D ′′′ such that each new created process (q2, . . . , qn) has in its state

just the session descriptor t rooted under path k.

We deliberately define in bD|Supe the session descriptor t with a set of constrains on data,
rather than with a procedure to obtain the data for correlation. In this way, our model is
general enough to capture different methodologies for creating correlation keys (e.g., UUIDs
or API keys).

Rule bD|Sende models the sending of a message. We comment the premises. From left to
right, the first gets the location l of the receiver B from the state of the sender p; the second
retrieves the correlation key in the state of p (playing role A) to send messages to role B;
the third evaluates the expression e of the sender p using its local state to get a value tm.
Function eval evaluates expressions in a process state, traversing its paths and performing
local computation. We highlight that, since in BC we preserve the syntax of choreographies
of FC, we make two assumptions: that expressions (e.g., e in bD|Sende) are defined on Var iables
and that eval in BC automatically maps variables x, y, z into the respective paths x.ε, y.ε,
and z.ε, used to access process states in D. Finally, in the conclusion of the Rule, we add
the message (o, tm) in the queue pointed by l : tc that we found via correlation.

Rule bD|Recve models a reception. From left to right, the first premise finds the correlation
key tc for the queue that q (playing role B) should use to receive from A in session k. The
second premise retrieves the location l of q. The third accesses the queue pointed by l : tc
and retrieves message (o, tm). The last premise updates D to D ′ removing (o, tm) from the
interested queue. Dually wrt how we modelled eval to map variables into paths in Rule
bD|Sende, in the conclusion of Rule bD|Recve we map x, i.e., the intended variable that should store
the payload tm in the state of q, into path x.ε.

4.1. Encoding Frontend Choreographies to Backend Choreographies and Properties
Now that we defined BC, we can proceed with our main intent: defining a three-stage
compilation procedure from high-level FC programs to low-level services. The encoding
from FC to BC presented in this section is the first step of our compilation process. The
intuition here is to translate high-level FC abstractions, e.g., communications over names,

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:27

1 〈〈D〉〉Γ = D := ∅

3 fo r each p@l in Γ
4 D := D [l 7→ D(l) ∪ {p}]
5 D := D [p 7→ ∅]

7 fo r each p.x : U in Γ
8 D := D[p 7→ D(p) / (x,D(p)(x))]

10 fo r each { p : k[A] q : k[B], q@l} in Γ
11 t := fresh(D, l)
12 D := D[l : t 7→ D(k[A〉B])]
13 D := D[p 7→ D(p) / (k.A.B, t)]
14 D := D[q 7→ D(q) / (k.A.B, t)]
15 D := D[p 7→ D(p) / (k.B.l, l)]
16 D := D[q 7→ D(q) / (k.B.l, l)]

18 return D

Fig. 16. Encoding Frontend to Backend Deployments.

into lower-level correspondents in BC, e.g., communications over correlation. We prove that
our encoding guarantees an operational correspondence between the semantics of a Frontend
choreography and its Backend encoding.

Formally, since choreographies in BC have the same syntax of FC ones, we can translate
FC runtime terms D,C to BC runtime terms by encoding the FC deployment D to an
appropriate Backend deployment. Notably, BC deployments contain more information wrt
FC deployment. We extract these data from Γ , the typing environment of D,C.

Definition 4.1 (Encoding FC in BC). Let Γ ` D,C and 〈〈D〉〉Γ be defined by the algo-
rithm in Fig. 16. Then, the Backend encoding of D,C is defined as 〈〈D〉〉Γ ,C.

The algorithm of 〈〈D〉〉Γ does:

(1) include in D all (located) processes present in D (and typed in Γ);
(2) translate the state (i.e., the association Var iable-Value) of each process in D to its

correspondent tree-shaped state in D;
(3) for each ongoing session in D, set the proper correlation keys and queues in D and, for

each queue, import and translate its related messages.

More precisely, in the algorithm defined in Fig. 16 at Line 1, we create a new Backend
deployment D and assign to it the totally undefined function (emptyfunc); D is an empty
Backend deployment that will be later refined via the updates on D at Lines 3–16. Then,

— Lines 3–5, for each located process p@l in Γ , we update the locations of D to contain p
at location l (Line 4) and we include process p in D, associating to it an empty state,
i.e., the empty tree ∅ (Line 5);

— Lines 7–8, for each variable x (typed in Γ) of a process p, we update the state of process
p in D to include the association of x to its value in the state D(p). As done in Rules
bD|Sende and bD|Recve, we map FC variables x ∈ Var into BC paths x ∈ Seq(Lab);

— Lines 10–16, follow the same principles to support correlation-based exchanges as for-
malised in Rule bD|Supe; for each couple of processes p, q, respectively playing distinct roles
A and B in a session k, with q located at l:

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:28 Giallorenzo et al.

— Line 11, we obtain a fresh correlation key t with auxiliary function fresh. The latter
takes deployment D and location l as input and returns a correlation key which is
fresh among the keys associated to location l in D. Formally t is such that l : t 6∈
dom(D);

— Line 12, we associate correlation key t with location l in D and make it point the
corresponding queue of messages from role A to role B in D (accessed with triple
k[A〉B]). Note that we can directly copy message queues from D into D. Indeed, while
message queues in D and D are respectively of type Seq(O × Val) and Seq(O × T),
by definition T subsumes Val ;

— Line 13–14, we include in the state of processes p (Line 13) and q (Line 14) correlation
key t, storing it under path k.A.B;

— Line 15–16, we include in the state of processes p (Line 15) and q (Line 16) the
location of role B under path k.B.l.

The encoding from FC to BC guarantees a strong operational correspondence.

Theorem 4.2 (Operational Correspondence (FC ↔ BC)).
Let Γ ` D,C. Then:

(1) (Completeness) D,C→ D ′,C ′ implies 〈〈D〉〉Γ ,C→ 〈〈D ′〉〉Γ ′ ,C ′ for some Γ ′ s.t. Γ ′ ` D ′,C ′;
(2) (Soundness) 〈〈D〉〉Γ ,C → D,C ′ implies D,C → D ′,C ′ and D = 〈〈D ′〉〉Γ ′ for some Γ ′ s.t.

Γ ′ ` D ′,C ′.
Proof Sketch of Theorem 4.2. We sketch the proof of Theorem 4.2, analysing its

two parts: (Completeness) and (Soundness). The proof of Completeness is by induction on
the derivation of D,C. The main observation is that the encoded system 〈〈D〉〉Γ ,C mimics
D,C by applying the same semantic rules on C and corresponding deployment effects (e.g.,
respectively defied by rules bD|Sende and bD|Sende). Let D ′ be the Backend environment obtained
from the reduction 〈〈D〉〉Γ ,C→ D,C ′ on Rule bC|Starte. Since Fig. 16 and Rule bD|Supe (on which
Rule bD|Starte relies) implement the same principles, we know that D and k.A.B(〈〈D ′〉〉Γ ′) will
be the same, except possibly for i) the location of processes and ii) trees of correlation keys
corresponding to the same paths. Concretely, item i) derives from the fact that Γ and Γ ′
can disagree on the location of the same process p, and item ii) is caused by the random
generation of correlation keys, for which, considering a correlation key rooted in k.A.B of a
process p, the trees obtained from k.A.B(D(p)) and k.A.B(〈〈D ′〉〉Γ ′(p))may differ. However,
these discrepancies do not constitute a problem, since both locations and correlation keys
are used consistently in their respective deployments, which are thus interchangeable.

We can extend the same observation also for Soundness, which is proved by induction on
the derivation of 〈〈D〉〉Γ ,C.

5. DYNAMIC CORRELATION CALCULUS
We now introduce the Dynamic Correlation Calculus (DCC), the target language of our
compilation. DCC extends the Correlation Calculus (CC) [31], a formal model for Service-
Oriented Computing that, in particular, formalises the semantic of message exchange of
the Jolie programming language [39], making our theoretical results directly applicable.
However, CC is too simple for our purposes as its processes can be associated to only
one message queue. Contrarily, to properly capture correlation-based messaging of SOC, as
presented in § 4 and modelled in Backend Choreographies, we need single processes to be
able to access an unbound number of queues. To this aim, in DCC we extend the syntax
and semantics of CC with proper primitives to dynamically create and access queues from
processes.

While DCC is a necessary theoretical step to ensure our results, in practice our extension
of CC to multiple queues would be trivial to implement in a new version of the Jolie

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:29

Services S ::= 〈Bs,P,M〉l (srv)
| S | S ′ (net)

Start Behaviour Bs ::= !(x);B (acpt)
| 0 (inact)

Processes P ::= B . t (prcs)
| P | P ′ (par)

Behaviours
B ::= ?@e1(e2);B (reqst)

| o(x) from e;B (input)
| def X = B ′ in B (def)
| ν〉x;B (newque)
| x = e;B (assign)

|
∑
i [oi(xi) from e] {Bi} (choice)

| o@e1(e2) to e3;B (output)
| if e {B1} else {B2} (cond)
| 0 (inact)
| X (call)

Fig. 17. Dynamic Correlation Calculus, syntax.

language. Indeed, the Jolie interpreter implements CC, i.e., it includes the components to
handle correlation and message queues. Since DCC builds on such components, it is trivial
to extend the Jolie interpreter to run DCC programs and, by extension, the compiled
systems in § 6. Finally, we argue DCC to be a proper abstraction for real-world message-
exchange models. Indeed, beside SOC, having multiple message queues per process is a
common feature of other linguistic paradigms, frameworks, and messaging middlewares, as
e.g., in some versions of the actor model [40], where one actor can be associated with many
queues/mailboxes [41] and in renowned message-exchange middlewares [42; 43].

Syntax. The syntax of DCC, reported in Fig. 17, comprises two layers: Services, ranged
over by S, and Processes, ranged over by P.

In the syntax of services, term (srv) is a service, located at l, with a Start Behaviour Bs
and running processes P (both described later on) and a queue map M. The queue map is
a partial function M : T ⇀ Seq(O × T) that, similarly to function gm in BC deployments,
associates a correlation key t to a message queue. We model messages like in BC where a
message is a couple (o, t), o being the operation on which the message has been received,
and t the payload of the message. Services are composed in parallel in term (net).

Concerning behaviours, in DCC we distinguish between start behaviours and process be-
haviours. Process behaviours define the general behaviour of processes in DCC, as described
later on. Start behaviours use term !(x) to indicate the availability of a service to generate
new local processes on request. At runtime, the start behaviour Bs of a service is activated
by the reception of a dedicated message that triggers the creation of a new process. The
new process has (process) behaviour B, which is defined in Bs after the !(x) term, and an
empty state. The content of the request message is stored in the state of the newly created
process, under the bound path x. As in Backend Choreographies, also in DCC paths are
used to access process states.

Finally, processes (prc) in DCC consists of a behaviour B and a state t and can be
composed in parallel (par). Process states t are trees and, in Behaviours, operations (o),
procedures (X), paths (x), and expressions (e, evaluated at runtime on the state of the en-
closing process) are all the same as defined for Backend Choreographies (§ 4). Terms (input)
and (output) model communications. In (input), the process stores under x a message from
the head of the queue correlating with e and received on operation o. Dually, term (output)
sends a message on operation o. The three expressions in the term define: e1, the location
of the service where the addressee is running; e2 the content of the message; e3 the key that

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:30 Giallorenzo et al.

correlates with the receiving queue of the addressee. Term (choice) is an (input)-choice:
when one of the inputs can receive a message from the queue correlating with e on oper-
ation oi, it discards all other inputs and executes the continuation Bi. Term (reqst) is the
dual of (acpt) and asks the service located at e1 to spawn a new process, passing to it the
message in e2. Term (newque) models the creation of a new queue that correlates with a
unique correlation key (in the service hosting the running process). The correlation key is
stored under path x in the state of the process, for later access. Other terms are standard.

Semantics. In Fig. 18, we report the rules defining the semantics of DCC, a relation
→ closed under a (standard) structural congruence ≡D that supports commutativity and
associativity of parallel composition. We comment the rules.

Rules bDCC|Assigne, bDCC|Ctxe, and bDCC|Conde are standard for, respectively, assignments, procedure
definition, and condition evaluation. Rule bDCC|PEqe uses equivalence ≡D on DCC processes to
describe parallel execution and recursion. The rules of ≡D are reported in the lower part of
Fig. 18.

Rule bDCC|Newquee adds to M an empty queue (ε) correlating with a randomly generated key
tc. The key is stored under path x of the process that requested the creation of the queue.
As in Rule bD|Supe of Backend Choreographies (see § 4), we do not impose a structure for
correlation keys, yet we require that they are distinct within their service.

Rule bDCC|Recve models message reception. Since both (input) and (choice) define receptions
of messages, we consider both cases in the Rule. Indeed, in the first premise of the Rule,
we allow the receiving process to either execute an (input) oj(x) from e or a (choice)∑
i∈I [oi(xi) from e] {Bi}. In both cases, we obtain the correlation key of the receiving queue

from the evaluation of expression e against the state of the receiving process (t). Then, we
inspect queue map M and check if it has a message in its head received on operation oj. If
this holds, the Rule removes the message from the queue and stores the payload (tm) under
path xj in the state of the process.

Regarding message delivery, in DCC, there are two output actions: i) (output) used by a
process to communicate with another one and ii) (reqst) used by a process to require the
creation of a new process in a service. Since in DCC communications can happen within
the same service or between two services, we describe two sets of Rules, either for internal
and inter-service message delivery.

We start from the easier case of internal delivery, defined by Rules bDCC|InSende and bDCC|InStarte.
In Rule bDCC|InSende a process B . t sends a message into a queue of its hosting service. This
is illustrated by the second premise of the Rule where the location l, corresponding to the
evaluation of expression e1 against the state of the sender process, is the same of its hosting
service. As expected, correlation key tc must point an actual queue of the service. This is
checked by the last premise, which requires tc to be in the domain of queue mapM. In the
conclusion of the Rule, we update the content of the queue pointed by tc including message
(o, tm) in its tail. In Rule bDCC|InStarte a service accepts the request to create a new process from
one of its local processes. In the conclusion of the Rule, we find the newly created process
Q. The behaviour of the new process corresponds to the one associated with the (acpt)
term of the service (B ′). The state of the new process is empty (∅) except for the inclusion
of the payload of the request, stored under path x and obtained from the evaluation of e2
against t.

Message delivery between two services is defined by Rules bDCC|Sende and bDCC|Starte. The two
Rules are similar to their respective internal cases, except for requiring the location defined
by the sender (i.e., the one obtained from the evaluation of expression e1 against the state
t of the sender process) to match that of the receiving service.

The last two Rules in Fig. 18 are bDCC|SPare and bDCC|SEqe and define the (parallel) execution
of networks of services.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:31

t ′ = eval(x, t)

x = e ;B . t → B . t / (x, t ′) b
DCC|Assigne

B . t→ B ′ . t ′
def X = B1 in B . t → def X = B1 in B ′ . t ′

bDCC|Ctxe

i = 1 if eval(e, t) = true, i = 2 otherwise
if e {B1} else {B2} . t → Bi . t

bDCC|Conde
P ≡D P1 | P2 P1 → P ′1 P ′1 | P2 ≡D P

′

〈Bs, P, M〉l → 〈Bs, P ′, M〉l
bDCC|PEqe

B = ν〉x;B tc 6∈ dom(M) M ′ =M[tc 7→ ε]

〈Bs, B . t | P, M〉l → 〈Bs, B . t / (x, tc) | P, M ′〉l
bDCC|Newquee

B ∈ { oj(xj) from e;Bj ,
∑
i∈I [oi(xi) from e] {Bi} }

j ∈ I tc = eval(e, t) M(tc) = (oj, tm) :: m̃

〈Bs, B . t | P, M〉l → 〈Bs, Bj . t / (xj, tm) | P, M[tc 7→ m̃]〉l
bDCC|Recve

B = o@e1(e2) to e3;B ′ eval(e1, t) = l

eval(e3, t) = tc eval(e2, t) = tm tc ∈ dom(M)

〈Bs, B . t | P,M〉l → 〈Bs, B ′ . t | P,M[tc 7→M(tc) :: (o, tm)]〉l
bDCC|InSende

B =?@e1(e2);B
′′ Q = B ′ .∅ / (x, eval(e2, t))

〈!(x);B ′, B . t | P, M〉l → 〈!(x);B ′, Q | B ′′ . t | P, M〉l
bDCC|InStarte

B = o@e1(e2) to e3;B ′′ eval(e1, t) = l
′ eval(e3, t) = tc

eval(e2, t) = tm tc ∈ dom(M ′) M ′′ =M ′[tc 7→M ′(tc) :: (o, tm)]

〈Bs,B . t | P, M〉l | 〈B ′s,P ′, M ′〉l′ → 〈Bs,B ′′ . t | P, M〉l | 〈B ′s,P ′,M ′′〉l′
bDCC|Sende

B =?@e1(e2);B
′′ B ′s =!(x);B ′ eval(e1, t) = l

′ Q = B ′ .∅ / (x, eval(e2, t))

〈Bs, B . t | P,M〉l | 〈B ′s, P ′, M ′〉l′ → 〈Bs, B ′′ . t | P, M〉l | 〈B ′s,Q | P ′, M ′〉l′
bDCC|Starte

S→ S ′

S | S1 → S ′ | S1
bDCC|SPare

S ≡D S1 S1 → S ′1 S ′1 ≡D S
′

S → S ′
bDCC|SEqe

def X = B in 0 . t ≡D 0 . t P | P ′ ≡D P
′ | P (P1 | P2) | P3 ≡D P1 | (P2 | P3)

P ≡D P | 0 . t def X = B in X . t ≡D def X = B in B/X . t S | S ′ ≡D S
′ | S

(S1 | S2) | S3 ≡D S1 | (S2 | S3)

Fig. 18. Dynamic Correlation Calculus, semantics.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:32 Giallorenzo et al.

D, C

D
Encode to

Backed
Deployment

Endpoint
Projection

C1| . . . |Cn

D, C1| . . . |Cn hBs1
, P1, M1il1 | . . . |hBsm

, Pm, MmilmCompile to
Dynamic Correlation

Calculus

Frontend
Choreographies Backend Choreographies Dynamic Correlation Calculus

A

B

C

Fig. 19. Scheme of compilation from Frontend Choreographies to Dynamic Correlation Calculus.

6. COMPILING FRONTEND CHOREOGRAPHIES INTO DCC PROCESSES
We now present our main result: the correct compilation of Frontend Choreographies into
networks of services and their related processes in the DCC language. As we argued in
§ 5, the compiled DCC processes are directly executable by a modified version of the Jolie
interpreter, supporting the same primitives that DCC adds to the Correlation Calculus. We
depict in Fig. 19 a schematic representation of the steps involved in the compilation from
FC to DCC programs. Concretely, given an FC program D,C and its typing environment
Γ , our compilation procedure consists of three steps:

A© the encoding of the Frontend deployment D to a Backend deployment D = 〈〈D〉〉Γ , whose
definition is provided in § 4.1;

B© the projection of choreography C into a parallel composition of choreographies, each
defining the behaviour of a single active or service process in C. The projection at step
B© is called Endpoint Projection and is presented in § 6.1;

C© the actual compilation of the Backend choreography, obtained pairing the outputs of steps
A© and B©, into a network of corresponding DCC services and their located processes.
We present the compilation at step C© in § 6.3.

The division in three steps makes the definition of the compilation process, and its related
checks for correctness, simpler. In particular, they ease the extraction of the behaviour of
a single process (step B©) from the source Frontend choreography and of its state (step A©)
from the source Frontend deployment. In the remainder of this section, we detail step B©,
we define how we pair the outputs of steps A© and step B© and its properties, and finally we
describe the last step C© and the properties of our main contribution.

6.1. Step B©: Endpoint Projection
Given a choreography C, its Endpoint Projection (EPP), denoted JCK, returns an
operationally-equivalent composition of Endpoint choreographies. Intuitively, an Endpoint
choreography is an FC choreography that does not contain complete actions — i.e., terms
(start) and (com) — and that describes the behaviour of a single process. We remind that
a Frontend choreography can contain two kinds of processes: active processes which are
already running, and service processes which accept requests to create new active processes
at their respective associated location l. As detailed later on, our EPP procedure projects
Endpoint choreographies on all processes, both active and service ones.

Our definition of EPP is an adaptation of that presented in [16] and it is divided into two
components:

— a process projection that derives the Endpoint choreography of a single process p from a
given choreography C, written JCKp;

— the actual EPP of a given choreography C, which results into the parallel composition
of:
— the process projections of all active processes in C;

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:33

q
start k : p[A] <=>

︷ ︸
l.q[B];C

y
r
=

req k : p[A] <=>

︷ ︸
l.B; JCKr if r = p

acc k : l.r[C]; JCKr if l.r[C] ∈ {
︷ ︸
l.q[B]}

JCKr otherwise

Jk : p[A].e—> q[B].o(x);CKr =

k : p[A].e—> B.o; JCKr if r = p

k : A —> q[B].o(x); JCKr if r = q

JCKr otherwise

q
acc k :

︷ ︸
l.q[B];C

y
r

=

{
acc k : l.r[C]; JCKr if l.r[C] ∈ {

︷ ︸
l.q[B]}

JCKr otherwise

q
req k : p[A] <=>

︷ ︸
l.B;C

y
r

=

{
req k : p[A] <=>

︷ ︸
l.B; JCKr if r = p

JCKr otherwise

Jk : p[A].e—> B.o;CKr =

{
k : p[A].e—> B.o; JCKr if r = p

JCKr otherwise

Jdef X = C′ in CKr = def X = JC ′Kr in JCKr

JXKr = X

Jif p.e {C1} else {C2}Kr =

{
if p.e {JC1Kr} else {JC2Kr} if r = p

JC1Kr t JC2Kr otherwise

Jk : A —> q[B].{oi(xi);Ci}i∈IKr =

{
k : A —> q[B].{oi(xi); JCiKr}i∈I if r = q⊔
i∈I JCiKr otherwise

JC1 | C2Kr = JC1Kr | JC2Kr

J0Kr = 0

Fig. 20. Frontend Calculus, process projection.

— the process projections of all service processes in C, with the exception that we merge
into the same Endpoint choreography all process projections of service processes that
accept requests at the same location.

In the next paragraphs, first we present process projection and next the actual Endpoint
Projection.

Process Projection. Let us start the definition of process projection by formalising End-
point choreographies.

Definition 6.1 (Endpoint Choreographies). Given a Frontend choreography C. If
either:

— C = acc k : l.q[B];C ′, and q is the only free process name in C ′;
— C has only one free process name.

then C is an Endpoint choreography.

The process projection of a subject process p in a choreography C, written JCKp, returns
the Endpoint choreography obtained following the rules defined in Fig. 20.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:34 Giallorenzo et al.

Process projection follows the structure of the source choreography. We briefly comment
the rules in Fig. 20, from top to bottom.

We start with the complete actions (start) and (com) which, if participated by the subject
process, are projected into proper partial terms. When projecting a (start) action, if the
subject process is the active process p, we project a (req). If otherwise the subject process
is one of the service processes in q̃, we project an (always-available) (accept). Similarly,
when projecting a (com) action, if the subject process is the sender or the receiver in the
interaction, we respectively project a (send) or a (recv). Partial actions (acc), (req), and
(send) are projected verbatim, except for (acc) terms, which define the availability of only
the subject process.

When projecting a (rec) term, we project both the body of the procedure (C ′) and the
choreography C. This is safe even if r does not take part into the body of X, indeed, in that
case, the projection of C ′ is just an (inact) term. As a consequence, we can safely project
(call) terms verbatim.

The projections of conditionals and receptions are peculiar. Indeed, we project a condi-
tional verbatim if the subject process evaluates the condition; for all other processes, we
merge their behaviours with the merging (partial commutative) operator t, defined by the
rules reported in Appendix (Fig. 23). C t C ′ is defined only for Endpoint choreographies
and returns a choreography isomorphic to C and C ′ up to receptions, where all receptions
with distinct operations are also included. We use t also in the projection of (recv) terms,
where we require the behaviour of all processes not receiving the message to be merged.

Finally, when projecting two choreographies in parallel we return the parallel composition
of their respective projections, while (inact) is projected verbatim.

We conclude the paragraph with the formal definition of process projection.

Definition 6.2 (Process Projection). JCKr is a partial homomorphism from Fron-
tend Choreographies to Endpoint Choreographies, inductively defined by the rules in Fig. 20.

Endpoint Projection. We can now proceed to define our Endpoint Projection.
In the definition below, we use the grouping operator bCcl, which returns the set of all

service processes accepting requests at location l. We report in Appendix (Fig Fig. 24) the
rules that inductively define bCcl.

Definition 6.3 (Endpoint Projection). Let C be a Frontend choreography. The end-
point projection of C, denoted by JCK, is defined as:

JCK =
∏

p ∈ fp(C)

JCKp

︸ ︷︷ ︸
(i)

|
∏
l

 ⊔
p ∈ bCcl

JCKp

︸ ︷︷ ︸

(ii)

Commenting Definition 6.3, the EPP of a Frontend choreography is the parallel com-
position of two kinds of Endpoint choreographies: (i) Endpoint choreographies that are
the process projection of active processes p ∈ fp(C) and (ii) Endpoint choreographies that
are the merge (t) of the process projections of all service processes available at the same
location l, i.e., p ∈ bCcl.

Example 6.4. As an example of Endpoint Projection, let C be the choreography at Lines
5–9 of Example 1.1 (for convenience, we report the mentioned snippet of code in the lower
part of Fig. 21). The EPP of C, JCK, is the parallel composition of the process projections
of processes c, s, and b, i.e., respectively JCKc, JCKs, and JCKb. As per Definition 6.3, JCK =
JCKc | JCKs | JCKb.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:35

JCKb = if b.confirm_pay(cc, order) {
k : b[B] —> C.ok ; k : b[B] —> S.ok

} else {

k : b[B] —> C.ko; k : b[B] —> S.ko

}

JCKc = k : B —> c[C].{ ok(), ko() }

JCKs = k : B —> s[S].{ ok(), ko() }

C = if b.confirm_pay(cc, order){
k : b[B] —> c[C].ok(); k : b[B] —> s[S].ok()

} else {
k : b[B] —> c[C].ko(); k : b[B] —> s[S].ko()

}

Fig. 21. Example of Endpoint Projection of Lines 5–9 of Example 1.1 (reported in the lower part.)

We report in the top half of Fig. 21 the projections JCKc, JCKs, and JCKb. The example
is useful to illustrate that the projection of the conditional is homomorphic on the process
(b) that evaluates it. The projection of a (com) term results into a partial (send) for the
sender — as in the two branches of the conditional in JCKb — and a partial (recv) for the
receiver — as in JCKc and JCKs. Note that the EPP merges branching behaviours: in JCKc
and JCKs the two complete communications are merged into a partial reception on either
operation ok or ko.

6.2. Properties
We conclude this section presenting the guarantees provided by the Endpoint Projection
wrt to the source Frontend choreography, as formalised in Theorem 6.6. Before presenting
Theorem 6.6, we update the definition of the rule of process projection reported in Fig. 20
for (rec) terms. Indeed, applying the rule below

Jdef X = C′ in CKr = def X = JC ′Kr in JCKr

in the EPP we could obtain more than one procedure with the same identifier, which could
prevent the EPP from being typable (according to the typing rules defined in § 3, we cannot
have in Γ two definition typings on the same identifier). We tackle the issue by updating the
rule in Fig. 20 for (rec) terms so that it guarantees the coherent usage of different definition
identifiers for different processes:

Jdef X = C′ in CKr = def Xr = J C ′[Xr/X] Kr in J C[Xr/X] Kr

The update is safe as, by assumption, we consider well-sorted Frontend Choreographies
where definitions always precede recursive calls.

We also introduce the notion of pruning (as defined in [13]) where, ≺ specifies an asym-
metric relation between two choreographies C and C ′, written C ≺ C ′, in which C prunes
some unused accepts and receptions of C ′. To give a formal definition to our pruning rela-
tion, we present the two concepts of subtyping of typing environments and minimal typing
system. Below we just give the intuition on both concepts, which are formalised in the
Appendix:

— given two typing environments Γ and Γ ′, Γ is a subtype of Γ ′, written Γ ≺ Γ ′, if Γ is
identical to Γ ′ up to i) some local and global types that are more constrained in Γ than
in Γ ′ and ii) some service typings present in Γ ′ and not present in Γ . We report the
formal definition of Γ ≺ Γ ′ in Definition B.3,

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:36 Giallorenzo et al.

— the minimal typing system Γ `min C uses the minimal global and local types to type
sessions and services in C. We report in § B.3.1 the formal definition of minimal typing.

We can finally formalise the pruning relation.

Definition 6.5 (Pruning). Let Γ `min C and Γ ′ `min C ′ , if Γ ≺ Γ ′ then C prunes C ′
under Γ , written Γ `min C ≺ C ′, or C ≺ C ′ for short.

The shortened form C ≺ C ′ is similar to [13], where the authors underline that that it
does not lose any precision since it is always possible to reconstruct appropriate typings.
The pruning of C ′ by C means that C omits unused inputs and service processes present
in C ′. The ≺ relation is thus a strong bisimulation since C ≺ C ′ means that the two
choreographies have precisely the same observable behaviours, except for the receive actions
at pruned receptions and unused available service processes.

We can now write the statement of our EPP Theorem.

Theorem 6.6 (EPP Theorem).
Let D,C be a well-typed Frontend choreograph. Then,

(1) (Well-typedness) D, JCK is well-typed.
(2) (Completeness) D,C→ D ′,C ′ implies D, JCK → D ′,C ′′ and JC ′K ≺ C ′′.
(3) (Soundness) D, JCK → D ′,C ′′ implies D,C→ D ′,C ′ and JC ′K ≺ C ′′.

We report in § B.3 the proof of Theorem 6.6.

6.3. Step C©: From Backend Endpoint Choreographies to DCC
This is the last step of our compilation process, where, given a parallel composition of
Backend Endpoint choreographies, we obtain a network of DCC services that faithfully
follow the semantics of the source choreography.

Given a Backend deployment D, a parallel composition of endpoint choreographies C, and
a typing environment Γ , we write D,C Γ to indicate the compilation of D,C under Γ into
DCC.

To formally define D,C Γ, we use some auxiliary functions:

— C|l returns the endpoint choreography in C correspondent to the service process accept-
ing requests at location l (e.g., C|l = acc k : l.p[A];C ′′);

— C|p returns the endpoint choreography in C correspondent to process p;
— C Γ, given a single endpoint choreography C and a typing environment Γ , compiles C to

DCC, using the rules in Fig. 22;
— l ∈ Γ , a predicate satisfied if, according to Γ , location l contains or can spawn processes;
— D|l returns the partial function of type T ⇀ Seq(O×T) that corresponds to the projection

of function gm in D with location l fixed. Formally, for each t such that D(l : t) = m̃,
D|l (t) = m̃.

Definition 6.7 (Compilation). Let D be a Backend deployment, C a parallel compo-
sition of endpoint choreographies, and given the typing environment Γ

D,C Γ =
∏
l ∈ Γ

〈
C|l

Γ,
∏

p ∈ D(l)
C|p

Γ.D(p) , D|l

〉
l

Intuitively, for each service 〈Bs,P,M〉l in the compiled network: i) the start behaviour Bs
is the compilation of the endpoint choreography in C accepting the creation of processes at
location l; ii) P is the parallel composition of the compilation of all active processes located
at l, equipped with their respective states according to D; iii) M is the set of queues in D
corresponding to location l.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:37

Let p@l ′ ∈ Γ , req k : p[A] <=>
︷ ︸
l.B;C Γ = start(k, l ′.A,

︷ ︸
l.B); C Γ

start(k, lA.A,
︷ ︸
lB.B) = �

I∈{A,B̃}

k.I.l = lI ;

︸ ︷︷ ︸
s1

�
I∈{B̃}

 ν〉k.I.A ;
?@k.I.l(k) ;
sync(k) from k.I.A

 ;

︸ ︷︷ ︸
s2

�
I∈{B̃}

start@k.I.l(k) to k.A.I

︸ ︷︷ ︸
s3

Let l ∈ l̃, l̃ ∈ Γ , acc k : l.q[B];C Γ = accept(k, B, Γ (̃l)); C Γ ,

accept(k, B,G〈A|C̃|D̃〉) = !(k) ;

︸ ︷︷ ︸
a1

�
I∈{A,C̃}\{B}

(
ν〉k.I.B

)
;

︸ ︷︷ ︸
a2

sync@k.A.l(k) to k.B.A;

︸ ︷︷ ︸
a3

start(k) from k.A.B

︸ ︷︷ ︸
a4

k : p[A].e—> B.o;C Γ = o@k.B.l(e) to k.A.B; C Γ

k : A —> q[B].{oi(xi);Ci}i∈I Γ =
∑
i∈I

[oi(xi) from k.A.B]
{
Ci Γ
}

if p.e {C1} else {C2}
Γ = if e {C1

Γ } else {C2
Γ }

def X = C ′ in C Γ = def X = C ′ Γ in C Γ

X Γ = X

0 Γ = 0

Fig. 22. Compiler from Endpoint Choreographies to DCC.

We comment the rules in Fig. 22, where the notation � is the sequence of behaviours
�i∈[1,n](Bi) = B1; . . . ;Bn.

Requests. Function start defines the compilation of (req) terms. Function start compiles
(req) terms to create the queues and a part of the session descriptor for the starter (this
is similar to what Rule bD|Supe does in Backend deployment effects, § 4). Given a session
identifier k, the located role of the starter (lA.A), and the other located roles in the session
(
︷ ︸
lB.B), start returns the DCC code that:

s1 includes in the session descriptor all the locations of the processes involved in the session;
s2 for each role, except for the starter,

— creates the key and the correlated queue that the current role will use in the session
to communicate with the starter;

— requests the creation of the service process that will play the current role in the
session;

— waits on the reserved operation sync to receive the correlation data for the session
defined by the newly created process.

s3 sends to the newly created processes the complete session descriptor obtained after the
reception (in the sync step) of all correlation keys.

Accepts. (acc) terms define the start behaviour of a spawned process at a location. Given
a session identifier k, the role B of the service process, and the service typing G〈A|C̃|D̃〉 of
the location, function accept compiles the code that: (a1) accepts the request to spawn a
process, (a2) creates its queues and keys, updates the session descriptor received from the
starter, and sends it back to the latter (a3). Finally with (a4) the new process waits to start
the session.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:38 Giallorenzo et al.

Other terms. An Backend (send) term compiles to a DCC (output) term. Notably, the
compiled code contains the same elements used by the semantics of BC to implement cor-
relation, i.e., the location of the receiver (k.B.l) and the key that correlates with its queue
(k.A.B). Similarly, (recv) compiles to (choice), which defines the path (k.A.B) of the key
correlating with the receiving queue.

Example 6.8. As an example of compilation, we compile the first two Lines of the chore-
ography C in Example 1.1, considering a deployment D and a typing environment Γ .

D, JCK Γ= 〈0,Pc〉lC | 〈BS, 0〉lS | 〈BB, 0〉lB
where

Pc =

k.S.l = lS; k.B.l = lB; ν〉k.S.C; ?@k.S.l(k); sync(k) from k.S.C;
ν〉k.B.C; ?@k.B.l(k); sync(k) from k.B.C; start@k.S.l(k) to k.C.S;
start@k.B.l(k) to k.C.B; /* end of start-request */
buy@k.S.l(product) to k.C.S; . . .

and

BS =

{
!(k); ν〉k.C.S; ν〉k.B.S; sync@k.C.l(k) to k.S.C;
start(k) from k.C.S; /* end of accept */ buy(x) from k.C.S; . . .

We omit to report BB, which is similar to BS.

6.4. Properties of Applied Choreographies
We conclude this section by presenting our main result, i.e., a compiler from Frontend
Choreographies to DCC network and its properties.

In our definition, we use the term projectable to indicate that, given a choreography C,
we can obtain its projection JCK. Formally

Definition 6.9 (Projectable Choreography). Let C be a choreography, we call C
projectable if there is a choreography C such that C ′ = JCK.

Theorem 6.10 defines our result, for which, given a well-typed, projectable Frontend
Choreography, we can obtain its correct implementation as a DCC network. Such result is
obtained by merging the properties of steps A©, B©, and C©.

Theorem 6.10 (Applied Choreographies).
Let D,C be a Frontend Choreography where C is projectable and Γ ` D,C for some Γ . Then:

(1) (Completeness) D,C→ D ′,C ′ implies

〈〈D〉〉Γ , JCK Γ→+ 〈〈D ′〉〉Γ ′ ,C ′′ Γ
′

and JC ′K ≺ C ′′ and for some Γ ′, Γ ′ ` D ′,C ′

(2) (Soundness) 〈〈D〉〉Γ , JCK Γ→∗ S implies

D,C→∗ D ′,C ′ and S→∗ 〈〈D ′〉〉Γ ′ ,C ′′ Γ
′

and JC ′K ≺ C ′′ and for some Γ ′, Γ ′ ` D ′,C ′

We report in § B.7 the proof of Theorem 6.10.
By Theorem 3.10 and Theorem 6.10, deadlock-freedom is preserved from well-typed chore-

ographies to their final translation in DCC. We say that a network S in DCC is deadlock-free
if it is either a composition of services with terminated running processes or it can reduce.

Corollary 6.11. Γ ` D,C and co(Γ) imply that D, JCK Γ is deadlock-free.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:39

7. RELATED WORK AND DISCUSSION
This is the first work that formalises how we can use choreographies in the setting of a
practical communication mechanism used in Service-Oriented Computing (SOC), i.e., mes-
sage correlation. Previous formal choreography languages specify only an EPP procedure
towards a calculus based on name synchronisation, leaving the design of its concrete support
to implementors. Chor [23] and AIOCJ [24] are the respective implementations of the mod-
els found in [14] and [26]. However, the implementations of their EPP depart significantly
from their respective formalisations, since they are based on message correlation instead of
name synchronisation. This means that there is no proof that the implementation strategies
followed in these languages correctly supports synchronisation on names. Implementations
of other frameworks based on sessions share similar issues [28; 44; 25]. Our work gives the
first correctness result for the compilation of choreographies to real-world language, thus
providing a useful reference to formalise the implementation of session-based languages in
general. In the future, this line of work may pave the way to establishing certified choreog-
raphy compilation.

We believe that our approach can be easily applied to many models that use choreogra-
phies and sessions (or channel-based communications), including those designed around
(variants of) the π-calculus [13; 14; 16; 15] and those based on linear logic [20; 45].

Our development shows that it is possible to keep a simple language model as frontend,
allowing developers to abstract from how sessions are concretely implemented. Neverthe-
less, our Frontend Calculus is expressive, as illustrated by our examples, and recent studies
have shown that choreography languages such as this are Turing complete [46]. There are
many works that investigate how to introduce different features to choreographies, which
we have not studied here and leave to future work. Examples include nested protocols [47],
asynchronous two-way exchanges [20], and general recursion [48]. These features are orthog-
onal to our development, so their inclusion should be straightforward. A more interesting
feature to add may be session delegation for choreographies [14; 15]. Delegation allows to
transfer the responsibility to continue a session from a process to another. Introducing del-
egation in FC is straightforward, since we can just import the development from [14; 16].
Implementing it in BC and DCC would be more involved, but not difficult: delegating a
role in a session translates to moving the content of a queue from a process to another, and
ensuring that future messages reach the new process. The mechanisms to achieve the latter
part have been investigated in [28], which use retransmission protocols. Formalising these
“middleware” protocols and proving that they preserve the intended semantics of FC could
be an interesting future work.

In the semantics of BC, we abstract from how correlation keys are generated. With this
loose definition we capture several implementations, provided they satisfy the requirement
of uniqueness of keys (wrt to locations). As future work, we plan to implement a language,
based on our framework, able to support custom procedures for the generation of correlation
keys (e.g., from database queries, cookies, etc.).

8. CONCLUSIONS
In this paper, we presented i) our model of Applied Choreographies (AC), ii) a type system
to check AC against multiparty protocol specifications, and iii) a formally-correct compiler
to obtain executable code from choreographies. The main novelty of AC regards its original
semantics that abstracts the features of choreographies (message passing, creation of new
sessions and processes) from their implementation (and the related complexity). To this end
we i) equip choreographies with a global deployment and ii) define a separate semantics of
effects on deployments. This separation allows us to compose our semantics of choreogra-
phies with other definitions of deployment and effects in order to model different communi-
cation semantics (e.g., synchronous, asynchronous with buffers) and implementations (e.g.,

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:40 Giallorenzo et al.

distributed objects [49]). The notion of deployments let us formalise how choreographies can
go wrong (see § 3.3) and show that the theory of session types is useful not only to type com-
munications on choreographies ([14; 16]) but also to check the correctness of deployments.
It is worth noting that, except for the declaration of locations, AC has the same types and
syntax from previous works [14; 16], hence developers have only to specify protocols and
choreographies and do not need to deal with deployment information or correlation data.

We have already mentioned some short term future work in the previous section. More
long term projects include the investigation of compilation of Applied Choreographies to
other target languages of more general use, which go beyond service oriented programming,
notably Erlang and Scala+Akka. Clearly this would be a major development, since the
actor-based concurrency and message passing of these languages are substantially different
from that one of Dynamic Correlation Calculus that we have considered in this paper.
Nevertheless we believe that Another ambitious goal is the application of our research to
the Internet of Things (IoT) setting. IoT promotes the communication among heterogeneous
entities – which use a wide range of communication media and data protocols – whose
integration result in a cumbersome low level programming activity. To achieve a higher
degree of interoperability [50] proposes the use of high level languages for communication
technology integration in IoT. In particular, an extension of Jolie is introduced [50] which
natively integrates the two most adopted protocols for IoT communication (CoAP and
MQTT). We plan to take this approach further by developing a suitable version of Applied
Choreographies, specifically designed for IoT applications, which can then be compiled to
the Jolie extension mentioned above This would allow one to import in the IoT field the
correct-by.construction approach, with the formal correctness of compilation that we have
developed in this paper.

REFERENCES
[1] G. F. Coulouris and J. Dollimore, Distributed Systems: Concepts and Design. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 1988.
[2] E. G. Coffman, M. Elphick, and A. Shoshani, “System deadlocks,” ACM Comput. Surv., vol. 3, pp. 67–78,

June 1971.
[3] R. H. B. Netzer and B. P. Miller, “What are race conditions?: Some issues and formalizations,” ACM

Lett. Program. Lang. Syst., vol. 1, pp. 74–88, Mar. 1992.
[4] R. M. Needham and M. D. Schroeder, “Using encryption for authentication in large networks of com-

puters,” Communications of the ACM, vol. 21, no. 12, pp. 993–999, 1978.
[5] International Telecommunication Union, “Recommendation Z.120: Message sequence chart,” 1996.
[6] OMG, “Unified modelling language, version 2.0,” 2004.
[7] L. Cruz-Filipe, K. S. Larsen, and F. Montesi, “The paths to choreography extraction,” in FoSSaCS,

vol. 10203 of Lecture Notes in Computer Science, pp. 424–440, 2017.
[8] W3C WS-CDL Working Group, “WS-CDL version 1.0,” 2004. http://www.w3.org/TR/2004/

WD-ws-cdl-10-20040427/.
[9] M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, and L. Padovani, “Global progress for dynamically inter-

leaved multiparty sessions,” MSCS, vol. 760, pp. 1–65, 2015.
[10] OMG, “Business Process Model and Notation.” http://www.omg.org/spec/BPMN/2.0/, 2011.
[11] Savara, “JBoss Community,” 2017. http://www.jboss.org/savara/.
[12] F. Montesi, Choreographic Programming. Ph.D. thesis, IT University of Copenhagen, 2013. http://www.

fabriziomontesi.com/files/choreographic_programming.pdf.
[13] M. Carbone, K. Honda, and N. Yoshida, “Structured communication-centered programming for web

services,” ACM Trans. Program. Lang. Syst., vol. 34, no. 2, p. 8, 2012.
[14] M. Carbone and F. Montesi, “Deadlock-freedom-by-design: multiparty asynchronous global program-

ming,” in POPL, pp. 263–274, 2013.
[15] K. Honda, N. Yoshida, and M. Carbone, “Multiparty asynchronous session types,” J. ACM, vol. 63,

no. 1, p. 9, 2016.
[16] F. Montesi and N. Yoshida, “Compositional choreographies,” in CONCUR, pp. 425–439, 2013.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
http://www.omg.org/spec/BPMN/2.0/
http://www.jboss.org/savara/
http://www.fabriziomontesi.com/files/choreographic_programming.pdf
http://www.fabriziomontesi.com/files/choreographic_programming.pdf

Applied Choreographies 0:41

[17] N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and L. Safina,
“Microservices: yesterday, today, and tomorrow,” in Present And Ulterior Software Engineering
(PAUSE), Springer-Verlag, 2017. To appear. Available at https://arxiv.org/abs/1606.04036.

[18] Z. Qiu, X. Zhao, C. Cai, and H. Yang, “Towards the theoretical foundation of choreography,” in WWW,
pp. 973–982, IEEE Computer Society Press, 2007.

[19] I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro, “Bridging the gap between interaction- and process-
oriented choreographies,” in SEFM, pp. 323–332, IEEE, 2008.

[20] M. Carbone, F. Montesi, and C. Schürmann, “Choreographies, logically,” Distributed Computing, pp. 1–
17, 2017. Also: CONCUR, pages 47–62, 2014.

[21] R. Milner, A Calculus of Communicating Systems, vol. 92 of LNCS. Springer, 1980.
[22] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes, I and II,” Information and

Computation, vol. 100, pp. 1–40,41–77, Sept. 1992.
[23] Chor Team, “Chor Programming Language,” 2016. http://www.chor-lang.org/.
[24] AIOCJ Team, “AIOCJ framework,” 2016. http://www.cs.unibo.it/projects/jolie/aiocj.html.
[25] R. Neykova and N. Yoshida, “Multiparty session actors,” in COORDINATION, pp. 131–146, 2014.
[26] M. Dalla Preda, M. Gabbrielli, S. Giallorenzo, I. Lanese, and J. Mauro, “Dynamic choreographies,” in

COORDINATION, pp. 67–82, Springer, 2015.
[27] S. Carpineti, C. Laneve, and P. Milazzo, “Bopi - A distributed machine for experimenting web services

technologies,” in ACSD, pp. 202–211, 2005.
[28] R. Hu, N. Yoshida, and K. Honda, “Session-based distributed programming in java,” in ECOOP, pp. 516–

541, 2008.
[29] M. Dalla Preda, S. Giallorenzo, I. Lanese, J. Mauro, and M. Gabbrielli, “AIOCJ: A choreographic

framework for safe adaptive distributed applications,” in SLE, pp. 161–170, 2014.
[30] OASIS, “WS-BPEL.” http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.
[31] F. Montesi and M. Carbone, “Programming services with correlation sets,” in ICSOC, pp. 125–141, 2011.
[32] B. C. Pierce, Types and Programming Languages. MA, USA: MIT Press, 2002.
[33] H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P. Deniélou, D. Mostrous, L. Padovani,

A. Ravara, E. Tuosto, H. T. Vieira, and G. Zavattaro, “Foundations of session types and behavioural
contracts,” ACM Comput. Surv., vol. 49, no. 1, pp. 3:1–3:36, 2016.

[34] D. Sangiorgi and D. Walker, The π-calculus: a Theory of Mobile Processes. Cambridge University Press,
2001.

[35] K. Honda, N. Yoshida, and M. Carbone, “Multiparty asynchronous session types,” in Proc. of POPL,
vol. 43(1), pp. 273–284, ACM, 2008.

[36] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “Choreography and orchestration confor-
mance for system design,” in COORDINATION, pp. 63–81, Springer, 2006.

[37] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, “Extensible markup language
(xml),” W3C Recommendation REC-xml-19980210, vol. 16, 1998.

[38] T. Bray, “The javascript object notation (json) data interchange format,” 2014.
[39] F. Montesi, C. Guidi, and G. Zavattaro, “Service-oriented programming with Jolie,” in Web Services

Foundations, pp. 81–107, 2014.
[40] G. A. Agha, “Actors: A model of concurrent computation in distributed systems.,” tech. rep., MAS-

SACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB, 1985.
[41] P. Haller and M. Odersky, “Actors that unify threads and events,” in Coordination Models and Languages,

pp. 171–190, Springer, 2007.
[42] S. Vinoski, “Advanced message queuing protocol,” IEEE Internet Computing, vol. 10, no. 6, 2006.
[43] A. Videla and J. J. Williams, RabbitMQ in action: distributed messaging for everyone. Manning, 2012.
[44] R. Hu, R. Neykova, N. Yoshida, R. Demangeon, and K. Honda, “Practical interruptible conversations,”

in RV, pp. 130–148, 2013.
[45] M. Carbone, F. Montesi, C. Schürmann, and N. Yoshida, “Multiparty session types as coherence proofs,”

Acta Inf., vol. 54, no. 3, pp. 243–269, 2017.
[46] L. Cruz-Filipe and F. Montesi, “A core model for choreographic programming,” in FACS, vol. 10231 of

Lecture Notes in Computer Science, pp. 17–35, 2016.
[47] R. Demangeon and K. Honda, “Nested protocols in session types,” in CONCUR, pp. 272–286, 2012.
[48] L. Cruz-Filipe and F. Montesi, “Procedural choreographic programming,” in FORTE, vol. 10321 of

Lecture Notes in Computer Science, pp. 92–107, Springer, 2017.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

https://arxiv.org/abs/1606.04036
http://www.chor-lang.org/
http://www.cs.unibo.it/projects/jolie/aiocj.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

0:42 Giallorenzo et al.

[49] R. S. Chin and S. T. Chanson, “Distributed object-based programming systems,” ACM Comput. Surv.,
vol. 23, no. 1, pp. 91–124, 1991.

[50] M. Gabbrielli, S. Giallorenzo, I. Lanese, and S. P. Zingaro, “A language-based approach for interoper-
ability of iot platforms,” in 51st Hawaii International Conference on System Sciences, HICSS 2018,
Hilton Waikoloa Village, Hawaii, USA, January 4-7, 2018, 2018. To appear.

[51] S. Gay and M. Hole, “Subtyping for session types in the pi calculus,” Acta Informatica, vol. 42, pp. 191–
225, Nov. 2005.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:43

A. ADDITIONAL MATERIAL
In this section, we provide full definitions of formalisations omitted in the main part of the
paper.

A.1. Typing

Definition A.1 (List Subset). Let ε be the empty list and Ñ, M̃ be two lists of ele-
ments n of the kind Ñ ::= ε | n, Ñ ′, the predicate Ñ ⊆ M̃ holds if Ñ = M̃ = ε or, assuming
Ñ = n, Ñ ′ and M̃ = m, M̃ ′ either n = m and Ñ ′ ⊆ M̃ ′ or Ñ ⊆ M̃ ′.

Definition A.2 (Ordered Join Operator). Let Ñ, L̃, and M̃ be three lists of ele-
ments as defined in Definition A.1, the ordered-join operator Ñ ./L̃ Ñ is defined as

Ñ ./ε M̃ = ε

Ñ ./l,L̃ M̃ =

Ñ ./L̃ M̃ if l 6∈ Ñ ∪ M̃
l, Ñ ′ ./L̃ M̃ if Ñ = l, Ñ ′

l, Ñ ./L̃ M̃
′ if M̃ = l, M̃ ′

A.2. Compiling Frontend Choreographies into DCC Processes

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:44 Giallorenzo et al.

acc k : l.p[A];C1 t
acc k : l.q[A];C2

= acc k : l.p[A]; (C1 t C2)

req k : p[A] <=>
︷ ︸
l.B;C1 t

req k : q[A] <=>
︷ ︸
l.B;C2

= req k : p[A] <=>
︷ ︸
l.B; (C1 t C2)

k : p[A].e—> B.o;C1 t
k : q[A].e—> B.o;C2

= k : p[A].e—> B.o; (C1 t C2)

k : A —> p[B].{ oi(xi);Ci }i∈I t
k : A —> q[B].{ oj(xj);C

′
j }j∈J

= k : A —> p[B].

{ oi(xi);Ci }i∈I\J

∪ { oi(xi);C
′
i }i∈J\I

∪ { oi(xi);Ci t C ′i }i∈I∩J

if p.e {C1} else {C ′1} t
if q.e {C2} else {C ′2}

= if p.e {C1 t C2} else {C ′1 t C ′2}

def X = C ′1 in C1 t
def Y = C ′2 in C2

= def X = C ′1 t C ′2 in C1 t C2

X t Y = X

0 t 0 = 0

Fig. 23. Merging Function

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:45

⌊
start k : p[D] <=>

︷ ︸
l.q[B];C

⌋
l

=
⌊
acc k :

︷ ︸
l.q[B];C

⌋
l⌊

acc k :
︷ ︸
l.q[B];C

⌋
l

=

{
{r} ∪ bCcl if l.r[A] ∈ {

︷ ︸
l.q[B] }

bCcl otherwise

bη;Ccl = bCcl if η 6= (start)

bif p.e {C1} else {C2}cl = bC1cl ∪ bC2cl
bdef X = C ′ in Ccl = bC ′cl ∪ bCcl
bXcl = ∅

b0cl = ∅

bC1 | C2cl = bC1cl ∪ bC2cl
Fig. 24. Service Grouping

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:46 Giallorenzo et al.

B. PROOFS
B.1. Proofs of Subject Reduction and Session Fidelity
In order to prove Subject Reduction (Theorem 3.6), we prove the stronger result of Typing
Soundness, defined in Theorem B.10. We use Theorem B.10 to also prove Session Fidelity
(Theorem 3.8).

In order to define and prove Theorem B.10, we provide additional definitions and lemmas,
in particular:

— we define an annotated semantics for FC (§ B.1.1) to track reductions on sessions;
— we define subtyping (§ B.1.2) for local types and for typing environments. On these

definitions we prove lemmas used to relate evolutions of the typing environment wrt
reductions in choreographies;

— we define an annotated semantics for global types (§ B.1.3) and prove Lemma B.7, guar-
anteeing that global types and local types in the typing environment evolve accordingly.

Finally, we proceed to prove Typing Soundness (§ B.1.5) and consequently Subject Re-
duction and Session Fidelity.

B.1.1. FC Annotated Semantics. We define the semantics of annotated FCs by marking tran-
sitions with the name of the session whose term has reduced. We annotate other reductions
as τ. We range over annotated labels with

β ::= k : A —> B.o | k : A〉B.o(x) | τ

We report the annotated semantics of FC in Fig. 25. Intuitively, we mark reductions
over a session k with k : A —> B.o for message sends (bC|Sende and bC|Come) and k : A〉B.o(x) for
receptions (bC|Recve).

B.1.2. Local Types and Typing Environment Subtyping. We define a subtyping relation on local
types following [51; 13; 16]. We write the subtyping relation as T ′ ≺ T , which intuitively
indicates that T ′ is more constrained than T in its behaviour. Note that, like in [13; 16], the
input type is covariant and the output type is contravariant for this relation.

Definition B.1 (Local Subtyping). We define the subtyping relation between local
types as T ′ ≺ T , which is the smallest relation over closed local types, satisfying the rules

T ′′ ≺ T ′ T ≈ T ′′
T ≺ T ′

bSubT|Eqe
J ⊆ I ∀ i ∈ J | Ti ≺ T ′i ∧ Ui ≺ U ′i
!A.{oi(Ui); Ti}i∈I ≺ !A.{oi(U

′
i); T

′
i }i∈J

bSubT|Sende

I ⊆ J ∀ i ∈ I | Ti ≺ T ′i ∧ Ui ≺ U ′i
?A.{oi(Ui); Ti}i∈I ≺ ?A.{oi(U

′
i); T

′
i }i∈J

bSubT|Recve
U ≺ U bSubT|Vale

end ≈ T
end ≺ T b

SubT|Ende

In Rule bSubT|Eqe, T ≺ T ′ if there exists a local type T ′′, subtype of T ′, such that T ≈ T ′′,
i.e., T ′′ approximates T , ≈ being the standard tree isomorphism on recursive types.

Although not directly relevant in the current proof, we also define the subtyping for
global types G ≺ G ′, which intuitively follows that of local ones. Subtyping for global
types is used in the definition of Environment subtyping. The relation between subtyping
of Environments and of global types (in service typings) will become relevant when proving
properties of our Endpoint Projection (see § B.3). Our definition of subtyping for global
types follows [16].

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:47

D#k ′, r̃ δ = start k ′ : p[A] <=>
︷ ︸
l.q[B] D, δ I D ′

D, start k : p[A] <=>
︷ ︸
l.q[B];C

τ
−→ D ′, C[k ′/k][̃r/q̃]

bC|Starte

η = k : p[A].e—> B.o D,η I D ′

D, η;C
k: A —> B.o
−−−−−−−→ D ′, C

bC|Sende

j ∈ I D,k : A —> q[B].oj(xj) I D ′

D, k : A —> q[B].{oi(xi);Ci}i∈I
k:A〉B.oj(xj)
−−−−−−−−→ D ′, Cj

bC|Recve

i = 1 if eval(e,D(p)) = true, i = 2 otherwise

D, if p.e {C1} else {C2}
τ
−→ D, Ci

bC|Conde

D,C1

β
−→ D′,C′1

D, def X = C2 in C1

β
−→ D′, def X = C2 in C′1

bC|Ctxe

R ∈ {≡ , 'C } CRC1 D,C1

β
−→ D′,C ′1 C1 RC

′

D,C
β
−→ D′,C ′

bC|Eqe

D,C1

β
−→ D ′,C ′1

D,C1 | C2

β
−→ D ′,C ′1 | C2

bC|Pare

i ∈ {1, . . . ,n} D#k ′, r̃ {
︷ ︸
l.B} =

⊎
i{
︷ ︸
li.Bi} {̃r} =

⋃
i {̃ri}

p ∈ D(l) δ = start k ′ : p[A] <=>
︷ ︸
l1.r1[B1], . . . ,

︷ ︸
ln.rn[Bn] D, δ I D ′

D, req k : p[A] <=>
︷ ︸
l.B;C |

∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

) τ
−→

D ′, C[k ′/k] |
∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

) bC|PStarte

Fig. 25. Fronted Choreographies, annotated semantics.

Definition B.2 (Global Subtyping). G ≺ G ′ is the smallest relation over closed
global types satisfying the rules below

I ⊆ J ∀ i ∈ I, Gi ≺ G ′i ∧Ui ≺ U ′i
A —> B.{oi(Ui);Gi}i∈I ≺ A —> B.{oj(U

′
j);G

′
j}j∈J

bSubG|Come

U ≺ U ′ G ≺ G ′
A〉B.o(U);G ≺ A〉B.o(U ′);G ′

bSubG|Recve

G ′′ ≺ G ′ (G ′′ ≈ G ∨ G ′′ 'G G)

G ≺ G ′
bSubG|Eqe end ≈ G

end ≺ G bSubG|Ende

Finally, we define a subtyping relation between Typing Environments. Intuitively Γ ≺ Γ ′
means that Γ ′ and Γ are identical Typing Environments up to a) some local and global
types that are more constrained in Γ — i.e., subtypes of a correspondent global/local type
— than in Γ ′ and b) some service typings not present in Γ .

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:48 Giallorenzo et al.

Definition B.3 (Typing Environment Subtyping). Let Γ and Γ ′ be two typing en-
vironments, where Γ ′ = Γ ′′, Γl , for which dom(Γ) = dom(Γ ′′) and Γl contains only service
typings. Then, Γ ≺ Γ ′ if and only if

(i) ∀ p.x : U ∈ Γ , Γ ′ ` p.x : U
(ii) ∀ X : Γx ∈ Γ , Γ ′ ` X : Γx
(iii) ∀ p : k[A] ∈ Γ , Γ ′ ` p : k[A]
(iv) ∀ p@l ∈ Γ , Γ ′ ` p@l
(v) ∀ k[A〉B] : T ∈ Γ , Γ ′ ` k[A〉B] : T
(vi) ∀ k[A] : T ∈ Γ , Γ ′ ` k[A] : T ′ and T ≺ T ′
(vii) ∀ l̃ : G〈A|B̃|C̃〉 ∈ Γ , Γ ′ ` l̃ : G ′〈A|B̃|C̃〉 and G ≺ G ′

Commenting the definition, the subtyping relation for typing environments states that
an environment Γ is a subtype of an environment Γ ′ if

— they type the same variables (i), procedure definitions (ii), role ownerships (iii), process
locations (iv), and buffers (v) and they agree on their judgements;

— they type the same local sessions (vi) and the local type in Γ is a subtype of the local
type in Γ ′;

— if they type the same service (vii) (note that Γ ′ is allowed to have additional service
typings wrt Γ) and the global type in Γ is a subtype of the global type in Γ ′.

In Lemma B.4 we prove that if Γ ≺ Γ ′ and Γ types a running choreography D,C also Γ ′
types that choreography.

Lemma B.4 (Subsumption). Let Γ ≺ Γ ′ and Γ ` D,C for some D,C then Γ ′ ` D,C.

Proof. The proof is immediate by Definition B.1 and Rules bT|Recve, bT|Sende, and bT|Come.
Intuitively, the lemma holds since the local typings in Γ ′ allow for additional, unused actions
in D,C.

We also prove Lemma B.5 which guarantees that the typing of choreographies (C) is
invariant wrt buffer types.

Lemma B.5 (Buffer types invariance). Let Γ = Γ ′, Γb where Γb contains only buffer
typings. If Γ ′ ` C then Γ ` C.

Proof. Trivial from the definition of Rule bT|DCe and Γ ` C for which buffer typings affect
only predicate pco and the typing of deployments.

B.1.3. Reductions for Global Types. We annotate the reductions of global types with labels

γ ::= A —> B.o | A〉B.o
and report below the correspondent annotated semantics.

o ∈ ⋃i{oi} G ′ = A〉B
o↓G

⊕AB.{oi(Ui)};G
A —> B.o
−−−−−→ G ′

bG|Sende

A〉B.o(U);G
A〉B.o
−−−→ G

bG|Recve

R ∈ {≡G,'G} G R G1 G1

γ
−→ G ′1 G ′1 R G ′

G
γ
−→ G ′

bG|Eqe

In Lemma B.6 we account for the fact that any output reduction at the level of global types
can constrain the projected local types of the roles not involved in the reduction. Indeed,
referring to Rule bG|Sende, the output operation chooses one of the available continuations G ′

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:49

and discards all the others. Therefore the local types of the other roles not involved in the
reduction can be constrained by the removal of the unused branches.

Lemma B.6 (Projection Subtyping). Let T = JGKC, T
′ = JG ′KC, and {A, B, C} ⊆

roles(G), C 6∈ {A, B}, then G
A—> B.o
−−−−−−→ G ′ implies T ′ ≺ T .

Proof. Easy by induction on the derivation of G
γ
−→ G ′.

B.1.4. Typing Environment Reductions. We define a reduction relation for typing environ-
ments. To do so, we first formalise the writing k 6∈ Γ , which means that Γ has no local
typing and buffer types for session k, formally, for some local types T and T ′

k 6∈ Γ ⇐⇒ @ A, B s.t. k[A] : T ∈ Γ ∨ k[A〉B] : T ′ ∈ Γ
Finally, we formalise the reduction relation for typing environments of the form Γ → Γ ′,

→ being the smallest closed under the rules below. Note that the annotation labels are a
subset of the labels used to annotate the semantics of FC, ranged over by β.

k 6∈ Γ Γk ⊆ JGKk {k[A] : T ,k[B] : T ′} ∈ Γk j ∈ I G
A —> B.oj
−−−−−−→ G ′

Γ , Γk
k: A —> B.oj
−−−−−−−−→ Γ , {k[C] : JG ′KC | k[C] ∈ Γk}, {k[C〉D] : JG ′KDC | k[C〉D] ∈ Γk}

bΓ|Sende

k 6∈ Γ Γk ⊆ JGKk {k[A] : T ,k[B] : T ′} ∈ Γk Γ ` q : k[B] G
A〉B.oj
−−−−→ G ′

Γ , Γk
k:A〉B.oj(x)
−−−−−−−→ Γ , {k[C] : JG ′KC | k[C] ∈ Γk}, {k[C〉D] : JG ′KDC | k[C〉D] ∈ Γk}, q.x : Uj

bΓ|Recve

With slight abuse of notation, we also write βk to mark reductions of Γ on session k, i.e.,
βk ∈ {k : A —> B.o, k : A〉B.o(x)}.

We define the correspondence operator Gact(β) between β and γ labels:

Gact(βk) =

{
A —> B.o if βk = k : A —> B.o

A〉B.o if βk = k : A〉B.o(x).
In Lemma B.7 we prove that if a typing environment Γ includes local types that are

projection of a global type G, then if the global type can reduce, also the typing environment
can reduce. The reduction preserves the correspondence between the reduced global type
and the reduced local types in Γ .

Lemma B.7 (Type-Environment Fidelity). Let Γ = Γ∗, JGKk for some Γ∗, k 6∈ Γ∗,
and G

Gact(βk)−−−−−−→ G ′ then Γ
βk−−→ Γ ′ and for some Γ ′∗, k 6∈ Γ ′∗, Γ ′ = Γ ′∗, JG ′Kk.

Proof. Direct by cases on the derivation of Γ .

B.1.5. Proof of Typing Soundness. We also report Lemmas B.8 and B.9 that prove that typing
is invariant wrt structural equivalence and swapping.

Lemma B.8 (Subject Congruence). Γ ` D,C and C ≡C C
′ imply Γ ` D,C ′ (up to

α-renaming)

Proof. By induction on the rules that define ≡C.

Lemma B.9 (Subject Swap). Γ ` D,C and C 'C C
′ imply Γ ` D,C ′

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:50 Giallorenzo et al.

Proof. By induction on the derivation of C 'C C
′.

Below we restate the definition of Deployment Judgements enriched with pointers of the
kind (DX.Y) for a clearer referencing in the proofs.

Definition 3.2 (Deployment Judgements)
Γ ` D ⇐⇒

(D|3.2.1) ∀ p.x ∈ Γ ,D(p).x : U
(D|3.2.2) ∀ k[A〉B] : T ∈ Γ ∧D(k[A〉B]) = m̃, bte(A, m̃) = T

Finally, we prove Theorem 3.6 by proving the stronger result Theorem B.10.
In the proof, we use the context over global types G[·], defined as

G[·] ::= A —> B.{oi(Ui);G[·]}i
| ⊕AB.{oi(Ui)};G[·]
| &AB.{oi(Ui);G[·]}i∈I
| A〉B.o(U);G[·]

We can now proceed to define and prove Theorem B.10.

Theorem B.10 (Typing Soundness). Let D,C be an annotated FC and (T|B.10.1)
Γ ` D,C for some Γ :

. if (T|B.10.2) β 6= τ and D,C
β
−→ D ′,C ′ then (T|B.10.3) Γ

β
−→ Γ ′ and (T|B.10.4) Γ ′ `

D ′,C ′;
. if (T|B.10.5) D,C

τ
−→ D ′,C ′ then, for some Γ ′, (T|B.10.6) Γ ′ ` D ′,C ′.

Proof. Proof by induction on the derivation of D,C
β
−→ D ′,C ′.

Case bC|Sende

The case is:
η = k : p[A].e—> B.oj D,η I D ′

D, η;C
k: A —> B.oj
−−−−−−−−→ D ′, C

bC|Sende

Where (T|B.10.2) has the reductum C ′ = C and, let v = eval(e,D(p)) and m̃ =
D(k[A〉B]), D ′ = D

[
k[A〉B] 7→ m̃ :: (oj, v)

]
by Rule bD|Sende.

To prove (T|B.10.3) we must prove Rule bΓ|Sende to be applicable.
From (T|B.10.1) we know that there exists a global type G for session k such that pco(Γ)
holds. We can partition Γ = Γ∗, Γk such that Γ∗ = Γ \ JGKk and Γk = Γ \ Γ∗.
From (T|B.10.1) we can write the derivation (with Γ = Γ1,k[A] : ⊕ B.{oi(Ui); JGiKA}i∈I)

pco(Γ) Γ ` D
j ∈ I Γ1 ` p : k[A] Γ1 ` p.e : Uj Γ1,k[A] : JGjKA ` C
Γ1,k[A] : ⊕ B.{oi(Ui); JGiKA}i∈I ` k : p[A].e—> B.oj;C

bT|Sende

Γ ` D,k : p[A].e—> B.oj;C
bT|DCe

Since Γ ` k[A] : ⊕ B.{oi(Ui); Ti}i∈I, we can write G = G[A —> B.oi(Ui);Gi] where ∀ i ∈ I,
JGiKA = Ti. Let π be the reduction of G with rules bG|Eqe and bG|Sende, we observe the following
derivation:

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:51

π =

G ≡G G1

G1 'G G2

oi ∈Ui{oi} G′ = ∆

G2

γ

−→ G′
bG|Sende
G′ 'G G

′
....

⌊
G|Eq

⌉
G1

γ

−→ G′ G ≡G G
′

G
γ

−→ G′

⌊
G|Eq

⌉

∆ = A〉B
oi
↓G[&AB.{oi(Ui};Gi]

G2 = ⊕AB.{oi(Ui)};G[&AB.{oi(Ui};Gi]
G1 = G[⊕AB.{oi(Ui};&AB.{oi(Ui};Gi]

G′ = G[A〉B.oj;Gj]
γ = A —> B.oj

In the reductions, since C,D reduces with β = k :A —> B.oj and G types C,D in Γ , there
are no other exchanges from A to B in G that could prevent from obtaining, after a finite
number of derivations on Rule bG|Eqe, the swap-equivalence G1 'G G2. Following a similar
reasoning, the application ∆ targets the global branching in the context, which reduces
the continuation G[&AB.{oi(Ui};Gi] after the global choice ⊕AB.{oi(Ui)} to G ′.
Given π, we can use it to write the reduction at the level the typing environment Γ ,
applying Rule bΓ|Sende. Below, we consider Γ = Γ∗, Γk where Γk contains all and only typings
of session k in Γ .

k 6∈ Γ∗ Γk ⊆ JGKk {k[A] : T ,k[B] : T ′} ∈ Γk j ∈ I

π....

G
A —> B.oj
−−−−−−→ G ′

Γ∗, Γk
k: A —> B.oj
−−−−−−−−→ Γ∗, {k[C] : JG ′KC | k[C] ∈ Γk}, {k[C〉D] : JG ′KDC | k[C〉D] ∈ Γk}

bΓ|Sende

Hence (T|B.10.3) holds and Γ ′ = Γ∗, {k[C] : JG ′KC | k[C] ∈ Γk}, {k[C〉D] : JG ′KDC | k[C〉D] ∈ Γk}.
We now prove (T|B.10.4) by proving that Rule bT|DCe applies to Γ ′ ` D ′,C ′.

pco(Γ ′) Γ ′ ` C ′ Γ ′ ` D ′
Γ ′ ` D ′,C ′

bT|DCe

Hence we need to prove 1© pco(Γ ′), 2© Γ ′ ` C ′, and 3© Γ ′ ` D ′

Proof of 1©. For all sessions k ′ ∈ Γ∗, pco(Γ ′) holds as pco(Γ) holds by (T|B.10.1).
For session k, pco(Γ ′) holds by construction.

Proof of 2©. From the derivation on Γ ` D,k : p[A].e—> B.oj;C we know that
Γ1,k[A] : JGjKA ` C. Let Γ ′′ = Γ1,k[A] : JGjKA and Γ ′k = Γ1 \ Γ∗ = Γk \ {k[A] : JGKA}.
We can write Γ ′′ = Γ∗, Γ

′
k,k[A] : JGjKA. Note that in the premise of Rule bT|Sende that

types the continuation C, the buffer types in Γ (i.e., those in Γ1) are unaffected. There-
fore Γ ′′(k[A〉B]) 6= Γ ′(k[A〉B]), however from Lemma B.5 we know that we can omit to
consider buffer types as they are irrelevant for the typing of choreographies. For all ses-
sions k ′ 6= k in Γ ′′ their local typings are the same in Γ ′. For session k, the typing
Γ ′′(k[A]) = Γ ′(k[A]) = JGjKA. From Lemma B.6, for all other k[C] ∈ Γ ′′, C 6= A it holds that
Γ ′′(k[C]) = JGKC, Γ

′(k[C]) = JG ′KC, and JG ′KC ≺ JGKC. Therefore Γ
′ ≺ Γ ′′ and 2© holds by

Lemma B.4.

Proof of 3©. To prove Γ ′ ` D ′ we need to prove that the conditions of Definition 3.2
hold. (D|3.2.1) holds by the application of Rule bD|Sende, by construction of Γ ′, and by

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:52 Giallorenzo et al.

(T|B.10.1). (D|3.2.2) holds for all sessions k ′ 6= k by application of Rule bD|Sende and the
construction of Γ ′. The same holds true for session k and any process q : k[C] ∈ Γ ′ | C 6= B.
Finally, we need to prove that Γ ′(k[A〉B]) = bte(A,D ′(k[A〉B])). From (T|B.10.1)
we know that i) Γ(k[A〉B]) = T and ii) let D(k[A〉B]) = m̃, that bte(A, m̃) = T .
From Definition 3.3 we have a direct proof that bte(A, m1 :: · · · :: mn) =
bte(A,m1) ; . . . ; bte(A,mn).
Now, from the reduction on bC|Sende we know that

D ′(k[A〉B]) = m ′ = m̃ :: (oj, v)

And therefore, bte(A,m ′) = T ; bte(A, (oj, v)). From the reductions on Γ and G, we
observe that the reduction on G do not affect the context G (which contains local type
T), thus, by the rules of the definition of the Buffer Type Projection (Fig. 13), we have

JG ′KAB = T ; &A.oj (Uj)

Hence, from the reduction on rule bΓ|Sende, we know that Γ ′(k[B〉A]) = Γ ′(JG ′KAB) =
T ; &A.oj (Uj). Finally, from the typing rule bT|Sende we know that p.e ` Uj and from reduc-
tion rule bC|Sende that v = eval(e,D(p)), thus v has type Uj. Hence, bte(A, (oj, v)) =
&A.oj(Uj) and

Γ ′(k[A〉B]) = T ; &A.oj(Uj) = bte(A,D ′(k[A〉B]))

Case bC|Recve

The case is:
j ∈ I D,k : A —> q[B].oj(xj) I D ′

D, k : A —> q[B].{oi(xi);Ci}i∈I
k:A〉B.oj(xj)
−−−−−−−−→ D ′, Cj

bC|Recve

(T|B.10.2) has reductum C ′ = Cj. Since we could apply bC|Recve, we know that D(k[A〉B]) =
(oj, v) :: m̃. Let D1 = D

[
q 7→ D(q)[x 7→ v]

]
, from the application of Rule bD|Recve, we know

that D ′ = D1

[
k[A〉B] 7→ m̃

]
. To prove (T|B.10.3) we must prove that Rule bΓ|Recve is

applicable.
Since (T|B.10.1) holds pco(Γ) and Γ ` D hold and therefore we know that, by (D|3.2.2),
Γ(k[A〉B]) = bte(A, (oj, v) :: m̃).
Let ` v : Uj, then bte(A, (oj, v) :: m̃) = &A.oj(Uj); T where T = bte(A, m̃) by
Definition 3.3 and Γ(k[A〉B]) = &A.oj(Uj); T . Since pco(Γ) holds, there exists a global
type G for session k such that G = G[A〉B.oj(Uj);Gj]. Let π be the reduction of G with
Rules bG|Eqe and bG|Recve, we observe the following derivation:

π =

G 'G G1 G1

γ

−→ G′
bG|Recve

G 'G G
′

....

⌊
G|Eq

⌉
G

γ

−→ G′

G1 = A〉B.oj(Uj);G[Gj]

G′ = G[Gj]
γ = A〉B.oj(Uj)

In the reductions, since C,D reduces with β = k : A〉B.oj(xj) and G types C,D in Γ ,
there are no other exchanges from A to B in G that could prevent from obtaining, after a
finite number of derivations on rule bG|Eqe, the swap-equivalence G 'G G1. Then, applying
Rule bG|Sende, G1 can reduce to G ′.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:53

Given π, we can use it to write the reduction at the level the typing environment Γ ,
applying Rule bΓ|Recve. Below, we consider Γ = Γ∗, Γk where Γk contains all and only typings
of session k in Γ .

k 6∈ Γ∗ Γk ⊆ JGKk {k[A] : T ,k[B] : T ′} ∈ Γk Γ∗ ` q : k[B]

π....

G
A〉B.oj
−−−−→ G ′

Γ∗, Γk
k:A〉B.oj(x)
−−−−−−−→ Γ∗, {k[C] : JG ′KC | k[C] ∈ Γk}, {k[C〉D] : JG ′KDC | k[C〉D] ∈ Γk}, q.x : Uj

bΓ|Recve

Hence (T|B.10.3) holds and Γ ′ = Γ∗, {JG ′KC | k[C] ∈ Γk}, q.x : Uj.
(T|B.10.4) holds if we can apply Rule bT|DCe on Γ ′ ` D ′,C ′

pco(Γ ′) Γ ′ ` C ′ Γ ′ ` D ′
Γ ′ ` D ′,C ′

bT|DCe

and we need to prove 1© pco(Γ ′), 2© Γ ′ ` C ′, and 3© Γ ′ ` D ′
The proof of 1© for this case is similar to that of 1© for case bC|Sende.

Proof of 2©. From (T|B.10.1), partitioning Γ = Γ1,k[B] : &A.oj(Uj); JGjKB and since
j ∈ I from Rule bC|Recve, we can write the derivation

pco(Γ) Γ ` D
j ∈ I Γ1 ` q : k[B] Γ1, q.xj : Uj,k[B] : JGjKB ` Cj

Γ1,k[B] : &A.oj(Uj); JGjKB ` k : A —> q[B].{oi(xi);Ci}i∈I
bT|Recve

Γ ` D,k : A —> q[B].{oi(xi);Ci}i∈I
bT|DCe

hence we know that Γ1, q.xj : Uj,k[B] : JGjKB ` Cj.
Let Γ ′′ = Γ1, q.xj : Uj,k[B] : JGjKB ` Cj and Γ ′k = Γ1 \ Γ∗ = Γk \ {k[B] : JGKB}. We can write
Γ ′′ = Γ∗, Γ

′
k,k[B] : JGjKB. Similarly to 2© for case bC|Sende, Γ ′′(k[A〉B]) 6= Γ ′(k[A〉B]), but we

omit to consider buffer types as they are irrelevant for the typing of choreographies by
Lemma B.5. For all sessions in Γ ′′, their local typings are the same as in Γ ′. We consider
in particular k on which we applied the reduction for this case for which it holds

∀ k[C] ∈ Γ ′′, Γ ′′(k[C]) = Γ ′(k[C]) = JG ′KC

Proof of 3©. To prove Γ ′ ` D ′ we prove the conditions in Definition 3.2. (D|3.2.1)
holds from the application of Rule bD|Recve, (T|B.10.1), and the construction of Γ ′. (D|3.2.2)
holds for all p.x from the application of Rule bD|Recve, (T|B.10.1), and the construction of
Γ ′, except for q.xj which is not defined in Γ . However the condition holds by construction
of Γ ′ = Γ1, q.xj : Uj,k[B] : JGjKB. (D|3.2.2) holds for all sessions k ′ 6= k by the application
of Rule bD|Recve and the construction of Γ ′. The same holds true for session k and any
process p : k[C] ∈ Γ | C 6= B.
For q : k[B] and role A we know from the application of bC|Sende that D ′(k[A〉B]) = m̃ Since
we took G such that JGKAB = &A.oj(Uj); T , where T = bte(A, m̃) then JG ′KAB = T .

Case bC|Starte

The case is:
#r̃ #k ′ p ∈ D(l) δ = start k ′ : l.p[A],

︷ ︸
l.r[B] D, δ I D ′

D, start k : p[A] <=>
︷ ︸
l.q[B];C

τ
−→ D ′, C[k ′/k][̃r/q̃]

bC|Starte

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:54 Giallorenzo et al.

Where (T|B.10.5) has C ′ = C[k ′/k][̃r/q̃]. D ′ is defined non-deterministically but abides
the requirements defined in Rule bD|Starte. Let

︷ ︸
s[C] = p[A],

︷ ︸
r[B]. Since (T|B.10.1) holds, we

can apply Rule bT|Starte. We partition Γ = Γ1, l̃ : G〈A|B̃|B̃〉

Γ1, l̃ : G〈A|B̃|B̃〉, init(
︷ ︸
s ′[C] , k, G) ` C

︷ ︸
s ′[C] = p[A],

︷ ︸
q[B] q̃ 6∈ Γ1

Γ1, l̃ : G〈A|B̃|B̃〉 ` start k : p[A] <=>
︷ ︸
l.q[B];C

bT|Starte

Coherently with the semantics of Rule bC|Starte, we take Γ ′ = Γ , init(
︷ ︸
s[C], k ′, G) — ob-

tainable from the typing environment in the left-most premise of rule bT|Starte, α-renaming
i) typings on session k to session k ′ and ii) process identifies q̃ to r̃ in

︷ ︸
s ′[C] (i.e., such

that
︷ ︸
s[C] = [

︷ ︸
r[C] /

︷ ︸
q[C]]

︷ ︸
s ′[C]) — and we prove the case by proving that we can apply

Rule bT|DCe on Γ ′ ` D ′,C ′, i.e, that the following hold: 1© pco(Γ ′), 2© Γ ′ ` C ′, and 3©
Γ ′ ` D ′.

Proof of 1©. 1© holds for all session k ′′ ∈ Γ ′,k ′′ 6= k ′ by (T|B.10.1). For session k ′
1© holds by construction.

Proof of 2©. By (T|B.10.1) we could apply bT|Starte where Γ , init(
︷ ︸
s[C], k, G) ` C.

Since Γ ′ is obtained by α-renaming of the left-most premise of Rule bT|Starte, which types
the continuation C, Γ ′ types C[k ′/k][̃r/q̃] and 2© holds by construction.

Proof of 3©. To prove 3© we prove the conditions in Definition 3.2.
(D|3.2.1–D|3.2.2) hold by the application of Rule bD|Starte and the construction of Γ ′.

Case bC|PStarte

The case is:

i ∈ {1, . . . ,n} #k ′ {
︷ ︸
l.B } =

⊎
i{
︷ ︸
li.Bi } #r̃ {̃r} =

⋃
i {̃ri}

p ∈ D(l) δ = start k ′ : l.p[A],
︷ ︸
l1.r1[B1], . . . ,

︷ ︸
ln.rn[Bn] D, δ I D ′

D, req k : p[A] <=>
︷ ︸
l.B;C |

∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

) τ
−→

D ′, C[k ′/k] |
∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

) bC|PStarte

Where (T|B.10.5) has C ′ = C[k ′/k] |
∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

)
.

D ′ is defined non-deterministically but abides the requirements defined in Rule bD|Starte.
We partition Γ such that:
— Γ = Γr, Γa
— Γr ` l̃ : G〈A|B̃|∅〉
— Γa ` l̃ : G〈A|B̃|B̃〉
— Γa = Γ1, l̃ : G〈A|B̃|

︷ ︸
B1〉, · · · , Γn, l̃ : G〈A|B̃|

︷ ︸
Bn〉

— Γ ia = Γi, l̃ : G〈A|B̃|
︷ ︸
Bi〉, · · · , Γn, l̃ : G〈A|B̃|

︷ ︸
Bn〉

and we can write the derivation

pco(Γ) Γ ` D

Γr, p : k[A],k[A] : JGKA ` C Γr ` l̃ : G〈A|B̃|∅〉
Γr ` req k : p[A] <=>

︷ ︸
l.B;C

bT|Reqe
∆1

Γ ` req k : p[A] <=>
︷ ︸
l.B;C |

∏
i∈I
(
acc k :

︷ ︸
li.qi[Bi];Ci

) bT|Pare

Γ ` D, req k : p[A] <=>
︷ ︸
l.B;C |

∏
i∈I
(
acc k :

︷ ︸
li.qi[Bi];Ci

) bT|DCe

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:55

∆i =

l̃i ⊆ l̃ Γi, l̃ : G〈A|B̃|∅〉, init(

︷ ︸
qi[Bi], k, G) ` Ci q̃i 6∈ Γ

Γi, l̃ : G〈A|B̃|
︷ ︸
Bi〉 ` acc k :

︷ ︸
li.qi[Bi];Ci

bT|Acce
∆i+1

Γ ia ` acc k :
︷ ︸
li.qi[Bi];Ci |

∏
j∈I\{1,··· ,i}

(
acc k :

︷ ︸
lj.qj[Bj];Cj

) bT|Pare

Let
︷ ︸
s[C] = p[A],

︷ ︸
r1[B1], · · · ,

︷ ︸
rn[Bn].

To prove (T|B.10.6) we take

Γ ′ = Γ , init(
︷ ︸
s[C], k ′, G) = Γr, Γa, init(

︷ ︸
s[C], k ′, G)

and we partition init(
︷ ︸
s[C], k ′, G) such that

Γ ′ = Γ ′r , Γ
′
a, Γa

Where
— Γ ′r = Γr, init(p[A], k

′, G)
— Γ ′a = Γ ′1, · · · , Γ ′n
— Γ ′i = Γi, l̃ : G〈A|B̃|∅〉, init(

︷ ︸
ri[Bi], k

′, G) where i ∈ {1, . . . ,n}
To prove (T|B.10.6) we must prove we can apply Rule bT|DCe on Γ ′ ` D ′,C ′.

1© pco(Γ ′) 3© Γ ′ `D′ 2©

 2a© Γ ′r ` C[k′/k]

2b© Γ ′a `
∏
i

(
Ci[k

′/k][̃ri/q̃i]
)

2c© Γa `
∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

)
Γ ′a, Γa `

∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

) bT|Pare

Γ ′ ` C[k′/k] |
∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

) bT|Pare

Γ ′ `D′,C′
bT|DCe

Proof of 1©. 1© holds by construction.

Proof of 2©. 2© holds as
— 2a© holds by α-renaming (Γr, p : k[A],k[A] : JGKA)[k

′/k] ` C[k ′/k] and by omitting to
consider buffer types as of Lemma B.5;

— similarly to 2a©, 2b© holds by α-renaming on the derivation of

(Γi, l̃ : G〈A|B̃|∅〉, init(
︷ ︸
qi[Bi], k, G))[k ′/k][̃ri/q̃i] ` Ci[k ′/k][̃ri/q̃i]

and by Lemma B.5;
— 2c© holds by (T|B.10.1).

Proof of 3©. The proof of 3© of this case is similar to the of 3© for Case bC|Starte.

Case bC|Conde

The case is:

i = 1 if eval(e,D(p).st) = true, i = 2 otherwise

D, if p.e {C1} else {C2}
τ
−→ D, Ci

bC|Conde

In (T|B.10.5) D ′ = D and we have two cases for C ′ = C1 or C ′ = C2.
From (T|B.10.1) we can write

Γ ` p.e : bool Γ ` C1 Γ ` C2

Γ ` if p.e {C1} else {C2}
bT|Conde

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:56 Giallorenzo et al.

The proof of (T|B.10.6) follows directly from the premises of the typing derivation as
Γ ` D = D ′ and in both cases that C ′ = C1 or C ′ = C2 it holds that Γ ` C ′ from the
premises of bT|Conde.
Case bC|Ctxe

The case is:

D,C1

β
−→ D′,C′1

D, def X = C2 in C1

β
−→ D′, def X = C2 in C′1

bC|Ctxe

From (T|B.10.1) we know that, Γ = Γ1,X : Γx

pco(Γ)

Γ1,X : Γx ` C1 Γx,X : Γx ` C2 Γx|locs ⊆ Γ
Γ ` def X = C2 in C1

bT|Defe
Γ ` D

Γ ` D, def X = C2 in C1
bT|DCe

The proof is divided in two cases on the type of β.
Case β 6= τ
D,C1 reduces on some session k. By the induction hypothesis since Γ ` D,C1 we
can find Γ ′ such that (T|B.10.3) holds. We prove (T|B.10.4) by proving that we can
apply bT|DCe on Γ ′ ` D ′, def X = C2 in C ′1 and therefore that 1© pco(Γ ′) holds, 2©
Γ ′ ` def X = C2 in C1 and 3© Γ ′ ` D ′.
1© holds by the construction of Γ ′ and 3© holds by the induction hypothesis.
To prove 2© we have to prove that Γ ′ ` X : C2 and Γx|locs ⊆ Γ ′.
From the induction hypothesis we have that Γ

β
−→ Γ ′ and Γ ′ ` D ′,C ′1. By construc-

tion of Γ ′ it holds that Γ ′ = Γ ′∗, Γ ′k where Γ ′ ∩ Γ = Γ∗ such that k 6∈ Γ∗ and Γ = Γ∗, Γk
where Γk ⊆ JGKk for some G. Therefore it holds that Γ∗ ` X : Γx and thus that
Γ ′ ` X : Γx. The same applies to Γx|locs ⊆ Γ∗ which proves Γx|locs ⊆ Γ ′.
Case β = τ
from the induction hypothesis for any considered derivation we have Γ ⊆ Γ ′. We
prove (T|B.10.6) by proving that we can apply bT|DCe on Γ ′ ` D ′, def X = C2 in C ′1.
1©, 2©, and 3© hold by construction of Γ ′.

Case bC|Pare

The case is:

D,C1

β
−→ D ′,C ′1

D,C1 | C2

β
−→ D ′,C ′1 | C2

bC|Pare

From (T|B.10.1) we have the derivation below, with Γ partitioned as Γ = Γ1, Γ2

pco(Γ)

Γ1 ` C1 Γ2 ` C2

Γ ` C1 | C2

bT|Pare
Γ ` D

Γ ` D,C1 | C2

bT|DCe

The proof is divided in two cases on the type of β.
Case β 6= τ
D,C1 reduces on some session k. By the induction hypothesis and since Γ1 ` D,C1

we can find Γ ′1 such that Γ1
β
−→ Γ ′1 and Γ ′1 ` D ′,C ′1. Then we take Γ ′ = Γ ′1, Γ2 which

proves (T|B.10.3) to hold. We prove (T|B.10.4) by proving that we can apply bT|DCe

on Γ ′ ` D ′,C ′1 | C2 and therefore that 1© pco(Γ ′), 2© Γ ′ ` C ′1 | C2 and 3© Γ ′ ` D ′
hold. 1©, 2©, and 3© hold by construction and the induction hypothesis.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:57

Case β = τ
from the induction hypothesis, for any derivation we have that Γ ′1 ` D ′,C ′1 and
Γ1 ⊆ Γ ′1. Also in this case we take Γ ′ = Γ ′1, Γ2 and prove (T|B.10.6) by proving that
we can apply bT|DCe on Γ ′ ` D ′,C ′1 | C2. 1©, 2©, and 3© hold by construction of Γ ′
and the induction hypothesis.

Case bC|Eqe

The case is:

R ∈ {≡C , 'C } CRC1 D,C1

β
−→ D ′,C ′1 C ′1 RC

′

D,C
β
−→ D ′,C ′

bC|Eqe

The proof is divided into two subcases on the type of R.
Case R = ≡C
The case is proved by induction hypothesis and Lemma B.8.
Case R = 'C
The case is proved by induction hypothesis and Lemma B.9.

The proof of Theorem 3.8 follows directly from the proof of Theorem B.10 and
Lemma B.7.

B.2. Proof of Deadlock Freedom
We report below the statement of Theorem 3.10 enriched with pointers for clearer referencing
the in the proof.
Theorem 3.10 (Deadlock-freedom)
(D3.10.1) Γ ` D,C and (D3.10.2) co(Γ) imply that either (D3.10.3) C ≡C 0 or (D3.10.4)
there exist D ′ and C ′ such that D,C→ D ′,C ′.

Like in [14; 16], frontend choreographies enjoy deadlock freedom, provided that they i)
do not contain free variable names and ii) are well-sorted, i.e., have no undefined procedure
calls. Notably, well-sortedness is guaranteed by the type system.

Proof. Proof by induction on the structure of C.

Case C ≡C 0
trivial.
Case C = k : p[A].e—> B.o;C1

from (D3.10.1) and (D3.10.2) we know that the requirements of bD|Sende hold and we can
find D ′ such that D,k :p[A].e—> B.o I D ′. We can apply Rule bC|Sende for which C ′ = C1.
Case C = k : p[A].e—> q[B].o(x);C1

since (D3.10.1) holds both receiver and sender are typed by Γ . We apply rule bC|Eqe to split
the complete term into respectively a send and a receive partial terms, and aimilarly to
the previous case, we apply rule bC|Sende, for which C ′ = k : A —> q[B].o(x);C1.
Case C = k : A —> q[B].{oi(xi);Ci}i∈I
from (D3.10.1) and (D3.10.2) we know that the requirements of Rule bD|Recve hold
and D(k[A〉B]) = (oj, tm) :: m̃ for some j ∈ I. We can find D ′ such that
D,k : A —> q[B].oj(xj) I D ′ and apply Rule bC|Recve for which C ′ = Cj.
Case C = start k : p[A] <=>

︷ ︸
l.q[B];C1

from (D3.10.1) and (D3.10.2) bD|Starte applies and we can find D ′ such that D, start k ′ :
l.p[A],

︷ ︸
l.r[B] I D ′ for some k ′, r̃ fresh. We can apply Rule bC|Starte for which C ′ =

C1[k
′/k][̃r/q̃].

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:58 Giallorenzo et al.

Case C = req k : p[A] <=>
︷ ︸
l.B;C |

∏n
i=1

(
acc k :

︷ ︸
li.qi[Bi];Ci

)
similarly to the previous case the requirements of bD|Starte hold and we can find D ′ such
that D, start k ′ : l.p[A],

︷ ︸
l1.r1[B1], . . . ,

︷ ︸
ln.rn[Bn] I D ′ for some k ′ and r̃1, · · · , r̃n fresh.

We can apply Rule bC|PStarte for which
C ′ = C[k ′/k] |

∏n
i=1 Ci[k

′/k][̃r1/q̃1] |
∏n
i=1

(
acc k :

︷ ︸
li.qi[Bi];Ci

)
.

Case C = C1 | C2

we can apply the induction hypothesis and Rule bC|Pare such that D,C1 → D1,C
′
1 and in

(D3.10.4) D ′ = D1 and C ′ = C ′1 | C2.
Case C = def X = C2 in C1

applies the induction hypothesis and Rule bC|Ctxe for which D,C1 → D ′,C ′1, where C ′ =
def X = C2 in C ′1.
Case def X = C2 in X;C1

applies Rule bC|Eqe for def X = C2 in X;C1 ≡C def X = C2 in C2;C1 and by the induction
hypothesis D,C2 → D ′,C ′2 and C ′ = def X = C2 in C ′2;C1.
Case C = if p.e {C1} else {C2}
from (D3.10.1) we know that Γ ` p.e : bool and therefore we can apply Rule bC|Conde and,
according to the evaluation of e, we have C ′ = C1 or C ′ = C2.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:59

B.3. Proof of Endpoint Projection
To prove our result on the Endpoint Projection we first define the minimal typing system
`min for FC.

B.3.1. Minimal Typing. We recall the definition of subtyping for local and global types (see
Definitions B.1 and B.2), which we extend to set inclusion and point-wise to i) the typing
of services (i.e., of kind l̃ : G〈A|B̃|C̃〉) and ii) the typing of sessions, respectively. Given two
types G and G ′, we denote their least upper bound wrt ≺ with GOG ′ (the same for local
types and typing environments).

We define the minimal typing system ` min on this notion of subtyping. The minimal
typing uses the minimal global and local types for typing sessions and services such that
the projection of the choreography is still typable. We report the rules for minimal typing
in Fig. 26.

Proposition B.11 (Existence of Minimal Typing). Let Γ ` D,C, then there exists
Γ0 such that Γ0 ` D,C and for each Γ ′ ` D,C we have that Γ0 ≺ Γ ′. The environment Γ0
can be algorithmically calculated from C and is called the minimal typing of C.

Proof of Existence of Minimal Typing. The proof is standard and proceeds by
induction on the rules in Fig. 26, defining the minimal typing system Γ `min D,C .

As in [14; 16], our focus is on the reconstruction of global/local types, thus we leave the
reconstruction of variable types undefined (which it is entirely standard, e.g., see [32]).

We give the intuition behind each case corresponding to the derivation on the rules.
bMin|Start1e and bMin|Start2e type the starting of sessions. The difference between bMin|Start1e and bMin|Start2e

is that, when bMin|Start1e applies, the service typing of l̃ is not used any more in C, and thus its
typing is dropped to guarantee minimality. Contrarily, in bMin|Start2e the service typing of l̃ is
used in the continuation C. In the Rule, we consider the minimal global type GOG ′ where
G ′ is minimal in session k and G is minimal in the typing of the continuation C.

Rules bMin|Req1e and bMin|Req2e mirror a similar relationship, where in the first rule we drop the
typing of l̃, not used in the continuation C, while in the second we consider GOG ′. Note
that Rule bMin|Acce directly drops the typing of l̃ in the typing of the continuation. We do this
because we assumed (see § 2.1) that i) (acc) terms can only be at the top level (not guarded
by other actions) and ii) by Rule bT|Acce no subsequent term (start) on the same locations l̃
is typable (and hence cannot be present in C, well-typed). The same holds for subsequent
(req) terms on l̃, which could not be paired with a complementary (acc).

In bMin|Conde we consider Γ1OΓ2 to determine the least upper bound of receive types. Rules
bMin|Come, bMin|Sende, and bMin|Recve type receptions with a singleton branching local type. Rule bMin|Pare

is standard.
Also in Rule bMin|Defe we consider the least upper bound of Γ and Γ ′ respectively typing

the continuation C and the body of procedure X. In addition, we also consider the least
upper bound of the local typings T and T ′, on which we apply function solve. Function
solve is standard (cf. [13; 14]) and solves the equations tX = T for each T in

︷ ︸
k[A] : T where,

if tX appears in T , the corresponding component is rec t.TX, or T otherwise. Rule bMin|Defe

uses rules bMin|D1e and bMin|D2e to determine the content of Γx and Γ ′x to respectively minimally
type the continuation C and the body of procedure X. Indeed, when Rule bMin|D1e applies, the
choreography C uses the typing X : Γx, otherwise bMin|D2e applies and the minimal type does
not contain the typing for X. Finally, in case both the typing of C and of C ′ type X (i.e., X
in dom(Γx) ∩ dom(Γ ′x)), their judgements coincide.

Rules bMin|Ende and bMin|Calle use some auxiliary information, obtainable by a preliminary top-
down visit of the choreography syntax tree (cf. [13; 14]). Specifically, vars, ownerships, and
sessions are respectively the variable, the ownership, and the session typings of the choreog-
raphy whose type is being inferred. Similarly, vars(X), ownerships(X), and sessions(X) yield

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:60 Giallorenzo et al.

Γ , init(
︷ ︸
r[C],k,G) `min C

︷ ︸
r[C] = p[A],

︷ ︸
q[B] q̃ 6∈ Γ l̃ 6∈ Γ

Γ , l̃ : G〈A|B̃|B̃〉 `min start k : p[A] <=>
︷ ︸
l.q[B];C

bMin|Start1e

Γ , l̃ : G〈A|B̃|B̃〉, init(
︷ ︸
r[C],k,G ′) `min C

︷ ︸
r[C] = p[A],

︷ ︸
q[B] q̃ 6∈ Γ

Γ , l̃ : GOG ′〈A|B̃|B̃〉 `min start k : p[A] <=>
︷ ︸
l.q[B];C

bMin|Start2e

Γ , p : k[A],k[A] : JGKA `min C l̃ 6∈ Γ
Γ , l̃ : G〈A|B̃|∅〉 `min req k : p[A] <=>

︷ ︸
l.B;C

bMin|Req1e
Γ , l̃ : G〈A|B̃|∅〉, p : k[A],k[A] : JG ′KA `min C

Γ , l̃ : GOG ′〈A|B̃|∅〉 `min req k : p[A] <=>
︷ ︸
l.B;C

bMin|Req2e

l̃ ⊆ l̃ ′ Γ , init(
︷ ︸
q[C],k,G) `min C q̃ 6∈ Γ l̃ 6∈ Γ

Γ , l̃ ′ : G〈A|B̃|C̃〉 `min acc k :
︷ ︸
l.q[C];C

bMin|Acce

Γ1OΓ2 ` p.e : bool Γ1 `min C1 Γ2 `min C2

Γ1OΓ2 `min if p.e {C1} else {C2}
bMin|Conde

Γ ` p : k[A], q : k[B] Γ ` p.e : U Γ , q.x : U,k[A] : T ,k[B] : T ′ `min C
Γ ,k[A] : ⊕ B.{o(U); T },k[B] : &A.{o(U); T ′} `min k : p[A].e—> q[B].o(x);C

bMin|Come

Γ ` p : k[A] q : k[B] 6∈ Γ Γ ` p.e : U Γ ,k[A] : T `min C
Γ ,k[A] : ⊕ B.{o(U); T } `min k : p[A].e—> B.o;C

bMin|Sende

Γ ` q : k[B] p : k[A] 6∈ Γ Γ , q.x : U,k[B] : T `min C
Γ ,k[B] : &A.{o(U); T } `min k : A —> q[B].o(x);C

bMin|Recve

Γx(X) = Γ
′
x(X) if X ∈ dom(Γx) ∩ dom(Γ ′x) @ k ′′[A ′′] ∈ dom(ΓOΓ ′)

X 6∈ dom(ΓOΓ ′) Γ ′x BX (Γ ′,
︷ ︸
k ′[A ′] : T ′),C ′ Γx BX (Γ ,

︷ ︸
k[A] : T),C Γ ′|locs ⊆ Γ

(ΓOΓ ′), solve(
︷ ︸
k[A] : T O

︷ ︸
k ′[A ′] : T ′, tX) `min def X = C ′ in C

bMin|Defe

Γ1 `min C1 Γ2 `min C2

Γ1, Γ2 `min C1 | C2

bMin|Pare
Γ , Γx,X : Γx `min C
Γx,X : Γx BX Γ ,C

bMin|D1e
X 6∈ dom(Γx) Γ , Γx `min C

Γx BX Γ ,C
bMin|D2e

Γ = ownerships ∪ sessions ∪ vars k[A] ∈ sessions k[A] : end
Γ `min 0

bMin|Ende

Γ = vars ∪ ownerships
︷ ︸
k ′[A ′] = sessions \ {

︷ ︸
k[A]}

Γ ′ = vars(X) ∪ ownerships(X)
︷ ︸
k[A] = sessions(X) Γ ′ ⊆ Γ

Γ ,
︷ ︸
k[A] : tX,

︷ ︸
k ′[A ′] : end,X : (Γ ′,

︷ ︸
k[A] : tX) `min X

bMin|Calle

pco(Γ , Γ ′) Γ ` D Γ ′ `min C
Γ , Γ ′ `min D,C

bMin|DCe

Fig. 26. Choreography Calculus — Minimal typing rules

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:61

the respective same information regarding the body of procedure X (i.e., obtained inspecting
the body of the inner-most recursive procedure X). In the rules, in bMin|Ende we check that in Γ
reside only those ownership, variable, and session typings present in the typed choreography
and that all sessions (i.e., their local types) are terminated. In Rule bMin|Calle, i) all sessions
outside X must be terminated and those inside X agree on tX and ii) Γ and Γ ′ contain only
appropriate variable and ownership typings and agree on their judgement (Γ ′ ⊆ Γ).

Rule bMin|DCe defines minimal typing for running choreographies.

B.3.2. Typing Projection. Here we define the projection of typing environments, which is
used to prove that, given the minimal typing environment Γ of a choreography C, from Γ
we can build the minimal typing environment for the EPP of C.

To do that, we have to account for two peculiarities (as defined in § 6.2) of our EPP:

— it merges in the output choreography the behaviours of many service processes into one
process. Hence, to guarantee typing and minimality we have to merge typings related to
service processes on the same location into the same (and only) service process present
in JCK;

— it projects recursive definitions of the same procedure on different processes, e.g., if in
C there are processes p1, . . . , pn and procedure X, in the EPP we will find procedures
Xp1

, . . . ,Xpn . Thus, we replace the definition typing of any procedure X in dom(Γ) with
the typings of its projections Xp1

, . . . , Xpn .

To indicate the projection of a typing environment Γ wrt to its typed choreography C,
we write JΓKC. To define JΓKC and also later in this proof, we use the typing environment
filtering operator Γ |p defined as

Γ |p =

{ p.x : U | p.x : U ∈ Γ } ∪
{ p : k[A]} | { p : k[A] } ⊆ Γ } ∪
{ k[A] : T } | { p : k[A],k[A] : T } ⊆ Γ } ∪
{ l̃ : G〈A|B̃|C̃〉 | l̃ : G〈A|B̃|C̃〉 ∈ Γ } ∪
{ Xp : Γx | Xp : Γx ∈ Γ }

Definition B.12 (Typing Projection). Let Γ ` C, the projection of Γ wrt to C, writ-
ten JΓKC, is defined as:

JΓKC =

⋃

q∈bCcl

JΓKq [p/q]︸ ︷︷ ︸
i.i)

| p ∈ bCcl ∩ pn(JCK)︸ ︷︷ ︸
i.ii)

∧ l ∈ {l̃} ∧ l̃ ∈ dom(Γ)

︸ ︷︷ ︸
i)

,
{

JΓKr | r ∈ fp(JCK)
}︸ ︷︷ ︸

ii)

JΓKp =
(
Γ |p \ {X : Γx | Γ ` X : Γx}

)
︸ ︷︷ ︸

iii)

,
{
Xp : JΓxKp | Γ ` X : Γx

}
︸ ︷︷ ︸

iv)

As mentioned above, in the definition of JΓKC we distinguish two kinds of projections: the
one on service processes i) and the one on active processes ii). In the first case, we unify
the projection on service processes at the same location in C (i.e., in bCcl). To do that in
a consistent way, wrt to the EPP of C we:

— obtain the identifier of process p i.i), the only service process at location l that is present
in JCK (and hence the one that merges the behaviours of all service processes in C at l);

— get the projection of Γ on a service process q (JGKq) in bCcl;

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:62 Giallorenzo et al.

— we rename all process-related typings in JΓKq to correspond to process p (by abusing the
notation JΓKq [p/q]) i.ii);

— we merge all the resulting, renamed typing environments into a single typing environment
for process p.

Finally, the projection of typing environment Γ on process p, written JΓKp corresponds to
the union of iii) the typing in Γ related to process p, from which we remove the typings of
definitions, and iv) the projection of the typings of definitions, renamed for process p.

Note the definition of JΓKC is coherent with the definition of process projection (see
Definition 6.2) in which the rule for projecting (rec) terms is defined as:

Jdef X = C′ in CKr = def Xr = J C ′[Xr/X] Kr in J C[Xr/X] Kr

Similarly, JΓKC generates definition typings for each procedure corresponding to each process
in the choreography (assumed to be C). The typings of definitions are guaranteed minimal
(as required in Theorem B.13).

The only remark regards service typings, which are present in all projected environments,
although they might not be used. While having additional, unused service typings does not
compromise type checking, we must consider a weakened form of minimality of typing where
some unused service typings are allowed. This fact is clearly stated in the definition of the
Theorem B.13.

B.4. Proof of the Well-Typedness property of Theorem 6.6
To prove the property of well-typedness of Theorem 6.6 we prove the stronger result of
Theorem B.13.

Theorem B.13 (EPP Typing Preservation).
Let D,C be a well-typed running choreography such that Γ `min D,C, where Γ = Γd, Γc such
that Γd ` D, then JΓcK

C , Γd `min D, JCK up to service typings.

Intuitively, Theorem B.13 subsumes the well-typedness property (1) of Theorem 6.6, using
the environment projection defined above to provide a minimal typing environment for JCK
up to some unused service typings.

We define some auxiliary lemmas used in the proof of Theorem B.13.

Lemma B.14 (Composability of Typing Projections).
Let Γ ` C and Γ = Γ ′, Γ ′′ then JΓKC = JΓ ′KC , JΓ ′′KC.

Proof. The proof is by contradiction. The projection JΓKC returns exactly Γ except
for the projection of the typings of the procedures, as defined in Definition B.12. Hence
the projection JΓKC can differ from JΓ ′KC , JΓ ′′KC only on definition typings. However, it
is impossible that JΓKC 6= JΓ ′KC , JΓ ′′KC. Indeed, there could be only two cases for the
partitioning of Γ wrt any definition typing X ∈ dom(Γ), either:

— i) both Γ ′ and Γ ′′ type X, in which case, since Γ = Γ ′, Γ ′′, they must agree on their
judgement on X;

— ii) the judgement on X is contained only in Γ ′ or Γ ′′.

in both cases the projections obtained from X remain the same wrt the one in Γ .

We prove Lemma B.15 that states that given a well-typed choreography C and a typing
environment Γ for which Γ `min C then the projection of Γ , JΓKC, types minimally the
projection of C, JCK.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:63

Lemma B.15 (Choreography EPP Typing Preservation). Let C be a well-typed
choreography and let Γ `min C then JΓKC `min JCK .

Proof. Like for the proof of Theorem 3.10, we assume our choreographies to be well-
sorted. The proof is by induction on the typing derivation of Γ `min C .

Case bMin|Start1e

From the premises we have C = start k : p[A] <=>
︷ ︸
l.q[B];C ′. We can partition Γ =

l̃ : G〈A|B̃|B̃〉, Γ ′ and we can write the derivation

Γ ′, init(
︷ ︸
r[C],k,G) `min C ′

︷ ︸
r[C] = p[A],

︷ ︸
q[B] q̃ 6∈ Γ ′ l̃ 6∈ Γ ′

Γ ′, l̃ : G〈A|B̃|B̃〉 `min start k : p[A] <=>
︷ ︸
l.q[B];C ′

bMin|Start1e

Let
︷ ︸
l.q[B] = l1.q1[B1], · · · , ln.qn[Bn].

Let Γc = Γ ′, init(
︷ ︸
r[C],k,G), from the induction hypothesis we have that Γc `min C ′ and

therefore JΓcK
C′ `min JC ′K .

By its definition JC ′K ≡C C
′
s | C ′′ where

C ′s = JC ′Kp | JC ′Kq1
| . . . | JC ′Kqn

and

C ′′ =
∏

r ∈ fp(C′)\{p,q̃}

JC ′Kr |
∏
l

 ⊔
s ∈ bC′cl

JC ′Ks

We partition JΓcK

C′ (as per Lemma B.14) as

JΓcK
C′ = Γ ′p , Γ ′q̃ , Γ ′′

where
Γ ′p = Γ ′′p , p : k[A],k[A] : JGKp

and
Γ ′q̃ = Γ ′q1

, . . . , Γ ′qn
where

Γ ′qi = Γ
′′

qi , qi : k[A],k[A] : JGKqi

such that we can write the derivation

Γ ′′ `min C ′′
Γ ′p `min JC ′Kp

Γ ′q1 `min JC ′Kq1

...
Γ ′q2 , . . . , Γqn `min JC ′Kq2

| . . . | JC ′Kqn

bMin|Pare

Γ ′q1 , Γ
′

q2
, . . . , Γ ′qn `min JC ′Kq1

| . . . | JC ′Kqn

bMin|Pare

Γ ′p , Γ
′

q̃ `min JC ′Kp | JC ′Kq1
| . . . | JC ′Kqn

bMin|Pare

Γ ′′, Γ ′p , Γ
′

q̃ `min C ′′ | C ′s
bMin|Pare

Since the ownership and session typings for k in Γc belong to init(
︷ ︸
r[C],k,G) we can write

Γ ′p = Γ ′′p , p : k[A],k[A] : T where Γ ′′p contains those and only typings (services, ownerships,
sessions, etc.) that type minimally the projection of continuation C ′ for process p.
Since the only difference between Γ and Γc are the typings for session k, we have that
Γ ′′p ⊆ JΓKC and also Γ ′′ ⊆ JΓKC. The same argument holds for typings Γ ′qi . Indeed, we can
partition JΓKC = Γ ′′, Γ ′′p , Γ ′′q1

, . . . , Γ ′′qn , l̃ : G〈A|B̃|B̃〉 (as of Lemma B.14).

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:64 Giallorenzo et al.

Finally, by the definition of inclusion of service typings in Γ (cf § 3.2.1),
we can write judgement l̃ : G〈A|B̃|B̃〉 as the sequence of judgements
l̃ : G〈A|B̃|∅〉, l̃ : G〈A|B̃|B1〉, . . . , l̃ : G〈A|B̃|Bn〉.
Therefore we write JΓ ′KC as

JΓKC = Γ ′′, Γ ′′p , Γ ′′q1
, . . . , Γ ′′qn , l̃ : G〈A|B̃|∅〉, l̃ : G〈A|B̃|B1〉, . . . , l̃ : G〈A|B̃|Bn〉

Let
︷ ︸
l.q[B]

∣∣
i
= {li.qi[Bi], . . . , ln.qn[Bn]}, we prove the case by proving the typing derivation

for JΓKC `min JCK .
From the definition of EPP (Definition 6.3) we can write

JCK ≡ Cs | C ′′

where, given the shape of C, we know that C ′′ is the same as the one generated from
JC ′K, as seen above. Cs is

Cs = req k : p[A] <=>
︷ ︸
l.B; JC ′Kp |

∏
l.r[C] ∈ {

︷ ︸
l.q[B]}

acc k : l.r[C]; JC ′Kr

We now prove we can derive the typing of JΓKC `min JCK

Γ ′′ `min C ′′

Γ ′′p , p : k[A],k[A] : JGKA `min JC ′Kp l̃ 6∈ Γ ′′p

Γ ′′p , l̃ : G〈A|B̃|∅〉 `min req k : p[A] <=>
︷ ︸
l.B; JC ′Kp

bMin|Req1e
∆1

Γ ′′p , l̃ : G〈A|B̃|∅〉, Γ ′′q1
, l̃ : G〈A|B̃|B1〉, . . . , Γ ′′qn , l̃ : G〈A|B̃|Bn〉 `min Cs

bMin|Pare

Γ ′′, Γ ′′p , l̃ : G〈A|B̃|∅〉, Γ ′′q1
, l̃ : G〈A|B̃|B1〉, . . . , Γ ′′qn , l̃ : G〈A|B̃|Bn〉 `min Cs | C ′′

bMin|Pare

where

∆i =

∆i+1

li ⊆ l̃ Γ ′′qi
, init(qi[Bi],k,G) `min JC ′Kqi

qi 6∈ Γqi l̃ 6∈ Γqi

Γ ′′qi
, l̃ : G〈A|B̃|Bi〉 `min acc k : li.qi[Bi]; JC ′Kqi

bMin|Acce

Γ ′′qi
, l̃ : G〈A|B̃|Bi〉, . . . , Γ ′′qn , l̃ : G〈A|B̃|Bn〉

`min acc k : li.qi[Bi]; JC ′Kqi
|

∏
l.r[C] ∈

︷ ︸
l.q[B]

∣∣∣
i+1

acc k : l.r[C]; JC ′Kr

bMin|Pare

Note that we are reporting only the derivation terminating with bMin|Req1e, i.e., the one that
applies when Γ ′′p does not contain the typing of l̃. The other case is similar and it applies
rule bMin|Req2e.
— Γ ′′ `min C ′′ ;
— Γ ′′p , p : k[A],k[A] : JGKA `min JC ′Kp ;
— Γ ′′qi , init(qi[Bi],k,G) `min JC ′Kqi

.
hold by the induction hypothesis.
Case bMin|Start2e

Similar to case bMin|Start1e.
Case bMin|Req1e

and Case. bMin|Req2e follow the proof of case bMin|Start1e, focussing on the request branch.
Case bMin|Acce

Follows the proof of case bMin|Start1e, following the accept branch.
Case bMin|Conde

By induction hypothesis on C1 or C2.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:65

Case bMin|Come

From the premises we have C = k : p[A].e —> q[B].o(x);C ′ on which we can apply the
typing derivation

Γ ′ ` p : k[A], q : k[B] Γ ′ ` p.e : U Γ ′, q.x : U,k[A] : T ,k[B] : T ′ `min C ′
Γ ′,k[A] : ⊕ B.o(U); T ,k[B] : &A.o(U); T ′ `min k : p[A].e—> q[B].o(x);C ′

bMin|Come

Hence we consider Γ = Γ ′,k[A] : ⊕ B.o(U); T ,k[B] : &A.o(U); T ′. From the definition of
EPP (Definition 6.3) we have JCK ≡ Cc | C ′′ where

Cc = k : p[A].e—> B.o; JC ′Kp | k : A —> q[B].o(x); JC ′Kq

C ′′ =
∏

r ∈ {fp(C′)\{p,q}}

JC ′Kr |
∏
l

 ⊔
s ∈ bC′cl

JC ′Ks

From the definition of JΓKC we can write

JΓKC = JΓ ′KC ,k[A] : ⊕ B.o(U); T ,k[A] : &A.o(U); T ′

from the induction hypothesis we have that, let Γc = Γ ′, q.x :U,k[A] : T ,k[B] : T ′, Γc `min C ′
and therefore JΓcK

C′ `min JC ′K . We can partition JΓcK
C′ as

JΓcK
C′ = Γ ′′, Γp,k[A] : T , Γq, q.x : U,k[B] : T

′

such that

Γ ′′ `min C ′′
Γp,k[A] : T `min JC ′Kp Γq, q.x : U,k[B] : T

′ `min JC ′Kq

Γp,k[A] : T , Γq, q.x : U,k[B] : T
′ `min JC ′Kp | JC ′Kq

bMin|Pare

Γ ′′, Γp,k[A] : T , Γq, q.x : U,k[B] : T
′ `min JC ′Kp | JC ′Kq | C ′′

bMin|Pare

From the derivation on Rule bMin|Come we know that

JΓ ′KC
′
= Γ ′′, Γp, Γq

and therefore that

JΓKC = Γ ′′, Γp,k[A] : ⊕ B.o(U); T , Γq,k[B] : ⊕ A.o(U); T ′

To prove JΓKC `min JCK we prove that we can apply Rule bMin|Pare.

Γ ′′ `min C ′′

Γp ` p : k[A] q : k[B] 6∈ Γp

Γp ` p.e : U
Γp,k[A] : T `min JC ′Kp

Γp,k[A] : ⊕ B.o(U);T
`min k : p[A].e—> B.o; JC ′Kp

bMin|Sende

Γq ` p : k[B] p : k[A] 6∈ Γq

Γq, q.x : U,k[B] : T ′ `min JC ′Kq

Γp,k[B] : &A.o(U);T ′

`min k : A —> q[B].o(x); JC ′Kp

bMin|Recve

Γp,k[A] : ⊕ B.o(U);T , Γq,k[B] : ⊕ A.o(U);T ′

`min k : p[A].e—> B.o; JC ′Kp | k : A —> q[B].o(x); JC ′Kq

bMin|Pare

Γ ′′, Γp,k[A] : ⊕ B.o(U);T , Γq,k[B] : ⊕ A.o(U);T ′

`min k : p[A].e—> B.o; JC ′Kp | k : A —> q[B].o(x); JC ′Kq | C ′′

bMin|Pare

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:66 Giallorenzo et al.

Case bMin|Sende

Analogous to case bMin|Come

Case bMin|Recve

Analogous to case bMin|Come.
Case bMin|Pare

From the premises we know that C = C1 | C2 on which we can apply the typing derivation

Γ1 `min C1 Γ2 `min C2

Γ1, Γ2 `min C1 | C2

bMin|Pare

the case is proved applying the induction hypothesis.
Case bMin|Defe

From the premises we know that C = def X = C ′′ in C ′ on which we can apply the
typing derivation, with Γ = (Γ ′OΓ ′′), solve(

︷ ︸
k[A] : T O

︷ ︸
k ′[A ′] : T ′, tX)

Γx(X) = Γ
′
x(X) if X ∈ dom(Γx) ∩ dom(Γ ′x) @ k ′′[A ′′] ∈ dom(ΓOΓ ′)

X 6∈ dom(ΓOΓ ′) Γ ′x BX (Γ ′′,
︷ ︸
k ′[A ′] : T ′),C ′′ Γx BX (Γ ′,

︷ ︸
k[A] : T),C ′ Γ ′|locs ⊆ Γ ′

(Γ ′OΓ ′′), solve(
︷ ︸
k[A] : T O

︷ ︸
k ′[A ′] : T ′, tX) `min def X = C ′′ in C ′

bMin|Defe

To prove JΓKC `min JCK , we consider the processes p ∈ p̃ = pn(JCK) with cardinality
[1,n] and we let
— JCK =

∏
p Cp

— Cp = def Xp = JC ′′[Xp/X]Kp in JC ′[Xp/X]Kp

— Γc = JΓKC

—
︷ ︸
kp[A] : T =

{
k[A] : T | {p : k[A],k[A] : T } ⊆ Γc ∧ k[A] : T ∈

︷ ︸
k[A] : T

}
—

︷ ︸
k ′p[A

′] : T ′ =
{
k ′[A ′] : T ′ | {p : k ′[A ′],k ′[A ′] : T ′} ⊆ Γc ∧ k ′[A ′] : T ′ ∈

︷ ︸
k ′[A ′] : T ′

}
The case is proved by the derivation ∆1 where

∆i =
πpi

∆i+1⋃
p ∈ {pi+1,...,pn}

Γc|p `min
∏

p∈{pi+1,...,pn}

Cp

bMin|Pare

Γc|pi ,
⋃

p ∈ {pi+1,...,pn}

Γc|p `min Cpi |
∏

p∈{pi+1,...,pn}

Cp

bMin|Pare

and

πp =

Γx(Xp) = Γ ′x(Xp) if Xp ∈ dom(Γx)∩ dom(Γ ′x)

@k ′′[A ′′] : ∈ dom

(
JΓ ′KC

∣∣∣
p
O JΓ ′′KC

∣∣∣
p

)
Γ ′x B

(
JΓ ′′KC

∣∣∣
p
,
︷ ︸
k ′p[A

′] : T ′
)
, JC ′′[Xp/X]Kp

Γx B

(
JΓ ′KC

∣∣∣
p
,
︷ ︸
kp[A] : T

)
, JC ′′[Xp/X]Kp JΓ ′′KC

∣∣∣
p

∣∣∣∣
locs

⊆ JΓ ′KC
∣∣∣
p

JΓ ′KC
∣∣∣
p
O JΓ ′′KC

∣∣∣
p
, solve

(︷ ︸
kp[A] : T O

︷ ︸
k ′p[A

′] : T ′, tXp

)
`min def Xp = JC ′′[Xp/X]Kp in JC ′[Xp/X]Kp

bMin|Defe

Essentially, using the filtrations Γ |p and the partitions
︷ ︸
kp[A] : T and

︷ ︸
k ′p[A

′] : T ′ in ∆i, we
shape JΓKC in such a way that its partitions contain all and only the typings (variable,
ownership, definitions) that minimally type the endpoint choreography Cp, with the
exception of service typings, which are duplicated in all filtrations (as per its definition).
However, this is not a problem, as we consider a weakened form of minimal typing that
allows for additional, unused service typings.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:67

Such a partitioning of JΓKC is possible by the definitions of JΓKC and O (and ≺ by
extension):

JΓKC =
r
(Γ ′OΓ ′′), solve(

︷ ︸
k[A] : T O

︷ ︸
k ′[A ′] : T ′, tX)

zC
=

=
⋃

p∈p̃

((
JΓ ′KC O JΓ ′′KC

)
,
r
solve(

︷ ︸
k[A] : T O

︷ ︸
k ′[A ′] : T ′, tX)

zC)∣∣∣∣
p

=

=
⋃

p∈p̃

((
JΓ ′KC O JΓ ′′KC

)
, solve(

︷ ︸
k[A] : T O

︷ ︸
k ′[A ′] : T ′, tX)

)∣∣∣
p

Finally, we simply rename tX to tXp
(in each filtration p ∈ p̃).

Then in πp we prove the partition Γc|p to minimally type the endpoint choreography Cp.
All preconditions in πp hold as the environments JΓ ′KC, JΓ ′′KC,

︷ ︸
kp[A] : T , and

︷ ︸
k ′p[A

′] : T ′,
contain those and only definition, ownership, variable, and session types related to pro-
cess p (with the exception of duplicated service typings) and originally contained in Γ ′,
Γ ′′,

︷ ︸
k[A] : T , and

︷ ︸
k ′[A ′] : T ′. Definition typing identifiers are properly renamed to be unique

for p (i.e., from X to Xp).
Case bMin|Ende

Trivial.
Case bMin|Calle

From the premises we know that C = X , on which we can apply the typing derivation

Γ ′ = vars ∪ ownerships
︷ ︸
k ′[A ′] = sessions \ {

︷ ︸
k[A]}

Γ ′′ = vars(X) ∪ ownerships(X)
︷ ︸
k[A] = sessions(X) Γ ′′ ⊆ Γ ′

Γ ′,
︷ ︸
k[A] : tX,

︷ ︸
k ′[A ′] : end,X : (Γ ′′,

︷ ︸
k[A] : tX) `min X

bMin|Calle

Thus, in the case, Γ = Γ ′,
︷ ︸
k[A] : tX,

︷ ︸
k ′[A ′] : end,X : (Γ ′′,

︷ ︸
k[A] : tX). Given our assumption

of well sortedness, we can consider as EPP of X the composition

JXK =
∏
p∈p̃

Xp

Where processes p̃ are a subset of the processes present both in the prefix of procedure
call X in C and in the typing environment Γ (we recall, Γ contains typings that are
coalesced in JΓKC). From the definition of JΓKC, we can write

Γc = JΓKC = JΓ ′KC ,
︷ ︸
kp[A] : tX,

︷ ︸
k ′p[A

′] : end,
⋃
p∈p̃

Xp : (JΓ ′′Kp ,
︷ ︸
kp[A] : tXp

)

where
—

︷ ︸
kp[A] : tXp

=
{
kp[A] : tXp

| {p : k[A],k[A] : tX} ⊆ Γ
}

—
︷ ︸
k ′p[A

′] : end =
{
k ′p[A

′] : end | {p : k ′[A ′],k ′[A ′] : end} ⊆ Γ
}

Finally, let the cardinality of p̃ be [1,n]. The case is proved by the derivation ∆1 where

∆i =
πpi

∆i+1⋃
p ∈ {pi+1,...,pn}

Γc|p `min
∏

p∈{pi+1,...,pn}

Xp

bMin|Pare

Γc|pi ,
⋃

p ∈ {pi+1,...,pn}

Γc|p `min Xpi |
∏

p∈{pi+1,...,pn}

Xp

bMin|Pare

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:68 Giallorenzo et al.

and

πp =

JΓ ′KC
∣∣∣
p
= vars∪ ownerships

︷ ︸
k ′p[A

′] = sessions \ {
︷ ︸
kp[A]}

JΓ ′KC
∣∣∣
p
= vars(Xp)∪ ownerships(Xp)

︷ ︸
kp[A] = sessions(Xp) JΓ ′′Kp ⊆ JΓ ′KC

∣∣∣
p

JΓ ′KC
∣∣∣
p
,
︷ ︸
kp[A] : tXp ,

︷ ︸
k ′p[A

′] : end,Xp : (JΓ ′′Kp ,
︷ ︸
kp[A] : tXp) `min Xp

bMin|Calle

Where in πp we consider the usage of auxiliary functions vars, owenerships, and sessions
on the projection JCKp.

We finally prove Theorem B.13.

Proof of EPP Typing Preservation. From Theorem B.13, we have that Γ = Γd, Γc
and we need to prove that we can apply Rule bMin|DCe on Γd, JΓcK

C `min D, JCK

pco(Γd, JΓcK
C) Γd ` D JΓcK

C `min JCK

Γd, JΓcK
C `min D, JCK

bMin|DCe

where

— pco(Γd, JΓK
C) holds as, regarding session typings, JΓKC just coalesces session typings and

their related ownerships of service processes;
— Γd `min D holds as per premises of Theorem B.13;
— JΓK `min JCK holds from Lemma B.15 and the assumption of well-sortedness on C (if C

is well-sorted also JCK is well-sorted and typable by JΓKC).

B.5. EPP Theorem
Before proving Theorem 6.6 we define some auxiliary concepts to establish a correspondence
between a choreography and its projection.

Lemma B.16 (EPP Swap Invariance). Let C 'C C
′ then JCK 'C JC ′K.

Proof Sketch. In the proof we show that the projection is invariant under the rules
for the swapping relation 'C defined in Fig. 7. bCS|EtaEtae is trivial. For Rule bCS|EtaCnde we need
to check that the projections of the processes in the swapped interaction η do not change,
which holds by the definition of EPP for (cond) terms and the merging operator (merging
the same η returns η). The same reasoning on the EPP and the merging operator applies
to all other cases.

Lemma B.17 (EPP under ≡). Let C ≡C C
′ then JCK ≡C JC ′K.

Proof. Easy by cases on the rules of ≡C.

Lemma B.18 (Compositional EPP). Let C be well-typed and C = C1 | C2 then JCK ≡C
JC1K | JC2K.

Proof. By definition of EPP

JCK =
∏

p ∈ fp(C)

JCKp |
∏
l

 ⊔
s∈bCcl

JCKs

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:69

Since C is well-typed and C = C1 | C2, Rule bT|Pare applies and by definition of Γ1, Γ2 there
cannot be a process p such that p ∈ fp(C1) ∩ fp(C2). Therefore we can write

JCK ≡C

∏
p ∈ fp(C1)

JC1Kp |
∏

q ∈ fp(C2)

JC2Kq |
∏
l

 ⊔
s∈bCcl

JCKs

By the definition of service typing we know that i) locations can implement only one role

in a choreography and ii) a location can appear only in one service typing. Therefore there
cannot be two service processes at the same location in C1 and C2. Thus we can write

JCK ≡C

∏
p ∈ fp(C1)

JC1Kp︸ ︷︷ ︸
Ca1

|
∏

q ∈ fp(C2)

JC2Kq︸ ︷︷ ︸
Ca2

|
∏
l

 ⊔
r ∈ bC1cl

JC1Kr

︸ ︷︷ ︸

Cs1

|
∏
l′

 ⊔
s ∈ bC2cl′

JC2Ks

︸ ︷︷ ︸

Cs2

where JC1K = Ca1 | Cs1 and JC2K = Ca2 | Cs2 by definition of EPP.

B.5.1. Pruning. Following our definition of EPP, the projection of (start) terms on service
processes yield a parallel composition of (acc) terms on the locations subject of the (start).
However, the reduction of a (start) term might remove the availability to start new processes
on the locations subject of the (start) (i.e., if the reductum does not contain another (start)
term on the same locations). Contrarily, (acc) terms remain always available.

A similar observation can be drawn between conditional branches that contain (com)
terms whose projection merges all possible communications into (recv) and (send) terms.
Also in this case, reducing the condition and projecting the result we obtain a subset of all
possible branches for the considered communication.

Similarly to [16] and [13], we deal with these asymmetries by introducing the pruning
relation (see Definition 6.5), which allows us to ignore unused i) endpoint services and ii)
input branches.

Before continuing with the last auxiliary results and the proof of Theorem 6.6 we need
to extend the labels of the semantics of annotated Frontend Choreographies (see § B.1.1)
with the identifiers of the processes involved in a reduction

β ::= k : p[A] —> B.o | A〉q[B].o(x) | τ@p | τ

and the annotation of the reduction with Rule bC|Conde as

i = 1 if eval(e,D(p)) = true, i = 2 otherwise

D, if p.e {C1} else {C2}
τ@p
−−−→ D, Ci

bC|Conde

Let also pn(k : p[A] —> B.o) = {p}, pn(A〉q[B].o(x)) = {q}, pn(τ@p) = {p}, and pn(τ) = ∅

Lemma B.19 (Passive Processes Pruning Invariance). D,C
β
−→ D ′,C ′ implies

that for all p ∈ fp(C) \ pn(β), JC ′Kp ≺ JCKp.

Proof Sketch. By cases on the derivation of C. The only interesting case is bC|Conde in
which the projection of the processes receiving selections are merged. The thesis follows
directly from Definition 6.5 and Lemmas B.16 and B.17.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:70 Giallorenzo et al.

B.6. Proof of Theorem 6.6
We restate items (2) and (3) of Theorem 6.6 to include annotated reductions.

Theorem 6.6 (EPP Operational Correspondence)
Let D,C be well-typed and well-annotated. Then,

(1) (Completeness) D,C
β
−→ D ′,C ′ implies D, JCK

β
−→ D ′,C ′′ and JC ′K ≺ C ′′.

(2) (Soundness) D, JCK
β
−→ D ′,C ′′ implies D,C

β
−→ D ′,C ′ and JC ′K ≺ C ′′.

We report below the respective proofs of (Completeness) and (Soundness) separately.

Proof (Completeness).

Proof by induction on the derivation of D,C
β
−→ D ′,C ′.

. Case bC|Sende

we know that C = k : p[A].e—> B.o;Cc and we can write the derivation

η = k : p[A].e—> B.o D,k : p[A].e—> B.o I D ′

D, η;C
k: p[A] —> B.o
−−−−−−−−→ D ′, Cc

bC|Sende

and C ′ = Cc.
From the definition of EPP we have that JCK = Cact | Cs such that

Cact = k : p[A].e—> B.o; JCcKp |
∏

r ∈ fp(C)\{p}

JCcKr

and

Cs =
∏
l

 ⊔
s ∈ bCcl

JCcKs

While JC ′K ≡C C

′
act | Cs

C ′act = JCcKp |
∏

r ∈ fp(C′)\{p}

JCcKr

We can apply Rules bC|Pare, bC|Eqe, and bC|Sende on D, JCK such that

η = k : p[A].e—> B.o D,η I D ′′.... b
C|Pare

D, JCK
k: p[A] —> B.o
−−−−−−−−→ D ′′, C ′′

for which it holds that D ′ = D ′′ by Rule bD|Sende.

C ′′ = JCcKp |
∏

r ∈ fp(C′)\{p}

JCcKr | Cs

for which it holds that JC ′K ≺ C ′′.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:71

. Case bC|Recve

we know that D,C = D, k : A —> q[B].{oi(xi);Ci}i∈I and we can write the derivation

j ∈ I D,k : A —> q[B].oj(xj) I D ′

D, k : A —> q[B].{oi(xi);Ci}i∈I
k:A〉q[B].oj(xj)
−−−−−−−−−→ D ′, Cj

bC|Recve

for β = k : A〉q[B].oj(xj) and C ′ = Cj.
By the definition of EPP we have

JCK ≡C k :A —> q[B].
{
oi(xi); JCiKq

}
i∈I

|
∏

p ∈ fp(C)\{q}

(⊔
i ∈ I

JCiKp

)
|
∏
l

 ⊔
r ∈ bCcl

JCKr

Then we can apply Rules bC|Pare, bC|Eqe, and bC|Recve such that

j ∈ I D,k : A —> q[B].oj(xj) ID ′′
....
bC|Pare

D, JCK
k:A〉q[B].oj(xj)
−−−−−−−−→ D ′′,

q
Cj

y
q
|

∏
p ∈ fp(C)\{q}

(⊔
i ∈ I

JCiKp

)
|
∏
l

(⊔
r ∈ bCcl

JCKr

)

and

C ′′ = JCjKq |
∏

p ∈ fp(C)\{q}

(⊔
i ∈ I

JCiKp

)
|
∏
l

 ⊔
r ∈ bCcl

JCKr

From Rule bD|Recve we know that D ′′ = D ′. Finally JC ′K ≺ C ′′ by Definition 6.5 and
Lemma B.19.

. Case bC|Starte

we know that C = start k : p[A] <=>
︷ ︸
l.q[B];Cc and we can write the derivation

D#k ′, r̃ δ = start k ′ : p[A] <=>
︷ ︸
l.q[B] D, δ I D ′

D, start k : p[A] <=>
︷ ︸
l.q[B];C → D ′, C[k ′/k][̃r/q̃]

bC|Starte

and C ′ = Cc[k ′/k][̃r/q̃].
From the definition of EPP we have

JC ′K =
∏

q ∈ fp(C′)

JC ′Kq |
∏
l

 ⊔
s ∈ bC′cl

JC ′Ks

and

JCK ≡C

req k : p[A] <=>
︷ ︸
l.B; JCcKp

|
∏

l.q[B] ∈
︷ ︸
l.q[B]

acc k : l.q[B]; JCcKq

|
∏

r ∈ fp(C)\{p}

JCKr

|
∏
l′ 6∈ l̃

(∏
s ∈ bCcl′

JCKs

)

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:72 Giallorenzo et al.

we can apply Rules bC|Pare, bC|Eqe, bC|PStarte such that

i ∈ {1, . . . ,n} D#k ′′, r̃ ′ {
︷ ︸
l.B} =

⊎
i{
︷ ︸
li.Bi}i {̃r ′} =

⋃
i {̃r
′
i}

δ = start k ′′ : p[A] <=>
︷ ︸
l1.r
′
1[B1], . . . ,

︷ ︸
ln.r

′
n[Bn] D, δ I D ′′

.... b
C|Pare

D, JCK
τ
−→ D ′′,C ′′

where

C ′′ ≡C

JCcKp [k
′′/k]

|
∏

(q,r′) ∈
{
(q1,r′1),...,(qn,r′n)

} JCcKq [k
′′/k][q/r ′]

|
∏

r ∈ fp(Cc)\{p,q̃}

JCcKr

|
∏

l.q[B] ∈
︷ ︸
l.q[B]

acc k : l.q[B]; JCcKq

|
∏
l′ 6∈ l̃

(∏
s ∈ bCccl′

JCcKs

)
Observe that we can α-rename k ′′ to k ′ and r̃ ′ to r̃ as k ′′, k ′, r̃ ′, and r̃ are all fresh wrt
D,C.
From the application of Rule bD|Starte we can find Γ such that

Γ `min (D ′′,C ′′)[k ′/k ′′][̃r/r̃ ′]

and

Γ `min (D ′,C ′′)[k ′/k ′′][̃r/r̃ ′]

and by α-renaming we have that

D, JCK
τ
−→ D ′,C ′′[k ′/k ′′][̃r/r̃ ′]

Finally JC ′K ≺ C ′′[k ′/k ′′][̃r/r̃ ′] by Lemma B.19.
. Case bC|PStarte

Similar to (in particular the second part of) the proof of case bC|Starte.
. Case bC|Conde

we know that C ≡C if p.e {C1} else {C2} and we can write the derivation

i = 1 if eval(e,D(p)) = true, i = 2 otherwise

D, if p.e {C1} else {C2}
τ@p
−−−→ D, Ci

bC|Conde

We only consider the case for eval(e,D(p)) = true as eval(e,D(p)) = false is similar.
C ′ = C1 and by the definition of EPP

JCK ≡C if p.e {JC1Kp} else {JC2Kp} |
∏

q ∈ fp(C′)\{p}

JC1Kq t JC2Kq |
∏
l

 ⊔
r ∈ bCcl

JCKr

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:73

and

JC ′K ≡C JC1Kp |
∏

q ∈ fp(C′)\{p}

JC1Kq |
∏
l

 ⊔
r ∈ bC1cl

JC1Kr

We can apply rules bC|Pare, bC|Eqe, and bC|Conde such that D, JCK

τ@p
−−−→ D,C ′′ where

C ′′ = JC1Kp |
∏

q ∈ fp(C′)\{p}

JC1Kq t JC2Kq |
∏
l

 ⊔
r ∈ bCcl

JCKr

and JC ′K ≺ C ′′ by Lemma B.19.

. Case bC|Ctxe and Case bC|Pare

proved by the definition of EPP and the induction hypothesis.
. Case bC|Eqe

We can write the derivation

R ∈ {≡C , 'C } C1 RC
′
1 D,C′1

β
−→ D′,C′2 C′2 RC2

D,C1

β
−→ D′,C2

bC|Eqe

For R = ≡C, proved by the definition of EPP, Lemma B.17, and the induction hypothesis.
For R = 'C, proved by the definition of EPP, Lemma B.16, and the induction hypothesis.

Proof (Soundness). Proof by induction on the structure of C.

. Case C = k : p[A].e—> q[B].o(x);Cc
From the definition of EPP we have

JCK ≡C k : p[A].e—> B.o; JCcKp | k : A —> q[B].o(x); JCcKq |
∏

r ∈ fp(C)

JCcKr |
∏
l

 ⊔
s ∈ bCcl

JCKs

we proceed by subcases on the last applied Rule in the derivation of D, JCK

β
−→ D ′,C ′′.

. Case bC|Sende

Divided into subcases whether β = k : p[A] —> B.o holds or not.
. Case β = k : p[A] —> B.o

D, JCK reduces to D ′,C ′′ with Rules bC|Pare, bC|Eqe, ending with Rule bC|Sende such
that

C ′′ = JCcKp | k :A —> q[B].o(x); JCcKq |
∏

r ∈ fp(C)\{p,q}

JCcKr |
∏
l

 ⊔
s ∈ bCcl

JCKs

D,C mimics D, JCK with Rules bC|Eqe and bC|Sende for which D,C

β
−→ D ′′,C ′, D ′ =

D ′′ by Rule bD|Sende,

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:74 Giallorenzo et al.

JC ′K ≡C JCcKp | k :A —> q[B].o(x); JCcKq |
∏

r ∈ fp(C)\{p,q}

JCcKr |
∏
l

 ⊔
s ∈ bCcl

JCKs

and JC ′K ≺ C ′′.

. Case β 6= k : p[A] —> B.o

In this case D,C can mimic D, JCK with the application of Rules bC|Eqe, bC|Pare, and
bC|Sende and the thesis follows by the induction hypothesis.

. Case bC|Recve, bC|PStarte, or bC|Conde

In this caseD, JCK reduces with Rules bC|Eqe, bC|Pare, and respectively ends the derivation
with either bC|Recve, bC|PStarte, or bC|Conde, i.e., some process r ∈ fp(C) (p and q included)
either receives a message, starts a new session with some service processes, or reduces
to some branch. D,C can mimic D, JCK applying Rules bC|Eqe, bC|Pare and terminates
the derivation with either Rules bC|Recve, bC|PStarte (or bC|Starte, depending on the form of C)
or bC|Conde. The thesis follows by the induction hypothesis.

. Case C = k : p[A].e—> B.o;Cc

Similar to case C = k : p[A].e—> q[B].o(x);Cc.
. Case C = k : A —> q[B].{oi(xi);Ci}i∈I

From the definition of EPP we have

JCK ≡C k : A —> q[B].{oi(xi); JCiKq}i∈I |
∏
i ∈ I

 ⊔
p ∈ fp(Ci)

JCiKp

 |
∏
k

 ⊔
r ∈ bCcl

JCKr

we proceed by subcases on the last applied Rule in the derivation of D, JCK

β
−→ D ′,C ′′.

. Case bC|Recve

Divided into subcases whether β = k : A〉q[B].oj, j ∈ I or not.
. Case β = k : A〉q[B].oj, j ∈ I

D, JCK reduces to D ′,C ′′ with Rules bC|Pare, bC|Eqe, and terminates with Rule bC|Recve

such that

C ′′ = JCjKq |
∏
i ∈ I

 ⊔
p ∈ fp(Ci)\{q}

JCiKp

 |
∏
k

 ⊔
r ∈ bCcl

JCKr

D,C mimics D, JCK with Rule bC|Recve for which D,C

β
−→ D ′′,C ′ where D ′′ = D ′

by Rule bD|Recve and

JC ′K = JCjKq |
∏

p ∈ fp(Cj)\{q}

JCjKp |
∏
k

 ⊔
r ∈ bCjcl

JCjKr

and JC ′K ≺ C ′′ by Lemma B.19.

. Case β 6= k : A〉q[B].oj
For any β of this case D,C can mimic D, JCK with the application of Rules bC|Eqe

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:75

and bC|Pare, terminating with Rule bC|Recve and the thesis follows by the induction
hypothesis.

. Case bC|Sende, bC|PStarte, or bC|Conde

is similar to subcase Case bC|Recve, bC|PStarte, or bC|Conde of
Case C = k : p[A].e—> q[B].o(x);Cc.

. Case C = start k : p[A] <=>
︷ ︸
l.q[B];Cc

JCK ≡C req k : p[A] <=>
︷ ︸
l.B;Cc |

∏
r ∈ fp(Cc)\{p}

JCcKr |
∏
l

 ⊔
s ∈ bCcl

JCKs

we proceed by subcases on the last applied Rule in the derivation of D, JCK

β
−→ D,C ′′.

. Case bC|PStarte

D, JCK can reduce to D ′,C ′′ with a process r (including p) that starts a new session
with some service processes.D,C can reduce toD ′′,C ′ mimickingD, JCK by applying
Rules bC|Eqe, bC|Pare, terminating with either Rule bC|PStarte or bC|Starte.

. Case bC|Sende, bC|Recve, and bC|Conde

are similar to the corresponding proof for the previous cases.
. Case C = if p.e {C1} else {C2}

From the definition of EPP we have

JCK ≡C if p.e {JC1Kp} else {JC2Kp} |
∏

q ∈ fp(C1) ∪ fp(C2)\{p}

JC1Kq t JC2Kq | |
∏
l

 ⊔
r ∈ bCcl

JCKr

we proceed by subcases on the derivation of D, JCK

β
−→ D ′,C ′′.

. Case bC|Conde

D, JCK can reduce to D ′,C ′′ with:
. Case β = τ@p

that reduces to a branch. D,C can mimic D, JCK applying Rules bC|Eqe, bC|Pare, and
terminating the derivation with Rule bC|Conde. The case is proved by Lemma B.19.

. Case β = τ@r, r 6= p
where process r reduced to a branch. The case follows the proof of the previous
case and the thesis follows by the induction hypothesis.

. Case bC|Recve, bC|Sende, bC|PStarte

are similar to the corresponding proof for the previous cases.
. Case C = req k : p[A] <=>

︷ ︸
l.B;Cc

Case not allowed by the hypothesis that D, JCK
β
−→ D,C ′′.

. Case C = acc k :
︷ ︸
l.q[B];Cc

Case not allowed by the hypothesis that D, JCK
β
−→ D,C ′′.

. Case C = def X = C ′′ in C ′
proved by Lemma B.17 and the induction hypothesis.

. Case C = X
Case not allowed by the hypothesis that C is well-sorted.

. Case C = C1 | C2

JCK ≡C JC1K | JC2K by Lemma B.18.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:76 Giallorenzo et al.

we proceed by subcases for n equal to the length of the derivation of D, JCK
β
−→ D ′,C ′′

. Case n = 1
In this case the only applicable Rule is bC|PStarte where, Since both JC1K and JC2K
reduce, we can infer, let

︷ ︸
l.q[B] = l1.q1[B1], . . . , li.qi[Bi], li+1.qi+1[Bi+1] . . . , ln.qn[Bn]

that

C1 ≡C req k : p[A] <=>
︷ ︸
l.B;Cr1 |

i∏
j=1

acc k : lj.qj[Bj];C
j
1 | C1

c

C2 ≡C

n∏
j=i+1

acc k : lj.qj[Bj];C
j
2 | C2

c

and by the definition of EPP that

JC1K ≡C req k : p[A] <=>
︷ ︸
l.B; JCr1Kp |

i∏
j=1

acc k : lj.qj[Bj];
r
Cj1

z

qj
|

q
C1
c

y

JC2K ≡C

n∏
j=i+1

acc k : lj.qj[Bj];
r
Cj2

z

qj
|

q
C2
c

y

Observe that we can proceed without loss of generality as the symmetric case (with
p ∈ fp(C2)) follows the same structure.

i ∈ {1, . . . ,n} D#k ′, r̃ {
︷ ︸
l.B} =

⊎
i{
︷ ︸
li.Bi}i {̃r} =

⋃
i {̃ri}

δ = start k ′ : p[A] <=>
︷ ︸
l1.r1[B1], . . . ,

︷ ︸
ln.rn[Bn] D, δ I D ′′

D, JC1K | JC2K
τ
−→ D ′′,C ′′

bC|PStarte

where

C ′′ ≡C

JCr1Kp [k
′/k] |

∏i
j=1

r
Cj1

z

qj

|
∏n
j=i+1

r
Cj2

z

qj

 [k ′/k][̃r/q̃]

|

∏i
j=1 acc k : lj.qj[Bj];

r
Cj1

z

qj

|
∏n
j=i+1 acc k : lj.qj[Bj];

r
Cj2

z

qj

 |
q
C1
c

y
|

q
C2
c

y

Then D,C can mimic D, JCK applying Rule bC|PStarte with reduction

i ∈ {1, . . . ,n} D#k ′′, r̃ ′ {
︷ ︸
l.B} =

⊎
i{
︷ ︸
li.Bi}i {̃r ′} =

⋃
i {̃r
′
i}

δ = start k ′′ : p[A] <=>
︷ ︸
l1.r
′
1[B1], . . . ,

︷ ︸
ln.r

′
n[Bn] D, δ I D ′′

D,C1 | C2

τ
−→ D ′′,C ′

bC|PStarte

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:77

where

C ′ ≡C C
r
1[k
′′/k] |

∏ij=1C
j
1 |∏n

j=i+1C
j
2

 [k ′′/k][̃r ′/q̃] |

 ∏i
j=1 acc k : lj.qj[Bj];C

j
1

|
∏n
j=i+1 acc k : lj.qj[Bj];C

j
2

 |
q
C1
c

y
|

q
C2
c

y

Following the structure of the second part of the proof of Case bC|Starte for the proof
of Completeness of Theorem 6.6, by α-renaming we have D ′′ = D ′ and JC ′K ≺ C ′′.

. Case n > 1

For n > 1 we have a derivation similar to

R
... n− 1 times, each either
bC|Pare or bC|Eqe

D, JC1K | JC2K
β
−→ D ′,C ′′1 | JC2K

bC|Pare

where R is the last applied Rule, R ∈ {bC|Sende, bC|Recve, bC|PStarte, bC|Conde}. The thesis follows
from the induction hypothesis.

The proof for the mirror case D, JC1K | JC2K
β
−→ D ′, JC1K | C ′′2 follows the same

structure.
. Case C = 0

trivial.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:78 Giallorenzo et al.

B.7. Proof of Compilation from Frontend Choreographies to DCC Networks
We first define some auxiliary results used in the proof of Theorem 6.10.

We provide some results on DCC variable substitution. We remind that the only bound
names in DCC are the variables in (accept) terms (e.g., x in !(x);B). However, the following
lemmas prove that renaming free variables with fresh names in processes (and, by extension,
in services) preservers bisimilarity.

In the following, we abuse the notation for α-renaming to denote variable renaming in
running processes. We define the variable renaming operator for DCC processes P[x ′/x].

Definition B.20 (DCC Variable Renaming Operator). Let B . t be a DCC pro-
cess, then (B . t)[x ′/x] = B[x ′/x] . t / (x ′, x(t)) / (x,∅) where B[x ′/x] substitutes every
occurrence of x with x ′.

Lemma B.21 (DCC Process Variable Renaming). Let 〈Bs,P | Pc,M〉l be a DCC
service where P = B . t. Let P ′ = P[x ′/x] where x ′ is fresh in B. Then 〈Bs,P | Pc,M〉l →
〈Bs,P ′′ | Pc,M〉l ⇐⇒ 〈Bs,P ′ | Pc,M〉l → 〈Bs,P ′′[x ′/x] | Pc,M〉l.

Proof. The proof is by induction on the form of P. We report the most interesting
cases. Below we consider t ′ = t / (x ′, x(t)) / (x,∅).

Case P = o(y) from e;B ′ . t
The only applicable Rule is bDCC|Recve, hence we consider the interesting case in which M
contains a message for the queue defined by e. In the other case the Lemma trivially
holds as services cannot reduce on P and P ′. The case unfolds on the combinations of
whether i) y 6= x and ii) expression e contains x. Below we consider the comprehensive
case for y = x and e that contains x. The proof of the other cases is either trivial or a
slight modification of the reported one.
Since we assume we can apply Rule bDCC|Recve we take tc = eval(e, t) and M(tc) = (o, t ′) ::
m̃. From Definition B.20 we have that tc = eval(e[x ′/x], t ′).
Meaningful reductions on P and P ′ are of the form P → B ′ . t / (x, tm) and P ′ →
B ′[x ′/x] . t ′ / (x ′, tm) and the thesis follow by induction hypothesis.
Case P =

∑
i∈I [oi(xi) from e] {Bi} . t

The only applicable Rule on both P and P ′ is bDCC|Recve. The most comprehensive case is
for M that contains a message for operation oj, j ∈ I where xj = x and expression e
contains x. The remainder of the proof follows that of the previous case.
Case P = if e {B1} else {B2} . t
Trivial by Definition B.20 for which eval(e, t) = eval(e[x ′/x], t ′).
Case P = y = e;B . t
The only applicable Rule on both P and P ′ is bDCC|Assigne. The most comprehensive case
is for y = x and expression e that contains x. The case is proved considering that, by
Definition B.20, it holds that eval(e, t) = eval(e[x ′/x], t ′).
Case P = def X = B1 in B . t
The thesis follows from the application of Rule bDCC|Ctxe and the induction hypothesis.
Case P = ν〉x;B ′ . t
Let tc 6∈M. We have the reduction on Rule bDCC|Newquee

S→ 〈Bs,B ′ . t / (x, tc) | Pc,M[tc 7→ ε]〉l
Let service S ′ be equal to S with P replaced with P ′. S ′ can mimic the behaviour of S
by taking the fresh value t ′c = tc, obtaining the reduction

S ′ → 〈Bs,B ′[x ′/x] . t ′ / (x ′, t ′c) | Pc,M[t ′c 7→ ε]〉l
The same holds if we let S ′ reduce and prove that S can mimic it.
Case P = o@e1(e2) to e3;B ′ . t
We consider the comprehensive case in which expressions e1, e2 and e3 contain x. From

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:79

Definition B.20 we know that eval(e1, t) = eval(e1[x
′/x], t ′). Similarly the couples e2 and

e2[x
′/x] and e3 and e3[x ′/x] enjoy the same property when evaluated respectively on t

and t ′.
We analyse the case in which P moves and P[x ′/x] mimics it. The other case, for P[x ′/x]
that reduces and P that mimics it, follows the same structure.

B = o@e1(e2) to e3;B ′ eval(e1, t) = l

eval(e3, t) = tc eval(e2, t) = tm tc ∈ dom(M)

〈Bs, B . t | P,M〉l → 〈Bs, B ′ . t | P,M[tc 7→M(tc) :: (o, tm)]〉l
bDCC|InSende

and

B[x ′/x] = o@e1[x
′/x](e2[x

′/x]) to e3[x ′/x];B ′[x ′/x] eval(e1[x
′/x], t ′) = l

eval(e3[x
′/x], t ′) = tc eval(e2[x

′/x], t ′) = tm tc ∈ dom(M)

〈Bs, B[x ′/x] . t ′ | P,M〉l → 〈Bs, B ′[x ′/x] . t ′ | P,M[tc 7→M(tc) :: (o, tm)]〉l
bDCC|InSende

Case ?@e1(e2);B
′′ . t

We consider the comprehensive case where expressions e1 and e2 contain x. From Defi-
nition B.20 we know that eval(e1, t) = eval(e1[x

′/x], t ′). Similarly e2 and e2[x ′/x] enjoy
the same property when evaluated respectively on t and t ′.
Below we describe the case in which P moves and P[x ′/x] mimics it. The other case, for
P[x ′/x] that reduces and P that mimics it, follows the same structure. We assume the
start behaviour Bs =!(y);B ′.

B =?@e1(e2);B
′′ Q = B ′ .∅ / (y, eval(e2, t))

〈!(y);B ′, B . t | Pc, M〉l → 〈!(y);B ′, Q | B ′′ . t | Pc, M〉l
bDCC|InStarte

and

B[x ′/x] =?@e1[x
′/x](e2[x

′/x]);B ′′[x ′/x] Q = B ′ .∅ / (y, eval(e2[x
′/x], t ′))

〈!(y);B ′, B[x ′/x] . t ′ | Pc, M〉l → 〈!(y);B ′, Q | B ′′[x ′/x] . t ′ | Pc, M〉l
bDCC|InStarte

Lemma B.22 (DCC Network Variable Renaming). Let S and S ′ be two DCC
networks such that S = 〈Bs,P | Q〉l | S∗ and S ′ = 〈Bs,P[x ′/x] | Q〉l | S∗ then
S 〈Bs,P ′′ | Q ′〉l | S ′∗ ⇐⇒ S ′ → 〈Bs,P ′′[x ′/x] | Q ′〉l | S ′∗.

Proof Sketch. The proof is by induction on the derivation of S. The main observa-
tion is that the most part of cases are already considered in Lemma B.21. The cases not
considered in Lemma B.21 regard derivations on Rules:

— bDCC|Sende whose proof follows the same steps of case P = o@e1(e2) to e3;B
′ . t in

Lemma B.21;
— bDCC|Starte proved following the same steps of case P =?@e1(e2);B

′′ . t in Lemma B.21;
— bDCC|Eqe and bDCC|Pare where the thesis follows from the application of the induction hypoth-

esis.

We report below the statement of Theorem 6.10, enriched with annotation on the tran-
sitions of D,C.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:80 Giallorenzo et al.

Theorem 6.10 (Applied Choreographies)
Let D,C be a Frontend Choreography where C is projectable and Γ ` D,C for some Γ .
Then:

(1) (Completeness) D,C
β
−→ D ′,C ′ implies

(a) 〈〈D〉〉Γ , JCK Γ→+ 〈〈D ′〉〉Γ ′ ,C ′′ Γ
′

(b) JC ′K ≺ C ′′

(c) for some Γ ′, Γ ′ ` D ′,C ′

(2) (Soundness) 〈〈D〉〉Γ , JCK Γ→∗ S implies

(a) D,C→∗ D ′,C ′

(b) S→∗ 〈〈D ′〉〉Γ ′ ,C ′′ Γ
′

(c) JC ′K ≺ C ′′

(d) for some Γ ′, Γ ′ ` D ′,C ′

Proof (Completeness). We proceed by induction on the derivation ofD,C
β
−→ D ′,C ′.

The general strategy is to:

— apply Theorem 4.2 from which, let D = 〈〈D〉〉Γ , we have that D,C
β
−→ D ′,C ′, D ′ = 〈〈D〉〉Γ ′ ;

— since C is projectable, we can always apply Theorem 6.6, from which, D, JCK
β
−→ D ′,C ′′

and JC ′K ≺ C ′′;
— we compile the Backend Endpoint choreography D, JCK into the DCC network D, JCK Γ

and prove that we can reduce it in such a way that its reductum is ≡D-equivalent to the

compilation of the reductum 〈〈D ′〉〉Γ ′ ,C ′′ Γ
′

.

Case bC|Sende

We know that
— JCK ≡C Cp | Cc with Cp = k : p[A].e—> B.o;C ′p;

— D, JCK
β
−→ D ′,C ′′ with bC|Sende being the last applied Rule, where β = k :p[A].e—> B.o

and C ′′ = C ′p | Cc;
— let m̃ = D(k[A〉B]) and v = eval(e,D(p)) we have, by Rule bD|Sende,

D ′ = D
[
k[A〉B] 7→ m̃ :: (o, v)

]
which, by Theorem 4.2, corresponds to D ′ = D

[
l∗ : tc 7→ D(l∗ : tc) :: (o, tm)

]
by

bD|Sende where l∗ is the location of the receiving process playing role B and tc is the
correlation key used by the process playing A to send to the process playing role B.
The tree tm corresponds to value v exchanged in Rule bD|Sende.

We have two cases, whether the receiving process q is in the same location of the sender
p or not. Formally, let p ∈ D(l) we consider the exhaustive cases:

Case q ∈ D(l)

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:81

From Definition 6.7 we have that D, JCK Γ≡D S | Sc where, let tp = D(p) andM = D|l
— S =

〈
Cc|l

Γ, P | Q,M
〉
l

— P = o@k.B.l(e) to k.A.B; C ′p Γ. tp

— Q =
∏

q ∈ D(l)\{p}
Cc|q

Γ.D(q)

— Sc =
∏

l′ ∈ Γ\{l}

〈
Cc|l′

Γ,
∏

r ∈ D(l′)
Cc|r

Γ.D(s), D|l′
〉
l′

In this case D, JCK Γ can mimic D,C applying Rules bDCC|Eqe, bDCC|SPare, and bDCC|InSende

where S | Sc → S ′ | Sc with bDCC|SPare and S→ S ′ with

P = o@k.B.l(e) to k.A.B; C ′p Γ. tp eval(k.B.l, tp) = l

eval(k.A.B, tp) = tc eval(e, tp) = tm tc ∈ dom(M)

〈Bs, P | Q,M〉l → 〈Bs, P ′ | Q,M[tc 7→M(tc) :: (o, tm)]〉l
bDCC|InSende

where P ′ = C ′p
Γ. tp. Since by Definition 6.7 l, tc, and tm result from the evaluation

of the state of process p, D(p), we have that M[tc 7→M(tc) :: (o, tm)] = D ′|l.
This corresponds to the compilation of the reduction D ′,C ′, i.e,

〈〈D ′〉〉Γ ′ ,C ′′
Γ ′

≡D

〈
Cc|l

Γ ′,

P ′︷ ︸︸ ︷
C ′p

Γ ′.D ′(p) |

Q︷ ︸︸ ︷∏
q ∈ D′(l)\{p}

Cc|q
Γ ′.D ′(q), D ′|l

〉
l

S ′
|

∏
l′ ∈ Γ ′\{l}

〈
Cc|l′

Γ ′,
∏

r ∈ D′(l′)
Cc|r

Γ ′.D ′(r), D ′|l′

〉
l′

Sc
Where the changes in D ′ and Γ ′ affect only the compilation of the queue in D ′|l
identified by tc, while for all other terms · Γ= · Γ ′ and D ′|l′ = D|l′ .
Case q 6∈ D(l)

Similar to Case q ∈ D(l) except the last applied Rule in the reduction of D, JCK Γ is
bDCC|Sende.

Case bC|Recve

We know that
— JCK ≡C Cq | Cc with Cq = k : A —> q[B].{oi(xi);Ci}i∈I

— D, JCK
β
−→ D ′,C ′′ with Rule bC|Recve where β = k : A〉q[B].oj(xj), C ′ ≡C Cj | Cc. Let

D = 〈〈D〉〉Γ and D(k[A〉B]) = (oj, v) :: m̃, we have

D ′ = D
[
q 7→ D(q)[xj 7→ v]

][
k[A〉B] 7→ m̃

]
By Theorem 4.2, let D(tc : l∗) = (oj, tm) :: m̃∗ we have

D ′ = D
[
q 7→ D(q)[xj → tm]

][
l∗ : tc 7→ m̃∗

]
by bD|Recve where l∗ is the location of the receiving process playing role B and tc is the
correlation key used by the process playing A to send to the process playing role B.
The tree tm corresponds to the encoding of value v in the queue.

Let q@l ∈ Γ , tq = D(q), and M = D|l, from Definition 6.7 we have D, JCK Γ ≡D S | Sc
where

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:82 Giallorenzo et al.

— S =
〈
Cc|l

Γ,Q | R,M
〉
l

— Q =
∑
i∈I [oi(xi) from k.A.B]

{
Ci Γ
} . tq

— R =
∏

r∈D(l)\{q}
Cc|r

Γ.D(p)

— Sc =
∏

l′ ∈ Γ\{l}

〈
Cc|l′

Γ,
∏

s∈D(l′)
Cc|s

Γ. ts, D|l′

〉
l′

In this case D, JCK Γ can mimic D,C applying Rules bDCC|Eqe, bDCC|SPare, and bDCC|Recve.

Q =
∑
i∈I [oi(xi) from k.A.B]

{
Ci Γ

} . tq j ∈ I tc = eval(e, tq) M(tc) = (oj, tm) :: m̃∗〈
Cc|l

Γ,Q | R,M
〉
l
→

〈
Cc|l

Γ, Cj Γ. tq / (xj, tm) | R, M[tc 7→ m̃∗]
〉
l

bDCC|Recve

S | Sc → S ′ | Sc
bDCC|SPare

Where S ′ =
〈
Cc|l

Γ, Cj Γ. tq / (xj, tm) | R, M[tc 7→ m̃∗]
〉
l
. Let t ′q = tq / (xj, tm), Q ′ =

Cj Γ. t ′q, and M ′ =M[tc 7→ m̃].
Since by Definition 6.7 tc and tm respectively result from the evaluation of the state of
process q, D(q) and the encoding of value v, we have that M ′ = D ′|l and t ′q = D ′(q).
This corresponds to the compilation of the reduction D ′,C ′′, i.e,

〈〈D ′〉〉Γ ′ ,C ′′
Γ ′

≡D

S′︷ ︸︸ ︷〈
Cc|l

Γ ′,

Q′︷ ︸︸ ︷
Cj
∣∣
q
Γ ′. t ′q |

R︷ ︸︸ ︷∏
r ∈ D′(l)\{q}

Cc|r
Γ ′.D ′(r),M ′

〉
l

|
∏

l′ ∈ Γ\{l}

〈
Cc|l′

Γ ′,
∏

s ∈ D(l′)

Cc|s
Γ ′. ts, D ′

∣∣
l

〉
l′︸ ︷︷ ︸

Sc

Where the changes in D ′ and Γ ′ affect only the compilation of the queue in D ′|l identified
by tc and the state of q; while for all other terms · Γ= · Γ ′ and D ′|l′ = D|l′ .
Case bC|PStarte

We know that
— JCK ≡C Cr | Ca | Cc where, let l̃ : G〈A|B̃|B̃〉 ∈ Γ
— Cr = req k : p[A] <=>

︷ ︸
l.B;C ′r

— let l1.B1, . . . , ln.Bn =
︷ ︸
l.B, Ca =

n∏
i=1

acc k : li.qi[Bi];Cqi

We can apply Rules bC|Pare and bC|Eqe and lastly Rule bC|PStarte such that

i ∈ {1, . . . ,n} D#k ′, r̃ {
︷ ︸
l.B} =

⊎
i{
︷ ︸
li.Bi}i {̃r} =

⋃
i {̃ri}

δ = start k ′ : p[A] <=>
︷ ︸
l1.r1[B1], . . . ,

︷ ︸
ln.rn[Bn] D, δ I D ′

D,Cr | Ca → D ′, C ′r[k
′/k] |

∏
i

(
C ′qi [k

′/k][ri/qi]
)
| Ca

bC|PStarte

and

D,Cr | Ca | Cc
τ
−→ D ′,C ′r[k

′/k] |
∏
i

(
Cqi [k

′/k][ri/qi]
)
| Ca | Cc

thus C ′′ = C ′r[k ′/k] |
∏
i

(
Cqi [k

′/k][ri/qi]
)
| Ca | Cc

We can find Γ ′ = Γ , init(k ′, (p[A],
︷ ︸
q[B]),G) and Γ ′ ` D ′,C ′.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:83

Remark B.23. We have two cases for, let p@l ∈ Γ , whether l ∈ {̃l} or not. For a
clearer treatment of the case we proceed considering that l 6∈ {̃l} (i.e., no service process
is created in the same location — service — of the requester p). The other case follows the
same structure of l 6∈ {̃l} although the service located at l has Ca|l Γ as start behaviour
and D, JCK Γ applies Rule bDCC|InStarte in place of the bDCC|Starte for starting the DCC process
located at l.
Henceforth we proceed analysing the case for l 6∈ {̃l}.

From Definition 6.7 we have, let D∗ = 〈〈D ′〉〉Γ ′ and M∗ = D∗|l and M∗i = D∗|li

D∗,C ′′ Γ ′=
〈
Cc|l

Γ ′,P ′′ | R ′,M∗
〉
l
|

n∏
i=1

〈
Q ′′i ,Q

∗
i | R ′li ,M

∗
i

〉
li

| S ′c

In the following, we use the abbreviation t∗s = D∗(s) for process s in D∗.
— P ′′ = C ′r[k

′/k] Γ
′. t∗p

— R ′ =
∏

p′ ∈ D∗(l)\{p}
Cc|p′

Γ ′. t∗p′
— Q ′′i = accept(k, Bi,G〈A|B̃|B̃〉); Cqi

Γ ′

— Q∗i = Cqi [k
′/k][ri/qi] Γ

′. t∗qi
— R ′li =

∏
s ∈ D∗(li)

Cc|s
Γ ′. t∗s

— S ′c =
∏

l′ ∈ Γ\{l,l̃}

〈
Cc|l′

Γ ′,
∏

s′ ∈ D∗(l′)
Cc|s′

Γ ′. t∗s′ , D∗|l′
〉
l′

From Theorem 4.2 we can apply Rule bD|Starte on D, JCK → D∗,C ′′ such that we know that

k ′(t∗p) = k
′(t∗q1

) = . . . = k ′(t∗qn) = tk′

for some tk′ session descriptor of session k ′.
We proceed by proving that we can reduce D, JCK Γ→+ S.
From Definition 6.7 we have, let tp = D(p), M = D|l, and Mi = D|li

D, JCK Γ≡D

〈
Cc|l

Γ,P | R,M
〉
l
|

n∏
i=1

〈Qi,Rli ,Mi〉li | Sc

where

—

P = start(k, (l.A,
︷ ︸
l.B)); C ′r

Γ. tp =

=

�

I∈{A,B̃}
k.I.l = lI ;

�
I∈{B̃}

(
ν〉k.I.A; ?@k.I.l(k); sync(k) from k.I.A

)
;

�
I∈{B̃}

start@k.I.l(k) to k.A.I; C ′r Γ

 . tp

— Qi = accept(k, Bi,G〈A|B̃|B̃〉); Cqi
Γ=

!(k); �
I∈{A,B̃}\{Bi}

ν〉k.I.Bi ;

sync@k.A.l(k) to k.Bi.A ;
start(k) from k.A.Bi ; Cqi

Γ

— R =
∏

p′ ∈ D(l)\{p}
Cc|p′

Γ. tp′

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:84 Giallorenzo et al.

— Rli =
∏

s ∈ D(li)
Cc|s

Γ. ts

— Sc =
∏

l′ ∈ Γ\{l,l̃}

〈
Cc|l′

Γ,
∏

s′ ∈ D(l′)
Cc|s′

Γ. ts′ , D|l′

〉
l′

D, JCK Γ can mimic D,C with the following sequence of reductions. Note that we make
use of renaming on (accept) terms in Q1, . . . ,Qn and variable renaming on P (as of
Definition B.20) to align the evolution of D, JCK Γ with the evolution of D,C, in which
k has been renamed with the fresh name k ′. Since the renamed DCC network and the
original one are bisimilar, as per Lemma B.22, we can proceed to prove our results on
the original DCC network using the DCC renamed network as a proxy.
Therefore we take S∗0 ∼ D, JCK Γ

S∗0 =
〈
Cc|l

Γ,P[k ′/k] | R,M
〉
l
|

n∏
i=1

〈Qi[k ′/k],Rli ,Mi〉li | Sc

S∗0 →

bDCC|SEqe bDCC|SPare bDCC|PPare bDCC|Assigne
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

}
n+ 1 times

1©

2.1©
bDCC|SEqe bDCC|SPare bDCC|Newquee
−−−−−−−−−−−−−−−−−−−−→

2.2©
bDCC|SEqe bDCC|SPare bDCC|Starte
−−−−−−−−−−−−−−−−−−−→

2.3©
bDCC|SEqe bDCC|SPare bDCC|Newquee
−−−−−−−−−−−−−−−−−−−−→

}
n times

2.4©
bDCC|SEqe bDCC|SPare bDCC|Sende
−−−−−−−−−−−−−−−−−−−→

2.5©
bDCC|SEqe bDCC|SPare bDCC|Recve
−−−−−−−−−−−−−−−−−−−→

2©

n times

3.1©
bDCC|SEqe bDCC|SPare bDCC|Sende
−−−−−−−−−−−−−−−−−−−→

3.2©
bDCC|SEqe bDCC|SPare bDCC|Recve
−−−−−−−−−−−−−−−−−−−→

n times

3©

→ S∗1

We briefly comment the numbered transitions.
— In 1© P[k ′/k] proceeds to store (for n+1 times, l plus li, i ∈ {1, . . . ,n}) the locations

of all roles under k ′.
— In 2©, for each location li, i ∈ {1, . . . ,n} (for each service process):

— P creates its receiving queue for the service process 2.1©;
— in 2.2© P synchronises with the service at location li starting (bDCC|Starte) a new

service process;
— in 2.3© the service process creates its own queues for all other roles in the session

(hence n times);
— in 2.4© the service process sends the correlation values to P;
— finally P receives the message in 2.5©.

— In 3© for each service process (n times) 3.1© the starter sends a message to the service
process to start the session and 3.2© the addressee receives it.

Finally we have

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:85

S∗1 =
〈
Cc|l

Γ | P ′ | R,M ′
〉
l
|

n∏
i=1

〈Qi[k ′/k],Q ′i | Rli ,M ′i〉li | Sc

where
— P ′ = C ′r

Γ [k ′/k] . t ′p, and
— Q ′i = Cqi

Γ [k ′/k] . tk′
From the transitions presented above we know that there exists t ′k′ such that t ′p =
tp / (k ′, t ′k′), where t

′
k′ is a session descriptor for session k ′ (i.e., it contains all the

locations and correlation keys used by the processes in session k ′). In this case, we take
t ′k = tk′ obtained from the derivation D,C→ D∗,C ′.
Similarly, M ′ and M ′1, . . . ,M ′n contain the necessary (empty) queues to support com-
munication in session k ′.

M ′ =M[k ′.B1.A(tk′) 7→ ε] . . . [k ′.Bn.A(tk′) 7→ ε]

and (∅ being a totally undefined function on Val ⇀ M)

Mi = ∅ [k ′.A.Bi(tk) 7→ ε][k ′.B1.Bi(tk) 7→ ε] . . . [k ′.Bi−1.Bi(tk) 7→ ε] . . .
. . . [k ′.Bi+1.Bi(tk) 7→ ε] . . . [k ′.Bn.Bi(tk) 7→ ε]

We proceed with the proof taking S ∼ S∗1 as S is simply the renaming of k ′ to k on start
behaviours Qi, i ∈ {1, . . . ,n} (trivially Qi[k ′/k][k/k ′] = Qi)

S =
〈
Cc|l

Γ | P ′ | R,M ′
〉
l
|

n∏
i=1

〈Qi,Q ′i | Rli ,M ′i〉li | Sc

We now proceed to prove that D, JCK Γ →+ D∗,C ′′ Γ
′

, i.e. that D∗,C ′′ Γ
′

= S with
Γ ′ ` D ′,C ′.
We prove that

D∗,C ′′
Γ ′︷ ︸︸ ︷〈

Cc|l
Γ ′,P ′′ | R ′,M∗

〉
l
|

n∏
i=1

〈
Q ′′i ,Q

∗
i | R ′li ,M

∗
i

〉
li

| S ′c =

S︷ ︸︸ ︷〈
Cc|l

Γ | P ′ | R,M ′
〉
l
|

n∏
i=1

〈
Qi,Q

′
i | Rli ,M

′
i

〉
li

| Sc

— M∗ and M ′ are equal and similarly M∗i and Mi are pair-wise equal by construction
and rule bD|Starte;

— Cc|l
Γ= Cc|l

Γ ′ as Γ |locs = Γ ′|locs by construction;
— P ′′ = P ′ is proved by

C ′r[k
′/k] Γ

′. t∗p = C ′r
Γ [k ′/k] . t ′p

which holds as
i) C ′r[k ′/k] Γ

′
= C ′r

Γ [k ′/k] since
(a) Γ ′ does not contain any new process used in C ′r;
(b) by renaming, and Lemma B.22.

ii) t∗p = t ′p by construction and Rule bD|Starte.
— Q ′∗i = Q ′i proved by

Cqi [k
′/k][ri/qi] Γ

′. t∗qi = Cqi
Γ [k ′/k] . tk′

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:86 Giallorenzo et al.

whose proof of equivalence follows that of P ′′ = P ′, except that Γ ′ contains the
location of the process (ri) used in Cqi [k

′/k][ri/qi].
— Q ′′i = Qi proved by

accept(k, Bi,G〈A|B̃|B̃〉); Cqi
Γ ′= accept(k, Bi,G〈A|B̃|B̃〉); Cqi

Γ

which holds as Cqi
Γ ′= Cqi

Γ because Γ and Γ ′ contain the same service typings.
— R ′ = R is proved by ∏

p′ ∈ D∗(l)\{p}

Cc|p′
Γ ′. t∗p′ =

∏
p′ ∈ D(l)\{p}

Cc|p′
Γ. tp′

for which
i) Cc|p′

Γ ′= Cc|p′
Γ as Γ ′ does not contain any new process used in Cc.

ii) t∗p′ = tp′ unchanged by the reductions of D,C and D, JCK Γ.
— R ′li = Rli whose proof follows that of R ′ = R.
— S ′c = Sc following the proof of Cc|l Γ= Cc|l

Γ ′ and R ′li = Rli .
Case bC|Starte

While the original FC program reduces applying rule bC|Starte, the endpoint projection
D, JCK will mimic it applying Rule bC|PStarte, as per Theorem 6.6. Hence, to prove this case,
we can follow the same proof of case bC|PStarte.
Case bC|Conde

We have JCK = Cp | Cc where Cp = if p.e {C1} else {C2}. Let p@l ∈ Γ and
— tp = D(p);
— P = if e { C1

Γ } else { C2
Γ } . tp;

— R =
∏

r ∈ D(l)\{p}
Cc|r

Γ. tr

— Sc =
∏

l′ ∈ Γ\{l}

〈
Cc|l′

Γ,
∏

r ∈ D(l′)
Cc|r

Γ. tr, D|l′

〉
l′

From Definition 6.7 we have, let M = D|l

D, JCK Γ≡D

〈
Cc|l

Γ,P | R,M
〉
l
| Sc

we reduce D, JCK applying Rules bC|Pare, bC|Eqe and lastly Rule bC|Conde. We analyse only the
case for eval(e, tp) = true as the other case for eval(e, tp) = false follows the same
structure.

D, JCK
τ
−→ D ′,C ′′

and C ′′ = C1 | Cc and D ′ = D by the definition of bC|Conde. We can choose Γ = Γ ′, for
which it holds that Γ ` D ′,C ′.
From Definition 6.7 we have

D ′,C ′′ Γ ′= D,C ′′ Γ=
〈
Cc|l

Γ, C1
Γ. tp | R,M

〉
l
| Sc

D, JCK Γ can mimic D,C applying Rules bDCC|Eqe, bDCC|SPare, bDCC|PPare, and lastly bDCC|Conde for
which

D, JCK Γ→
〈
Cc|l

Γ, C1
Γ. tp | R,M

〉
l
| Sc

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:87

Case bC|Ctxe

The thesis follows from the induction hypothesis as D,C applies Rule bC|Ctxe and D, JCK Γ
can mimic it with Rule bDCC|Ctxe.
Case bC|Pare

The thesis follows from the induction hypothesis.
Case bC|Eqe

The thesis follows from the induction hypothesis. Starting from any configuration of
D,C, D, JCK Γ can always mimic the evolution of D,C when it applies Rule bC|Eqe: in both
cases that R = ≡ or R = 'C, D, JCK Γ can apply bDCC|Eqe, bDCC|SPare, and bDCC|PPare to mimic
D,C.

Before proceeding with the proof of (Soundness) of Theorem 6.10, we extend the semantics
of DCC by annotating its transitions with the variable paths (of the kind x = x.y.z) on
which DCC operations execute. We range over DCC transition labels with λ.

λ ::= x | ν〉x | ?(x) | o from x | o to x | τ

We report in Figure 27 the annotated semantics of DCC.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:88 Giallorenzo et al.

t ′ = eval(x, t)

x = e ;B . t x
−→ B . t / (x, t ′)

bDCC|Assigne
B . t λ

−→ B ′ . t ′
def X = B1 in B . t λ

−→ def X = B1 in B ′ . t ′
bDCC|Ctxe

i = 1 if eval(e, t) = true, i = 2 otherwise

if e {B1} else {B2} . t
τ
−→ Bi . t

bDCC|Conde
P ≡D P1 | P2 P1

λ
−→ P ′1 P ′1 | P2 ≡D P

′

〈Bs, P, M〉l
λ
−→ 〈Bs, P ′, M〉l

bDCC|PEqe

B = ν〉x;B tc 6∈ dom(M) M ′ =M[tc 7→ ε]

〈Bs, B . t | P, M〉l
ν〉x
−−→ 〈Bs, B . t / (x, tc) | P, M ′〉l

bDCC|Newquee

B ∈ { oj(xj) from e;Bj ,
∑
i∈I [oi(xi) from e] {Bi} }

j ∈ I tc = eval(e, t) M(tc) = (oj, tm) :: m̃

〈Bs, B . t | P, M〉l
oj from e
−−−−−−→ 〈Bs, Bj . t / (xj, tm) | P, M[tc 7→ m̃]〉l

bDCC|Recve

B = o@e1(e2) to e3;B ′ eval(e1, t) = l

eval(e3, t) = tc eval(e2, t) = tm tc ∈ dom(M)

〈Bs, B . t | P,M〉l
o to e3−−−−→ 〈Bs, B ′ . t | P,M[tc 7→M(tc) :: (o, tm)]〉l

bDCC|InSende

B =?@e1(e2);B
′′ Q = B ′ .∅ / (x, eval(e2, t))

〈!(x);B ′, B . t | P, M〉l
?(e2)−−−→ 〈!(x);B ′, Q | B ′′ . t | P, M〉l

bDCC|InStarte

B = o@e1(e2) to e3;B ′′ eval(e1, t) = l
′ eval(e3, t) = tc

eval(e2, t) = tm tc ∈ dom(M ′) M ′′ =M ′[tc 7→M ′(tc) :: (o, tm)]

〈Bs,B . t | P, M〉l | 〈B ′s,P ′, M ′〉l′
o to e3−−−−→ 〈Bs,B ′′ . t | P, M〉l | 〈B ′s,P ′,M ′′〉l′

bDCC|Sende

B =?@e1(e2);B
′′ B ′s =!(x);B ′ eval(e1, t) = l

′ Q = B ′ .∅ / (x, eval(e2, t))

〈Bs, B . t | P,M〉l | 〈B ′s, P ′, M ′〉l′
?(e2)−−−→ 〈Bs, B ′′ . t | P, M〉l | 〈B ′s,Q | P ′, M ′〉l′

bDCC|Starte

S
λ
−→ S ′

S | S1
λ
−→ S ′ | S1

bDCC|SPare
S ≡D S1 S1

λ
−→ S ′1 S ′1 ≡D S

′

S
λ
−→ S ′

bDCC|SEqe

Fig. 27. Dynamic Correlation Calculus, annotated semantics.

We also introduce two operators on sequences of DCC transition labels. Let λ, λ̃ be a
sequence of DCC labels, the filtering of λ, λ̃ on k , written (λ, λ̃)

∣∣∣
k
is defined as

(λ, λ̃)
∣∣∣
k
=

λ, (λ̃

∣∣∣
k
) if λ ∈

k.x.y, ν〉k.x.y, ?(k),

sync from k.x.y, sync@k.x.y,

start from k.x.y, start@k.x.y

λ̃
∣∣∣
k

otherwise
ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:89

Let λ1, λ̃1 and λ2, λ̃2 be two sequences of DCC labels, the complement of λ1, λ̃1 on λ2, λ̃2
, written (λ1, λ̃1) \ (λ2, λ̃2) is defined as

(λ1, ε) \ (λ2, λ̃2) =

{
ε if λ1 = λ2
λ1 otherwise

(λ1, λ̃1) \ (λ2, λ̃2) =

{
λ̃1 \ λ̃2 if λ1 = λ2
λ1, (λ̃1 \ (λ2, λ̃2)) otherwise

Below we state Lemma B.24 that proves that, given a DCC system S and a sequence

of reductions λ̃ for which S
λ̃
−→ S ′, if the first action is the initiation of a session k, then

we can reorder the execution of the subsequent actions in λ̃ such that we first execute all
transitions related to the start of k and then all the remaining actions, obtaining the same
final system S ′.

Lemma B.24 (DCC Start Permutation). Let S be a composition of DCC services

such that S
λ̃
−→ S ′ where λ̃ = k.C.l, λ̃ ′, then let λ̃k = λ̃

∣∣∣
k
and λ̃∗ = λ̃ \ λ̃k we have S

λ̃k−−→ S1

and S1
λ̃∗−→ S ′.

Proof Sketch. The proof is by induction on the length of λ̃. The main intuition is
that, since the first action is the start of the new session k, all other actions in λ̃ ′ either
are related to the initiation of k or do not affect it. Hence, we can reorder the execution
of actions in λ̃ such that first we execute all actions regarding the start of the session3

contained in λ̃k and then all the other actions in λ̃∗.

Next we state Lemma B.25 that proves that, given

— a well-typed FC endpoint choreography D,C
— its DCC compilation S
— the DCC system S ′ that results from an arbitrary number of steps of reduction belonging

to the start of a session k in S

we can execute the remaining steps of reduction in S ′ to complete the start of session
k, obtaining the final system S ′′ and prove that S ′′ is the same DCC system as the one
obtained from the compilation of D ′,C ′, the reductum of the source FC choreography D,C
after the step of reduction to start session k.

Lemma B.25 (DCC Start Completion). Let Γ ` D,C, C a endpoint choreography

C = req k : p[A] <=> l1.[B1], . . . , ln.[Bn];Cr |

n∏
i=1

acc k : li.qi[Bi];Cqi

and 〈〈D〉〉Γ ,C Γ = S such that S
λ̃
−→ S ′ where λ̃

∣∣∣
k
= λ̃ then i) S ′

λ̃′

−→ S ′′, ii) D,C → D ′,C ′,

and iii) there exists some Γ ′ s.t. Γ ′ ` D ′,C ′ and 〈〈D ′〉〉Γ ′ ,C ′ Γ ′= S ′′.

Proof. Proof by case analysis on the length of λ̃.
Let p@l ∈ Γ . To proceed, we have two subcases whether l ∈ {l1, . . . , ln}, i.e., whether

one of the service processes is at the same location of p. Since the subcases follow the same

3Note, this does not imply nor require that λ contains all actions needed to start session k.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:90 Giallorenzo et al.

structure, we detail only the proof for l 6∈ {l1, . . . , ln} which allows for a uniform treatment.
In the other case, i) we should account for transitions on the same service of p with Rules
bDCC|InStarte and bDCC|InSende and ii) we would have a newly created process in parallel with p in
D,C and in the correspondent DCC system S ′′.

Provided n is the number of service processes involved in the start of the session k, from
Definition 6.7 we can count the number of transitions needed to complete the start of a
session. Indeed, given a D,C with

C = req k : p[A] <=> l1.[B1], . . . , ln.[Bn];Cr |
n∏
i=1

acc k : li.qi[Bi];Cqi

and 〈〈D〉〉Γ ,C Γ = S then we can write the sequence of transitions of the compiled DCC
system

S

1©︷ ︸︸ ︷
k.I.l
−−−→
2.1©︷ ︸︸ ︷

ν〉k.A.I
−−−−−→

2.2©︷ ︸︸ ︷
?(k)
−−−→

2.3©︷ ︸︸ ︷
ν〉k.I.I′
−−−−−→

2.4©︷ ︸︸ ︷
sync@k.I′.A
−−−−−−−−→

2.5©︷ ︸︸ ︷
sync from k.I′.A
−−−−−−−−−−→︸ ︷︷ ︸

2©
3.1©︷ ︸︸ ︷

start@k.I′.A
−−−−−−−−→

3.2©︷ ︸︸ ︷
start from k.I′.A
−−−−−−−−−−→︸ ︷︷ ︸
3©

S ′′

and count the number of all the transitions to complete the start, let it be m, as the sum
of:

1©. n+1 times, for I ∈ {A, B̃}, with last Rule bDCC|Assigne;
2©. n times, for I ∈ B̃:

2.1©. reduces with last applied Rule bDCC|Newquee;
2.2©. reduces with last applied Rule bDCC|Starte;
2.3©. n times for I ′ ∈ {A, B̃} \ {I}, reduces with last applied Rule bDCC|Newquee;
2.4©. reduces with last applied Rule bDCC|Sende;
2.5©. reduces with last applied Rule bDCC|Recve;

3©. n times, for I ∈ B̃:
3.1©. reduces with last applied Rule bDCC|Sende;
3.2©. reduces with last applied Rule bDCC|Recve;

and m = n2 + 7n+ 1. We proceed unfolding the proof on the length of λ̃.

Case |{λ̃}| = 1

Since the cardinality of λ̃ is one and that from the premises we know that λ̃ contains
only transitions belonging to the start of session k, we can infer that λ̃ = k.C.l where
C ∈ {A, B̃}.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:91

To prove the thesis we let S ′ do all the remaining transitions to start the session and
show that D,C can mimic it. Let

︷ ︸
l.B = l1.B1, . . . , ln.Bn and l̃ : G〈A|B̃|B̃〉 ∈ Γ .

From Definition 6.7 and Theorem 4.2 we have, let D = 〈〈D〉〉Γ , M = D(l), Mi = D(li),
and tp = D(p)

〈〈D〉〉Γ ,C Γ≡D

〈
Cc|l

Γ,P | R,M
〉
l
|

n∏
i=1

〈Qi,Rli ,Mi〉li | Sc

where

—

P = start(k, (l.A,
︷ ︸
l.B)); Cr Γ. tp =

=

�

I∈{A,B̃}
k.I.l = lI ;

�
I∈{B̃}

(
ν〉k.I.A; ?@k.I.l(k); sync(k) from k.I.A

)
;

�
I∈{B̃}

start@k.I.l(k) to k.A.I;

 ; Cr Γ. tp

— Qi = accept(k, Bi,G〈A|B̃|B̃〉); Cqi
Γ=

!(k); �
I∈{A,B̃}\{Bi}

ν〉k.I.Bi ;

sync@k.A.l(k) to k.Bi.A ;
start(k) from k.A.Bi ; Cqi

Γ

— R =
∏

p′ ∈ D(l)\{p}
Cc|p′

Γ. tp′

— Rli =
∏

s ∈ D(li)
Cc|s

Γ. ts

— Sc =
∏

l′ ∈ Γ\{l,l̃}

〈
Cc|l′

Γ,
∏

s′ ∈ D(l′)

Cc|s′
Γ. ts′ , D|l′

〉
l′

The first transition, λ = k.C.l consumed the first assignment of location and assigned
the location of role C to k.C.l in the state of the starter tp.
Let us suppose, without loss of generality, that C = A, then we have

P ′ =

�
I∈{B̃}

k.I.l = lI ;

�
I∈{B̃}

(
ν〉k.I.A; ?@k.I.l(k); sync(k) from k.I.A

)
;

�
I∈{B̃}

start@k.I.l(k) to k.A.I;

 ; Cr Γ. tp / (k.A.l, l)

and 〈〈D〉〉Γ ,C Γ
k.A.l
−−−→ S ′ where

S ′ =
〈
Cc|l

Γ,P ′ | R,M
〉
l
|

n∏
i=1

〈Qi,Rli ,Mi〉li | Sc

Since in its reduction D,C renames the new session with a fresh name, we first rename
session k, in P and the service processes Qi, to k ′, which is fresh. We take

P ′′ = P ′[k ′/k] =

�
I∈{B̃}

k ′.I.l = lI ;

�
I∈{B̃}

(
ν〉k ′.I.A; ?@k ′.I.l(k ′); ?@k ′.I.l(k ′);

)
;

�
I∈{B̃}

sync(k ′) from k ′.I.A

 ; Cr Γ [k
′/k] . t ′′p

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:92 Giallorenzo et al.

where, let t ′p = tp / (k.A.l, l), t ′′p = t ′p / (k
′,k(t ′p)) / (k,∅).

We take

S∗0 =
〈
Cc|l

Γ,P ′′ | R,M
〉
l
|

n∏
i=1

〈Qi[k ′/k],Rli ,Mi〉li | Sc

and by Lemma B.22 we have S∗0 ∼ S ′.
Now we can proceed with the rest of the transitions of the start procedure, as defined at
the beginning of the proof. Finally we have

S ′′ =
〈
Cc|l

Γ,P ′′′ | R,M ′
〉
l
|

n∏
i=1

〈Qi[k ′/k],Q ′i | Rli ,M ′i〉li | Sc

where P ′′′ = Cr Γ [k
′/k] . t ′p and Q ′i = Cqi

Γ [k ′/k] . tk′
From the transitions presented above we know that there exists t ′k′ such that t ′p =
tp / (k ′, t ′k′), where t

′
k′ is a session descriptor for session k ′ (i.e., it contains all the

locations and correlations keys used by the processes in session k ′).
We proceed by proving that D,C can mimic 〈〈D〉〉Γ ,C Γ.
We can apply Rules bC|Pare and bC|Eqe and lastly Rule bC|PStarte such that

i ∈ {1, . . . ,n} D#k ′, r̃ {
︷ ︸
l.B} =

⊎
i{
︷ ︸
li.Bi}i {̃r} =

⋃
i {̃ri}

δ = start k ′ : p[A] <=>
︷ ︸
l1.r1[B1], . . . ,

︷ ︸
ln.rn[Bn] D, δ I D ′

D, req k : p[A] <=>
︷ ︸
l.B;C |

∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

)
→

D ′, C[k ′/k] |
∏
i

(
Ci[k

′/k][̃ri/q̃i]
)
|
∏
i

(
acc k :

︷ ︸
li.qi[Bi];Ci

) bC|PStarte

and

D,C | Cc → D ′,Cr[k
′/k] |

∏
i

(
Cqi [k

′/k][ri/qi]
)
|

n∏
i=1

acc k : li.qi[Bi];Cqi | Cc

thus C ′ = Cr[k ′/k] |
∏n
i=1

(
Cqi [k

′/k][ri/qi]
)
|
∏n
i=1 acc k : li.qi[Bi];Cqi | Cc.

From the hypothesis we know that Γ ` D,C and therefore that Γ = Γ1, l̃ : G〈A|B̃|B̃〉. We
can find Γ ′ = Γ , init(k ′, (p[A],

︷ ︸
q[B]),G) and Γ ′ ` D ′,C ′.

Finally, we need to prove that S∗1 = 〈〈D ′〉〉Γ ′ ,C ′ Γ ′.
From Definition 6.7 we have

〈〈D ′〉〉Γ ′ ,C ′ Γ ′=
〈
Cc|l

Γ ′,P ′′ | R ′,M∗
〉
l
|

n∏
i=1

〈
Q ′′i ,Q

∗
i | R ′li ,M

∗
i

〉
li

| S ′c

Let D∗ = 〈〈D ′〉〉Γ ′ we use the abbreviations t∗s = D∗(s), for s process in D∗, andM∗ = D|l,
and M∗i = D|li , in D∗,C ′ Γ ′we have
— P ′′ = C ′r[k

′/k] Γ
′. t∗p

— R ′ =
∏

p′ ∈ D∗(l)\{p}
Cc|p′

Γ ′. t∗p′
— Q ′′i = accept(k, Bi,G〈A|B̃|B̃〉); Cqi

Γ ′

— Q∗i = Cqi [k
′/k][ri/qi] Γ

′. t∗qi

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:93

— R ′li =
∏

s ∈ D∗(li)
Cc|s

Γ ′. t∗s

— S ′c =
∏

l′ ∈ Γ\{l,l̃}

〈
Cc|l′

Γ ′,
∏

s′ ∈ D∗(l′)
Cc|s′

Γ ′. t∗s′ , D∗|l′
〉
l′

From Rule bD|Starte we know that

k ′(t∗p) = k
′(t∗q1

) = . . . = k ′(t∗qn) = tk′

for some tk′ session descriptor of session k ′.
We prove the case by taking tk′ = t ′k′ , t

′
k′ obtained from the derivation of 〈〈D〉〉Γ ,C Γ and

M∗ =M ′ and M∗i =M
′
i, i ∈ {1, . . . ,n}.

Case 1 < |{λ̃}| < m− 1
The case follows the same structure of the previous case. We rename k to k ′ on p and all
the newly created service processes. Then we let the system complete all the transitions
and prove that the reductum corresponds to the compilation of D ′,C ′.
Case |{λ̃}| = m

Since |{λ̃}| = m then S = S ′ where S ′ has terminated all the transitions to start the
session. Here we only have to rename k to k ′, as per Lemma B.22, for all the involved
processes, proving S ′ = 〈〈D ′〉〉Γ ′ ,C ′ Γ ′.

We now proceed to prove the (Soundness) of Theorem 6.10, restated here below to con-
sider annotated transitions:

— (Soundness) D,C
Γ λ̃
−→ S implies i) D,C →∗ D ′,C ′ and ii) S →∗ D ′,C ′ Γ

′

for some
D ′,C ′, and Γ ′ such that iii) Γ ′ ` D ′,C ′

In the following we use the shortcut

Cstart = req k : p[A] <=> l1.[B1], . . . , ln.[Bn];Cr |
n∏
i=1

acc k : li.qi[Bi];Cqi

Proof (Soundness). We proceed by induction on the cardinality of λ̃. Then we con-
sider sub-cases on the shape of C and the shape of λ̃.

Case |{λ̃}| = 0

Trivial, D,C Γ= S = D ′,C ′ Γ
′, D,C = D ′,C ′, and Γ ` D ′,C ′.

Case |{λ̃}| = 1

Since the cardinality of λ̃ is one, we can directly consider the single annotated transition
λ = λ̃. In the sub-cases of this case we omit to consider impossible cases for λ = ν〉x
and λ = ?(x) since these transitions (corresponding respectively to rules bDCC|Newquee, and
bDCC|InStarte or bDCC|Starte) can happen only within of a start session sequence (i.e., not at the
first position).
In the following we use the abbreviation follows (#) to indicate that the case unfolds
following the proof of Case # for the same subcase for λ, with the thesis following by
applying the induction hypothesis.

Case C = k : A —> q[B].{oi(xi);Ci}i∈I;Cq | Cc

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:94 Giallorenzo et al.

Case λ = x follows (C = Cstart | Cc), Case λ = o to x follows (C =
k : p[A].e—> B.o;Cp | Cc), Case λ = τ follows (C = if p.e {C1} else {C2} | Cc).

Case λ = o from x
Since receptions in compiled DCC systems can only happen on correlating queues
within sessions, without loss of generality we can assume that λ = o from k.A.B
where oj 6∈ {start , sync}, indeed these operation names are reserved for session
initiation and cannot appear as first (in this case, only) reduction of a compiled
system.
Let q@l ∈ Γ , from Definition 6.7 and Theorem 4.2 we have

D,C Γ≡D

〈
Cc|l

Γ,Q | R,M
〉
l
| Sc

where, let D = 〈〈D〉〉Γ , M = D|l and tq = D(q),
— Q =

∑
i∈I [oi(xi) from k.A.B]

{
Ci Γ
} . tq

— R =
∏

r ∈ D(l)\{q}
Cc|r

Γ. tr

— Sc =
∏

l′∈Γ\{l}

〈
Cc|l′

Γ,
∏

s ∈ D(l′)

Cc|s
Γ. ts

〉
l′

and we can apply Rules bDCC|Eqe, bDCC|SPare and bDCC|Recve such that, let tc =
eval(k.A.B, tq), tm = eval(e, tq), and M(tc) = (oj, tm) :: m̃

D,C Γ
oj from k.A.B

−−−−−−−−−→ S

where

S = S ′ | Sc

and S ′ =
〈
Cc|l

Γ, Cj Γ. tq / (xj, tm) | R,M[tc 7→ m̃]
〉
l
.

D,C can mimic D,C Γ with Rules bC|Eqe, bC|Pare, and bC|Recve for which

D,C → D ′,Cp | Cc

where, let D(k[A〉B]) = (oj, vm) :: m̃ ′, we have

D ′ = D[q 7→ tq / (xj, vm)][k[A〉B] 7→ m̃ ′]

Since from the premises Γ ` D,C then
Γ = Γ1,k[A] : &A.{oi(Ui); Ti}i∈I,k[A〉B] : &A.oj(Uj); T ′ and we can find
Γ ′ = Γ1,k[A] : Tj,k[A〉B] : T ′ such that Γ ′ ` D ′,C ′.
At the level of choreographies, since the changes in D ′ and Γ ′ and the related
D ′ = D ′

Γ ′

affect only the queue related to D ′|l and the state of q, for all other
terms · Γ= · Γ ′ and D ′|l′ = D|l′ .
Hence we can write D ′,C ′ Γ ′= S ′′ | Sc where S ′′ = S ′ by Theorem 4.2.

Case C = k : p[A].e—> B.o;Cp | Cc

Case λ = x follows (C = Cstart | Cc), Case λ = o from x follows
(C = k : A —> q[B].{oi(xi);Ci}i∈I;Cq | Cc), Case λ = τ follows (C =
if p.e {C1} else {C2} | Cc).

Case λ = o to x

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:95

As for Case C = k : A —> q[B].{oi(xi);Ci}i∈I;Cq | Cc, we know that all send
actions in DCC systems compiled from FC programs happen on a session-related
queues, hence we can assume λ = o@k.A.B. Also, we know that o 6∈ {start , sync}
for the reasons explained in Case C = k : A —> q[B].{oi(xi);Ci}i∈I;Cq | Cc.
From Theorem 4.2, let D = 〈〈D〉〉Γ , tp = D(p), andM = D|l. Now we consider two
cases for which, let p@l ∈ Γ , whether the location of the receiving process (stored
under path k.B.l in the state of p) equals l, we either reduce the compiled DCC
system by means of Rule bDCC|InSende or Rule bDCC|Sende. For brevity we just consider
the case for bDCC|InSende as the other case follows similarly.
Since bDCC|InSende applies, we can infer that

D,C Γ≡D

〈
Cc|l

Γ,P | Q | R,M
〉
l
| Sc

where
— P = o@k.B.l to k.A.B; Cp

Γ. tp

— Q = Cc|q
Γ. tq

— R =
∏

r ∈ D(l)\{p,q}

Cc|r
Γ. tr

— Sc =
∏

l′∈Γ\{l}

〈
Cc|l′

Γ,
∏

s ∈ D(l′)
Cc|s

Γ. ts, D|l′

〉
l′

Let tc = eval(k.A.B, tp), tm = eval(e, tp), and M(tc) = m̃

D,C Γ
o@k.A.B
−−−−−−→ S

where

S = S ′ | Sc

and S ′ =
〈
Cc|l

Γ, Cp
Γ. tp | Cc|q

Γ. tq | R,M[tc 7→ m̃ :: (o, tm)]
〉
l

D,C can mimic D,C Γ with Rules bC|Eqe, bC|Pare, and bC|Sende for which

D,C → D ′,Cp | Cc

where, let vm = eval(e,D(p)) and m̃ ′ = D(k[A〉B]), D ′ = D[k[A〉B] 7→ m̃ ′ ::
(o, vm)].
Since from the premises Γ ` D,C then Γ = Γ1,k[A] : ⊕ B.o(U); T ,k[A〉B] : T ′ and
we can find Γ ′ = Γ1,k[A] : T ,k[A〉B] : T ′; &A.o(U) such that Γ ′ ` D ′,C ′.
At the level of choreographies, since the changes in D ′ and Γ ′ and the related
D ′ = D ′

Γ ′

affect only the queue related to D ′|l, for all other terms · Γ = · Γ ′
and D ′|l′ = D|l′ .
Hence we can write D ′,C ′ Γ ′= S ′′ | Sc where S ′′ = S ′ by Theorem 4.2.

Case C = Cstart | Cc

Case λ = o from x follows (C = k : A —> q[B].{oi(xi);Ci}i∈I;Cq | Cc), Case
λ = o to x follows (C = k : p[A].e —> B.o;Cp | Cc), Case λ = τ follows (C =
if p.e {C1} else {C2} | Cc).

Case λ = x
From Definition 6.7 we know that assignments in DCC systems that are compiled
from FC programs appear only within the starting of a session. In this case,

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

0:96 Giallorenzo et al.

since λ̃ contains only one action which corresponds to the first reduction of the
compiled DCC system, it must be the first assignment for the creation of the
session descriptor for some session k ′ in C.
Let C ∈ {A, B̃}, we have two subcases whether λ̃ = λ = k.C.l or λ̃ = λ = k ′′.C.l,
i.e., whether we are starting session k or we are starting another session k ′′.

Case λ = k.C.l
In this case D,C Γ is starting a new session on k. The case is proved applying
Lemma B.25.
Case λ 6= k ′.C.l
In this case we are starting a session on k ′′ 6= k. The case unfolds following
the proof of case C = Cstart |Cc where Cc contains the endpoint choreogra-
phies for the starter process and the service processes for session k ′′. The
thesis follows by applying the induction hypothesis.

Case C = if p.e {C1} else {C2} | Cc

Case λ = x follows (C = Cstart | Cc), Case λ = o from x follows (C =
k : A —> q[B].{oi(xi);Ci}i∈I;Cq | Cc), Case λ = o to x follows (C =
k : p[A].e—> B.o;Cp | Cc).

Case λ = τ

Let p@l ∈ Γ . From Definition 6.7 we have

D,C Γ≡D

〈
Cc|l

Γ,P | R,M
〉
l
| Sc

where, let D = 〈〈D〉〉Γ , tp = D(p), and M = D|l
— P = if p.e {C1

Γ} else {C2
Γ} . tp

— R =
∏

r∈D(l)\{p}
Cc|r

Γ. tr

— Sc =
∏

l′∈Γ\{l}

〈
Cc|l′

Γ,
∏

s∈D(l′)
Cc|s

Γ. ts, D|l′

〉
l′

The case unfolds into two cases, on whether eval(e,D(p) = true. Here we proceed
with the positive case. The other case follows the same structure.
We proceed considering that eval(e,D(p) = true. D,C Γ reduces with Rules
bDCC|Eqe, bDCC|SPare, bDCC|Pare, and bDCC|Conde such that

D,C Γ →
〈
Cc|l

Γ, Cc|p
Γ. tp | R,M

〉
l
| Sc

where S =
〈
Cc|l

Γ, Cc|l
Γ. tp | R,M

〉
l
| Sc. D,C can mimic D,C Γ with Rules

bC|Eqe, bC|Pare, and bC|Conde such that

D,C → D,C1 | Cc

We choose Γ ′ = Γ for which it holds that Γ ` D,C1 | Cc.
Finally, D,C1 | Cc Γ= S by Definition 6.7.

Finally, Cases C = C1 | C2 , C = def X = C′ in Cp | Cc , C = X | Cc and
C = 0 | Cc unfold applying the induction hypothesis on the respective
sub-cases Case λ = x follows (C = Cstart | Cc), Case λ = o from x fol-
lows (C = k : A —> q[B].{oi(xi);Ci}i∈I;Cq | Cc), Case λ = o to x follows
(C = k :p[A].e—> B.o;Cp | Cc),Case λ = τ follows (C = if p.e {C1} else {C2} | Cc).

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

Applied Choreographies 0:97

Case |{λ̃}| > 1

The case unfolds considering λ as the first action in λ̃ = λ, λ̃ ′. For any shape of C and
label λ 6= x we can i) apply the same steps followed in the related case for the same C
with |{λ̃}| = 1, λ̃ = λ and ii) inductively unfold the case on the remaining part λ̃ ′.
For λ = x and C of shape Cstart | Cc (the case for other shapes of C can be re-conducted
to this case), let x = k.A.l (other cases for x = k ′.B.l are similar) and the thesis follows
by applying Lemma B.24, Lemma B.25 and the induction hypothesis on the remaining
transitions in λ̃ \ λ̃

∣∣∣
k
.

ACM Journal Name, Vol. DATE: 12/4/2018, No. 0, Article 0, Publication date: April 2018.

